

NDA/NA 16 years MATHEMATICS

DISHA PUBLICATION

45, 2nd Floor, Maharishi Dayanand Marg, Corner Market, Malviya Nagar, New Delhi - 110017 Tel: 49842349 / 49842350

No part of this publication may be reproduced in any form without prior permission of the publisher. The author and the publisher do not take any legal responsibility for any errors or misrepresentations that might have crept in. We have tried and made our best efforts to provide accurate up-to-date information in this book.

All Right Reserved

Typeset by Disha DTP Team

www.dishapublication.com Books & ebooks for School & Competitive Exams

www.mylearninggraph.com

© Copyright Disha

Write to us at feedback_disha@aiets.co.in

CONTENTS

Тор	ic wise Solved paper for NDA/NA Mathematics 2019-21	1-56
1.	Sets, Relations, Functions and Number System	M-1-37
2.	Polynomial, Quadratic Equation & Inequalities	M-38-64
3.	Sequence and Series	M-65-90
4.	Complex Numbers	M-91-110
5.	Binomial Theorem, Mathematical Induction	M-111-121
6.	Permutation and Combination	M-122-131
7.	Cartesian Coordinate System and Straight Line	M-132-160
8.	Pair of Straight Lines	M-161-163
9.	Circles	M-164-172
10.	CONICS- Parabola, Ellipse & Hyperbola	M-173-185
11.	TRIGONOMETRY- Ratio & Identity, Trigonometric Equations	M-186-225
12.	Properties of Triangle, Inverse Trigonometric Function	M-226-248
13.	Height & Distance	M-249-263
14.	Functions, Limit, Continuity and Differentiability	M-264-309

15.	Derivatives	M-310-327
16.	Application of Derivatives	M-328-348
17.	Indefinite Integration	M-349-360
18.	Definite Integration & Its Application	M-361-388
19.	Differential Equation	M-389-412
20.	Matrices & Determinants	M-413-460
2 1.	Probability and Probability Distribution	M-461-493
22.	Vectors	M-494-534
23.	3-D Geometry	M-535-560
24.	Statistics	M-561-586

NATIONAL DEFENCE ACADEMY EXAMINATION

The National Defence Academy (NDA) founded in 1957, is a premier Inter Service training institution where future cadets are trained. The training involves an exacting schedule of 3 years before the cadets join their respective Service Academies, viz. Indian Military Academy, Naval Academy and Air Force Academy.

The examination of the National Defence Academy is conducted by UPSC twice a year, after which the selected candidates are sent to National Defence Academy for training.

SYLLABUS

- Algebra : Concept of a set, operations on sets, Venn diagrams. De Morgan laws. Cartesian product, relation, equivalence relation. Representation of real numbers on a line. Complex numbers – basic properties, modulus, argument, cube roots of unity. Binary system of numbers. Conversion of a number in decimal system to binary system and vice-versa. Arithmetic, Geometric and Harmonic progressions. Quadratic equations with real coefficients. Solution of linear inequations of two variables by graphs. Permutation and Combination. Binomial theorem and its application. Logarithms and their applications.
- Matrices and Determinants: Types of matrices, operations on matrices Determinant of a matrix, basic properties of determinant. Adjoint and inverse of a square matrix, Applications – Solution of a system of linear equations in two or three unknowns by Cramer's rule and by Matrix Method.
- Trigonometry : Angles and their measures in degrees and in radians. Trigonometrical ratios. Trigonometric identities Sum and difference formulae. Multiple and Sub-multiple angles. Inverse trigonometric functions. Applications – Height and distance, properties of triangles.
- 4. Analytical Geometry of two and three dimensions : Rectangular Cartesian Coordinate system. Distance formula. Equation of a line in various forms. Angle between two lines. Distance of a point from a line. Equation of a circle in standard and in general form. Standard forms of parabola, ellipse and hyperbola. Eccentricity and axis of a conic.
- 5. Differential Calculus : Concept of a real valued function - domain, range and graph of a function. Composite functions, one to one, onto and inverse functions. Notion of limit, Standard limits - examples. Continuity of functions - examples, algebraic operations on continuous functions. Derivative of a function at a point, geometrical and physical interpreatation of a derivative - applications. Derivatives of sum, product and quotient of functions, derivative of a

function with respect of another function, derivative of a composite function. Second order derivatives. Increasing and decreasing functions. Application of derivatives in problems of maxima and pminima.

- 6. Integral Calculus and Differential Equations : Integration as inverse of differentiation, integration by substitution and by parts, standard integrals involving algebraic expressions, trigonometric, exponential and hyperbolic functions. Evaluation of definite integrals determination of areas of plane regions bounded by curves applications. Definition of order and degree of a differential equation, formation of a differential equation by examples. General and particular solution of a differential equation, solution of first order and first degree differential equations of various types examples. Application in problems of growth and decay.
- 7. Vector Algebra: Vectors in two and three dimensions, magnitude and direction of a vector. Unit and null vectors, addition of vectors, scalar multiplication of vector, scalar product or dot product of two-vectors. Vector product and cross product of two vectors. Applications-work done by a force and moment of a force, and in geometrical problems.
- Statistics: Classification of data, Frequency distribution, cumulative frequency distribution - examples Graphical representation – Histogram, Pie Chart, Frequency Polygon - examples. Measures of Central tendency – mean, median and mode. Variance and standard deviation - determination and comparison. Correlation and regression.
- 9. Probability: Random experiment, outcomes and associated sample space, events, mutually exclusive and exhaustive events, impossible and certain events. Union and Intersection of events. Complementary, elementary and composite events. Definition of probability classical and statistical examples. Elementary theorems on probability simple problems. Conditional probability, Bayes' theorem simple problems. Random variable as function on a sample space. Binomial distribution, examples of random experiments giving rise to Binomial distribution.

DETAILED BREAKUP OF QUESTIONS (2007-21)

	20	07	20	08	20	09	20	10	20	11	20	12	20	13	20	14	20	15	20	16	20	17	20	18	20	19	2020	2021
CHAPTERS NAME	Ι	Ш	Γ	11	1	11	Ι	Ш	Ι	Ш	Ι	Ш	Ι	Ш	Ι	Ш	Ι	11	Ι	П	Τ	Ш	1	Ш	Ι	Ш	Ι	Ι
Set, Relation,																												
Function and	10	13	11	9	13	18	9	9	16	5	14	7	13	12	13	8	8	8	17	13	7	5	11	8	10	12	10	7
Number System				-			-		-	-					_		-	-							-			
Polynomial																												
Quadratic Equation	11	11	6	۵	7	7	7	5	11	11	7	2	Q	7	2	2	5	5	6	7	5	7	2	1	11	11	2	5
	11	11		5	ľ	'	'			11	<i>'</i>	5	0	'	2	2					5	'	 ²	4	14	14	J	5
& mequalities								_																				
Sequence and	3	10	4	9	4	5	6	3	7	7	7	7	2	3	2	5	2	2	5	9	8	6	5	7	4	9	1	7
Series		2	6	2	2		-	-	2	0	2	2	2	2	4	2		6	4		-	2	-	2	г	2	2	
	4	2	0	3	3	2	5	2	3	ð	2	3	2	2	4	3	5	0	4	2	2	3		2	2	2	2	5
Binomial Theorem,	2					2				2	2		4			_					2			2	2		2	
Mathematical	2	2	4	1	1	2	1	4	1	2	2	0	1	2	4	5	1	3	1	2	2	4	5	2	3	2	3	4
Induction																												
Permutation and	1	3	3	3	4	3	3	3	6	2	1	1	2	3	5	0	4	2	5	4	1	2	3	4	3	3	3	2
Combination																												
Cartesian Co-																												
ordinate System,	6	3	4	3	3	3	3	6	8	6	6	10	8	9	0	4	7	7	4	4	6	4	8	5	8	3	6	6
Straight Line																												
Pair of Straight	0	0	0	1	0	0	0	0	0	0	0	1	0	5	0	1	2	1	0	2	1	1	1	0	0	1	1	1
Lines	0	0	Ľ	-	Ŭ	Ŭ	0	Ŭ	0	0	0		0	5	0	-		-	0	2	1	-	-	0	Ű		-	1
Circles	2	2	3	2	1	1	1	2	1	1	0	0	1	2	0	0	0	0	2	3	2	1	0	2	2	-	1	2
Conics - Parabola,	2	2	1	2	2	2	5	2	2	2	2	2	2	7	5	5	2	2	1	2	1	2	1	0	2	1	2	2
Ellipse & Hyperbola	2	2		5	5	2	5	2	2	2	2		2	4	5	5	2	2	4	2	1	5		0	5		2	2
Trigonometry :																												
Ratio & Identity,	10			_	4.2		_	4.2		10	10			_			_							_	4.0		10	
Trigonometric	10	8	10	/	13	14	/	12	4	10	19	ð	9	/	11	11	5	6	8	ð	8	4	ð	/	18	11	19	11
Equation																												
Properties of																												
Triangle. Inverse																												
Trigonometric	3	6	5	3	5	4	5	2	7	6	5	1	2	1	4	6	9	4	5	4	1	4	5	3	4	3	4	4
Function																												
Height & Distance	1	1	1	1	2	1	1	2	1	4	4	2	3	2	2	1	2	2	1	2	1	2	3	2	1	1	-	2
Functions, Limits,		_	-	_	-		_	_	_				-		_		_	-	_		_	_			_			
Continuity and	7	3	8	9	5	4	10	7	3	0	5	8	7	6	11	9	7	9	9	9	12	17	10	11	6	6	8	7
Differentiability	-								-	-			-						-						-		-	
Derivatives	0	3	7	2	5	8	4	4	1	2	3	4	6	4	0	2	2	2	5	5	2	3	2	2	2	3	4	3
Application of	-		<u> </u>	_		-			_	_			-	<u> </u>		_	-	-			-		-	_	_			
Derivatives	7	4	3	5	7	4	6	5	3	6	5	3	2	3	5	4	8	6	4	3	2	5	2	4	1	6	6	5
Indefinite																					_							
Integration	2	1	2	3	3	2	4	3	3	1	2	3	2	3	0	0	4	6	1	2	3	2	1	3	2	2	4	3
Definite Integration																												
& its applications	3	5	2	3	2	3	3	6	4	4	3	5	6	7	5	6	8	5	3	3	4	4	10	3	3	3	4	3
Differential																												
Faustion	6	5	2	6	2	3	5	6	5	2	3	7	5	3	13	4	6	6	5	4	6	4	5	7	5	6	4	4
Equation Matricos and																				$\left - \right $								
Dotorminante	8	11	11	7	10	8	9	9	8	7	11	8	7	9	6	10	7	8	11	11	12	9	3	15	7	5	8	11
Determinants Probability and																				$\left - \right $								
Probability and] _							2	10	11	10		12			2			11		_	10		10	
Probability	б	4	b ا	'	ð	б	ð	4	б	5	5	10	11	10	5	13	ð	ð	2	Ø	9		ð	/	тр	ð	10	5
Distribution				4.0												10			4.2						_			
vectors	9	6	9	10	/		8	8	8	6		8	6	6	2	10			12	6	6	6	5	8	5	5	5	5
3D-Geometry	6	7	5	7	6	6	8	2	5	4	5	8	1	1	13	1	4	8	2	8	6	5	5	4	4	5	5	5
Statistics	7	6	6	7	6	6	4	10	7	19	5	11	8	9	8	4	7	7	4	5	10	8	10	10	4	9	10	11

TOPICWISE SOLVED PAPER FOR NDA/NA MATHEMATICS 2019-21

Sets, Relations, Functions and Number System

- If A, B and C are subsets of a given set, then which one of 1. the following relations is *not* correct? [NDA 2019-II]
 - (a) $A \cup (A \cap B) = A \cup B$
 - $A \cap (A \cup B) = A$ (b)
 - $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ (c)
 - (d) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
- If a set A contains 3 elements and another set B contains 2. 6 elements, then what is the minimum number of elements that $(A \cup B)$ can have? [NDA 2019-II] (b) 6 (a) 3 (c) 8 (d) 9
- 3. In a school, 50% students play cricket and 40% play football. If 10% of students play both the games, then what per cent of students play neither cricket nor football? [NDA 2019-II]
- (a) 10% (b) 15% (c) 20% (d) 25% If A = $[x; 0 \le x \le 2]$ and B = [y, y is a prime number], then 4. what is $A \cap B$ equal to ? [NDA 2019-II] (a) **b** (b) [1] [2] (d) [1,2] (c)
- 5. What is the value of [NDA 2019-II]

$$2 + \frac{1}{2 + \frac{1}{2 + \dots \infty}}$$
(a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$
(c) 3 (d) 4

If *n*! has 17 zeros, then what is the value of *n*? 6.

- 95 (a)
- (b) 85
- (c) 80

- 7. What is the maximum number of subsets does S have? (a) 10 (b) 20 (c) 512 (d) 1024
- 8. A binary number is represented by $(cdccddcccddd)_2$, where c > d. What is its decimal equivalent? INDA 2019-III

(a)
$$1848$$
 (b) 2048 (c) 2842 (d) 2872

Directions for the following two (02) items : *Read the following* information and answer the two items that follow:

Let $f(x) = x^2$, $g(x) = \tan x$ and $h(x) = \ln x$.

For $x = \frac{\sqrt{\pi}}{2}$, what is the value of [ho(gof)](x)? 9.

- (d) $\frac{\pi}{2}$ (a) 0 (b) 1 (c)
- [NDA 2019-II] 10. What is [fo(fof)](2) equal to? (a) 2 (b) 8 (d) 256 (c) 16
- 11. A car travels first 60 km at a speed of 3v km/hr and travels next 60 km at 2v km/hr. What is the average speed of the car? [NDA 2019-II] (a) 2.5 v km/hr(b) $2.4 \,\mathrm{v}\,\mathrm{km/hr}$
 - (c) 2.2 km/hr(d) 2.1 v km/hr
- 12. The mean weight of 150 students in a certain class is 60 kg. The mean weight of boys is 70 kg and that of girls is 55 kg. What are the number of boys and girls respectively in the class? [NDA 2019-II] 50 and 100 (a) 75 and 75 (b) (c) 70 and 80 (d) 100 and 50
- 13. Consider the proper subsets of $\{1, 2, 3, 4\}$. How many of these proper subsets are superset of the set $\{3\}$? **ба 2020 П**

				[NDA 2020	<u>י-ו</u> ן
	(a) 5	(b) 6	(c) 7	(d) 8	
_					

DIRECTIONS (Qs. 14-16) : Read the following information and answer the three items that follow:

Consider the following Venn diagram, where X, Y and Z are three sets. Let the number of elements in Z be denoted by n(Z) which is equal to 90.

- 14. If the number of elements in Y and Z are in the ratio 4 : 5, then what is the value of *b*? [NDA 2020-I] (a) 18 (b) 19 (c) 21 (d) 23
- 15. What is the value of [NDA 2020-I] $n(X) + n(Y) + n(Z) - n(X \cap Y) - n(Y \cap Z) - n(X \cap Z)$

$$+n(X \cap Y \cap Z)?$$

- (a) a + b + 43a + b + 63
- (c) a + b + 96(d) a + b + 106

- [NDA 2019-II]

- exists
- Let $S = (2, 4, 6, 8, \dots, 20)$. [NDA 2019-II]

4

- [NDA 2021-I] 16. If the number of elements belonging to neither X nor Y, nor (a) 1 only 2 only Z is equal to p, then what is the number of elements in the (b)complement of X? [NDA 2020-I] (c) Both 1 and 2 (d) Neither 1 nor 2 (b) p + b + 40(a) p + b + 60**26.** Consider the following statements : (c) p + a + 60(d) p + a + 401 The null set is a subset of every set. 17. The number $(1101101 + 1011011)_2$ can be written in decimal 2 Every set is a subset of itself. [NDA 2020-I] If a set has 10 elements, then its power set will have system as 3. (a) (198)₁₀ (199)₁₀ (b) 1024 elements. (c) $(200)_{10}$ (d) $(201)_{10}$ Which of the above statements are correct? What is the value of 18. [NDA 2021-I] (a) 1 and 2 only(b) 2 and 3 only $\frac{1}{10}\log_5 1024 - \log_5 10 + \frac{1}{5}\log_5 3125?$ [NDA 2020-I] (c) 1 and 3 only (d) 1, 2 and 3 27. Let *R* be a relation defined as xRy if and only if (d) 3 (a) 0 (b) 1 (c) 2 2x + 3y = 20, where x, $y \in N$. How many elements of the 19. If $x = \log_c(ab)$, $y = \log_a(bc)$, $z = \log_b(ca)$, then which form (x, y) are there in R? [NDA 2021-I] of the following is correct? [NDA 2020-I] (e) 4 (d) 6 (a) 2 (b) 3 (a) xyz = 128. Consider the following statements : (b) x + y + z = 1A function $f: \mathbb{Z} \to \mathbb{Z}$, defined by f(x) = x + 1, is one-1. (c) $(1+x)^{-1} + (1+y)^{-1} + (1+z)^{-1} = 1$ one as well as onto. 2. A function $f: \mathbb{N} \to \mathbb{N}$, defined by f(x) = x + 1, is one-(d) $(1+x)^{-2} + (1+y)^{-2} + (1+z)^{-2} = 1$ one but not onto. **20.** Let $S = \{1, 2, 3, \dots\}$. A relation R on $S \times S$ is defined by xRy Which of the above statements is/are correct? [NDA 2021-I] if $\log_a x > \log_a y$ when $a = \frac{1}{2}$. Then the relation is (a) 1 only (b) 2 only(c) Both 1 and 2 (d) Neither 1 nor 2 [NDA 2020-I] 29. A 24 cm long wire is bent to form a triangle with one of (a) reflexive only the angles as 60° . What is the altitude of the triangle (b) symmetric only having the greatest possible area? [NDA 2021-I] (c) transitive only (d) both symmetric and transitive $2\sqrt{3}$ cm (a) $4\sqrt{3}$ cm (b) 21. If $f(x) = 3x^2 - 5x + p$ and f(0) and f(1) are opposite in (c) 6 cm (d) 3 cm The average of a set of 15 observations is recorded, but 30. sign, then which of the following is correct?[NDA 2020-I] later it is found that for one observation, the digit in the tens place was wrongly recorded as 8 instead of 3. After (b) -2(d) <math>3(a) -2correcting the observation, the average is (c) 0[NDA 2021-I] 22. If $f(x) = 2x - x^2$, then what is the value of (a) reduced by $\frac{1}{3}$ (b) increased by $\frac{10}{3}$ f(x+2) + f(x-2) when x = 0? [NDA 2020-I] (c) reduced by $\frac{10}{2}$ (d) reduced by 50 (a) -8 (b) -4 (c) 8 (d) 4 23. A chord subtends an angle 120° at the centre of a unit Polynomial, Quadratic Equation & Inequalities circle. What is the length of the chord? [NDA 2021-I] (a) $\sqrt{2} - 1$ units (b) $\sqrt{3} - 1$ units 1. If both p and q belong to the set (1, 2, 3, 4), then how many equations of the form $px^2 + qx + 1 = 0$ will have real roots? (c) $\sqrt{2}$ units (d) $\sqrt{3}$ units [NDA 2019-II] 24. What is the interior angle of a regular octagon of side (d) 6 length 2 cm? [NDA 2021-I] (a) 12 (b) 10 (c) 7 2. What is the value of k for which the sum of the squares of $\frac{\pi}{2}$ (b) $\frac{3\pi}{4}$ (c) $\frac{3\pi}{5}$ (d) $\frac{3\pi}{8}$ the roots of $2x^2 - 2(k-2)x - (k+1) = 0$ is minimum? (a) [NDA 2019-II] **25.** Consider the following statements : (a) -1 1 (b) 1. A = (1, 3, 5) and B = (2, 4, 7) are equivalent sets. A = (1, 5, 9) and B = (1, 5, 5, 9, 9) are equal sets.
 - (c) 2 (d)

2

2.

Which of the above statements is/are correct?

- 3. If $|x^2-3x+2| > x^2-3x+2$, then which one of the following is correct? [NDA 2019-II] (a) x < 1 or x > 2
 - (b) $1 \le x \le 2$
 - (c) 1 < x < 2
 - (d) x is any real value except 3 and 4
- 4. Under which one of the following conditions will the quadratic equation $x^2 + mx + 2 = 0$ always have real roots? [NDA 2019-II]
 - (a) $2\sqrt{3} \le m^3 < 8$ (b) $\sqrt{3} \le m^2 < 4$

(c) $m^2 > 8$ (d) $m^2 \le \sqrt{3}$

5. If α and β are the roots of $x^2 + x + 1 = 0$, then what is

$$\sum_{j=0}^{\infty} (\alpha^j + \beta^j) \text{ equal to?} \qquad [NDA 2019-II]$$

(a) 8 (b) 6 (c) 4 (d) 2

- 6. How many terms are there in the expansion of $(1+2x+x^2)^5 + (1+4y+4y^2)^5$? [NDA 2019-II] (a) 12 (b) 20 (c) 21 (d) 22
- 7. Let $A \cup B = \{x | (x a)(x b) \ge 0, \text{ where } a \le b\}$. What are A and B equal to? [NDA 2019-II]
 - (a) $A = \{x | x > a\}$ and $B = \{x | x > b\}$
 - (b) $A = \{x | x < a\}$ and $B = \{x | x > b\}$
 - (c) $A = \{x | x < a\}$ and $B = \{x | x < b\}$
 - (d) $A = \{x | x > a\}$ and $B = \{x | x < b\}$
- 8. What is the solution of $x \le 4$, $y^3 0$ and $x \le -4$, $y \le 0$? [NDA 2019-II]

(a)
$$x^3 - 4, y \le 0$$

(b) $x \le 4, y^3 0$
(c) $x \le -4, y = 0$
(d) $x^3 - 4, y = 0$

9. If $x^{\log 7^x} > 7$ where x > 0, then which one of the following is correct? [NDA 2019-II]

(a)
$$x \in (0, \infty)$$
 (b) $x \in \left(\frac{1}{7}, 7\right)$
(c) $x \in \left(0, \frac{1}{7}\right) \cup (7, \infty)$ (d) $x \in \left(\frac{1}{7}, \infty\right)$

10. How many real roots does the equation $x^3 + 3 |x| + 2 = 0$ have? [NDA 2019-II]

(a) Zero (b) One (c) I wo (d) Four
11. Consider the following statements in respect to the
quadratic equation [NDA 2019-II]

$$4 (x-p) (x-q) - r^2 = 0$$
,
where p, q and r are real numbers :

1. The roots are real

- 2. The roots are equal if p = q and r = 0
- Which of the above statements is/are correct?
- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2

12. What is the area of the region bounded by
$$|x| < 5$$
, $y = 0$ and $y = 8$? [NDA 2019-II]

- (a) 40 square units (b) 80 square units
- (c) 120 square units (d) 160 square units

- **13.** Which one of the following is the second degree polynomial function f(x) where f(0) = 5, f(-1) = 10 and f(1) = 6? [NDA 2019-II] (a) $5x^2 - 2x + 5$ (b) $3x^2 - 2x - 5$ (c) $3x^2 - 2x + 5$ (d) $3x^2 - 10x + 5$ **14.** If *p* and *q* are the roots of the equation $x^2 - 30x + 221 = 0$, what is the value of $p^3 + q^3$? [NDA 2019-II] (a) 7010 (b) 7110 (c) 7210 (d) 7240
- **15.** If $\cot \alpha$ and $\cot \beta$ are the roots of the equation $x^2 3x + 2 = 0$, then what is $\cot (\alpha + \beta)$ equal to ? [NDA 2020-I]

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{3}$ (c) 2 (d) 3

16. The roots α and β of a quadratic equation, satisfy the relations $\alpha + \beta = \alpha^2 + \beta^2$ and $\alpha\beta = \alpha^2\beta^2$. What is the number of such quadratic equations ? [NDA 2020-I] (a) 0 (b) 2 (c) 3 (d) 4

- 17. If $1.5 \le x \le 4.5$, then which one of the following is correct? [NDA 2020-I]
 - (a) (2x-3)(2x-9) > 0
 - (b) (2x-3)(2x-9) < 0

(c)
$$(2x-3)(2x-9) \ge 0$$

- (d) $(2x-3)(2x-9) \le 0$
- **18.** The number of integer values of k, for which the equation $2\sin x = 2k + 1$ has a solution, is **[NDA 2021-I]** (a) zero (b) one (e) two (d) four
- 19. If the roots of the quadratic equation x² + 2x + k = 0 are real, then [NDA 2021-I] (a) k < 0 (b) k ≤ 0 (c) k < 1 (d) k ≤ 1
 20. If α and β are the roots of the equation 4x² + 2x - 1 = 0, then which one of the following is correct? [NDA 2021-I] (a) β = -2α² - 2α (b) β = 4α² - 3α
- (c) $\beta = \alpha^2 3\alpha$ (d) $\beta = -2\alpha^2 2\alpha$ 21. If one root of $5x^2 + 26x + k = 0$ is reciprocal of the other, then what is the value of k? [NDA 2021-I] (a) 2 (b) 3 (c) 5 (d) 8
- 22. If k is one of the roots of the equation x (x + 1) + 1 = 0, then what is its other root? [NDA 2021-I] (a) 1 (b) -k (c) k^2 (d) $-k^2$

Sequence and Series

1.	What is th	e value of			[NDA 2019-	II]
	1 - 2 + 3 - 3	-4+5+	101?			
	(a) 51	(b) 55	(c)	110	(d) 111	
2.	If the sum	of first n terr	ns of a	series is	s(n+12), then we	hat
	is its third	term?			[NDA 2019-	II]
	(a) 1	(b) 2	(c)	3	(d) 4	
3.	If the root	s of the equa	tion		[NDA 2019-	П]
	$a(b-c)x^2$	+b(c-a)x	+ c (a -	(b)=0		
	are equal,	then which o	one of t	he follo	wing is correct?	
	(a) <i>a</i> , <i>b</i> a	nd <i>c</i> are in A	AP (b)	<i>a, b</i> a	nd <i>c</i> are in GP	
	(c) $a b a$	nd <i>c</i> are in H	P			

(d) *a*, *b* and *c* do not follow any regular pattern

of the GP is *n*, then what is its common ratio? [NDA 2019-II] (a) m/n(b) *n/m* (c) m + (n/m)(d) n + (m/n)Let *m* and *n* (*m* < *n*) be the roots of the equation $x^2 - 16x + 39 = 0$. 5. If four terms p, q, r and s are inserted between m and n to form an AP, then what is the value of p + q + r + s? [NDA 2019-II] (a) 29 (b) 30 (c) 32 (d) 35 Let a, b, c be in AP and $k \neq 0$ be a real number. Which of 6. the following are correct? [NDA 2019-II] 1. *ka, kb, kc* are in AP 2. k-a, k-b, k-c are in AP $\frac{a}{k}, \frac{b}{k}, \frac{c}{k}$ are in AP 3. Select the correct answer using the code given below : (a) 1 and 2 only (b) 2 and 3 only(c) 1 and 3 only (d) 1, 2 and 3

A geometric progression (GP) consists of 200 terms. If the sum of odd terms of the GP is *m*, and the sum of even terms

- 7. How many two-digit numbers are divisible by 4?
 - [NDA 2019-II] (d) 25
- (a) 21 (b) 22 (c) 24 (d) 25 8. Let S_n be the sum of the first *n* terms of an AP. If $S_{2n} = 3n + 14n^2$, then what is the common difference? [NDA 2019-II]

(d) 9

9. If 3rd, 8th and 13th terms of a GP are *p*, *q* and *r* respectively, then which one of the following is correct? [NDA 2019-II]

(c) 7

(a) $q^2 = pr$ (b) $r^2 = pq$

(b) 6

- (c) pqr = 1 (d) 2q = p + r
- **10.** If p^2 , q^2 and r^2 (where p, q, r > 0) are in GP, then which of the following is/are correct? [NDA 2020-I] 1. p, q and r are in GP.
 - 2. $\ln p$, $\ln q$ and $\ln r$ are in AP.

(a) 5

Select the correct answer using the code given below :

[NDA 2020-I]

(c) Both 1 and 2 (d) Neither 1 nor 2 11. If n = 100!, then what is the value of the following?

$$\frac{1}{\log_2 n} + \frac{1}{\log_2 n} + \frac{1}{\log_2 n} + \frac{1}{\log_2 n} + \dots + \frac{1}{\log_2 \log_2 n}$$
 [NDA 2021-I]

$$\log_2 n \quad \log_3 n \quad \log_4 n \qquad \log_{100} n \qquad (nDA 2021-1)$$
(a) 0 (b) 1 (c) 2 (d) 3

12. If the first term of an AP is 2 and the sum of the first five terms is equal to one-fourth of the sum of the next five terms, then what is the sum of the first ten terms?

[NDA 2021-I] (d) 250

5.

(a) -500 (b) -250 (c) 500**13.** Consider the following statements :

- 1. If each term of a GP is multiplied by same non-zero number, then the resulting sequence is also a GP.
- 2. If each term of a GP is divided by same non-zero number, then the resulting sequence is also a GP.

Which of the above statements is/are correct?

					[NDA 2021-I]
	(a) 1 on	ly	(b)	2 only	
	(c) Both	1 1 and 2	(d)	Neither 1	l nor 2
14.	If x^2 , x , –	8 are in AP, th	nen whi	ch one of	the following is
	correct?				[NDA 2021-I]
	(a) $x \in$	{-2}	(b)	$x \in \{4\}$	
	(c) $x \in$	{-2,4}	(d)	$x \in \{-4,$	2}
15.	The third	term of a GP	is 3. W	hat is the	product of its
	first five	erms?			[NDA 2021-I]
	(a) 81				
	(b) 243				
	(c) 729				
	(d) Can	not be detenn	ined du	e to insuf	ficient data
16.	Let <i>x</i> be t	he HM and y	be the	GM of two	o positive
	numbers	<i>m</i> and <i>n</i> . If 5 <i>x</i>	=4y, tl	nen which	one of the
	following	; is correct?			[NDA 2021-I]
	(a) 5 <i>m</i> =	= 4n	(b)	2m=n	
	(c) $4m =$	= 5n	(d)	m = 4n	
17.	The geon	netric mean of	f a set o	of observat	ions is com-
	puted as	10. The geom	etric me	ean obtain	ed when each
	(a) 810	on x_i is replac		x_i^{11} IS	[NDA 2021-1] (d) 81000
	(a) 810	(0) 900	(0)	30000	(u) 81000
		Comple	ex Nu	mbers	
1.	What is t	he value of			[NDA 2019-II]
	$\left[\frac{i+\sqrt{3}}{2}\right]$	$\frac{2019}{+}\left[\frac{i-\sqrt{3}}{2}\right]$	2019		

(a)
$$6i-3$$
 (b) $-6i+3$ (c) $-6i-3$ (d) $6i+3$
3. What is the modulus of the complex number

$$\frac{\cos\theta + i\sin\theta}{\cos\theta - i\sin\theta}, \text{ where } i = \sqrt{-1}?$$
 [NDA 2020-1]

(a)
$$\frac{1}{2}$$
 (b) 1 (c) $\frac{3}{2}$ (d) 2

4. What is the argument of the complex number $\frac{1-i\sqrt{3}}{1+i\sqrt{3}}$

where
$$i = \sqrt{-1}$$
? [NDA 2020-I]
(a) 240° (b) 210° (c) 120° (d) 60°

(a)
$$240^{\circ}$$
 (b) 210° (c) 120°
The smallest positive integer *n* for which

$$\left(\frac{1-i}{1+i}\right)^{n^2}$$
 where $i = \sqrt{-1}$, is [NDA 2021-I]
(a) 2 (b) 4 (c) 6 (d) 8

6. If
$$Z = 1 + i$$
, where $i = \sqrt{-1}$, then what is the modulus of

$$Z + \frac{2}{Z}$$
? [NDA 2021-I]

<u>4</u> 4.

8.

7.	Consider the following in respect of a complex number Z:
	1. $\overline{(Z^{-1})} = (\overline{Z})^{-1}$
	2. $ZZ^{-1} = Z ^2$
	Which of the above is/are correct? [NDA 2021-I]
	(a) 1 only (b) 2 only (c) P_{i} (c) $P_$
0	(c) Both I and 2 (d) Neither I nor 2 Consider the following statements in respect of an
0.	arbitrary complex number Z:
	 The difference of Z and its conjugate is an imaginary number.
	2. The sum of <i>Z</i> and its conjugate is a real number.
	Which of the above statements is/are correct?
	[NDA 2021-I]
	(a) 1 OHy (b) 2 OHy (c) Both 1 and 2 (d) Neither 1 nor 2
9.	What is the modulus of the complex number
	$i^{2n+1}(-i)^{2n-1}$ where $n \in N$ and $i = \sqrt{12}$
	$i = (-i)^{-1}$, where $n \in \mathbb{N}$ and $i = \sqrt{-1}^{-1}$ INDA 2021-II
	(a) -1 (b) 1 (c) $\sqrt{2}$ (d) 2
	$\begin{array}{c} (a) & 1 & (b) & 1 & (b) & \sqrt{2} \\ \hline \\ \textbf{Dinomial Theorem Mathematical Induction} \\ \end{array}$
	Binomiai Theorem, Mathematicai Induction
1.	If the middle term in the expansion of $\left(x^2 + \frac{1}{x}\right)^{2x}$ is
	$184756x^{10}$, then what is the value of <i>n</i> ? [NDA 2019-II]
	(a) 10 (b) 8 (c) 5 (d) 4
2.	If the constant term in the expansion of $\left(\sqrt{x} - \frac{k}{x^2}\right)^{10}$ is
	405, then what can be the values of k ? [NDA 2019-II]
_	(a) ± 2 (b) ± 3 (c) ± 5 (d) ± 9
3.	What is the sum of the last five coefficients in the expansion $f(1 + y)^2$
	of $(1 + x)^2$ when it is expanded in ascending powers of x? INDA 2020-II
	(a) 256 (b) 512 (c) 1024 (d) 2048
4.	The term independent of x in the binomial expansion of
	$(2 - 1)^{10}$
	$\left(\frac{1}{x^2} - \sqrt{x}\right)$ is equal to [NDA 2020-I]
	(a) 180 (b) 120 (c) 90 (d) 72
5.	If $(1+2x-x^2)^6 = a_0 + a_1x + a_2x^2 + a_{12}x^{12}$ then
	what is $a_1 = a_2 + a_3 = a_1 + a_2 + a_3 = a_1 + a_2 + a_3 = a_1 + a_2 = a_1 + a_3 = a_1 + a_3 = a_1 + a_3 = a_1 + a_3 = a_1 + a_2 = a_1 + a_2 = a_1 + a_3 = a_1 + a_3 = a_1 + a_2 = a_2 + a_3 = a_1 + a_2 = a_$
	what is $a_0 - a_1 + a_2 - a_3 + a_4 - \dots + a_{12}$ equal to?
	(a) 32 (b) 64 (c) 2048 (d) 4096
6.	If $C_0, C_1, C_2, \dots, C_n$ are the coefficients in the expansion of
	$(1+x)^n$, then what is the value of $C_1 + C_2 + C_3 + \dots + C_n$?
	[NDA 2021-I] (a) 2^n (b) $2^n + (a) + 2^{n-1}$ (b) $2^n - 2^{n-1}$
7.	(a) $2^{\prime\prime}$ (b) $2^{\prime\prime}-1$ (c) $2^{\prime\prime}$ (d) $2^{\prime\prime}-2$ What is the coefficient of the middle term in the expan-
	sion of $(1 + 4x + 4x^2)^5$? [NDA 2021-I]
	(a) 8064 (b) 4032 (c) 2016 (d) 1008

(a) $2+2^2+2^3+\ldots+2^n$ (b) $1+2+2^2+2^3+\ldots+2^n$ (c) $1+2+2^2+2^3+\ldots+2^{n-1}$ (b) $2+2^2+2^3+\ldots+2^{n-1}$ What is the sum of the coefficients of first and last terms 9. in the expansion of $(1 + x)^{2n}$, where *n* is a natural number? [NDA 2021-I] (a) 1 (b) 2 (c) *n* (d) 2*n* **Permutation and Combination** What is the number of diagonals of an octagon? 1. [NDA 2019-II] (a) 48 (b) 40 (c) 28 (d) 20 2. If P(n, r) = 2520 and C(n, r) = 21, then what is the value of C(n+1, r+1)?[NDA 2019-II] (a) 7 (b) 14 (c) 28 (d) 56 What is C(47, 4) + C (51, 3) + C(50, 3) + C (49, 3) + C(48, 3) 3. [NDA 2019-II] +C(47,3) equal to? (b) C(52,5) (a) C(47,4)(c) C(52,4)(d) C(47,5)4. If C(20, n+2) = C(20, n-2), then what is *n* equal to? [NDA 2020-I] (a) 18 (b) 25 (c) 10 (d) 12 5. What is the number of ways in which the letters of the word 'ABLE' can be arranged so that the vowels occupy even places? [NDA 2020-I] (a) 2 (b) 4 (c) 6 (d) 8 6. What is the maximum number of points of intersection of 5 non-overlapping circles? [NDA 2020-I] (a) 10 (b) 15 20 (d) 25 (c) 7. In how many ways can a team of 5 players be selected from 8 players so as not to include a particular player? [NDA 2021-I] (a) 42 (b) 35 21 (d) 20 (c)

What is C(n, 1) + C(n, 2) + ... + C(n, n) equal to?

Cartesian Coordinate System and Straight Line

1. The equation
$$ax + by + c = 0$$
 represents a straight line
[NDA 2019-II]

(b) only when $a \neq 0$

(c) only when
$$b \neq 0$$

(d) only when at least one of a and b is non-zero

2. What is the distance between the points [NDA 2019-II] $P(m \cos 2\alpha, m \sin 2\alpha)$ and $Q(m \cos \beta, m \sin 2\beta)$?

- (a) $|2m\sin(\alpha-\beta)|$ (b) $|2m\cos(\alpha-\beta)|$
- (c) $|m\sin(2\alpha-2\beta)|$ (d) $|m\sin(2\alpha-2\beta)|$

[NDA 2021-I]

- 3. An equilateral triangle has one vertex at (-1, -1) and
 - another vertex at $\left(-\sqrt{3},\sqrt{3}\right)$. The third vertex may lie on **INDA 2019-III**
 - (a) $(-\sqrt{2}, \sqrt{2})$ (b) $(\sqrt{2}, -\sqrt{2})$
- (c) (1,1) (d) (1,-1)4. The point (1,-1) is one of the vertices of a square. If 3x + 1
- 2y = 5 is the equation of one diagonal of the square, then what is the equation of the other diagonal? [NDA 2020-I] (a) 3x-2y=5 (b) 2x-3y=1
 - (c) 2x 3y = 5 (d) 2x + 3y = -1
- 5. If the circumcentre of the triangle formed by the lines x+2=0, y+2=0 and kx+y+2=0 is (-1,-1), then what is the value of k? [NDA 2020-I] (a) -1 (b) -2 (c) 1 (d) 2
- 6. Under which condition, are the points (a, b), (c, d) and (a-c, b-d) collinear? [NDA 2020-I] (a) ab = cd (b) ac = bd(c) ad = bc (d) abc = d
- 7. Let ABC be a triangle. If D(2, 5) and E(5, 9) are the midpoints of the sides AB and AC respectively, then what is the length of the side BC? [NDA 2020-I] (a) 8 (b) 10 (c) 12 (d) 14
- 8. If the foot of the perpendicular drawn from the point (0, k) to the line 3x 4y 5 = 0 is (3, 1), then what is the value of *k*? [NDA 2020-I] (a) 3 (b) 4 (c) 5 (d) 6
- 9. If 3x 4y 5 = 0 and 3x 4y + 15 = 0 are the equations of a pair of opposite sides of a square, then what is the area of the square? [NDA 2020-I] (a) 4 square units (b) 9 square units
 - (c) 16 square units (d) 25 square units
- **10.** A parallelogram has three consecutive vertices (-3, 4), (0, -4) and (5, 2). The fourth vertex is **[NDA 2021-I]** (a) (2, 10) (b) (2, 9) (c) (3, 9) (d) (4, 10)
- 11. If the lines y + px = 1 and y qx = 2 are perpendicular, then which one of the following is correct? NDA 2021-I] (a) pq+1=0 (b) p+q+1=0(c) pq-1=0 (d) p-q+1=0
- 12. If A, B and C are in AP, then the straight line Ax + 2By + C = 0 will always pass through a fixed point. The fixed point is [NDA 2021-I] (a) (0,0) (b) (-1,1) (c) (1,-2) (d) (1,-1)
- 13. If the image of the point (-4, 2) by a line mirror is (4, -2), then what is the equation of the line mirror?[NDA 2021-I]

(a) y=x (b) y=2x (c) 4y=x (d) y=4x14. Consider the following statements in respect of the

- 14. Consider the following statements in respect of the points (p, p-3), (q+3, q) and (6, 3):
 - 1. The points lie on a straight line.
 - 2. The points always lie in the first quadrant only for any value of p and q.
 - Which of the above statements is/are correct ?

[NDA 2021-I]

1.

(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2

15. The point of intersection of diagonals of a square *ABCD* is at the origin and one of its vertices is at *A* {4, 2}. What is the equation of the diagonal *BD*? [NDA 2021-I]

(a) 2x+y=0
(b) 2x-y=0
(c) x+2y=0
(d) x-2y=0

Pair of Straight Lines

1.	What is the $x\cos\alpha + y\sin\alpha$ $x\sin\beta - y\cos\alpha$	α angle betw $n\alpha = a$ and $s\beta = a$	een the	lines	[NDA 2019-II]
	(a) $\beta - \alpha$		(b)	$\pi + \beta - \alpha$	
	(c) $\frac{(\pi+2)}{2}$	$\frac{\beta+2\alpha)}{2}$	(d)	$\frac{(\pi-2\beta+2)}{2}$	2α)
2.	What is the	obtuse ang	le betw	een the lin	es whose slopes
	are $2-\sqrt{3}$	and $2+\sqrt{3}$?		[NDA 2020-I]
	(a) 105°	(b) 120°	(c)	135°	(d) 150°
3.	What is the	acute angle	e betwe	en the lines	x - 2 = 0 and
	$\sqrt{3x} - y - 2$	2 = 0?			[NDA 2021-I]
	(a) 0°	(b) 30°	(e)	45°	(d) 60°
		C	lircles		
1.	The center	of the circle			
	(x-2a)(x-2a)	-2b) + (y -	2c)(y-	-2d) = 0 is	5 [NDA 2020-I]
	(a) (2 <i>a</i> , 2 <i>c</i>	;)	(b)	(2b, 2d)	
	(c) $(a + b)$	(c+d)	(d)	(<i>a</i> – <i>b</i> , <i>c</i> –	- <i>d</i>)
2.	What is the	radius of th	e circle	$x^{2} + 4y^{2} - 4y^{2}$	-20x + 12y - 15
	=0?	to	(b)	10.5 unito	[NDA 2021-1]
	(a) 14 um		(U) (J)	2.5 mit-	
	(c) / units		(0)	n n linits	

CONICS- Parabola, Ellipse & Hyperbola

If the angle between the lines joining the end points of minor axis of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with one of its foci is

 $\frac{\pi}{2}$, then what is the eccentricity of the ellipse?

[NDA 2019-II]

- (a) $\frac{1}{2}$ (b) $\frac{1}{\sqrt{2}}$ (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{2\sqrt{2}}$
- 2. Let P(x, y) be any point on the ellipse $25x^2 + 16y^2 = 400$. If Q(0, 3) and R(0, -3) are two points, then what is (PQ + PR) equal to ? [NDA 2020-I] (a) 12 (b) 10 (c) 8 (d) 6

- In the parabola, $y^2 = x$, what is the length of the chord 3. passing through the vertex and inclined to the x-axis at an angle θ ? [NDA 2020-I]
 - (a) $\sin\theta \cdot \sec^2\theta$ (b) $\cos\theta \cdot \csc^2\theta$

(c)
$$\cot \theta \cdot \sec^2 \theta$$
 (d) $2 \tan \theta \cdot \csc^2 \theta$

If any point on a hyperbola is $(3 \tan \theta, 2 \sec \theta)$, then 4. what is the eccentricity of the hyperbola ? [NDA 2021-I]

(a)
$$\frac{3}{2}$$
 (b) $\frac{5}{2}$ (c) $\frac{\sqrt{11}}{2}$ (d) $\frac{\sqrt{13}}{2}$

5. Consider the following with regard to eccentricity (e) of a conic section :

-I]

TRIGONOMETRY- Ratio & Identity, **Trigonometric Equations**

1.	If cosec $\theta = \frac{29}{21}$ where 0	< \theta <	90°, then	what is the value
	of 4 sec θ + 4 tan θ ?			[NDA 2019-II]
	(a) 5 (b) 10	(c)	15	(d) 20
2.	Consider the following st	tatem	$\theta < 90^\circ$, then what is the v [NDA 2019] c) 15 (d) 20 tements: [NDA 2019] be equal to 1.5. be less than 2. tents is/are correct? b) 2 only d) Neither 1 nor 2 chord of a unit circle w centre? [NDA 2019] b) $\cos\left(\frac{\theta}{2}\right)$	[NDA 2019-II]
	1. $\cos \theta + \sec \theta$ can neve	r be e	equal to 1.5	5.
	2. $\tan \theta + \cot \theta$ can neve	r be l	ess than 2.	
	Which of the above state	emen	ts is/are co	rrect?
	(a) 1 only	(b)	2 only	
	(c) Both 1 and 2	(d)	Neither 1	nor 2
3.	What is the length of the	ne ch	ord of a u	nit circle which
	subtends an angle θ at the	ne cei	ntre?	[NDA 2019-II]
	(a) $\sin\left(\frac{\theta}{2}\right)$	(b)	$\cos\left(\frac{\theta}{2}\right)$	
			(0)	\ \

(c)
$$2\sin\left(\frac{\theta}{2}\right)$$
 (d) $2\cos\left(\frac{\theta}{2}\right)$

What is the minimum value of $\frac{a^2}{\cos^2 x} + \frac{b^2}{\sin^2 x}$ where $a > b^2$ 4. 11 - 00

0 and $b > 0?$			[NDA 2019-11]
(a) $(a+b)^2$	(b)	$(a - b)^2$	
(c) $a^2 + b^2$	(d)	$ a^2 + b^2 $	
T0 1 D	1 5		

5. If tanA - tanB = x and cotB - cotA = y, then what is the value of $\cot(A - B)$? [NDA 2019-II]

(a)
$$\frac{1}{x} + \frac{1}{y}$$
 (b) $\frac{1}{y} - \frac{1}{x}$
(c) $\frac{xy}{x+y}$ (d) $1 + \frac{1}{xy}$

6. What is $\sin(\alpha + \beta) - 2\sin\alpha\cos\beta + \sin(\alpha - \beta)$ equal to ? [NDA 2019-II]

	(a)	0		(b)	2 s	inα			
	(c)	2sinβ		(d)	sin	$\alpha + \sin \beta$	β		
7.	If 2t	anA-3	tan B –	1, then w	vhat is	tan(A -	- B) ([ND	equal to A 2019)? - II]
	(a)	$\frac{1}{5}$	(b) $\frac{1}{6}$	(c)	$\frac{1}{7}$		(d)	$\frac{1}{9}$	
8.	Wha	at is cos8	$0^{\circ} + \cos \theta$	$40^\circ - \cos$	s20° eo	qual to?	[ND.	A 2019-	-11]
	(a)	2	(b) 1	(c)	0	1	(d)	-19	
9.	Wha	at is cot	$\left(\frac{A}{2}\right) - t$	$\operatorname{an}\left(\frac{A}{2}\right)$	equal	to?	[ND/	A 2019-	11]
10.	(a) Wha	tanA at is cot	(b) cc A + cos	otA (c) ecA equa	2ta al to?	ınA	(d) [ND/	2cotA A 2019-	II]
	(a)	$\tan\left(\frac{A}{2}\right)$.)	(b)) co	$t\left(\frac{A}{2}\right)$			
	(c)	$2\tan\left(-\frac{1}{2}\right)$	$\left(\frac{A}{2}\right)$	(d)	20	$\cot\left(\frac{A}{2}\right)$			
11	Wh	at is tan (25° tan	$15^{\circ} + \tan$	15° ta	$n 50^{\circ} +$	tan 🤉	95° tan ⁴	509

tan 15 + tan 15° tan 50 what is tan 25 tan 25 i an Su [NDA 2019-II] equal to? (a) 0 (b) 1 (c) 2 (d) 4

DIRECTIONS (Qs. 12-14) : Read the following information and answer the three items that follow:

Let $a\sin^2 x + b\cos^2 x = c$; $b\sin^2 y + a\cos^2 y = d$ and $p\tan x$ $= q \tan y$. [NDA 2020-I]

What is $\tan^2 x$ equal to ? 12.

(a)
$$\frac{c-b}{a-c}$$
 (b) $\frac{a-c}{c-b}$
(c) $\frac{c-a}{c-b}$ (d) $\frac{c-b}{c-a}$

13. What is
$$\frac{d-a}{b-d}$$
 equal to? [NDA 2020-I]
(a) $\sin^2 y$ (b) $\cos^2 y$ (c) $\tan^2 y$ (d) $\cot^2 y$
14. What is $\frac{p^2}{2}$ equal to? [NDA 2020-I]

(a)
$$\frac{(b-c)(b-d)}{(a-d)(a-c)}$$
 (b) $\frac{(a-d)(c-a)}{(b-c)(d-b)}$

(c)
$$\frac{(d-a)(c-a)}{(b-c)(d-b)}$$
 (d) $\frac{(b-c)(b-d)}{(c-a)(a-d)}$

DIRECTIONS (Qs. 15-17): Read the following information and answer the three items that follow:

Let
$$t_n = \sin^n \theta + \cos^n \theta$$
.
15. What is $\frac{t_3 - t_5}{t_5 - t_7}$ equal to? [NDA 2020-1]

(a)
$$\frac{t_1}{t_3}$$
 (b) $\frac{t_3}{t_5}$ (c) $\frac{t_5}{t_7}$ (d) $\frac{t_1}{t_7}$

16. What is
$$t_1^2 - t_2$$
 equal to?
 [NDA 2020-I]

 (a) $\cos 2\theta$
 (b) $\sin 2\theta$

 (c) $2\cos\theta$
 (d) $2\sin\theta$

 17. What is the value of t_{10} where $\theta = 45^\circ$?
 [NDA 2020-I]

 (a) 1
 (b) $\frac{1}{4}$
 (c) $\frac{1}{16}$
 (d) $\frac{1}{32}$

DIRECTIONS (Qs. 18-20) : *Read the following information and answer the three items that follow:*

Let $\alpha = \beta = 15^{\circ}$.

18. What is the value of $\sin \alpha + \cos \beta$? **[NDA 2020-I]**

(a)
$$\frac{1}{\sqrt{2}}$$
 (b) $\frac{1}{2\sqrt{2}}$ (c) $\frac{\sqrt{3}}{2\sqrt{2}}$ (d) $\frac{\sqrt{3}}{\sqrt{2}}$

19. What is the value of $\sin 7\alpha - \cos 7\beta$? [NDA 2020-I]

(a)
$$\frac{1}{\sqrt{2}}$$
 (b) $\frac{1}{2\sqrt{2}}$ (c) $\frac{\sqrt{3}}{2\sqrt{2}}$ (d) $\frac{\sqrt{3}}{\sqrt{2}}$

20. What is $sin(\alpha + 1^{\circ}) + cos(\beta + 1^{\circ})$ equal to? [NDA 2020-I]

(a)
$$\sqrt{3}\cos 1^\circ + \sin 1^\circ$$

(b) $\sqrt{3}\cos 1^\circ - \frac{1}{2}\sin 1^\circ$
(c) $\frac{1}{\sqrt{2}}(\sqrt{3}\cos 1^\circ - \sin 1^\circ)$
(d) $\frac{1}{2}(\sqrt{3}\cos 1^\circ + \sin 1^\circ)$

21. If
$$\sin x + \sin y = \cos y - \cos x$$
, where $0 < y < x < \frac{\pi}{2}$,

then what is
$$\tan\left(\frac{x-y}{2}\right)$$
 equal to? [NDA 2020-I]

(a) 0 (b)
$$\frac{1}{2}$$
 (c) 1 (d) 2

DIRECTIONS (Qs. 22-23) : *Read the following information and answer the two items that follow:*

Let
$$\frac{\tan 3A}{\tan A} = K$$
, where $\tan A \neq 0$ and $K \neq \frac{1}{3}$.
22. What is $\tan^2 A$ equal to? [NDA 2020-I]

(a)
$$\frac{K+3}{3K-1}$$
 (b) $\frac{K-3}{3K-1}$ (c) $\frac{3K-3}{K-3}$ (d) $\frac{K+3}{3K+1}$

23. For real values of tan *A*, *K* cannot lie between [NDA 2020-1]

(a)
$$\frac{1}{3}$$
 and 3 (b) $\frac{1}{2}$ and 2
(c) $\frac{1}{5}$ and 5 (d) $\frac{1}{7}$ and 7

24.	If $\tan \theta = \frac{\cos 17^\circ - \sin 17^\circ}{\cos 17^\circ + \sin 17^\circ}$, then what is	the value of θ ?
25.	(a) 0° (b) 28° (c) 38° A and B are positive acute angle $\cos 2B = 3\sin^2 A$ and $3\sin 2A = 2\sin 2A$	[NDA 2020-I] (d) 52° es such that <i>B</i> . What is the
	value of $(A + 2B)$? π π π	[NDA 2020-I] π
26.	(a) $\frac{-}{6}$ (b) $\frac{-}{4}$ (c) $\frac{-}{3}$ What is	(d) $\frac{1}{2}$
	$\sin 3x + \cos 3x + 4\sin^3 x - 3\sin x + 3\cos x$ equal to ?	$-4\cos^3 x$ [NDA 2020-I]
27.	(a) 0 (b) 1 (c) $2 \sin 2x$ The value of ordinate of the graph of $y =$ the interval	(d) $4 \cos 4x$ 2 + cos x lies in [NDA 2020-I]
28.	(a) $[0, 1]$ (b) $[0, 3]$ (c) $[-1, 1]$ What is the value of $8\cos 10^{\circ} \cdot \cos 20^{\circ} \cdot \cos 20^{\circ}$	(d) [1,3] os 40°?
29.	(a) $\tan 10^{\circ}$ (b) $\cot 10^{\circ}$ (c) $\csc 10^{\circ}$ What is the value of $\cos 48^{\circ} - \cos 12^{\circ}$?	[NDA 2020-1] (d) sec 10° [NDA 2020-1]
20	(a) $\frac{\sqrt{5}-1}{4}$ (b) $\frac{1-\sqrt{5}}{4}$ (c) $\frac{\sqrt{5}+1}{2}$	(d) $\frac{1-\sqrt{5}}{8}$
30.	The value of x, satisfying the equation lo	$g_{\cos x} \sin x = 1$,
	where $0 < x < \frac{\pi}{2}$, is	[NDA 2021-I]
	where $0 < x < \frac{\pi}{2}$, is (a) $\frac{\pi}{12}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$	[NDA 2021-I] (d) $\frac{\pi}{6}$
31.	where $0 < x < \frac{\pi}{2}$, is (a) $\frac{\pi}{12}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ What is $\cot 2x \cot 4x - \cot 4x \cot 6x - \cot 4x$ (c) 1 (c) 1	[NDA 2021-I] (d) $\frac{\pi}{6}$ t 6x cot 2x [NDA 2021-I] (d) 2
31. 32.	where $0 \le x \le \frac{\pi}{2}$, is (a) $\frac{\pi}{12}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ What is $\cot 2x \cot 4x - \cot 4x \cot 6x - \cot 4x$ (a) -1 (b) 0 (c) 1 If $\tan x = -\frac{3}{4}$ and x is in the second quad	[NDA 2021-I] (d) $\frac{\pi}{6}$ t 6x cot 2x [NDA 2021-I] (d) 2 drant, then
31. 32.	where $0 < x < \frac{\pi}{2}$, is (a) $\frac{\pi}{12}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ What is $\cot 2x \cot 4x - \cot 4x \cot 6x - \cot 4x$ (a) -1 (b) 0 (c) 1 If $\tan x = -\frac{3}{4}$ and x is in the second quad- what is the value of $\sin x .\cos x$?	[NDA 2021-I] (d) $\frac{\pi}{6}$ t 6x cot 2x [NDA 2021-I] (d) 2 drant, then [NDA 2021-I]
31. 32.	where $0 < x < \frac{\pi}{2}$, is (a) $\frac{\pi}{12}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ What is $\cot 2x \cot 4x - \cot 4x \cot 6x - \cot 4x$ (a) -1 (b) 0 (c) 1 If $\tan x = -\frac{3}{4}$ and x is in the second quad- what is the value of $\sin x . \cos x$? (a) $\frac{6}{25}$ (b) $\frac{12}{25}$ (c) $-\frac{6}{25}$	[NDA 2021-I] (d) $\frac{\pi}{6}$ t 6x cot 2x [NDA 2021-I] (d) 2 drant, then [NDA 2021-I] (d) $-\frac{12}{25}$
31.32.33.	where $0 < x < \frac{\pi}{2}$, is (a) $\frac{\pi}{12}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ What is $\cot 2x \cot 4x - \cot 4x \cot 6x - \cot 4x$ equal to? (a) -1 (b) 0 (c) 1 If $\tan x = -\frac{3}{4}$ and x is in the second quad- what is the value of $\sin x . \cos x$? (a) $\frac{6}{25}$ (b) $\frac{12}{25}$ (c) $-\frac{6}{25}$ What is the value of the following? $\csc \left(\frac{7\pi}{6}\right) \sec \left(\frac{5\pi}{25}\right)$	[NDA 2021-I] (d) $\frac{\pi}{6}$ t 6x cot 2x [NDA 2021-I] (d) 2 drant, then [NDA 2021-I] (d) $-\frac{12}{25}$ [NDA 2021-I]
31.32.33.	where $0 \le x \le \frac{\pi}{2}$, is (a) $\frac{\pi}{12}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ What is $\cot 2x \cot 4x - \cot 4x \cot 6x - \cot 4x$ equal to? (a) -1 (b) 0 (c) 1 If $\tan x = -\frac{3}{4}$ and x is in the second quad- what is the value of $\sin x . \cos x$? (a) $\frac{6}{25}$ (b) $\frac{12}{25}$ (c) $-\frac{6}{25}$ What is the value of the following? $\csc\left(\frac{7\pi}{6}\right) \sec\left(\frac{5\pi}{3}\right)$	[NDA 2021-I] (d) $\frac{\pi}{6}$ t 6x cot 2x [NDA 2021-I] (d) 2 drant, then [NDA 2021-I] (d) $-\frac{12}{25}$ [NDA 2021-I]
31.32.33.	where $0 \le x \le \frac{\pi}{2}$, is (a) $\frac{\pi}{12}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ What is $\cot 2x \cot 4x - \cot 4x \cot 6x - \cot 4x$ equal to? (a) -1 (b) 0 (c) 1 If $\tan x = -\frac{3}{4}$ and x is in the second quad- what is the value of $\sin x \cdot \cos x$? (a) $\frac{6}{25}$ (b) $\frac{12}{25}$ (c) $-\frac{6}{25}$ What is the value of the following? $\csc \left(\frac{7\pi}{6}\right) \sec \left(\frac{5\pi}{3}\right)$ (a) $\frac{4}{3}$ (b) 4 (c) -4	[NDA 2021-I] (d) $\frac{\pi}{6}$ t 6x cot 2x [NDA 2021-I] (d) 2 drant, then [NDA 2021-I] (d) $-\frac{12}{25}$ [NDA 2021-I] (d) $-\frac{12}{3}$ [NDA 2021-I] (d) $-\frac{4}{\sqrt{3}}$
31.32.33.34.	where $0 < x < \frac{\pi}{2}$, is (a) $\frac{\pi}{12}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{4}$ What is $\cot 2x \cot 4x - \cot 4x \cot 6x - \cot 4x$ equal to? (a) -1 (b) 0 (c) 1 If $\tan x = -\frac{3}{4}$ and x is in the second quad- what is the value of $\sin x . \cos x$? (a) $\frac{6}{25}$ (b) $\frac{12}{25}$ (c) $-\frac{6}{25}$ What is the value of the following? $\csc \left(\frac{7\pi}{6}\right) \sec \left(\frac{5\pi}{3}\right)$ (a) $\frac{4}{3}$ (b) 4 (c) -4 What is the value of the following? $\tan 31^\circ \tan 33^\circ \tan 35^\circ \dots \tan 57^\circ \tan 59$	[NDA 2021-I] (d) $\frac{\pi}{6}$ t 6x cot 2x [NDA 2021-I] (d) 2 drant, then [NDA 2021-I] (d) $-\frac{12}{25}$ [NDA 2021-I] (d) $-\frac{4}{\sqrt{3}}$

(a) -1(b) 0(c) 1(d) 2**35.** What is the value of the following?
 $(\sin 24^\circ + \cos 66^\circ) (\sin 24^\circ - \cos 66^\circ)$ [NDA 2021-I](a) -1(b) 0(c) 1(d) 2

8

36. What is $(1 + \cot \theta - \csc \theta) (1 + \tan \theta + \sec \theta)$ equal to?

- 37. What is $\frac{1 + \tan^2 \theta}{1 + \cot^2 \theta} \left(\frac{1 \tan \theta}{1 \cot \theta}\right)^2$ equal to? [NDA 2021-1]
- (a) 0 (c) $2 \tan \theta$ (b) 1 (d) $2 \cot \theta$ **38.** If $7 \sin \theta + 24 \cos \theta = 25$, then what is the value of $(\sin \theta + \cos \theta)?$ [NDA 2021-I]

(a) 1 (b)
$$\frac{26}{25}$$
 (c) $\frac{6}{5}$ (d) $\frac{31}{25}$

If $3 \cos \theta = 4 \sin \theta$, then what is the value of $\tan (45^\circ + \theta)$? 39. [NDA 2021-I]

(a) 10 (b) 7 (c)
$$\frac{7}{2}$$
 (d) $\frac{7}{4}$

40. If $\tan A = \frac{1}{7}$, then what is $\cos 2A$ equal to ?

[NDA 2021-I]

[NDA 2021-I]

(d) 4

(a)
$$\frac{24}{25}$$
 (b) $\frac{18}{25}$ (c) $\frac{12}{25}$ (d) $\frac{6}{25}$

Properties of Triangle, Inverse Trigonometric Function

1.	What is tar	$n\left\{2\tan^{-1}\left(\frac{1}{3}\right)\right\} \text{ equal to?}$	[NDA 2019-II]
	(a) $\frac{2}{3}$	(b) $\frac{3}{4}$ (c) $\frac{3}{8}$	(d) $\frac{1}{9}$

If the angles of a triangles ABC are in AP and 2. b: $c = \sqrt{3}$: $\sqrt{2}$, then what is the measure of angle A? [NDA 2019-II]

(d) 75°

(a) 30° (b) 45° (c) 60° If angle C of a triangle ABC is a right angle, then what is 3. tanA + tanB equal to? [NDA 2019-II]

(a)
$$\frac{a^2 - b^2}{ab}$$
 (b) $\frac{a^2}{bc}$ (c) $\frac{b^2}{ca}$ (d) $\frac{c^2}{ab}$

DIRECTIONS (Qs. 4-5): Read the following information and answer the two items that follow:

ABCD is a trapezium such that AB and CD are parallel and BC is perpendicular to them. Let $\angle ADB = \theta$, $\angle ABD = \alpha$, BC = p and CD = q and CD = q.

- Consider the following : [NDA 2020-I] 4.
 - 1. $AD\sin\theta = AB\sin\alpha$
 - 2. $BD\sin\theta = AB\sin(\theta + \alpha)$

Which of the above is/are correct?

5.

6.

(a)
$$\frac{(p^2+q^2)\sin\theta}{p\cos\theta+q\sin\theta}$$
 (b) $\frac{(p^2-q^2)\sin\theta}{p\cos\theta+q\sin\theta}$

(c)
$$\frac{(p^2+q^2)\sin\theta}{q\cos\theta+p\sin\theta}$$
 (d) $\frac{(p^2-q^2)\cos\theta}{q\cos\theta+p\sin\theta}$

Consider the following statements : [NDA 2020-I] If ABC is a right-angled triangle, right-angled at A

and if
$$\sin B = \frac{1}{3}$$
, then cosec $C = 3$

If $b \cos B = c \cos C$ and if the triangle *ABC* is not 2. right-angled, then ABC must be isosceles. Which of the above statements is/are correct? (a) 1 only (b) 2 only

- 7. Consider the following statements : [NDA 2020-I] If in a triangle *ABC*, A = 2B and b = c, then it must be 1 an obtuse-angled triangle.
 - There exists no triangle ABC with $A = 40^\circ$, $B = 65^\circ$ and 2. ~

$$\frac{a}{c} = \sin 40^\circ \operatorname{cosec} 15^\circ.$$

Which of the above statements is/are correct?

- (b) 2 only (a) 1 only
- (c) Both 1 and 2 (d) Neither 1 nor 2

The equation $\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6}$ has **[NDA 2021-I]** 8.

- no solution (a)
- (b) unique solution
- (c) two solutions
- (d) infinite number of solutions
- $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$ holds, when [NDA 2021-I] 9. (b) $x \in R - (-1, 1)$ only (a) $x \in R$ (c) $x \in R - \{0\}$ only (d) $x \in R - [-1, 1]$ only
- **10.** The sides of a triangle are *m*, *n* and $\sqrt{m^2 + n^2 + mn}$. What is the sum of the acute angles of the triangle? [NDA 2021-I] (a) 45° (b) 60° (c) 75° (d) 90° What is the area of the triangle *ABC* with sides a = 1011.

cm,
$$c = 4$$
 cm and angle $B = 30^{\circ}$?[NDA 2021-I](a) 16 cm^2 (b) 12 cm^2 (c) 10 cm^2 (d) 8 cm^2

Height & Distance

1. A ladder 9 m long reaches a point 9 m below the top of a vertical flagstaff. From the foot of the ladder, the elevation of the flagstaff is 60°. What is the height of the flagstaff? [NDA 2019-II]

9m (b) 10.5m (c) 13.5m (d) 15m (a)

[NDA 2020-I]

nor 2

- A ladder 6 m long reaches a point 6 m below the top of a vertical flagstaff. From the foot of the ladder, the elevation of the top of the flagstaff is 75°. What is the height of the flagstaff? [NDA 2021-I]
 (a) 12m
 (b) 9m
 - (c) $(6+\sqrt{3})$ m (d) $(6+3\sqrt{3})$ m
- 3. The shadow of a tower is found to be x metre longer, when the angle of elevation of the sun changes from 60°

to 45°. If the height of the tower is $5(3+\sqrt{3})$ m, then what is *x* equal to? [NDA 2021-I] (a) 8m (b) 10m (c) 12m (d) 15m

Functions, Limit, Continuity and Differentiability

1. Consider the following statements in respect of the function $f(x) = \sin\left(\frac{1}{x}\right)$ for $x^1 0$ and f(0) = 0; [NDA 2019-II]

1. $\lim_{x \to 0} f(x)$ exists

2. f(x) is continuous at x = 0Which of the above statements is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2

2. What is the value of $\lim_{x\to 0} \frac{\sin x^\circ}{\tan 3x^\circ}$? [NDA 2019-II]

(a) $\frac{1}{4}$ (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) 1

Directions for the following three (03) items: *Read the following information and answer the three items that follow:*

Consider the function f(x) = g(x) + h(x)

where $g(x) = \sin\left(\frac{x}{4}\right)$ and $h(x) = \cos\left(\frac{4x}{5}\right)$

ſ

- 3. What is the period of the function g(x)? [NDA 2019-II] (a) π (b) 2π (c) 4π (d) 8π What is the period of the function h(x)? [NDA 2010 II]
- 4. What is the period of the function h(x)? [NDA 2019-II]

(a)
$$\pi$$
 (b) $\frac{4p}{5}$ (c) $\frac{5p}{2}$ (d) $\frac{3p}{2}$

5. What is the period of the function f(x)? [NDA 2019-II] (a) 10π (b) 20π (c) 40π (d) 80π

6.For what value of <math>k is the function **[NDA 2019-II]**

$$f(x) = \begin{cases} 2x + \frac{1}{4} & , & x < 0 \\ k & , & x = 0 \text{ continuous } ? \\ \left(x + \frac{1}{2}\right)^2 & , & x > 0 \end{cases}$$
(a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) 1 (d) 2

- 7. Consider the following statements for $f(x) = e^{-|x|}$: INDA 2020-II
 - 1. The function is continuous at x = 0. 2. The function is differentiable at x = 0. Which of the above statements is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 $3^{x} + 3^{-x} - 2$
- 8. What is $\lim_{x\to 0} \frac{3^x + 3^{-x} 2}{x}$ equal to? [NDA 2020-1] (a) 0 (b) -1 (c) 1 (d) Limit does not exist

9. Which one of the following is correct in respect of the

graph of
$$y = \frac{1}{x-1}$$
? [NDA 2020-I]

- (a) The domain is $\{x \in R \mid x \neq 1\}$ and the range is the set of reals.
- (b) The domain is $\{x \in R \mid x \neq 1\}$, the range is $\{y \in R \mid y \neq 0\}$ and the graph intersects y-axis at (0, -1).
- (c) The domain is the set of reals and the range is the singleton set {0}.
- (d) The domain is $\{x \in R \mid x \neq 1\}$ and the range is the set of points on the *y*-axis.

10. If
$$f(x) = \frac{\sin x}{x}$$
, where $x \in R$, is to be continuous at $x = 0$, then the value of the function at $x = 0$
[NDA 2020-I]
(a) should be 0 (b) should be 1
(c) should be 2 (d) cannot be determined

- 11. What is the domain of the function $f(x) = \cos^{-1}(x-2)$? [NDA 2020-I]
 - (a) [-1,1] (b) [1,3] (c) [0,5] (d) [-2,1]
- 12. What is $\lim_{x \to 1} \frac{x + x^2 + x^3 3}{x 1}$ equal to ? [NDA 2020-I] (a) 1 (b) 2 (c) 3 (d) 6

13. If $\lim_{x \to 1} \frac{x^4 - 1}{x - 1} = \lim_{x \to k} \frac{x^3 - k^3}{x^2 - k^2}$, where $k \neq 0$, then what is the value of k? [NDA 2020-I]

(a)
$$\frac{2}{3}$$
 (b) $\frac{4}{3}$ (c) $\frac{8}{3}$ (d) 4

14. What is $\lim_{x \to 0} \frac{\sin x \log(1-x)}{x^2}$ equal to? [NDA 2020-I]

(a) -1 (b) Zero (c) -e (d) $-\frac{1}{e}$

15. If $f(x+1) = x^2 - 3x + 2$, then what is f(x) equal to? [NDA 2021-I]

(a)
$$x^2 - 5x + 4$$
 (b) $x^2 - 5x + 6$
(c) $x^2 + 3x + 3$ (d) $x^2 - 3x + 1$
16. If $\lim_{x \to a} \frac{a^x - x^a}{x^a - a^a} = -1$ then what is the value of *a*?
(a) -1 (b) 0 (c) 1 (d) 2
17. What is $\lim_{x \to -1} \frac{x^3 + x^2}{x^2 + 3x + 2}$ equal to? [NDA 2021-I]
(a) 0 (b) 1 (c) 2 (d) 3
18. If a differentiable function $f(x)$ satisfies
 $\lim_{x \to -1} \frac{f(x) + 1}{x^2 - 1} = -\frac{3}{2}$ then what is $\lim_{x \to -1} f(x)$ equal to?
[NDA 2021-I]
(a) $-\frac{3}{2}$ (b) -1 (c) 0 (d) 1
19. If the function $f(x) = \begin{cases} a + bx, x < 1 \\ 5, x = 1 \text{ is continuous,} \\ b - ax, x > 1 \\ (a) 5 (b) 10 (c) 15 (d) 20 \end{cases}$
20. What is the value of $(a + b)$? [NDA 2021-I]
(a) $(-\infty, \infty)$ (b) $(0, \infty)$
(c) $[0, \infty)$ (d) $(-\infty, \infty) - \{0\}$

Derivatives

Directions for the following two (02) items: *Read the following information and answer the two items that follow:*

Consider the equation $x^{y} = e^{x-y}$

1.	What is $\frac{dy}{dx}$ at $x =$?	[NDA 2019-II]		
	(a) 0 (b)	1 (c)	2	(d) 4	
2.	What is $\frac{d^2y}{dx^2}$ at x	= 1 equal to	0?	[NDA 2019-II]	
	() 0 ()	1 ()	2	(1) 4	

(a) 0 (b) 1 (c) 2 (d) 4
3. What is the derivative of
$$2^{(\sin x)^2}$$
 with respect to $\sin x$?
[NDA 2019-II]

(a)
$$\sin x 2^{(\sin x)^2} \ln 4$$
 (b) $2 \sin x 2^{(\sin x)^2} \ln 4$
(c) $\ln (\sin x) 2^{(\sin x)^2}$ (d) $2 \sin x \cos x 2^{(\sin x)^2}$

4. What is the derivative of $\tan^{-1}x$ with respect to $\cot^{-1}x$? [NDA 2020-I]

(a) -1 (b) 1 (c)
$$\frac{1}{x^2+1}$$
 (d) $\frac{x}{x^2+1}$

5. If $e^{\theta \varphi} = c + 4\theta \varphi$, where *c* is an arbitrary constant and φ is a function of θ , then what is $\varphi d\theta$ equal to? [NDA 2020-I] (a) $\theta d\varphi$ (b) $-\theta d\varphi$ (c) $4\theta d\varphi$ (d) $-4\theta d\varphi$

6. If
$$x^m y^n = a^{m+n}$$
, then what is $\frac{dy}{dx}$ equal to?

(a)
$$\frac{my}{nx}$$
 (b) $-\frac{my}{nx}$ (c) $\frac{mx}{ny}$ (d) $-\frac{ny}{mx}$

7. What is the minimum value of |x-1|, where $x \in R$? [NDA 2020-1]

(a) 0 (b) 1 (c) 2 (d) -1 8. What is the derivative of $\sin(\ln x) + \cos(\ln x)$ with respect to x at x = e? [NDA 2021-I]

(a)
$$\frac{\cos 1 - \sin 1}{e}$$
 (b) $\frac{\sin 1 - \cos 1}{e}$
(c) $\frac{\cos 1 + \sin 1}{e}$ (d) 0

9. If $x = e^t \cos t$ and $y = e^t \sin t$, then what is $\frac{dx}{dy}$ at t = 0equal to? [NDA 2021-I]

(a) 0 (b) 1 (c)
$$2e$$
 (d) -1
10. What is the derivative of e^x with respect to x^e ?
[NDA 2021-I]

(a)
$$\frac{xe^x}{ex^e}$$
 (b) $\frac{e^x}{x^e}$ (c) $\frac{xe^x}{x^e}$ (d) $\frac{e^x}{ex^e}$

Application of Derivatives

Directions for the following three (03) items : *Read the following information and answer the three items that follow :*

A curve $v = me^{mx}$ where m > 0 intersects v-axis at a point P. 1. What is the slope of the curve at the point of intersection P?[NDA 2019-II] (b) m^2 (a) *m* (c) 2m (d) $2m^2$ 2. How much angle does the tangent at *P* make with *y*-axis? [NDA 2019-II] (a) $\tan^{-1} m^2$ (b) $\cot^{-1}(1+m^2)$ (c) $\sin^{-1}\left(\frac{1}{\sqrt{1+m^4}}\right)$ (d) $\sec^{-1}\sqrt{1+m^4}$ 3. What is the equation of tangent to the curve at *P*? [NDA 2019-II] (a) v = mx + m(b) y = -mx + 2m

(c)
$$y = m^2 x + 2m$$
 (d) $y = m^2 x + m$

Directions for the following two (02) items: *Read the following information and answer the two items that follow:*

Consider the function

$$f(x) = 3x^4 - 20x^3 - 12x^2 + 288x + 1$$

- 4. In which one of the following intervals is the function increasing? [NDA 2019-II] (a) (-2,3) (b) (3,4) (c) (-3,-2) (d) (-4,-3)
- 5. In which one of the following intervals is the function decreasing? [NDA 2019-II] (a) (-2,3) (b) (3,4) (c) (4,6) (d) (6,9)
- 6. If $f(x) = \frac{x^3}{3} \frac{5x^2}{2} + 6x + 7$ increases in the interval T and decreases in the interval S, then which one of the

following is correct? [NDA 2019-II]

- (a) $T = (-\infty, 2) \cup (3, \infty)$ and S = (2, 3)
- (b) $T = \phi$ and $S = (-\infty, \infty)$
- (c) $T = (-\infty, \infty)$ and $S = \phi$
- (d) T = (2, 3) and $S = (-\infty, 2) \cup (3, \infty)$
- 7. What is the maximum value of $\sin x \cdot \cos x$? [NDA 2020-1]

(a) 2 (b) 1 (c)
$$\frac{1}{2}$$
 (d) $2\sqrt{2}$

8. What is the minimum value of $3\cos\left(A+\frac{\pi}{3}\right)$ where

$A \in \mathbb{R}$?			[NDA 2020-I]
(a) -3	(b) -1	(c) 0	(d) 3
Consider	the following	statements :	[NDA 2020-I]

- 1. The function $f(x) = \ln x$ increases in the interval $(0, \infty)$.
- 2. The function $f(x) = \tan x$ increases in the interval
 - $\left(-\frac{\pi}{2},\frac{\pi}{2}\right).$

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 10. The radius of a circle is increasing at the rate of 0.7 cm/sec. What is the rate of increase of its circumference? [NDA 2020-I]

			Γ	NI
(a)	4.4 cm/sec	(b)	8.4 cm/sec	
(c)	8.8 cm/sec	(d)	15.4 cm/sec	

11. A particle starts from origin with a velocity (in m/s)

given by the equation $\frac{dx}{dt} = x + 1$. The time (in second) taken by the particle to traverse a distance of 24 m is [NDA 2021-I] (b) $\ln 5$ (c) $2 \ln 5$ (a) $\ln 24$ (d) $2 \ln 4$ The curve $y = -x^3 + 3x^2 + 2x - 27$ has the maximum 12. slope at [NDA 2021-I] (a) x = -1 (b) x = 0 (c) x = 1(d) x=213. If x + y = 20 and P = xy, then what is the maximum value of *P*? [NDA 2021-I] (b) 96 (a) 100 (c) 84 (d) 50

14. What is the maximum value of
$$\sin 2x \cdot \cos 2x$$
?
[NDA 2021-I]

(a)
$$\frac{1}{2}$$
 (b) 1 (c) 2 (d) 4

15. Consider the following statements in respect of the function $f(x) = \sin x$: [NDA 2021-I] 1. f(x) increases in the interval $(0, \pi)$.

2.
$$f(x)$$
 decreases in the interval $\left(\frac{5\pi}{2}, 3\pi\right)$.

Which of the above statements is/are correct?

[NDA 2021-I]

(a) 1 only
(b) 2 only
(c) Both 1 and 2
(d) Neither 1 nor 2

Indefinite Integration

1. What is $\int \frac{dx}{2x^2 - 2x + 1}$ equal to? [NDA 2019-II]

(a)
$$\frac{\tan^{-1}(2x-1)}{2} + c$$
 (b) $2\tan^{-1}(2x-1) + c$

(c)
$$\frac{\tan^{-1}(2x+1)}{2} + c$$
 (d) $\tan^{-1}(2x-1) + c$

2. What is
$$\int \frac{dx}{x(1+\ell nx)^n}$$
 equal to $(n^1 1)$? [NDA 2019-II]

(a)
$$\frac{1}{(n-1)(1+\ell nx)^{n+1}} + c$$
 (b) $\frac{1-n}{(1+\ell nx)^{n-1}} + c$

(c)
$$\frac{n+1}{(1+\ell nx)^{n-1}} + c$$
 (d) $\frac{1}{(n-1)(1+\ell nx)^{n-1}} + c$

3. If $p(x) = (4e)^{2x}$, then what is $\int p(x) dx$ equal to ? [NDA 2020-I]

(a)
$$\frac{p(x)}{1+2\ln 2} + c$$
 (b) $\frac{p(x)}{2(1+2\ln 2)} + c$
(c) $\frac{2p(x)}{1+\ln 4} + c$ (d) $\frac{p(x)}{1+\ln 2} + c$

4. What is
$$\int (e^{\log x} + \sin x) \cos x \, dx$$
 equal to? [NDA 2020-1]

(a)
$$\sin x + x \cos x + \frac{\sin^2 x}{2} + c$$

(b)
$$\sin x - x \cos x + \frac{\sin^2 x}{2} + c$$

(c)
$$x \sin x + \cos x + \frac{\sin^2 x}{2} + c$$

(d)
$$x\sin x - x\cos x + \frac{\sin^2 x}{2} + c$$

9.

5. What is
$$\int \frac{dx}{x(x^n + 1)}$$
 equal to? [NDA 2020-I]
(a) $\frac{1}{n} \ln \left(\frac{x^n}{x^n + 1} \right) + c$ (b) $\ln \left(\frac{x^n + 1}{x^n} \right) + c$
(c) $\ln \left(\frac{x^n}{x^n + 1} \right) + c$ (d) $\frac{1}{n} \ln \left(\frac{x^n + 1}{x^n} \right) + c$
6. What is the value of k such that integration of $\frac{3x^2 + 8 - 4k}{x}$
with respect to x, may be a rational function?
(a) 0 (b) 1 (c) 2 (d) -2
7. What is $\int \frac{dx}{\sec x + \tan x}$ equal to ? [NDA 2020-I]
(a) ln (sec x) + ln | sec x + tan x | + c
(b) ln (sec x) - ln | sec x + tan x | + c
(c) sec x tan x - ln | sec x - tan x | + c
(d) ln | sec x + tan x | - ln | sec x | + c
8. What is $\int \frac{dx}{\sec^2(\tan^{-1}x)}$ equal to ? [NDA 2021-I]
(a) $\sin^{-1}x + c$ (b) $\tan^{-1}x + c$
(c) $\sec^{-1}x + c$ (d) $\cos^{-1}x + c$
9. What is $\int e^{(2\ln x + \ln x^2)} dx$ equal to? [NDA 2021-I]
(a) $\frac{x^4}{4} + c$ (b) $\frac{x^3}{3} + c$
(c) $\frac{2x^5}{5} + c$ (d) $\frac{x^5}{5} + c$

Definite Integration & Its Application

Directions for the following two (02) items: *Read the following information and answer the two items that follow:*

Consider the integrals

$$I_{1} = \int_{0}^{x} \frac{x dx}{1 + \sin x} \text{ and } I_{2} = \int_{0}^{\pi} \frac{(\pi - x) dx}{1 - \sin(\pi + x)}$$

1. What is the value of I_{1} ? [NDA 2019-II]

(a) 0 (b) $\frac{\pi}{2}$ (c) π (d) 2π

2. What is the value of $I_1 + I_2$? **[NDA 2019-II]**

(a)
$$2\pi$$
 (b) π (c) $\frac{\pi}{2}$ (d) 0

3. What is the area of the region enclosed between the curve $y^2 = 2x$ and the straight line y = x? [NDA 2019-II]

- (a) $\frac{2}{3}$ square units (b) $\frac{4}{3}$ square units (c) $\frac{1}{3}$ square units (d) 1 square units
- 4. Let *l* be the length and *b* be the breadth of a rectangle such that l + b = k. What is the maximum area of the rectangle? [NDA 2020-I]

(a)
$$2k^2$$
 (b) k^2 (c) $\frac{k^2}{2}$ (d) $\frac{k^2}{4}$

5. What is the value of $\int_{0}^{\pi/4} (\tan^3 x + \tan x) dx$? [NDA 2020-I]

(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{2}$ (c) 1 (d) 2

6. Let y = 3x² + 2. If x changes from 10 to 10.1, then what is the total change in y? [NDA 2020-I]

(a) 4.71
(b) 5.23
(c) 6.03
(d) 8.01

7. What is the area of the region enclosed between the curve y² = 2x and the straight line y = x? [NDA 2020-I]

(a)
$$\frac{1}{2}$$
 (b) 1 (c) $\frac{2}{3}$ (d) 2

8. What is
$$\int_{0}^{a} \frac{f(a-x)}{f(x) + f(a-x)} dx$$
 equal to? [NDA 2021-I]

(a) *a* (b) 2*a* (c) 0 (d)
$$\frac{a}{2}$$

- 9. If $\int_{0}^{a} [f(x) + f(-x)] dx = \int_{-a}^{a} g(x) dx$ then what is g(x)equal to? [NDA 2021-I] (a) f(x) (b) f(-x) + f(x)(c) -f(x) (d) None of the above
- 10. What is the area bounded by $y = \sqrt{16 x^2}$, $y \ge 0$ and the *x*-axis? [NDA 2021-I] (a) 16π square units (b) 8π square units
 - (c) 4π square units (d) 2π square units

Differential Equation

1. What is the degree of the differential equation

 $\frac{d^3y}{dx^3} + \left(\frac{dy}{dx}\right)^2 - x^2 \left(\frac{d^4y}{dx^4}\right) = 0 ?$ (a) 1 (b) 2 (c) 3 (d) 4

2. Which one of the following is the differential equation that represents the family of curves $y = \frac{1}{2x^2 - c}$ where *c* is an arbitrary constant? [NDA 2019-II]

(a)
$$\frac{dy}{dx} = 4xy^2$$
 (b) $\frac{dy}{dx} = \frac{1}{y}$
(c) $\frac{dy}{dx} = x^2y$ (d) $\frac{dy}{dx} = -4xy^2$

Directions for the following three (03) items: Read the following information and answer the three items that follow:

Let $f(x) = x^2 + 2x - 5$ and g(x) = 5x + 303. What are the roots of the equation g[f(x)] = 0? [NDA 2019-II] (a) 1,-1(b) -1, -1 (c) 1, 1(d) 0,1 4. Consider the following statements: [NDA 2019-II] 1. f[g(x)] is a polynomial of degree 3. 2. g[g(x)] is a polynomial of degree 2. Which of the above statements is/are correct? (b) 2 only(a) 1 only (c) Both 1 and 2 (d) Neither 1 nor 2 5. If h(x) = 5f(x) - xg(x), then what is the derivative of h(x)? [NDA 2019-II] (a) -40 (b) -20 (c) -10 (d) 0 6. The differential equation which represents the family of curves given by $\tan y = c(1 - e^x)$ is [NDA 2019-II] (a) $e^x \tan y \, dx + (1 - e^x) \, dy = 0$ (b) $e^x \tan y dx + (1 - e^x) \sec^2 y dy = 0$ (c) $e^{x}(1-e^{x})dx + \tan v dv = 0$ (d) $e^x \tan y dy + (1 - e^x) dx = 0$ The function u(x, y) = c which satisfies the differential 7. equation x(dx - dy) + y(dy - dx) = 0, is [NDA 2020-I] (a) $x^2 + v^2 = xv + c$ (b) $x^2 + v^2 = 2xv + c$ (c) $x^2 - y^2 = xy + c$ (d) $x^2 - y^2 = 2xy + c$ 8. What is the solution of the differential equation $\ln\left(\frac{dy}{dx}\right) = x?$ [NDA 2020-I] (a) $y = e^x + c$ (b) $y = e^{-x} + c$ (c) $y = \ln x + c$ (d) $y = 2 \ln x + c$

- 9. The solution of the differential equation $dy = (1 + y^2)dx$ is [NDA 2020-I]
 - (a) $y = \tan x + c$ (b) $y = \tan(x+c)$

(c)
$$\tan^{-1}(y+c) = x$$
 (d) $\tan^{-1}(y+c) = 2x$

10. The order and degree of the differential equation

$$k\frac{dy}{dx} = \int \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{2}{3}} dx \text{ are respectively [NDA 2020-I]}$$

(a)	1 and 1	(b)	2 and 3
(c)	2 and 4	(d)	1 and 4

11. If $f(x) = e^{|x|}$, then which one of the following is correct? [NDA 2021-I]

- (b) f'(0) = -1(a) f'(0) = 1(c) f'(0) = 0(d) f'(0) does not exist
- 12. If the general solution of a differential equation is $y^2 + 2cy - cx + c^2 = 0$, where c is an arbitrary constant, then what is the order of the differential equation?

(b) 2 (c) 3 (d) 4 (a) 1 What is the degree of the following differential equa-13.

tion?
$$x = \sqrt{1 + \frac{d^2 y}{dx^2}}$$
 [NDA 2021-I]
(a) 1 (b) 2

- 1 (D)
- (c) 3 (d) Degree is not defined Which one of the following differential equations has 14. INDA 2021-II the general solution $v = ae^x + be^{-x}$?

(a)
$$\frac{d^2y}{dx^2} + y = 0$$
 (b) $\frac{d^2y}{dx^2} - y = 0$

(c)
$$\frac{d^2 y}{dx^2} + y = 1$$
 (d) $\frac{dy}{dx} - y = 0$

15. What is the solution of the following differential equation?

$$\ln\left(\frac{dy}{dx}\right) + y = x$$
[NDA 2021-I]
(a) $e^x + e^y = c$
(b) $e^{x+y} = c$
(c) $e^x - e^y = c$
(d) $e^{x-y} = c$

Matrices & Determinants

1. What is the value of the determinant [NDA 2019-II] 1! 2! 3! 2! 3! 4!? 3! 4! 5! (a) 0 (b) 12 (c) (d) 36 24 What are the values of *x* that satisfy the equation 2. [NDA 2019-II] $\begin{vmatrix} x & 0 & 2 \\ 2x & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} + \begin{vmatrix} 3x & 0 & 2 \\ x^2 & 2 & 1 \\ 0 & 1 & 1 \end{vmatrix} = 0?$

(a)
$$-2 \pm \sqrt{3}$$
 (b) $-1 \pm \sqrt{3}$
(c) $-1 \pm \sqrt{6}$ (d) $-2 \pm \sqrt{6}$

3. If
$$x + a + b + c = 0$$
, then what is the value of

$$\begin{vmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+c \end{vmatrix}$$
 [NDA 2019-II]

(a) 0
(b)
$$(a+b+c)^2$$

(c) $a^2+b^2+c^2$
(d) $a+b+c-2$

- **16.** If $a_1, a_2, a_3, \dots, a_9$ are in GP, then what is the value of the following determinant? [NDA 2021-I]
 - $\begin{array}{ccc} \ln a_1 & \ln a_2 & \ln a_3 \\ \ln a_4 & \ln a_5 & \ln a_6 \\ \ln a_7 & \ln a_8 & \ln a_9 \end{array}$
 - (a) 0 (b) 1 (c) 2 (d) 4
- 17. If A and B are two matrices such that AB is of order $n \times n$, then which one of the following is correct? [NDA 2021-I]
 - (a) A and B should be square matrices of same order.
 - (b) Either A or B should be a square matrix.
 - (c) Both *A* and *B* should be of same order.

(b) 3

(a) 2

- (d) Orders of A and B need not be the same.
- How many matrices of different orders are possible with elements comprising all prime numbers less than 30?
 [NDA 2021-I]

(c) 4 (d) 6
$$[NDA 202]$$

19. Let $A = \begin{vmatrix} p & q \\ r & s \end{vmatrix}$ where p, q, r and s are any four different

prime numbers less than 20. What is the maximum value of the determinant? [NDA 2021-I] (a) 215 (b) 311 (c) 317 (d) 323

20. If *A* and B are square matrices of order 2 such that det(AB) = det(BA), then which one of the following is correct?

[NDA 2021-I]

6.

- (a) A must be a unit matrix.
- (b) *B* must be a unit matrix.
- (c) Both *A* and *B* must be unit matrices.
- (d) A and B need not be unit matrices.

21. If the determinant $\begin{vmatrix} x & 1 & 3 \\ 0 & 0 & 1 \\ 1 & x & 4 \end{vmatrix} = 0$ then what is x equal

to?
$$[NDA 2021-I]$$

(a) $-2 \text{ or } 2$ (b) $-3 \text{ or } 3$ (c) $-1 \text{ or } 1$ (d) $3 \text{ or } 4$

22. If
$$f(x) = \begin{vmatrix} 1 & x & x+1 \\ 2x & x(x-1) & x(x+1) \\ 3x(x-1) & 2(x-1)(x-2) & x(x+1)(x-1) \end{vmatrix}$$

then what is f(-1) + f(0) + f(1) equal to? [NDA 2021-I] (a) 0 (b) 1 (c) 100 (d) -100

- 23. The element in the i^{th} row and the j^{th} column of a
determinant of third order is equal to 2(i+j). What is the
value of the determinant ?[NDA 2021-I]
(a) 0 (b) 2 (c) 4 (d) 6
- **24.** With the numbers 2, 4, 6, 8, all the possible determinants with these four different elements are constructed. What is the sum of the values of all such determinants?

(a) 128 (b) 64 (c) 32 [NDA 2021-I] (d) 0

	Probability and Probability Distribution
1.	A coin is biased so that heads comes up thrice as likely as tails. For three independent losses of a coin, what is the probability of getting at most two tails? [NDA 2019-II] (a) 0.16 (b) 0.48 (c) 0.58 (d) 0.98
2.	A bag contains 20 books out of which 5 are defective. If 3 of the books are selected at random and removed from the bag in succession without replacement, then what is the probability that all three books are defective?
3.	(a) 0.009 (b) 0.016 (c) 0.026 (d) 0.047 If a coin is tossed till the first head appears, then what will be the sample space? [NDA 2019-II]
4.	 (a) {H} (b) {TH} (c) {T, HT, HHT, HHHT,} (d) {H, TH, TTH, TTTH,} Two dice are thrown simultaneously. What is the probability that the sum of the numbers appearing on them is a prime number? [NDA 2019-II]
5.	(a) $\frac{5}{12}$ (b) $\frac{1}{2}$ (c) $\frac{7}{12}$ (d) $\frac{2}{3}$ If 5 of a Company's 10 delivery trucks do not meet emission standards and 3 of them are chosen for inspection, then what is the probability that none of the trucks chosen will
	$\frac{1}{1} = \frac{3}{1} = \frac{1}{1}$

- (a) $\frac{1}{8}$ (b) $\frac{3}{8}$ (c) $\frac{1}{12}$ (d) $\frac{1}{4}$ There are 3 coins in a box. One is a two-headed coin; a fair
- coin another is; and third is biased coin that comes up heads 75% of time. When one of the three coins is selected at random and flipped, it shows heads. What is the probability that it was the two-headed coin?

[NDA 2019-II]

(a)
$$\frac{2}{9}$$
 (b) $\frac{1}{3}$ (c) $\frac{4}{9}$ (d) $\frac{5}{9}$

7. Consider the following statements: [NDA 2019-II]

- 1. If A and B are mutually exclusive events, then it is possible that P(A) = P(B) = 0.6.
- 2. If A and B are any two events such that P(A|B) = 1, then $P(\overline{B}|\overline{A}) = 1$.

Which of the above statements is/are correct?

(a) 1 only (b) 2 only

- (c) Both 1 and 2 (d) Neither 1 nor 2
- 8. If a fair die is rolled 4 times, then what is the probability that there are exactly 2 sixes? [NDA 2019-II]

(a)
$$\frac{5}{216}$$
 (b) $\frac{25}{216}$
(c) $\frac{125}{216}$ (d) $\frac{175}{216}$

(c) $\frac{1}{216}$ (d) $\frac{1}{216}$

9. What is the probability that February of a leap year selected at random, will have five Sundays? [NDA 2020-I]

(a)
$$\frac{1}{5}$$
 (b) $\frac{1}{7}$ (c) $\frac{2}{7}$ (d) 1

10. A husband and wife appear in an interview for two vacancies for the same post. The probability of the

husband's selection is $\frac{1}{7}$ and that of wife's selection is $\frac{1}{5}$.

If the events are independent, then the probability of which

one of the following is $\frac{11}{35}$? [NDA 2020-I]

- (a) At least one of them will be selected
- (b) Only one of them will be selected
- (c) None of them will be selected
- (d) Both of them will be selected
- A dealer has a stock of 15 gold coins out of which 6 are counterfeits. A person randomly picks 4 of the 15 gold coins. What is the probability that all the coins picked will be counterfeits? [NDA 2020-I]

(a)
$$\frac{1}{91}$$
 (b) $\frac{4}{91}$ (c) $\frac{6}{91}$ (d) $\frac{15}{91}$

12. A committee of 3 is to be formed from a group of 2 boys and 2 girls. What is the probability that the committee consists of 2 boys and 1 girl? [NDA 2020-I]

(a)
$$\frac{2}{3}$$
 (b) $\frac{1}{4}$ (c) $\frac{3}{4}$ (d) $\frac{1}{2}$

13. In a lottery of 10 tickets numbered 1 to 10, two tickets are drawn simultaneously. What is the probability that both the tickets drawn have prime numbers? [NDA 2020-I]

(a)
$$\frac{1}{15}$$
 (b) $\frac{1}{2}$ (c) $\frac{2}{15}$ (d) $\frac{1}{5}$

14. Consider a random variable *X* which follows Binomial distribution with parameters n = 10 and $p = \frac{1}{5}$. Then

Y = 10 - X follows Binomial distribution with parameters *n*

[NDA 2020-I]

(a)
$$5, \frac{1}{5}$$
 (b) $5, \frac{2}{5}$ (c) $10, \frac{3}{5}$ (d) $10, \frac{4}{5}$

15. If A and B are two events such that P(A) = 0.6, P(B) = 0.5and $P(A \cap B) = 0.4$, then consider the following statements : [NDA 2020-I]

1.
$$P(\overline{A} \cup B) = 0.9$$

and *p* respectively given by

2. $P(\overline{B} \mid \overline{A}) = 0.6.$

Which of the above statements is/are correct? (a) 1 only (b) 2 only

- (c) Both 1 and 2 (d) Neither 1 nor 2
- **16.** Three cooks *X*, *Y* and *Z* bake a special kind of cake, and with respective probabilities 0.02, 0.03 and 0.05, it fails to

rise. In the restaurant where they work, X bakes 50%, Y bakes 30% and Z bakes 20% of cakes. What is the proportion of failures caused by X? [NDA 2020-I]

(a)
$$\frac{9}{29}$$
 (b) $\frac{10}{29}$ (c) $\frac{19}{29}$ (d) $\frac{28}{29}$

17. If three dice are rolled under the condition that no two dice show the same face, then what is the probability that one of the faces is having the number 6? [NDA 2020-I]

(a)
$$\frac{5}{6}$$
 (b) $\frac{5}{9}$ (c) $\frac{1}{2}$ (d) $\frac{5}{12}$

18. If
$$P(A \cup B) = \frac{5}{6}$$
, $P(A \cap B) = \frac{1}{3}$ and $P(\text{not } A) = \frac{1}{2}$, then which one of the following is **not** correct? **INDA 2020 II**

which one of the following is not correct? [NDA 2020-I]

(a)
$$P(B) = \frac{2}{3}$$

(b)
$$P(A \cap B) = P(A)P(B)$$

- (c) $P(A \cup B) > P(A) + P(B)$
- (d) P(not A and not B) = P(not A) P(not B)
- **19.** Let two events A and B be such that P(A) = L and P(B) = M. Which one of the following is correct? **[NDA 2021-I]**

(a)
$$P(A | B) < \frac{L + M - 1}{M}$$
 (b) $P(A | B) > \frac{L + M - 1}{M}$

(c)
$$P(A | B) \ge \frac{L + M - 1}{M}$$
 (d) $P(A | B) = \frac{L + M - 1}{M}$

20. If
$$P(A \cup B) = \frac{5}{6}$$
, $P(A \cap B) = \frac{1}{3}$ and $P(\overline{A}) = \frac{1}{2}$, then

which of the following is/are correct?

1. *A* and *B* are independent events.

2. *A* and *B* are mutually exclusive events.

Select the correct answer using the code given below. [NDA 2021-I]

21. A coin is tossed twice. If *E* and *F* denote occurrence of head on first toss and second toss respectively, then what is $P(E \cup F)$ equal to? [NDA 2021-I]

(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ (d) $\frac{1}{3}$

22. In a binomial distribution, the mean is $\frac{2}{3}$ and variance is

$$\frac{3}{9}$$
. What is the probability that random variable $X=2$?
[NDA 2021-I]

(a)
$$\frac{5}{36}$$
 (b) $\frac{25}{36}$ (c) $\frac{25}{54}$ (d) $\frac{25}{216}$

- 23. If A and B are two events such that $P(A) = \frac{3}{4}$ and P(B) =
 - $\frac{3}{6}$, then consider the following statements :

[NDA 2021-I]

- 1. The minimum value of $P(A \cup B)$ is $\frac{3}{4}$.
- 2. The maximum value of $P(A \cap B)$ is $\frac{5}{6}$.
- Which of the above statements is/are correct?
- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2

Vectors

1. What is the scalar projection of $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$ on

$$\vec{b} = 4\hat{i} - 4\hat{j} + 7\hat{k}$$
? [NDA 2019-II]

- (a) $\frac{\sqrt{6}}{9}$ (b) $\frac{19}{9}$ (c) $\frac{9}{19}$ (d) $\frac{\sqrt{6}}{19}$
- 2. If the magnitude of the sum of two non-zero vectors is equal to the magnitude of their difference, then which one of the following is correct? [NDA 2019-II]
 - (a) The vectors are parallel
 - (b) The vectors are perpendicular
 - (c) The vectors are anti-parallel
 - (d) The vectors must be unit vectors
- 3. Consider the following equations for two vectors \vec{a} and \vec{b} : [NDA 2019-II]
 - 1. $(\vec{a} + \vec{b}) \cdot (\vec{a} \vec{b}) = |\vec{a}|^2 |\vec{b}|^2$ 2. $(|\vec{a} + \vec{b}|)(|\vec{a} - \vec{b}|) = |\vec{a}|^2 - |\vec{b}|^2$ 3. $|\vec{a} \cdot \vec{b}|^2 + |\vec{a} \times \vec{b}|^2 = |\vec{a}|^2 |\vec{b}|^2$ Which of the above statements are correct?
 - (a) 1, 2 and 3 (b) 1 and 2 only
 - (c) 1 and 3 only (d) 2 and 3 only
 - Consider the following statements:

4.

1. The magnitude of $\vec{a} \times \vec{b}$ is same as the area of a triangle with sides \vec{a} and \vec{b}

- 2. If $\vec{a} \times \vec{b} = \vec{0}$ where $\vec{a} \neq \vec{0}, \vec{b} \neq \vec{0}$, then $\vec{a} = \lambda \vec{b}$ Which of the above statements is/are correct?
- [NDA 2019-II] (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 5. If \vec{a} and \vec{b} are unit vectors and θ is the angle between

them, then what is
$$\sin^2\left(\frac{\theta}{2}\right)$$
 equal to? [NDA 2019-II]

(a)
$$\frac{\left|\vec{a}+\vec{b}\right|^2}{4}$$
 (b) $\frac{\left|\vec{a}-\vec{b}\right|^2}{4}$ (c) $\frac{\left|\vec{a}+\vec{b}\right|^2}{2}$ (d) $\frac{\left|\vec{a}-\vec{b}\right|^2}{2}$

6. If \hat{a} is a unit vector in the *xy*-plane making an angle 30° with the positive *x*-axis, then what is \hat{a} equal to ? [NDA 2020-I]

(a)
$$\frac{\sqrt{3}\hat{i} + \hat{j}}{2}$$
 (b) $\frac{\sqrt{3}\hat{i} - \hat{j}}{2}$
(c) $\frac{\hat{i} + \sqrt{3}\hat{j}}{2}$ (d) $\frac{\hat{i} - \sqrt{3}\hat{j}}{2}$

- 7. Let A be a point in space such that $|\overrightarrow{OA}| = 12$, where O is the origin. If \overrightarrow{OA} is inclined at angles 45° and 60° with xaxis and y-axis respectively, then what is \overrightarrow{OA} equal to ? [NDA 2020-I]
 - (a) $6\hat{i} + 6\hat{j} \pm \sqrt{2}\hat{k}$ (b) $6\hat{i} + 6\sqrt{2}\hat{j} \pm 6\hat{k}$ (c) $6\sqrt{2}\hat{i} + 6\hat{j} \pm 6\hat{k}$ (d) $3\sqrt{2}\hat{i} + 3\hat{j} \pm 6\hat{k}$
- 8. Two adjacent sides of a parallelogram are $2\hat{i} 4\hat{j} + 5\hat{k}$ and $\hat{i} - 2\hat{j} - 3\hat{k}$. What is the magnitude of dot product of vectors which represent its diagonals? [NDA 2020-I] (a) 21 (b) 25 (c) 31 (d) 36
- 9. If $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 144$ and $|\vec{a}| = 4$, then what is $|\vec{b}|$ equal to ? [NDA 2020-I] (a) 3 (b) 4 (c) 6 (d) 8
- 10. If the vectors $\vec{a} = 2\hat{i} 3\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} 3\hat{k}$ and
 - $\vec{c} = \hat{j} + p\hat{k}$ are coplanar, then what is the value of p? [NDA 2020-1] (a) 1 (b) -1 (c) 5 (d) -5
- 11. A vector $\vec{r} = a\hat{i} + b\hat{j}$ is equally inclined to both x and y axes. If the magnitude of the vector is 2 units, then what are the values of a and b respectively? [NDA 2021-I]

(a)
$$\frac{1}{2}, \frac{1}{2}$$
 (b) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
(c) $\sqrt{2}, \sqrt{2}$ (d) 2,2

12. Consider the following statements in respect of a vector

 $\vec{c} = \vec{a} + \vec{b}$, where $|\vec{a}| = |\vec{b}| \neq 0$:

- 1. \vec{c} is perpendicular to $(\vec{a} \vec{b})$.
- 2. \vec{c} is perpendicular to $(\vec{a} \times \vec{b})$.

Which of the above statements is/are correct?

[NDA 2021-I]

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2

13.	If \vec{a} and \vec{b} are two vectors such that		y-axis and
	$\left \vec{a}+\vec{b}\right = \left \vec{a}-\vec{b}\right = 4$, then which one of the following is		acute ang
	correct? [NDA 2021-I]		(a) 90°
	(a) \vec{a} and \vec{b} must be unit vectors.	5.	If the poin line, then
	(b) \vec{a} must be parallel to \vec{b} .		
	(c) \vec{a} must be perpendicular to \vec{b} .	6.	(a) $1, -1$ What is t
	(d) \vec{a} must be equal to \vec{b} .		centre is
14.	If \vec{a} , \vec{b} and \vec{c} are coplanar, then what is $(2\vec{a} \times 3\vec{b})$.		6x - 3y +
	$4\vec{c} + (5\vec{b} \times 3\vec{c}) \cdot 6\vec{a}$ equal to? [NDA 2021-I]	7.	(a) I uni What is th
15.	(a) 114 (b) 66 (c) 0 (d) -66 Consider the following statements : [NDA 2021-I]		to the line
	unit vector.		(a) 6 un
	2. The dot product of two unit vectors is always unity.	8.	If a line h
	3. The magnitude of sum of two unit vectors is always		what is th
	Which of the above statements are <i>not</i> correct?		(a) (<i>a</i> +
	(a) 1 and 2 only (b) 2 and 3 only		(c) 3
	(c) 1 and 3 only (d) 1, 2 and 3	9.	Into how
	3-D Geometry		(a) 2
1	A maintain a line has a satisficate $(n+1, n-2, \sqrt{2})$	10.	What is the
1.	A point on a line has coordinates $(p + 1, p - 3, \sqrt{2}p)$		5 units on
	of the line?		(a) $x + y$
	1 1 1	11	(c) $z=0$ What is the
	(a) $\overline{2}, \overline{2}, \overline{\sqrt{2}}$	11.	tion ratios
	(b) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$		(a) $\frac{\pi}{6}$
	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	12.	If <i>l</i> , <i>m</i> , <i>n</i> a
	(c) $\frac{1}{\sqrt{2}}, \frac{1}{2}, -\frac{1}{2}$		(3) = 1 - z,
	(d) Cannot be determined due to insufficient date		<pre>//</pre>
2	A point on the line $\frac{x-1}{x-1} = \frac{y-3}{x-1} = \frac{z+2}{x-1}$ has coordinates		(a) 1
2.	A point on the line $\frac{1}{1} = \frac{2}{2} = \frac{7}{7}$ has coordinates	13.	What is the $4(1,7)$
	[NDA 2019-II] (a) (3 5 4) (b) (2 5 5)		(a) $5^{A(1, 7, -3)}$
	$\begin{array}{ccc} (a) & (5,5,4) \\ (c) & (-1,-1,5) \\ (d) & (2,-1,0) \end{array}$		(c) 3
3.	If the line $\frac{x-4}{x-4} = \frac{y-2}{x-4} = \frac{z-k}{x-4}$ lies on the plane $2x-4y$	14.	What is the line jo
	l = 1 = 2 + $z = 7$ then what is the value of k ? INDA 2019-III		passes thr
	(a) 2 (b) 3		(a) Zero (c) Two
	(c) 5 (d) 7	15.	The foot of
4.	A straight line passes through the point $(1, 1, 1)$ makes an angle 60° with the positive direction of z-axis and the cosine		the plane
	of the angles made by it with the positive directions of the		(a) (0, 1,

d the x-axis are in the ratio $\sqrt{3}$: 1. What is the le between the two possible positions of the line? [NDA 2019-II] (b) 60° (c) 45° (d) 30° (x, y, -3), (2, 0, -1) and (4, 2, 3) lie on a straight what are the values of *x* and *y* respectively? [NDA 2019-II] (b) -1, 1 (c) 0, 2(d) 3,4 the length of the diameter of the sphere whose at (1, -2, 3) and which touches the plane 2z - 4 = 0?[NDA 2020-I] it (b) 2 units (c) 3 units (d) 4 units ne perpendicular distance from the point (2, 3, 4) $e \frac{x-0}{1} = \frac{y-0}{0} = \frac{z-0}{0}?$ [NDA 2020-I] its (b) 5 units (c) 3 units (d) 2 units has direction ratios $\langle a+b, b+c, c+a \rangle$, then he sum of the squares of its direction cosines? [NDA 2020-I] $(b + c)^2$ (b) 2(a+b+c)(d) 1 many compartments do the coordinate planes e space? [NDA 2020-I] (b) 4 (c) 8 (d) 16 he equation of the plane which cuts an intercept the z-axis and is parallel to xy-plane? [NDA 2020-I] v = 5(b) z = 5(d) x + y + z = 5he angle between the two lines having direc-(6, 3, 6) and (3, 3, 0)? [NDA 2021-I] (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$ are the direction cosines of the line x - 1 = 2(y + 1)then what is $l^4 + m^4 + n^4$ equal to? [NDA 2021-I] (b) $\frac{11}{27}$ (c) $\frac{13}{27}$ (d) 4 ne projection of the line segment joining 5) and B(-3, 4, -2) on y-axis? [NDA 2021-I] (b) 4 (d) 2 he number of possible values of k for which bining the points (k, 1, 3) and (1, -2, k+1) also

rough the point (15, 2, -4)? [NDA 2021-I] (h) One

(a)
$$\sum_{i=1}^{n} (i) = 0$$
 (b) One

(d) Infinite

of the perpendicular drawn from the origin to x + y + z = 3 is **[NDA 2021-I]**

(a)
$$(0,1,2)$$
 (b) $(0,0,3)$

(c)
$$(1,1,1)$$
 (d) $(-1,1,3)$

Statistics

- 1. The median of the observations 22, 24, 33, 37, x + 1, x + 3, 46, 47, 57, 58 in ascending order is 42. What are the values of 5th and 6th observations respectively?[NDA 2019-II] (a) 42, 45 (b) 41, 43
 - (c) 43,46 (d) 40,40
- Arithmetic mean of 10 observations is 60 and sum of squares of deviations from 50 is 5000. What is the standard deviation of the observations? [NDA 2019-II]
 (a) 20
 (b) 21
 - (c) 22.36 (d) 24.70
- 3. For the variables x and y, the two regression lines are 6x +
 - y = 30 and 3x + 2y = 25. What are the values of \overline{x} , \overline{y} and *r* respectively? [NDA 2019-II]

(a)
$$\frac{20}{3}, \frac{35}{9}, -0.5$$
 (b) $\frac{20}{3}, \frac{35}{9}, 0.5$
(c) $\frac{35}{9}, \frac{20}{3}, -0.5$ (d) $\frac{35}{9}, \frac{20}{3}, 0.5$

- 4. The class marks in a frequency table are given to be 5, 10, 15, 20, 25, 30, 35, 40, 45, 50. The class limits of the first five classes are [NDA 2019-II]
 - (a) 3-7,7-13,13-17,17-23,23-27
 - (b) 2.5–7.5, 7.5–12.5, 12.5–17.5, 17.5–22.5, 22.5–27.5
 - (c) 1.5-8.5, 8.5-11.5, 11.5-18.5, 18.5-21.5, 21.5-28.5
 - (d) 2-8, 8-12, 12-18, 18-22, 22-28
- 5. The mean of 5 observations is 4.4 and variance is 8.24. If three of the five observations are 1, 2 and 6, then what are the other two observations? [NDA 2019-II]
 (a) 9, 16 (b) 9, 4 (c) 81, 16 (d) 81, 4
- 6. Consider the following discrete frequency distribution: 2 3 4 5 6 7 8 х 1 9 f 3 15 45 57 50 36 25 What is the value of median of the distribution? INDA 2019-II]

(a) 4 (b) 5 (c) 6 (d) 7
7. Mean of 100 observations is 50 and standard deviation is 10. If 5 is added to each observation, then what will be the new mean and new standard deviation respectively? [NDA 2019-II]

[INDA 2019

(a) 50, 10 (b) 50, 15 (c) 55, 10 (d) 55, 15 **8.** If the range of a set of observations on a variable X is known to be 25 and if Y = 40 + 3X, then what is the range of the set of corresponding observations on Y?

[NDA 2019-II]

(a) 25 (b) 40 (c) 75 (d) 115
9. If V is the variance and M is the mean of first 15 natural numbers, then what is V + M² equal to?

[NDA 2019-II]

(a)
$$\frac{124}{3}$$
 (b) $\frac{148}{3}$

(c)
$$\frac{248}{3}$$
 (d) $\frac{124}{9}$

DIRECTIONS (Qs. 10-12) : *Read the following information and answer the three items that follow:*

Manlar	Number of students				
Marks	Physics	Mathematics			
10 - 20	8	10			
20 - 30	0 - 30 11 21				
30 - 40	30	38			
40 - 50	26	15			
50 - 60	15	10			
60 - 70	10	6			

- 10. The difference between number of students under Physics and Mathematics is largest for the interval [NDA 2020-I]
 (a) 20-30
 (b) 30-40
- Consider the following statements : [NDA 2020-I]
 Modal value of the marks in Physics lies in the interval 30 40.
 - 2. Median of the marks in Physics is less than that of marks in Mathematics.
 - Which of the above statements is/are correct?
 - (a) 1 only (b) 2 only
 - (c) Both 1 and 2 (d) Neither 1 nor 2
- 12. What is the mean of marks in Physics?
 [NDA 2020-I]

 (a) 38.4
 (b) 39.4

 (c) 40.9
 (d) 41.6
- 13. What is the standard deviation of the observations

$$-\sqrt{6}, -\sqrt{5}, -\sqrt{4}, -1, 1, \sqrt{4}, \sqrt{5}, \sqrt{6}$$

[NDA 2020-I]

(a)
$$\sqrt{2}$$
 (b) 2 (c) $2\sqrt{2}$ (d) 4

- 14. If $\Sigma x_i = 20$, $\Sigma x_i^2 = 200$ and n = 10 for an observed variable x, then what is the coefficient of variation? [NDA 2020-I] (a) 80 (b) 100 (c) 150 (d) 200
- 15. The arithmetic mean of 100 observations is 40. Later, it was found that an observation '53' was wrongly read as '83'. What is the correct arithmetic mean? [NDA 2020-I]
 (a) 39.8 (b) 39.7
 (c) 39.6 (d) 39.5
- 16. Let X and Y represent prices (in $\overline{\bullet}$) of a commodity in Kolkata and Mumbai respectively. It is given that X = 65, Y = 67, $\sigma_X = 2.5$, $\sigma_Y = 3.5$ and r(X, Y) = 0.8. What is the equation of regression of Y on X? [NDA 2020-I] (a) Y = 0.175X - 5 (b) Y = 1.12X - 5.8(c) Y = 1.12X - 5 (d) Y = 0.17X + 5.8
- 17. The numbers 4 and 9 have frequencies x and (x 1)respectively. If their arithmetic mean is 6, then what is the
value of x?(a) 2(b) 3(c) 4(d) 5

18. The sum of deviations of *n* number of observations measured from 2.5 is 50. The sum of deviations of the same set of observations measured from 3.5 is -50. What is the value of *n*? [NDA 2020-I] (a) 50

(b) 60 (c) 80 (d) 100

19. A data set of *n* observations has mean 2*M*, while another data set of 2n observations has mean M. What is the mean of the combined data sets? [NDA 2020-I]

(a)
$$M$$
 (b) $\frac{3M}{2}$ (c) $\frac{2M}{3}$ (d) $\frac{4M}{3}$

- 20. Consider the following measures of central tendency for a set of *N* numbers : [NDA 2021-I] 1. Arithmetic mean 2. Geometric mean Which of the above uses/use all the data?
 - (a) 1 only (b) 2 only
 - (c) Both 1 and 2 (d) Neither 1 nor 2
- 21. The numbers of Science, Arts and Commerce graduates working in a company are 30, 70 and 50 respectively. If these figures are represented by a pie chart, then what is the angle corresponding to Science graduates?

[NDA 2021-I]

- (a) 36° (b) 72° (c) 120° (d) 168° 22. For a histogram based on a frequency distribution with unequal class intervals, the frequency of a class should be proportional to [NDA 2021-I]
 - (a) the height of the rectangle
 - (b) the area of the rectangle
 - (c) the width of the rectangle
 - (d) the perimeter of the rectangle
- The coefficient of correlation is independent of 23. [NDA 2021-I]
 - (a) change of scale only
 - (b) change of origin only

- (c) both change of scale and change of origin
- (d) neither change of scale nor change of origin
- The following table gives the frequency distribution of 24. number of peas per pea pod of 198 pods :

	Number of peas	1	2	3	4	5	6	7	
	Frequency	4	33	76	50	26	8	1	
	What is the median	ofth	is di	stribu	ition	?[]	ND.	A 2	021-I]
	(a) 3 (b) 4		(c)	5			(d)	6	
25.	If M is the mean of	<i>n</i> oł	oserv	ation	$s x_1$ -	- k, x	$\frac{1}{2}$ -	<i>k</i> , <i>x</i>	-k
	$\dots, x_n - k$, where k is	any	real	num	ber, 1	then	wha	at is	the
	mean of $x_1, x_2, x_3,,$	$x_n?$					[NE)A 2	:021-I]
	(a) M (b) M	+k	(c)	M	l-k		(d)	kN	1
26.	What is the sum of	devi	atior	ns of	the v	ariat	e va	lue	s 73,
	85, 92, 105, 120 from	the	ir me	an?			[NI)A 2	:021-I]
	(a) -2 (b) -	1	(c)	0			(d)	5	
27.	If the mean of a freq	uen	cy di	strib	ution	is 10	00 a	nd	the
	coefficient of variation	on	is 45'	%, th	en w	hat i	s th	e va	lue of
	the variance?						[NE)A 2	2021-I]
	(a) 2025 (b) 45	0	(c)	45	5		(d)	4·5	
28.	For which of the fol	low	ing s	ets of	f nun	nbers	do	the	mean,
	median and mode h	ave	the s	ame	value	e?	[NI)A 2	2021-I]
	(a) 12, 12, 12, 12, 2	4	(b)	6,	18, 1	8,18	,30		
	(c) 6, 6, 12, 30, 36		(d)	6,	6, 6,	12,3	0		
29.	The mean of 12 obse	erva	tions	is 75	. If tv	vo ob	oser	vati	ons are
	discarded, then the r	nea	n of t	he re	main	ing o	obse	erva	tions is
	65. What is the mea	n o	f the	disca	arded	l obse	erva	tion	ıs?
							[NI)A 2	(021-I]
	(a) 250								
	(b) 125								

- (c) 120
- (d) Cannot be determined due to insufficient data
- If the mode of the scores 10, 12, 13, 15, 15, 13, 12, 10, x is 30. 15, then what is the value of x? [NDA 2021-I] (a) 10 (b) 12 (c) 13 (d) 15

HINTS & SOLUTIONS

Sets, Relations, Functions and Number System

$$\therefore [n(A \cap B)]_{\max} = 3$$

 \therefore by eq. (1)

- $[n(A \cup B)]_{\min} = 6 + 3 3 = 6$ (c) Given: n(Cricket) = 503.
- n(Football) = 40 $n(\text{Football} \cap \text{Cricket}) = 10$

 \therefore Total players = 80

 \therefore Non players = 100 - 80 = 20

(c) $A = \{x : 0 \le x \le 2\}$ $B = \{y : y \text{ is a prime}\}$ $\therefore A \cap B = \{2\}$ 5. (*) Let $y = 2 + \frac{1}{2 +$ $\therefore \quad y = 2 + \frac{1}{y}$ $\Rightarrow \quad y^2 = 2y + 1 \Rightarrow y^2 - 2y - 1 = 0$ $\Rightarrow y = \frac{2 \pm \sqrt{(-2)^2 - 4(-1)}}{2} \Rightarrow y = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm \sqrt{2}$ $\therefore v > 2$ $\therefore y = 1 \pm \sqrt{2}$ 6. (d) :: number of zeroes = Highest power of 5. : by using options highest power in 95 is $\left[\frac{95}{5}\right] + \left[\frac{95}{25}\right] + \left[\frac{95}{125}\right] = 21$ $\left[\frac{80}{5}\right] + \left[\frac{80}{25}\right] = 19$ highest power in 85 is $\frac{85}{5} + \frac{85}{25} = 19$ \therefore option (D) no such value of *n* exists. 7. (d) $S = \{2, 4, 6, 8, ..., 20\}$ n(S) = 10:. Total subsets = $2^{10} = 1024$. 8. (d) $(cd cc dd ccc ddd)_2$ $\therefore c > d$ $\therefore c = 1 \text{ and } d = 0$ \therefore no = (10 11 00 111 000)₂ : decimal equivalent = $2^{11} + 2^9 + 2^8 + 2^5 + 2^4 + 2^3$ =2048+512+256+32+16+8=2872(a) Given: $f(x) = x^2$; $f(x) = \tan x$ $h(x) = l \ln x$ 9 \therefore (h o (g o f) x at $x = \frac{\sqrt{\pi}}{2}$ = $\ell n(\tan (x^2) = \ell n \left(\tan \frac{\sqrt{\pi}}{4} \right) = \ell n \ 1 = 0$ 10. (d) [fo(fof)](2) $=((x^2)^2)^2 = x^8$ at x = 2, we get $x^8 = 2^8 = 256$ 11. (b) For first 60 km, speed = 3v kmph for next 60 km speed = 2v kmph avg. speed = $\frac{\text{Total distance}}{\text{Total distance}}$ Total time $= \frac{120}{\frac{60}{3v} + \frac{60}{v}} = \frac{2}{\frac{1}{3v} + \frac{1}{2v}} = \frac{2v}{5} \times 6 = \frac{12v}{5} = 2.4 v \text{ kmph}$

12. (b) Let no. of boys be x. $\therefore \quad 60 = \frac{70x + 55(150 - x)}{150}$ $\Rightarrow 15x + 8250 = 9000 \Rightarrow 15x = 750 \Rightarrow x = 50$ \therefore Boys = 50 and girls = 100. 13. (c) Number of proper subset of any set of *n* elements $= 2^n - 1$ Here given set = $\{1, 2, 3, 4\}$ Number of proper subset $= 2^4 - 1 = 16 - 1 = 15$. Proper subset = $\{(1), (2), (3), (4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 2), (1, 3), (1, 4), (1, 4),$ (2,3), (2,4), (3,4), (1,2,3), $(1, 2, 4), (1, 3, 4), (2, 3, 4)(\phi)$ Now, A is superset of B, if B is proper set of A, but B is not proper set of A. i.e. $B \leq A$ but $A \not\subset B$. Then $A \geq B$. So, superset of $\{3\}$ are $\{(3), (1, 3), (2, 3), (3, 4), (1, 2, 3), (3, 4), (1, 2, 3), (3, 4), (1, 2, 3), (3, 4), (1, 2, 3), (3, 4), (1, 2, 3), (3, 4$ (1, 3, 4), (2, 3, 4)Hence, number of superset of $\{3\} = 7$. 14 (c) n(z) = 90 $12 + 18 + 17 + C = 90 \Longrightarrow C = 43.$ From question, $\frac{n(y)}{n(z)} = \frac{4}{5}$ $\frac{16+18+17+b}{90} = \frac{4}{5}$ b = 72 - 51 = 21. 15. (d) $n(X) + n(Y) + n(Z) - n(X \cap Y)$ $-n(Y \cap Z) - n(X \cap Z) + n(X \cap Y \cap Z)$ $= n(X \cup Y \cup Z)$ = a + b + 90 + 16= a + b + 106.16. (a) $n(X \cup Y \cup Z)^1 = P$ and n(Z) = 90(given) $\therefore n(X)^{1} = P + 90 - 12 - 18 + b = p + b + 60.$ 17. (c) $(1101101)_2 + (1011011)_2$ $=(1 \times 2^{6} + 1 \times 2^{5} + 0 + 1 \times 2^{3} + 1 \times 2^{2} + 0 + 1 \times 2^{0})_{10}$ $+(1 \times 2^{6} + 0 + 1 \times 2^{4} + 1 \times 2^{3} + 0 + 1 \times 2^{1} + 1 \times 2^{0})_{10}$ $= (64+32+8+4+1)_{10} + (64+0+16+8+2+1)_{10}$ $=(109+91)_{10}=(200)_{10}$ 18. (a) $\frac{1}{10}\log_5 1024 - \log_5 10 + \frac{1}{5}\log_5 3125$ $= \log_5 (1025)^{1/10} - \log_5 10 + \log_5 (3125)^{1/5}$ $= \log_5(2^{10})^{\frac{1}{10}} - \log_5 10 + \log_5(5^5)^{\frac{1}{5}}$ $= \log_5(2) - \log_5 10 + \log_5 5$ $= \log_5\left(\frac{2\times 5}{10}\right) = \log_5 1 = 0.$ 19. (c) $1+x = \log_{c}(ab)+1$ $= \log_c(ab) + \log_c c = \log_c(abc)$

$$(1+x)^{-1} = \frac{1}{\log_{c} (abc)} = \log_{(abc)} c$$

Similarly, $(1+y)^{-1} = \log_{(abc)} a$
and $(1+z)^{-1} = \log_{(abc)} b$
Now, $(1+x)^{-1} + (1+y)^{-1} + (1+z)^{-1}$
 $= \log_{(abc)} c + \log_{(abc)} a + \log_{(abc)} b$
 $= \log_{(abc)} (cab) = 1.$
20. (c) Give set $S = \{1, 2, 3,\}$
For xRy , $\log_{a} x > \log_{a} y$
 $\Rightarrow x > y$
As xRx , $\log_{a} x > \log_{a} x$ is not valid.
Hence, relation is not reflexive.
For xRy , $\log_{a} x > \log_{a} x \Rightarrow x > y$
 yRx , $\log_{a} y > \log_{a} x \Rightarrow y > x$
This is also not valid. Hence, relation is not symmetric also.
For xRy , $\log_{a} x > \log_{a} y \Rightarrow x > y$
For yRz , $\log_{a} x > \log_{a} x \Rightarrow y > x$
This is also not valid. Hence, relation is not symmetric also.
For xRy , $\log_{a} x > \log_{a} x \Rightarrow y > x$
This is a valid relation. Hence, relation is only transitive.
21. (c) $f(0) = 3(0)^{2} - 5(0) + P = P$

 $f(1) = 3(1)^2 - 5(1) + P = P - 2$ Clearly, f(0) and f(1) are opposite in sign. $\therefore P > 0$ and P - 2 < 0. $\Rightarrow 0 < P < 2$.

22. (a)
$$f(x) = 2x - x^2$$

 $f(x+2) + f(x-2)$
 $= 2(x+2) - (x+2)^2 + 2(x-2) - (x-2)^2$
 $= 4 + 4x - x^2 - 4 - 4x - x^2 - 4 + 4x - 4$
 $= 8x - 2x^2 - 8$

When x = 0, then, f(x+2) + f(x-2) = -8

23. (c) Here *AB* is the chord and $\angle AOB = 120^{\circ}$ AO = OB = 1 units (Radius)

From cosine rule,

$$\cos(\angle AOB) = \frac{(OA)^2 + (OB)^2 - (AB)^2}{2(AO) \cdot (OB)}$$

$$\Rightarrow \cos(120^\circ) = \frac{1^2 + 1^2 - (AB)^2}{2(1) \cdot (1)} \Rightarrow \frac{1}{2} = \frac{2 - (AB)^2}{2}$$

$$\therefore AB = \sqrt{2} \text{ units.}$$
24. (b) Number of sides, $n = 8$
Interior angle of *n*-sides polygon

$$= \frac{(n-2) \times \pi}{n} = \frac{(8-2) \times \pi}{8} = \frac{3\pi}{4}.$$
25. (c)
1. $A = \{1, 3, 5\}$ and $B = \{2, 4, 7\}$ are equivalent sets, because number of elements are equal.
2. $A = \{1, 5, 9\}$ and $B = \{1, 5, 5, 9, 9\} = \{1, 5, 9\}$ are equal sets, as *A* and *B* have all common elements.
26. (d) All three statements are true.
27. (b) $2x + 3y = 20 \Rightarrow y = \frac{20 - 2x}{3}$
As $(x, y) \in N$
For $x = 1$, $y = \frac{20 - 2}{3} = 6$, $(x, y) = (1, 6) \in N$
For $x = 4$, $y = \frac{20 - 8}{3} = 4$, $(x, y) = (4, 4) \in N$
For $x = 7$, $y = \frac{20 - 14}{3} = 2$, $(x, y) = (7, 2) \in N$
 \therefore Number of elements $(x, y) = 3$.

28. (a) f(x) = x + 1Graph:

$$f(x) = x + 1$$
 is defined for all $x \in R$.

Hence, f(x) = x+1 is one-one and onto.

29. (a) Among all triangles that have same perimeter, equilateral triangles are one that enclose maximum area.

Here,
$$AB = BC = CA = \frac{24}{3} = 8 \text{ cm}$$

Area of $\triangle ABC = \frac{\sqrt{3}}{4}(BC)^2 = \frac{\sqrt{3}}{4}(8)^2 = 16\sqrt{3} \text{ cm}^2$
AD is the altitude of the $\triangle ABC$.

 $\rightarrow y = 0$

x = 4

Then, Area of
$$\Delta ABC = \frac{1}{2} \times BC \times AD$$

 $\Rightarrow 16\sqrt{3} = \frac{1}{2} \times 8 \times AD$
 $\therefore AD = 4\sqrt{3}$ cm.
 $(0) Sum of 15 observations = 15 \times A$ (where A is average for the field of the

and if p = q, r = 0the D=0

- :. equal roots :. both statements are correct. 12. (b) Given $|x| < 5 \Rightarrow -5 < x < 5$
- y=0 & y=8

:.
$$p=13, q=17$$

:. $p^3+q^3=2197+4913=7110$

1 -

15. (b) Given equation :
$$x^2 - 3x + 2 = 0$$

Sum of roots, $\cot \alpha + \cot \beta = -(-3) = 3$...(i)
Product of roots, $\cot \alpha \cdot \cot \beta = 2$...(ii)

Now,
$$\cot(\alpha + \beta) = \frac{\cot \alpha \cdot \cot \beta - 1}{\cot \alpha + \cot \beta} = \frac{2 - 1}{3} = \frac{1}{3}$$

1

16. (b)
$$\alpha\beta = \alpha^2\beta^2 \Longrightarrow \alpha\beta(1-\alpha\beta) = 0$$

 $\therefore \alpha\beta = 0 \text{ or } 1$

When
$$\alpha\beta = 1$$
 then $\alpha = \frac{1}{\beta}$
Again from $\alpha + \beta = \alpha^2 + \beta^2$
 $\Rightarrow \frac{1}{\beta} + \beta = \frac{1}{\beta^2} + \beta^2 \Rightarrow \beta^2 - \beta = \frac{1}{\beta} - \frac{1}{\beta^2}$
 $\Rightarrow \beta(\beta - 1) = \frac{(\beta - 1)}{\beta^2} \Rightarrow (\beta - 1) \left(\beta - \frac{1}{\beta^2}\right) = 0$
 $\Rightarrow (\beta - 1)(\beta^3 - 1) = 0 \Rightarrow (\beta - 1)^2(\beta^2 + \beta + 1) = 0$
 $\therefore \beta = 1$ and $\beta = \frac{-1 \pm \sqrt{3}i}{2}$
Again, when $\beta = 1$, then $\alpha = \frac{1}{\beta} = 1$, roots $(\alpha, \beta) = (1, 1)$
When $\beta = \frac{-1 + \sqrt{3}i}{2}$, then $\alpha = \frac{-1 - \sqrt{3}i}{2}$

Roots
$$(\alpha, \beta) = \left(\frac{-1 \pm \sqrt{3}i}{2}, \frac{-1 \mp \sqrt{3}i}{2}\right)$$

Thus, number of different quadratic equations = 2. 17. (d) 15 < x < 45

(d)
$$1.5 \le x \le 4.5$$

 $\frac{3}{2} \le x \le \frac{9}{2} \Rightarrow 3 \le 2x \le 9$
 $\therefore (2x-3) \ge 0 \text{ and } (2x-9) \le 0$
Hence, $(2x-3)(2x-9) \le 0$

18. (c)
$$2\sin x = 2k+1$$

$$\sin x = k + \frac{1}{2}$$
 As $\sin x \in [-1, 1]$

$$\therefore -1 \le k + \frac{1}{2} \le 1 \qquad \qquad \Rightarrow -\frac{3}{2} \le k \le \frac{1}{2}$$

Hence, number of Integer values of k that satisfy are 2 and that are (-1 and 0)

19. (d) Roots are real, if $D \ge 0$

$$(-2)^2 - 4k \ge 0$$
$$\Rightarrow (1-k) \ge 0 \Rightarrow k \le 1.$$

20. (a)
$$\alpha$$
 and β are roots of $4x^2 + 2x - 1 = 0$.

$$\therefore \text{ Sum of roots } (\alpha + \beta) = -\frac{1}{4} = -\frac{1}{2}$$
$$\therefore \beta = -\frac{1}{2} - \alpha = \frac{-1 - 2\alpha}{2} \text{ and } 4\alpha^2 + 2\alpha - 1 = 0$$
$$\Rightarrow 4\alpha^2 = 1 - 2\alpha.$$

Now,
$$-2\alpha^2 - 2\alpha = \frac{2\alpha - 1}{2} - 2\alpha = \frac{-2\alpha - 1}{2} = \beta$$
.

21. (c) As one root is reciprocal of the other. \therefore Product of roots = 1.

$$\therefore \frac{K}{5} = 1 \Longrightarrow K = 5$$

~

22. (c) Given equation : x(x+1)+1 = 0

$$D = (-1)^2 - 4(1)(1) = -3 < 0.$$

Two roots of the equation are same as cube root of unity

(ω and ω^2). Hence, other roots = K^2 .

1. (a) S = (1-2) + (3-4) + ... + 101 $\Rightarrow -1 - 1 - 1 ... + 101$ $\Rightarrow -50 + 101$ $\Rightarrow S = 51$ 2. (a) Given: $S_n = n + 12$ $\because T_n = S_n - S_{n-1}$ $\therefore T_3 = S_3 - S_2$ $\Rightarrow T_3 = (3 + 12) - (2 + 12) \Rightarrow T_3 = 1$ 3. (c) $a(b-c) x^2 + b(c-a)x + c (a-b) = 0$ has coefficients in cyclic order

 \therefore its one root will be 1. \therefore both the roots are equal \therefore other root = 1 \therefore Product of roots = 1 $\Rightarrow \frac{c(a-b)}{a(b-c)} = 1 \Rightarrow ac - bc = ab - ac$ $\Rightarrow 2ac = ab + bc \Rightarrow \frac{2}{b} = \frac{1}{a} + \frac{1}{c} \Rightarrow a, b, c \text{ are in HP.}$ 4. (b) :: $S_n = \frac{a(1-r^n)}{1-r}$ given: $a_1 + a_3 + ... + a_{199} = m$ $\therefore \quad \frac{a[(r^2)^{100} - 1]}{r^2 - 1} = m$...(1) also $a_2 + a_4 + \dots + a_{200} = n$ $\therefore \frac{ar[(r^2)^{100} - 1]}{r^2 - 1} = n$...(2) eq. (2) \div (1) \Rightarrow $r = \frac{n}{m}$ 5. (c) $x^2 - 16x + 39 = 0$ $\Rightarrow x^2 - 13x - 3x + 39 = 0 \Rightarrow (x - 13)(x - 3) = 0$ \Rightarrow Roots are 3 and 13. AP between 3 and 13 has common difference = $\frac{b-a}{n+1}$ $\Rightarrow d = \frac{13-3}{5} = 2$: AP between 3 and 13 is 5, 7, 9, 11 \therefore sum = 5 + 7 + 9 + 11 = 32 (d) AP remains an AP if it is multiplied, divided and 6. subtracted by a constant number. : All three statements are correct. (b) First 2 digit number divisible by 4 is = 127. Last 2 digit number divisible by 4 is = 96. \therefore by AP concept 96 = 12 + (n-1)4 $\Rightarrow n = \frac{96 - 12}{4} + 1 = 22$ 8. (c) $S_{2n} = 3n + 14n^2$:. $S_n = 3\frac{n}{2} + 14\left(\frac{n}{2}\right)^2$:: $S_n = \frac{3n + 7n^2}{2}$ $\therefore S_1 = \frac{3+7}{2} = 5 = T_1$ $S_2 = \frac{6+28}{2} = 17 = T_1 + T_2$ $\begin{array}{rcl} \ddots & (T_1 + T_2) - (T_1) = 17 - 5 = 12 \\ \Rightarrow & T_2 = 12 \\ \therefore & d = T_2 - T_1 = 12 - 5 = 7. \end{array}$

(*) $T_3 = AR^2 = P$ 9. $T_8 = AR^7 = q$ $T_{13} = AR^{12} = r$ here $q^2 = P.r.$ *i.e.* $(AR^7)^2 = (AR^2)(AR^{12})$ 10. (c) (1) p^2 , q^2 and r^2 in G.P. Then, $(q^2)^2 = p^2 \cdot r^2 \implies q^2 = (p^2 \cdot r^2)^{\frac{1}{2}}$ $\Rightarrow a^2 = p \cdot r$ Hence, p, q and r in G.P. (2) As, $q^2 = p \cdot r$ Taking log on both sides, we have $\ln(q^2) = \ln(p \cdot r)$ $2\ln(q) = \ln p + \ln r$ Hence, $\ln p$, $\ln q$ and $\ln r$ are in A.P. 11. (b) From $\frac{1}{\log b} = \log_b a$ $\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + \frac{1}{\log_5 n} + \dots + \frac{1}{\log_{100} n}$ $= \log_n 2 + \log_n 3 + \log_n 4 + \dots + \log_n 100$ $= \log_n (2 \cdot 3 \cdot 4 \cdot 5 \cdot \dots \cdot 100) = \log_n 100!$ As n = 100!(given) $\therefore \log_{100!} 100! = 1.$ (b) Let common difference = d. 12. Then, sum of first 5 terms = Sum of next 5 terms $\Rightarrow \frac{1}{2} \cdot 5(4+4 \cdot d) = \frac{1}{4} \cdot \frac{1}{2} \cdot 5\{(2+5 \cdot d) + 4 \cdot d\}$ $\Rightarrow 4 \times 4(1+d) = 4+14d$ $\therefore d = -6.$: Sum of first ten terms $= \frac{1}{2} \times 10\{(2 \times 2 + 9(-6))\} = -250.$ 13. (c) Both (1) and (2) are true. 14. (c) $x^2, x, -8$ are in A.P. $\therefore 2x = x^2 - 8$ $\Rightarrow x^2 - 2x + 1 - 9 = 0 \qquad \Rightarrow (x - 1)^2 = 9$ $\therefore (x-1) = \pm 3$ $\therefore x \in \{-2, 4\}$ 15. (b) Let G.P. is $\frac{3}{r^2}$, $\frac{3}{r}$, 3, 3r and $3r^2$ Product $=\frac{3}{r^2}\cdot\frac{3}{r}\cdot 3\cdot 3r\cdot 3r^2 = (3)^5 = 243.$

- 16. (d) $x = \frac{2m \cdot n}{m+n}$ and $y = \sqrt{m \cdot n}$ 5x = 4yA.M. of m and $n = \frac{m+n}{2}$, As 5. $\frac{(2m \cdot n)}{m+n} = 4 \cdot \sqrt{m \cdot n}$ $\frac{5m \cdot n}{2\sqrt{m \cdot n}} = m+n$ $\frac{5}{2}\sqrt{m \cdot n} = (m+n)$ $\frac{5}{2} = \sqrt{\frac{m}{n}} + \sqrt{\frac{n}{m}}$ Let $\sqrt{\frac{m}{n}} = Z$, then $\frac{5}{2} = Z + \frac{1}{Z}$ $2(Z^2+1) = 5Z$ $2Z^2 - 5Z + 2 = 0$ (Z-2)(2Z-1) = 0 $\therefore Z = 2 \text{ or } \frac{1}{2}$ $\sqrt{\frac{m}{n}} = 2 \Rightarrow m = 4n$ or, $\sqrt{\frac{m}{n}} = \frac{1}{2}$ n = 4m
- 17. (c) Geometric mean = 10 when, each observation is replaced by 3 x_i^4 Now g.m. = 3. (10)⁴ = 30000

Complex Numbers

1. (c)
$$\left[\frac{i+\sqrt{3}}{2}\right]^{2019} + \left[\frac{i-\sqrt{3}}{2}\right]^{2019}$$

$$\therefore -i \times i = 1$$

$$\therefore \left[\frac{-i(-1+i\sqrt{3})}{2}\right]^{2019} + \left[\frac{-i(-1-i\sqrt{3})}{2}\right]^{2019}$$

$$= -i^{2019} \left[\omega^{2019} + (\omega^2)^{2019}\right]$$

$$= -i^3 [1+i] = -(-i)2 = 2i$$

2. (c) Given $x = 1 + i$
squaring both sides

$$\Rightarrow x^2 = 1 + i^2 + 2i$$

$$\Rightarrow x^2 = 2i$$

$$\therefore x^6 + x^4 + x^2 + i = (x^2)^3 + (x^2)^2 + x^2 + 1$$

$$= (2i)^3 + (2i)^2 + 2i + 1$$

$$= -8i - 4 + 2i + 1$$

$$= -8i - 4 + 2i + 1$$

$$= -6i - 3$$

3. (b) $Z = \frac{\cos\theta + i\sin\theta}{\cos\theta - i\sin\theta}$

$$= \frac{(\cos\theta + i\sin\theta)}{(\cos\theta - i\sin\theta)} \times \frac{(\cos\theta + i\sin\theta)}{(\cos\theta + i\sin\theta)}$$

$$= \frac{(\cos\theta + i\sin\theta)^2}{\cos^2\theta - (i\sin\theta)^2}$$

$$= \frac{\cos 2\theta + i \sin 2\theta}{\cos^{2} \theta + \sin^{2} \theta} = \cos 2\theta + i \sin 2\theta.$$

Modulus of $Z = |Z| = \sqrt{\cos^{2}(2\theta) + \sin^{2}(2\theta)} = 1$
4. (a) Let $x + iy = \frac{1 - i\sqrt{3}}{1 + i\sqrt{3}}$
 $= \frac{(1 - i\sqrt{3})(1 - i\sqrt{3})}{(1 + i\sqrt{3})(1 - i\sqrt{3})} = \frac{(1 - i\sqrt{3})^{2}}{1^{2} - (i\sqrt{3})^{2}}$
 $= \frac{1 - 3 - i2\sqrt{3}}{1 + 3} = -\left(\frac{1 + i\sqrt{3}}{2}\right) = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$
Argument $= \tan^{-1}\left(\frac{y}{x}\right) = \tan^{-1}\left(\frac{-\sqrt{3}}{2}\right)$
 $= \pi + \tan^{-1}(\sqrt{3}) = 180^{\circ} + 60^{\circ} = 240^{\circ}.$
5. (a) $\left(\frac{1 - i}{1 + i}\right)^{n^{2}} = 1$
 $\Rightarrow \left(\frac{(1 - i)(1 - i)}{(1 + i)(1 - i)}\right)^{n^{2}} = 1 \Rightarrow \left(\frac{(1)^{2} + (i)^{2} - 2i}{1 - (i)^{2}}\right)^{n^{2}} = 1$
 $\Rightarrow \left(\frac{-2i}{2}\right)^{n^{2}} = 1 \Rightarrow (-i)^{n^{2}} = 1$
For $n = 2, (-i)^{2^{2}} = (-i)^{4} = 1$
Hence, $n = 2$.
6. (b) $|Z + \frac{2}{Z}| = |(1 + i) + \frac{2}{(1 + i)}| = |(1 + i) + \frac{2(1 - i)}{(1 + i)(1 - i)}|$
 $= |(1 + i) + \frac{2(1 - i)}{2}| = |1 + i + 1 - i| = 2$
7. (c) Let $z = x + iy, \overline{z} = x - iy$
and $z^{-1} = \frac{1}{z} = \frac{1}{x + iy}$
1. $(\overline{z^{-1}}) = \left(\frac{\overline{1}}{x + iy}\right) = \left(\frac{\overline{x - iy}}{x^{2} + y^{2}}\right) = \left(\frac{x + iy}{x^{2} + y^{2}}\right)$
 $(\overline{z})^{-1} = (x - iy)^{-1} = \frac{1}{x - iy} = \frac{x + iy}{x^{2} + y^{2}}$
 $\therefore (\overline{z^{-1}}) = (\overline{z})^{-1}.$
2. $z \cdot z^{-1} = (x + iy)\left(\frac{1}{x - iy}\right)$

$$=\frac{(x+iy)(x+iy)}{(x-iy)(x+iy)} = \frac{(x+iy)^2}{x^2+y^2} = |z|^2$$

Hence, both (1) and (2) are true. 8. (c) Let z = x + iy conjugate of z' = x - iyNow, z + z' = x + iy + x - iy = 2x (Real) z - z' = x + iy - x + iy = (2y)i (Imaginery)

Hence, both (1) and (2) are true.

9. (b)
$$(i)^{2n+1}(-i)^{2n-1} = (-1)^{2n-1} \left\{ (i)^{2n+1+2n-1} \right\}$$

= $(-1)^{2n-1} \cdot (i)^{4n} = (-1)^{2n-1} \cdot (1)$

Now, modulus of $(-1)^{2n-1} = 1$.

Binomial Theorem, Mathematical Induction

1. (a) $\left(x^2 + \frac{1}{x}\right)^{2n}$ Its index is even \therefore Middle term = T_{n+1} $T_{n+1} = {}^{2n}C_n(x^2)^n \left(\frac{1}{x}\right)^n$ $= {}^{2n}C_n x^n = 184756x^{10}$ \therefore comparing power of x we get n = 10

2. (b)
$$\left(\sqrt{x} - \frac{k}{x^2}\right)^{10}$$

according to question. Term independent of *x* can be calculated as

$${}^{10}C_r \left(\sqrt{x}\right)^{10-r} \cdot \left(-\frac{k}{x^2}\right)^r$$

$$\Rightarrow \quad x^{5-r/2-2r} = x^0 \Rightarrow 10 - 4r - r = 0 \Rightarrow r = 2$$

$$\therefore \quad {}^{10}C_2 \cdot (\sqrt{x})^8 \cdot \left(\frac{-k}{x^2}\right)^2 = 405$$

$$\Rightarrow \quad {}^{10}C_2 \cdot k^2 = 405 \Rightarrow \frac{10!}{2!\cdot 8!} \cdot k^2 = 405 \Rightarrow k^2 = 9 \Rightarrow k = \pm 3$$

3. (a) Expansion of

$$(1+x)^9 = {}^9C_0 + {}^9C_1x + {}^9C_2x^2 + {}^9C_3x^3 + {}^9C_4x^4 + {}^9C_5x^5 + {}^9C_6x^6 + {}^9C_7x^7 + {}^9C_8x^8 + {}^9C_9x^9 Sum of last five co-efficient= {}^9C_5 + {}^9C_6 + {}^9C_7 + {}^9C_8 + {}^9C_9$$

$$= 126 + 84 + 36 + 9 + 1 = 256.$$

4. (a) Let $(r+1)^{\text{th}}$ term is independent of x.

$$(r+1)^{\text{th}} \text{ term} = {}^{10}C_r \cdot \left(\frac{2}{x^2}\right)^{10-r} \cdot (-\sqrt{x})^r$$

Exponent of x in independent term = 0

i.e.
$$\frac{r}{2} - 2(10 - r) = 0$$

$$r-4(10-r) = 0 \Rightarrow 5r-40 = 0 \Rightarrow r = 8.$$

Thus, 9th term is independent of x.
9th term $= {}^{10}C_8(2)^{10-8} \cdot (-1)^8 = {}^{10}C_8(2)^2$
 $= \frac{10 \times 9}{2} \times 4 = 180.$
5. (b) $(1+2x-x^2)^6 = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \dots + a_{12} \cdot x^{12}$
Putting $x = -1$,
 $a_0 - a_1 + a_2 + \dots + a_{12} = (1+2(-1)-(-1)^2)^6$
 $= (1-2-1)^{12} = (-2)^6 = 64.$
6. (b) $(1+x)^n = C_0 + C_1x + C_2x^2 + C_3x^3 + \dots + C_nx^n$
For, $x = 1$,
 $(1+1)^n = C_0 + C_1 + C_2 + C_3 + \dots + C_n$
 $\Rightarrow 2^n = 1 + C_1 + C_2 + C_3 + \dots + C_n \{ \because {}^nC_0 = {}^nC_n = 1 \}$
 $\therefore C_1 + C_2 + C_3 + \dots + C_n = 2^n - 1$
7. (a) $(1+4x+4x^2)^5 = (1+2x)^{2\times 5} = (1+2x)^{10}.$
 \therefore Middle term $= {}^{10}C_5(2x)^5 = \frac{10!}{5! \, 5!} \cdot 2^5 \cdot x^5.$
Co-efficient of middle term = 8064.
8. (c) $(1+x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + \dots + {}^nC_nx^n$
Putting $x = 1$,
 $(1+1)^n = {}^nC_0 + {}^nC_1 + {}^nC_2 + \dots + {}^nC_n$
 $\Rightarrow 2^n - 1 = {}^nC_1 + {}^nC_2 + \dots + {}^nC_n$ $(\because {}^nC_0 = 1)$
Now, $2^n - 1 = 1 + 2 + 2^2 + \dots + 2^{n-1}$

9. (b) $(1+x)^{2n} = {}^{2n}C_0 + {}^{2n}C_1 2x + \dots + {}^{2n}c_{2n}x^{2n}$ Sum of co-efficient of first and last term $= {}^{2n}C_0 + {}^{2n}C_{2n} = 1+1=2.$

Permutation and Combination

1. (d) :: Numbers of diagonals = ${}^{n}C_{2} - n$:: diagonals in octagon = ${}^{8}C_{2} = -8$ = $\frac{8 \times 7}{2} - 8 = 28 - 8 = 20$ 2. (c) ${}^{n}P_{r} = 2520; {}^{n}C_{r} = 21$ ${}^{n}P_{r} = \frac{n!}{(n-r)!} = 2520$...(1) ${}^{n}C_{r} = -\frac{n!}{(n-r)!.r!} = 21$...(2) Divide (1) by (2) $\Rightarrow r! = \frac{2520}{21} = 120$ $\Rightarrow r! = 5! \Rightarrow r = 5 :: {}^{n}C_{r} = 21$

$$\Rightarrow {}^{n}C_{5} = 21 \Rightarrow n = 7$$

$$\therefore C(n+1, r+1) = C(8, 6)$$

$$= {}^{8}C_{6} = 28$$

3. (c) ${}^{47}C_{4} + {}^{47}C_{3} + {}^{48}C_{3} + {}^{49}C_{3} + {}^{50}C_{3} + {}^{51}C_{3}$

$$\because {}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$$

$$\therefore \text{ we get}$$

$${}^{48}C_{4} + {}^{48}C_{3} + {}^{49}C_{3} + {}^{50}C_{3} + {}^{51}C_{3}$$

$$= {}^{49}C_{4} + {}^{49}C_{3} + {}^{50}C_{3} + {}^{51}C_{3}$$

$$= {}^{50}C_{4} + {}^{50}C_{3} + {}^{51}C_{3} = {}^{52}C_{4}$$

4. (c) ${}^{20}C_{(n+2)} = {}^{20}C_{(n-2)}$

$$20! \qquad 20!$$

$$\Rightarrow \frac{(n+2)!(20-n-2)!}{(n+2)!(20-n-2)!} = \frac{(n-2)!(20-n+2)!}{(n-2)!}$$
$$\Rightarrow \frac{(22-n)!}{(18-n)!} = \frac{(n+2)!}{(n-2)!}$$
$$\Rightarrow (22-n)(21-n)(20-n)(19-n)$$
$$= (n+2)(n+1) \cdot n \cdot (n-1)$$
For $n = 10$
$$(22-10)(21-10)(20-10)(19-10)$$
$$= (10+2)(10+1) \cdot 10 \cdot (10-1)$$
$$\Rightarrow 12 \cdot 11 \cdot 10 \cdot 9 = 12 \cdot 11 \cdot 10 \cdot 9$$

Hence,
$$n = 10$$
.

5. (b) 2nd and 4th place are even place, so vowel 'A' and 'E' arrange either 2nd or 4th place in $2! = 2 \times 1 = 2$ ways Consonent letter, 'B' and 'L' arrange at 1st and 3rd place in $2! = 2 \times 1 = 2$ ways.

Total number of arrangement = $2 \times 2 = 4$.

6. (c) Maximum number of points of intersection of 2 nonoverlapping circles = 2. So, maximum number of points of intersection of 5 nonoverlapping circles = 8 + 6 + 4 + 2 = 20.

7. (c) Total number of players (excluding one particular player) = 8 - 1 = 7.

 \therefore Required number of ways of selection = ${}^{7}C_{5} = 21$.

8. (d) Any 5-digits number formed by the digits 1, 2, 3, 4 and 5 (without repetition) will be always divisible by number 3, because sum of digits of any number, thus formed 1+2+3+4+5=15, is divisible by 3. Hence, prime number of 5 digits can not be obtained by using the digits 1, 2, 3, 4, 5.

Cartesian Coordinate System and Straight Line

1. (d) ax + by + c = 0 represents a straight line only when at least one of *a* and *b* is non zero.

2. (a)
$$P = (m \cos 2\alpha, m \sin 2\alpha)$$

 $Q = (m \cos 2\beta, m \sin 2\beta)$
 $PQ = \sqrt{(m \cos 2\alpha - m \cos^2 \beta)^2 + (m \sin 2\alpha - m \sin 2\beta)^2}$
 $\Rightarrow PQ = \sqrt{m^2 \cdot 2 \cdot [1 - \cos(2\alpha - 2\beta)]}$
 $\Rightarrow PQ = m\sqrt{2 \cdot 2 \cdot \sin^2(\alpha - \beta)}$
 $\Rightarrow PQ = [2m \sin(\alpha - \beta)]$
3. (c) Distance between
 $(-1, -1)$ and $(-\sqrt{3}, \sqrt{3})$

is $\sqrt{(-1+\sqrt{3})^2+(-1-\sqrt{3})^2}$ $=\sqrt{1+3-2\sqrt{3}+1+3+2\sqrt{3}}=\sqrt{8}$ by options, distance between (-1, -1) and (1, 1)is $\sqrt{2^2 + 2^2} = \sqrt{8}$ (c) We know that diagonal of a square bisect each other 4. perpendicularly. Equation of a diagonal : 3x + 2y = 5 (given). Now, equation of other diagonal that is perpendicular to the given diagonal = 2x - 3y = K. As vertex point (1, -1) does not lies on 3x + 2y = 5 $\{:: 3(1) + 2(-1) \neq 5\}$ Then, point (1, -1), must be on the diagonal 2x-3y=KThen, 2(1) - 3(-1) = K. $\therefore K=5.$ Hence, equation of other diagonal : 2x - 3y = 5. 5. (c) Equation of two sides of the triangle are x + 2 = 0 and v + 2 = 0. They intersect at right angle. Thus, triangle formed by them is a right angle triangle.

Circumcentre of the right triangle lies on its hypotaneous. So, circumcentre (-1, -1) must lies on the line Kx + y + 2 = 0

$$\therefore K(-1) + (-1) + 2 = 0 \Rightarrow K = 1.$$

6. (c) Given points (a, b), (c, d) and (a-c, b-d) are collinear, if

$$\begin{vmatrix} a & b & 1 \\ c & d & 1 \\ a-c & b-d & 1 \end{vmatrix} = 0$$

$$a(d-b+d)+b(a-c-c)+l(c(b-d)-d(a-c)) = 0$$

$$2ad-ab+ab-2bc+bc-ad = 0$$

$$\Rightarrow ad-bc = 0$$

$$\therefore ad = bc$$

7.

(b) As point D(2, 5) and point E(5, 9) are mid point of side *AB* and *AC*, then $2 \times DE = BC$

8. (c) Slope of the line, 3x - 4y - 5 = 0 is $m = \frac{3}{4}$

Slope of any line perpendicular to 3x-4y-5=0 is $m' = -\frac{4}{3}$.

$$(0, K)$$

$$3x - 4y - 5 = 0$$
(3, 1)

Now, required line passes through the points (0, K) and (3, 1).

$$\frac{K-1}{0-3} = -\frac{4}{3} \Longrightarrow K = 5$$

- (c) We know that pair of opposite sides of my square are parallel.
 - So, distance between two parallel sides
 - = Side length of the square
 - .:. Side length of the square

$$= \left| \frac{15 - (-5)}{\sqrt{3^2 + 4^2}} \right| = \frac{20}{5} = 4 \text{ units}$$

Area of the square = $4 \times 4 = 16$ units square.

10. (a) Let *ABCD* is a parallelogram as shown in figure. Point *O* is the point of intersection of two diagonals.

Point 'O' =
$$\left(\frac{-3+5}{2}, \frac{4+2}{2}\right) = (1, 3).$$

Now, point 'O' bisect diagonal BD.

$$1 = \frac{x+0}{2} \Longrightarrow x = 2, \ 3 = \frac{y-4}{2} \Longrightarrow y = 10.$$

 \therefore Fourth vertices D(x, y) = (2, 10).

- 11. (c) Two lines are perpendicular, if $a_1a_2 + b_1b_2 = 0$. $1 - p \cdot q = 0 \Longrightarrow pq - 1 = 0$.
- 12. (d) As A, B and C are in A.P. $\therefore 2B = A + C \Rightarrow A - 2B + C = 0$ From given equation Ax + 2By + C = 0. For (x, y) = (1, -1), A - 2B + C = 0Hence, line always passes through (1, -1).
- 13. (b) Let Point A = (-4, 2) and A' = (4, -2) then, equation of line mirror passes through the mid-point of line AA ' and also perpendicular to the line AA '

Mid point of line
$$AA' = \left(\frac{-4+4}{2}, \frac{2-2}{2}\right) = (0,0)$$

Slope of AA' $= \frac{2-(-2)}{-4-4} = \frac{4}{-8} = \frac{-1}{2}$
 $= \frac{2-(-2)}{-4-4} = \frac{4}{-8} = -\frac{1}{2}$

:. Slope of line mirror = 2 and equation of line mirror will slope m = 2 and passes through (0, 0) is y = 2x.

(a) Point (p, p-3), (q+3, q) and (6, 3) are collinear, if

$$\begin{vmatrix} p & p-3 & 1 \\ q+3 & q & 1 \\ 6 & 3 & 1 \end{vmatrix} = 0$$

14.

15.

1.

2

 $\Rightarrow p(q-3) + (p-3)(6-q-3) + 1(3(q+3)-6q) = 0$ Hence, given points are collinear.

Here (p, q) can take +ve or –ve values. So, statement (2) is incorrect.

Slope of diagonal $BD = \frac{-(4-0)}{(2-0)} = -2.$

Now, equation of line passes through origin and slope m = -2. $y = mx \Rightarrow y = -2x \Rightarrow 2x + y = 0$.

Pair of Straight Lines

(d) for :
$$x \cos \alpha + y \sin \alpha = a$$

we get, $m_1 = -\cot \alpha$
for: $x \sin \beta - y \cos \beta = a$
we get, $m_2 = \tan \beta$
 $\therefore \tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 \cdot m_2} \right|$
 $\Rightarrow \tan \theta = \left| \frac{\tan \beta + \cot \alpha}{1 - \tan \beta \cdot \cot \alpha} \right|$
 $\Rightarrow \tan \theta = \left| \frac{1 + \tan \alpha \tan \beta}{1 - \tan \beta \cdot \cot \alpha} \right|$
 $\Rightarrow \tan \theta = \frac{1}{\tan (\alpha - \beta)}$
 $\Rightarrow \tan \theta = \cot (\alpha - \beta)$
 $\Rightarrow \theta = \frac{\pi}{2} + (\alpha - \beta)$
 $\Rightarrow \theta = \frac{\pi + 2\alpha - 2\beta}{2}$
(b) Here, $m_1 = (2 - \sqrt{3})$ and $m_2 = \beta$

(b) Here, $m_1 = (2 - \sqrt{3})$ and $m_2 = (2 + \sqrt{3})$. Obtuse angle between them,

$$\theta = \tan^{-1} \left(\frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right)$$

= $\tan^{-1} \left(\frac{2 - \sqrt{3} - 2 - \sqrt{3}}{1 + (2 - \sqrt{3})(2 + \sqrt{3})} \right)$
= $\tan^{-1} \left(\frac{-2\sqrt{3}}{2} \right) = \tan^{-1}(-\sqrt{3}) = 120^{\circ}.$

9.
3. (b) Given equation
$$x - 2 = 0$$

Slope, $m_1 = \tan \theta_1 = \frac{1}{0} = \infty$.
 $\therefore \tan \theta_1 = \tan 90^\circ \Rightarrow \theta_1 = 90^\circ$.
Other equation :
 $\sqrt{3}x - y - q = 0$
 \Rightarrow Slope $m_2 = \tan \theta_2 = \frac{\sqrt{3}}{1}$
 $\tan \theta_2 = \tan 60^\circ \Rightarrow \theta_2 = 60^\circ$
Angle between them = $90^\circ - 60^\circ = 30^\circ$.
Circles

1. (c)
$$(x-2a)(x-2b) + (y-2c)(y-2d) = 0$$

 $x^2 - 2(a+b)x + 4ab + y^2 - 2(c+d)y + 4cd = 0$
 $x^2 + y^2 - 2(a+b)x - 2(c+d)y + 4(ab+cd) = 0$
From general equation of circle,
 $x^2 + y^2 + 2gx + 2fy + c = 0$
Center = (-g, -f) and radius = $\sqrt{(-g)^2 + (-f)^2 + C}$
 \therefore Here $g = -(a+b)$ and $f = -(c+d)$.
Hence, center = $(-g, -f) = ((a+b), (c+d))$.
2. (d) Circle equation :
 $4x^2 + 4y^2 - 20x + 12y - 15 = 0$
 $\Rightarrow x^2 + y^2 - 5x + 3y - \frac{15}{4} = 0$
Radius = $\sqrt{(-g)^2 + (-f)^2 - C}$
Here, $g = -\frac{5}{2}$, $f = \frac{3}{2}$ and $C = -\frac{15}{4}$
 \therefore Radius = $\sqrt{\left(\frac{5}{2}\right)^2 + \left(-\frac{3}{2}\right)^2 - \left(-\frac{15}{4}\right)}$

$$=\sqrt{\frac{25+9+15}{4}} = \frac{7}{2} = 3.5$$
 units.

CONICS- Parabola, Ellipse & Hyperbola

given:
$$\angle PF_1 Q = 90^\circ$$

 $\therefore m_{PF_1} \times m_{QF_1} = -1$
 $\Rightarrow \frac{-b}{ae} \times \frac{b}{ae} = -1$
 $\Rightarrow b^2 = a^2 \cdot e^2 \qquad \dots(i)$
 $\therefore b^2 = a^2(1 - e^2) \qquad \dots(ii)$
From (i) and (ii) we get,
 $e^2 = 1 - e^2$
 $\Rightarrow 2e^2 = 1$
 $\Rightarrow e^2 = \frac{1}{2}$
 $\Rightarrow e = \frac{1}{\sqrt{2}}$

(b) Equation of the Ellipse : $25x^2 + 16y^2 = 400$.

2.

16 25
Here
$$a^2 = 16, b^2 = 25$$

Focci points = $(0, \pm be) = (0, \pm \sqrt{b^2 - a^2})$

 $=(0,\pm\sqrt{25-16})=(0,\pm 3)$

Point
$$Q = (0, 3)$$
, and $R = (0, -3)$.

Now, from question point P(x, y) lies on the ellipse, then sum of its distance from two fixed points is always constant, equal to length of its major axis.

Thus, $(PQ + PR) = 2 \times 5 = 10$. (b) Given parabola : $y^2 = x$.

> From standard equation of parabola $y^2 = 4ax$ Focus = (a, 0)

Here
$$a = \frac{1}{4}$$

 \therefore Focus of parabola $y^2 = x = \left(\frac{1}{4}, 0\right)$

Vertex of the parabola = (0, 0)Let $P\left(\frac{t^2}{4}, \frac{t}{2}\right)$ lies on the parabola then, its slope = $\tan(\theta)$ {given} $\therefore \frac{\overline{2}}{\frac{t^2}{4}} = \tan \theta \Longrightarrow t = 2 \cot \theta$ So, point $P\left(\frac{t^2}{4}, \frac{t}{2}\right) = (\cot^2 \theta, \cot \theta)$ Its distance from vertex (0, 0) $=\sqrt{\left(\cot^2\theta-0\right)^2+\left(\cot\theta-0\right)^2}$ $= \cot\theta \sqrt{\cot^2 \theta + 1} = \cot\theta \cdot \csc\theta$ $=\cos\theta\cdot\csc^2\theta$ (d) Let equation of hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ then eccentricity $e = \sqrt{1 + \frac{a^2}{b^2}}$ Now, as point $(3 \tan \theta, 2 \sec \theta)$ lies on hyperbola then, $\frac{3^2 \tan^2 \theta}{a^2} - \frac{2^2 \sec^2 \theta}{b^2} = 1$ $\frac{9\tan^2\theta}{a^2} - \frac{4\sec^2\theta}{b^2} = 1.$ This is true for $a^2 = 9$ and $b^2 = 4$ $\therefore \text{ eccentricity } (e) = \sqrt{1 + \frac{9}{4}} = \frac{\sqrt{13}}{2}$

5. (d) All three statements are correct.

TRIGONOMETRY- Ratio & Identity, Trigonometric Equations

1. (b) Given:
$$\csc \theta = \frac{29}{21} = \frac{H}{P}$$

 \therefore we have Pythagorean triplet of (20, 21, 29)
 $\therefore P = 21$
 $B = 20$
 $H = 29$
 $\therefore 4(\sec \theta + \tan \theta) = 4\left(\frac{29}{21} + \frac{21}{20}\right) \approx \frac{200}{20} = 10$
2. (a) (i) $\cos \theta + \sec \theta = \frac{3}{2}$
 $\Rightarrow \frac{1 + \cos^2 \theta}{\cos \theta} = \frac{3}{2}$
 $\Rightarrow 2 \cos^2 \theta - 3 \cos \theta + 2 = 0$
here discriminant is negative

: No real roots

: No solution.

3.

(ii) In second quadrant both tan θ and cot θ are negative

 \therefore In second quadrant value is less than 2.

So only statement 1 is true.

4. (a) For minimum value

$$\frac{a^2}{\cos^2 x} + \frac{b^2}{\sin^2 x}$$

$$= a^2 \sec^2 x + b^2 \csc^2 x$$

$$= a^2(1 + \tan^2 x) + b^2(1 + \cot^2 x)$$

$$= a^2 + b^2 + Q^2 \tan^2 x + b^2 \cot^2 x$$

$$\therefore a^2 \tan^2 x + b^2 \cot^2 x \ge 2ab$$

$$\therefore \text{ minimum value} = a^2 + b^2 + 2ab$$

$$= (a+b)^2$$
5. (a) Given:
 $\tan A - \tan B = x$
and $\cot B - \cot A = y$

$$\Rightarrow \frac{\tan A - \tan B}{\tan A \cdot \tan B} = y \Rightarrow \tan A \cdot \tan B = \frac{x}{y} \text{ for } \cot(A - B),$$

$$\cot(A-B) = \frac{1+\tan A \tan B}{\tan A - \tan B} = \frac{1+\frac{y}{y}}{x} = \left(\frac{1}{x} + \frac{1}{y}\right)$$

6. (a) $\sin (\alpha + \beta) - 2 \sin \alpha \cos \beta + \sin (\alpha - \beta)$ by applying formula

sin C + sin D = 2 sin
$$\left(\frac{C+D}{2}\right) \cdot \cos\left(\frac{C-D}{2}\right)$$

= 2 sin α . cos β - 2 sin α . cos β
= 0

7. (c) Given :
$$2 \tan A = 1 \Rightarrow \tan A = \frac{1}{2}$$
 and $\tan B = \frac{1}{3}$

$$\therefore \quad \tan (A - B) = \frac{\tan A - \tan B}{1 + \tan \cdot A \tan B}$$

$$1 \quad 1 \quad 1$$

$$\tan (A-B) = \frac{\overline{2} \cdot \overline{3}}{1 + \frac{1}{2} \cdot \frac{1}{3}} = \frac{\overline{6}}{\overline{6}} = \frac{1}{7}$$

 \Rightarrow

4.

8. (c)
$$\because \cos C + \cos D$$

 $= 2\cos\left(\frac{C+D}{2}\right).\cos\left(\frac{C-D}{2}\right)$
 $\Rightarrow \cos 80^\circ + \cos 40^\circ = 2\cos 60^\circ .\cos 20^\circ$
 $= 2.\frac{1}{2}.\cos 20^\circ = \cos 20^\circ$
 $\therefore \cos 80^\circ + \cos 40^\circ - \cos 20^\circ = 0$
9. (d) $\cot \frac{A}{2} - \tan \frac{A}{2}$
 $= \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} - \frac{\sin \frac{A}{2}}{\cos \frac{A}{2}} = \frac{\cos^2 \frac{A}{2} - \sin^2 \frac{A}{2}}{\sin \frac{A}{2}.\cos \frac{A}{2}} \times \frac{2}{2}$
 $= 2.\frac{\cos A}{\sin A} = 2 \cot A$
10. (b) $\cot A + \csc A$
 $= \frac{\cos A}{\sin A} + \frac{1}{\sin A} = \frac{1 + \cos A}{\sin A} = \frac{2\cos^2 \frac{A}{2}}{2\sin \frac{A}{2}.\cos \frac{A}{2}} = \cot\left(\frac{A}{2}\right)$
11. (b) $\tan 25^\circ. \tan 15^\circ + \tan 15^\circ. \tan 50^\circ + \tan 50^\circ. \tan 25^\circ$
 $= \tan 15^\circ(\tan 15^\circ + \tan 50^\circ) + \tan 50^\circ. \tan 25^\circ ...(1)$
 $\therefore \tan 75^\circ = \frac{\tan 25^\circ + \tan 50^\circ}{1 - \tan 25^\circ. \tan 50^\circ} = \cot 15^\circ$
 $\Rightarrow \tan 25^\circ + \tan 50^\circ = \cot 15^\circ(1 - \tan 25^\circ. \tan 50^\circ) + \tan 50^\circ. \tan 25^\circ$
 $= 1 - \tan 25^\circ. \tan 50^\circ + \tan 50^\circ. \tan 25^\circ ...(1)$
12. (a) From $a\sin^2 x + b\cos^2 x = c$
 $a\sin^2 x + b\cos^2 x = c(\sin^2 x + \cos^2 x)$
 $(a - c)\sin^2 x = (c - b)\cos^2 x$

$$\Rightarrow \frac{\sin^2 x}{\cos^2 x} = \frac{(c-b)}{(a-c)}$$
$$\Rightarrow \tan^2 x = \frac{(c-b)}{(a-c)}$$

13. (c) From $b\sin^2 y + a\cos^2 y = d$ $b\sin^2 y + a\cos^2 y = d(\sin^2 y + \cos^2 y)$ $(b-d)\sin^2 y = (d-a)\cos^2 y$ $\Rightarrow \frac{\sin^2 y}{\cos^2 y} = \frac{(d-a)}{(b-d)} \Rightarrow \tan^2 y = \frac{(d-a)}{(b-d)}$ 14. (b) From, $p \cdot \tan x = q \cdot \tan y$

$$p^{2} \cdot \tan^{2} x = q^{2} \cdot \tan^{2} y$$
$$\Rightarrow \frac{p^{2}}{q^{2}} = \frac{\tan^{2} y}{\tan^{2} x} = \frac{(d-a)}{(b-d)} \cdot \frac{(a-c)}{(c-b)} = \frac{(a-d)(c-a)}{(b-c)(d-b)}.$$

15. (a)
$$t_n = \sin^n \theta + \cos^n \theta$$

Now,
$$\frac{t_3 - t_5}{t_5 - t_7} = \frac{\sin^3 \theta + \cos^3 \theta - \sin^5 \theta - \cos^5 \theta}{\sin^5 \theta + \cos^5 \theta - \sin^7 \theta - \cos^7 \theta}$$
$$= \frac{\sin^3 \theta (1 - \sin^2 \theta) + \cos^3 \theta (1 - \cos^2 \theta)}{\sin^5 \theta (1 - \sin^2 \theta) + \cos^7 \theta (1 - \cos^2 \theta)}$$
$$= \frac{\sin^3 \theta \cdot \cos^2 \theta + \cos^3 \theta \cdot \sin^2 \theta}{\sin^5 \theta \cdot \cos^2 \theta + \cos^7 \theta \cdot \sin^2 \theta}$$
$$= \frac{\sin^2 \theta \cdot \cos^2 \theta (\sin \theta + \cos \theta)}{\sin^2 \theta \cdot \cos^2 \theta (\sin^3 \theta + \cos^3 \theta)}$$
$$= \frac{(\sin \theta + \cos \theta)}{(\sin^3 \theta + \cos^3 \theta)} = \frac{t_1}{t_3}$$

16. (b)
$$t_1^2 - t_2 = (\sin \theta + \cos \theta)^2 - (\sin^2 \theta + \cos^2 \theta)$$

= $\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cdot \cos \theta - (\sin^2 \theta + \cos^2 \theta)$
= $1 + \sin 2\theta - 1 = \sin 2\theta$.

17. (c)
$$t_{10} = \sin^{10}(\theta) + \cos^{10}(\theta)$$

When $\theta = 45^{\circ}$,
 $t_{10} = \sin^{10}(45^{\circ}) + \cos^{10}(45^{\circ})$
 $= \left(\frac{1}{\sqrt{2}}\right)^{10} + \left(\frac{1}{\sqrt{2}}\right)^{10} = 2 \cdot \left(\frac{1}{\sqrt{2}}\right)^{10}$
 $= 2 \times \frac{1}{32} = \frac{1}{16}$.

18. (d)
$$\alpha = \beta = 15^{\circ}$$
 (given)

Now, $\sin \alpha + \cos \beta$

19.

$$= \sqrt{2} \cdot \left(\frac{1}{\sqrt{2}} \cdot \sin \alpha + \frac{1}{\sqrt{2}} \cdot \cos \alpha\right) \qquad \{\because \alpha = \beta\}$$
$$= \sqrt{2} (\sin \alpha \cdot \cos 45^\circ + \cos \alpha \cdot \sin 45^\circ)$$
$$= \sqrt{2} (\sin(\alpha + 45^\circ)) = \sqrt{2} \cdot \sin(15^\circ + 45^\circ)$$
$$= \sqrt{2} \cdot \sin 60^\circ = \sqrt{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{\sqrt{2}}.$$
(d) $\sin 7\alpha - \cos 7\beta$

$$= \sin 7(15^{\circ}) - \cos 7(15^{\circ}) = \sin(105^{\circ}) - \cos(105^{\circ})$$
$$= \sin(90^{\circ} + 15^{\circ}) - \cos(90^{\circ} + 15^{\circ})$$

$$= \cos 15^{\circ} - (-\sin(15^{\circ})) = \cos 15^{\circ} + \sin 15^{\circ} = \frac{\sqrt{5}}{\sqrt{2}}$$

20. (None) $\sin(\alpha + 1^\circ) + \cos(\beta + 1^\circ)$

$$=\sqrt{2}\left\{\frac{1}{\sqrt{2}}\cdot\sin(\alpha+1^\circ)+\frac{1}{\sqrt{2}}\cdot\cos(\beta+1^\circ)\right\}$$

 $=\sqrt{2}\left\{\cos 45^{\circ} \cdot \sin(\alpha+1) + \sin 45^{\circ} \cdot \cos(\alpha+1)\right\} (:: \alpha = \beta)$

$$= \sqrt{2} \{\sin(\alpha + 1 + 45^{\circ})\} = \sqrt{2} \cdot \sin(15^{\circ} + 1^{\circ} + 45^{\circ})$$

$$= \sqrt{2} \cdot \sin 61^{\circ} \qquad (i)$$
Again
$$\frac{1}{\sqrt{2}} (\sqrt{3} \cdot \cos 1^{\circ} + \sin 1^{\circ}) = \frac{2}{\sqrt{2}} \left(\frac{\sqrt{3}}{2} \cdot \cos 1^{\circ} + \frac{1}{2} \sin 1^{\circ} \right)$$

$$= \sqrt{2} \cdot (\sin 60^{\circ} \cdot \cos 1^{\circ} + \cos 60^{\circ} \cdot \sin 1^{\circ})$$

$$= \sqrt{2} (\sin 61^{\circ}). \qquad (ii)$$
Thus (i) = (ii)
But none of the option have $\frac{1}{\sqrt{2}} \left(\sqrt{3} \cdot \cos 1^{\circ} + \sin 1^{\circ} \right).$

21. (c) $\sin x + \sin y = \cos y - \cos x$

$$\frac{\sin x + \sin y}{\cos y - \cos x} = 1$$

$$\frac{2\sin\left(\frac{x+y}{2}\right) \cdot \cos\left(\frac{x-y}{2}\right)}{2\sin\left(\frac{x+y}{2}\right) \cdot \sin\left(\frac{x-y}{2}\right)} = 1$$

$$\cot\left(\frac{x-y}{2}\right) = 1 \Longrightarrow \tan\left(\frac{x-y}{2}\right) = 1.$$

$$\tan 3A$$

22. (b)
$$\frac{\operatorname{dm} SA}{\tan A} = K$$
$$\frac{3 \tan A - \tan^3 A}{\tan A \cdot (1 - 3 \tan^2 A)} = K$$
$$\frac{(3 - \tan^2 A)}{(1 - 3 \tan^2 A)} = K \implies 3 - \tan^2 A = K - 3K \tan^2 A$$
$$(3K - 1) \tan^2 A = K - 3 \implies \tan^2 A = \frac{K - 3}{(3K - 1)}$$
23. (a, b)
$$\tan A = \sqrt{\frac{(K - 3)}{(3K - 1)}}$$
For real value of $\tan A$, $\left(\frac{K - 3}{3K - 1}\right) > 0$.
$$\therefore \quad \text{For,} \quad \frac{1}{3} < K < 3$$
.
$$\tan A \text{ is not real.}$$
Also, for $\frac{1}{2} < k < 2$, $\tan A$ is not real.

(1) Applying Sine ryke in $\triangle ABD$

 I_C

$$\frac{AD}{\sin\alpha} = \frac{AB}{\sin\theta}$$

$$\Rightarrow AD \cdot \sin\theta = AB \cdot \sin\alpha$$
Hence, (1) is correct.
(2) $\frac{AB}{\sin\theta} = \frac{BD}{\sin(180^\circ - (\alpha + \theta))}$
 $\frac{AB}{\sin\theta} = \frac{BD}{\sin(\alpha + \theta)}$
 $AB \cdot \sin(\theta + \alpha) = BD \cdot \sin\theta$
Hence, (2) is correct.
(a) From $\triangle ABD$,
 $\frac{AB}{\sin\theta} = \frac{BD \cdot \sin\theta}{\sin(180^\circ - (\alpha + \theta))}$
 $\Rightarrow AB = \frac{BD \cdot \sin\theta}{\sin(\alpha + \theta)} = \frac{BD \cdot \sin\theta}{\sin\alpha \cdot \cos\theta + \cos\alpha \cdot \sin\theta}$
Again from $\triangle BCD$,
 $BD = \sqrt{(BC)^2 + (CD)^2} = \sqrt{p^2 + q^2}$
 $\sin\alpha = \frac{BC}{BD} = \frac{p}{\sqrt{p^2 + q^2}}$
 $\cos\alpha = \frac{CD}{BD} = \frac{q}{\sqrt{p^2 + q^2}}$
 $\therefore AB = \frac{\sqrt{p^2 + q^2} \cdot \sin\theta}{\sqrt{p^2 + q^2}} + \frac{q \cdot \sin\theta}{\sqrt{p^2 + q^2}}$
 $= \frac{(p^2 + q^2) \cdot \sin\theta}{p \cdot \cos\theta + q \cdot \sin\theta}$

25.

26. (b)
$$\tan \theta = \frac{\cos 17^\circ - \sin 17^\circ}{\cos 17^\circ + \sin 17^\circ} = \frac{1 - \frac{1}{\cos 17^\circ}}{1 + \frac{\sin 17^\circ}{\cos 17^\circ}} = \frac{1 - \tan 17^\circ}{1 + \tan 17^\circ}$$
$$\tan \theta = \frac{\tan 45^\circ - \tan 17^\circ}{1 + \tan 45^\circ \cdot \tan 17^\circ} \tan \theta = \tan(45^\circ - 17^\circ)$$
$$\tan \theta = \tan(28^\circ) \Longrightarrow \theta = 28^\circ.$$
27. (d) From question, we have
$$\cos 2B = 3\sin^2 A \text{ and } 3\sin 2A = 2\sin 2B$$
Now,
$$\cos(A + 2B) = \cos A \cdot \cos 2B - \sin A \cdot \sin 2B$$

$$= \cos A \cdot 3\sin^2 A - \sin A \cdot \frac{3}{2}\sin 2A$$
$$= 3\cos A \cdot \sin^2 A - \frac{3}{2} \cdot \sin A \cdot (2\sin A - \cos A)$$
$$= 3\cos A \cdot \sin^2 A - 3\cos A \cdot \sin^2 A = 0.$$

$$\therefore \cos(A+2B) = \cos\left(\frac{\pi}{2}\right)$$
$$\therefore A+2B = \frac{\pi}{2}.$$

28. (a) $\sin 3x + \cos 3x + 4\sin^3 x - 3\sin x + 3\cos x - 4\cos^3 x$ = $\sin 3x + \cos 3x - \sin 3x - \cos 3x = 0$.

29. (d) $y = 2 + \cos x$ Range of $\cos x = [-1, 1]$ $y_{min} = 2 - 1 = 1$. $y_{max} = 2 + 1 = 3$ Thus, ordinate of the graph = [1, 3]. 30. (b) $8 \cdot \cos 10^{\circ} \cdot \cos 20^{\circ} \cdot \cos 40^{\circ}$

$$\sin 10^{\circ} [2 \cos 10^{\circ} \sin 10^{\circ}] \cos 20^{\circ} \cos 40^{\circ}$$

$$= \frac{4}{\sin 10^{\circ}} [\sin 20^{\circ}] \cdot \cos 20^{\circ} \cdot \cos 40^{\circ}$$

$$= \frac{2}{\sin 10^{\circ}} [2 \sin 20^{\circ} \cdot \cos 20^{\circ}] \cdot \cos 40^{\circ}$$

$$= \frac{2}{\sin 10^{\circ}} [\sin 40^{\circ}] \cdot \cos 40^{\circ}$$

$$= \frac{1}{\sin 10^{\circ}} [2 \sin 40^{\circ} \cdot \cos 40^{\circ}] = \frac{\sin 80^{\circ}}{\sin 10^{\circ}}$$

$$= \frac{\sin(90^{\circ} - 10^{\circ})}{\sin 10^{\circ}} = \frac{\cos 10^{\circ}}{\sin 10^{\circ}} = \cot 10^{\circ}.$$
31. (b) $\cos 48^{\circ} - \cos 12^{\circ}$

$$= 2 \cdot \sin\left(\frac{48^\circ + 12^\circ}{2}\right) \cdot \sin\left(\frac{12^\circ - 48^\circ}{2}\right)$$
$$= 2 \cdot \sin 30^\circ \cdot \sin(-18^\circ) = -\sin 18^\circ$$
$$= -\left(\frac{\sqrt{5} - 1}{4}\right) = \left(\frac{1 - \sqrt{5}}{4}\right).$$

32. (c)
$$\log_{\cos x} \sin x = 1$$
 $\Rightarrow \frac{\log \sin x}{\log \cos x} = 1$

For
$$x = \frac{\pi}{4}$$
, $\frac{\log \sin \frac{\pi}{4}}{\log \cos \frac{\pi}{4}} = \frac{\log\left(\frac{1}{\sqrt{2}}\right)}{\log\left(\frac{1}{\sqrt{2}}\right)} = 1$

33. (c)
$$\cot(6x) = \cot(2x + 4x)$$

$$\Rightarrow \cot 6x = \frac{\cot 2x \cdot \cot 4x - 1}{\cot 2x + \cot 4x}$$

$$\therefore \cot 2x \cdot \cot 6x + \cot 6x \cdot \cot 4x = \cot 2x \cdot \cot 4x - 1$$
or, $\cot 2x \cdot \cot 4x - \cot 4x \cdot \cot 6x - \cot 6x \cdot \cot 2x = 1$.

34. (d)
$$\tan x = -\frac{3}{4}$$
 (Here 90° < x < 180°)
 $\sin x = \frac{3}{5}$ and $\cos x = -\frac{4}{5}$

$$\sin x \cdot \cos x = \frac{3}{5} \cdot \left(-\frac{4}{5}\right) = -\frac{12}{25}.$$
35. (c) $\csc\left(\frac{7\pi}{6}\right) \cdot \sec\left(\frac{5\pi}{3}\right)$

$$= \csc\left(\pi + \frac{\pi}{6}\right) \cdot \sec\left(2\pi - \frac{\pi}{3}\right)$$

$$= -\csc\left(\frac{\pi}{6} \cdot \sec\frac{\pi}{3} = (-2)(2) = -4.$$
36. (c)
$$\tan 31^{\circ} \cdot \tan 33^{\circ} \cdot \tan 35^{\circ} \dots \tan 55^{\circ} \cdot \tan 57^{\circ} \cdot \tan 59^{\circ}$$

$$= \tan 31^{\circ} \cdot \tan 33^{\circ} \cdot \tan 35^{\circ} \dots \tan 45^{\circ} \dots \tan 45^{\circ} \dots \tan 59^{\circ}$$

$$= \tan 31^{\circ} \cdot \tan 33^{\circ} \cdot \tan 35^{\circ} \dots \tan 45^{\circ} \dots \tan 45^{\circ} \dots \tan 59^{\circ}$$

$$= \tan 31^{\circ} \cdot \tan 33^{\circ} \cdot \tan 35^{\circ} \dots \tan 45^{\circ} \dots \tan 45^{\circ} \dots \tan 55^{\circ} \cdot \tan 57^{\circ} \cdot \tan 59^{\circ}$$

$$= \tan 31^{\circ} \cdot \tan 33^{\circ} \cdot \tan 35^{\circ} \dots \tan 45^{\circ} \dots \tan 45^{\circ} \dots \tan 59^{\circ}$$

$$= \tan 31^{\circ} \cdot \tan 33^{\circ} \cdot \tan 35^{\circ} \dots \tan 45^{\circ} \dots \tan 45^{\circ} \dots \tan 55^{\circ} \cdot \tan 57^{\circ} \cdot \tan 59^{\circ}$$

$$= \tan 31^{\circ} \cdot \tan 33^{\circ} \cdot \tan 35^{\circ} \dots \tan 45^{\circ} \dots \tan 45^{\circ} \dots \tan 55^{\circ} \cdot \tan 57^{\circ} \cdot \tan 59^{\circ} \cdot \sin 69^{\circ} = 1^{\circ} \cdot \sin 6^{\circ} \cdot \cos 69^{\circ} = 1^{\circ} \sin 6^{\circ} \cdot \cos 69$$

0. (d)
$$7\sin\theta + 24\cos\theta = 25$$

$$\Rightarrow \frac{7}{25} \cdot \sin\theta + \frac{24}{25} \cdot \cos\theta = 1$$
Again, $(7)^2 + (24)^2 = (25)^2$

$$\therefore \text{ Let } \frac{7}{25} = \cos\alpha \text{ and } \frac{24}{25} = \sin\alpha$$
Then, $\sin\theta \cdot \cos\alpha + \cos\theta \cdot \sin\alpha = 1$

3.

24

25

(d)

$$\Rightarrow \sin(\theta + \alpha) = \sin\frac{\pi}{2}$$

$$\Rightarrow \theta + \alpha = \frac{\pi}{2} \Rightarrow \theta = \left(\frac{\pi}{2} - \alpha\right)$$
Now, $\sin\theta + \cos\theta$

$$= \sin\left(\frac{\pi}{2} - \alpha\right) + \cos\left(\frac{\pi}{2} - \alpha\right)$$

$$= \cos\alpha + \sin\alpha = \frac{7}{25} + \frac{24}{25} = \frac{31}{25}.$$
41. (b) $3\cos\theta = 4\sin\theta$

$$\Rightarrow \frac{\sin\theta}{\cos\theta} = \frac{3}{4} \Rightarrow \tan\theta = \frac{3}{4}$$

$$\therefore \tan(45 + \theta) = \frac{\tan 45^{\circ} + \tan\theta}{1 - \tan 45^{\circ} \cdot \tan\theta}$$

$$= \frac{1 + \frac{3}{4}}{1 - \frac{3}{4}} = \frac{7}{1} = 7.$$
42. (a) $\tan A = \frac{1}{7}, \cos 2A = \frac{1 - \tan^2 A}{1 + \tan^2 A} = \frac{1 - \left(\frac{1}{7}\right)^2}{1 + \left(\frac{1}{7}\right)^2} = \frac{1}{1 - \left(\frac{1}{7}\right)^2}$

$$= \frac{1}{1 - \left(\frac{1}{3}\right)}$$

$$\therefore 2 \tan^{-1} x = \tan^{-1}\frac{2x}{1 - x^2}$$
(1)

$$\therefore 2 \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\frac{2/3}{1-1/9} = \tan^{-1}\left(\frac{3}{4}\right)$$
$$\therefore \tan\left\{2\tan^{-1}\left(\frac{1}{3}\right)\right\} = \tan\left(\tan\frac{3}{4}\right) = \frac{3}{4}$$

2. (d) Since, A, B, C are in AP

$$\therefore 2B = A + C$$
 ...(1)
also, $A + B + C = 180^{\circ}$
 $\Rightarrow A + C = 180^{\circ} - B$...(2)
from (1) and (2)
 $B = 60^{\circ}$
also given that $b : c = \sqrt{3} : \sqrt{2}$
 \therefore by sine rule
 $\frac{\sin B}{b} = \frac{\sin C}{c}$
 $\sin 60^{\circ} \sin C$

 $\sqrt{3}$:. A=75

that
$$b: c = \sqrt{3}: \sqrt{2}$$

rule
 $\frac{\sin C}{c}$
 $\frac{\cos^2 c}{\sqrt{2}} \Rightarrow \sin C = \frac{1}{\sqrt{2}} \Rightarrow C = 45^\circ$

а we have $c^2 = a^2$ $\tan A + \tan B = \frac{a}{b} + \frac{b}{a} = \frac{a^2 + b^2}{ab} = \frac{c^2}{ab}$ 4. (b) ^C (1) $\triangle ABC$ is a right angled triangle. $\sin B = \frac{AC}{BC} = \frac{1}{3}$ $\therefore AC = 1, BC = 3.$ Now, $AB = \sqrt{(BC)^2 - (AC)^2} = \sqrt{(3)^2 - (1)^2} = 2\sqrt{2}.$ Now, $\sin C = \frac{AB}{BC} = \frac{2\sqrt{2}}{3}$ $\therefore \operatorname{cosec} C = \frac{3}{2\sqrt{2}}.$ Hence, (1) is not correct. (2) $b \cdot \cos B = c \cdot \cos C$ $b \cdot \frac{(a^2 + c^2 - b^2)}{2ac} = c \cdot \frac{(a^2 + b^2 - c^2)}{2ab}$ $b^{2}(a^{2}+c^{2}-b^{2}) = c^{2}(a^{2}+b^{2}-c^{2})$ $a^{2}b^{2} - b^{4} - a^{2}c^{2} + c^{4} = 0$ $a^{2}(b^{2}-c^{2})-(b^{4}-c^{4})=0$ $(b^2 - c^2)(a^2 - b^2 - c^2) = 0$ Either $b^2 + c^2 - a^2 = 0$ or $(b^2 - c^2) = 0$ When, $b^2 + c^2 - a^2 = 0$ $b^2 + c^2 = a^2$ Hence, ΔABC is a right angle triangle. And when, $b^2 - c^2 = 0 \Longrightarrow b = c$ Hence, $\triangle ABC$ is an isosceles triangle. From question $\triangle ABC$ is not right angle triangle. Hence, $\triangle ABC$ must be an isosceles triangle. (b) (1) Consider a right angle triangle ABC, right angle at A

and $B = C = 45^{\circ}$.

5.

Then, b = c is also true.

Hence, for the given condition, ΔABC must not be an obtuse-angled triangle.

In
$$\triangle ABC$$
, $\angle A = 40^\circ$, $\angle B = 65^\circ$
 $\therefore \angle C = 180^\circ - 40^\circ - 65^\circ = 75^\circ$.
From sine rule.

$$\frac{a}{\sin 40^\circ} = \frac{c}{\sin 75^\circ}$$

 $\therefore \frac{a}{c} = \sin 40^\circ \cdot \csc 75^\circ$

So,
$$\frac{a}{c} \neq \sin 40^\circ \cdot \csc 15^\circ$$

Hence, $\triangle ABC$ is not possible. Thus, statement (2) is correct.

6. (b)
$$\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6}$$
 ...(i)

We know that,
$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$
 ...(ii)

On adding, $\sin^{-1} x = \frac{\pi}{3}$

7. (a)
$$\tan^{-1}(x) + \cot^{-1}(x) = \frac{\pi}{2}$$

This hold for all $x \in R$.

8.

(b)

$$B = \frac{1}{\sqrt{m^2 + n^2 + mn}} C$$

From cosine rule in $\triangle ABC$,

$$\cos(\angle BAC) = \frac{(AB)^2 + (AC)^2 - (BC)^2}{2 \cdot (AB) \cdot (AC)}$$
$$= \frac{m^2 + n^2 - (m^2 + n^2 + mn)}{2 \cdot m \cdot n}$$
$$\therefore \cos(\angle BAC) = -\frac{1}{2} = \cos\left(\frac{2\pi}{3}\right)$$
$$2\pi$$

 $\therefore \angle BAC = \frac{2\pi}{3}$

Then, sum of other two acute angle

$$= \pi - \frac{2\pi}{3} = \frac{\pi}{3} = 60^{\circ}.$$

9. (c) Area of $\triangle ABC = \frac{1}{2} \cdot a \cdot c \cdot \sin(\angle B)$
$$= \frac{1}{2} \cdot 10 \cdot 4 \cdot \sin(30^{\circ}) = \frac{1}{2} \cdot 10 \cdot 4 \cdot \frac{1}{2} = 10 \text{ cm}^{2}.$$

Height & Distance 1. (c) 309 R n ΔPAB is isosceles Δ $\Rightarrow \theta = 30^{\circ}$ $In \Delta ABD$ $\tan 30^\circ = \frac{h}{x} = \frac{1}{\sqrt{3}} \implies x = h\sqrt{3}$ In ΔPBO , $\tan 60^\circ = \sqrt{3} = \frac{9+h}{x}$ $\Rightarrow \sqrt{3} = \frac{9+h}{h\sqrt{3}} \Rightarrow 3h = q+h \Rightarrow h = \frac{9}{2}m$:. Total height = 13.5 m2. (d) Let AC is a flagstaff of length h m and BD is a ladder of length 6 m. Point B is below the top of the flagstaff, such that AB = 6 m. Then, $\angle ADC = 75^{\circ}$. 6 m R From $\triangle ACD$, $\angle CAD + \angle ADC + \angle ACD = 180^{\circ}$ $\therefore \angle CAD + 75^\circ + 90^\circ = 180^\circ$ $\therefore \angle CAD = 180^{\circ} - 90^{\circ} - 75^{\circ} = 15^{\circ}.$ As, AB = BD. $\therefore \angle CAD = \angle BDA = 15^{\circ}$ and $\angle BDC = 75^{\circ} - 15^{\circ} = 60^{\circ}.$ From $\triangle BCD$, $\sin(60^\circ) = \frac{BC}{BD} = \frac{BC}{6}$ $\therefore BC = 6 \cdot \sin(60^\circ) = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}.$ Hence, height of flagstaff = $(6 + 3\sqrt{3})$ m.

3. (b) Shadow length when elevation of Sun is
$$60^\circ = BC$$

 $BC = AB \cdot \cot(60^\circ) = 5(3 + \sqrt{3}) \cdot \frac{1}{\sqrt{3}} = 5(\sqrt{3} + 1) \text{ m}$ Shadow length when elevation of Sun is $45^\circ = BD$ From $\triangle ABD$, $BD = AB \cdot \cot 45^\circ = 5(3 + \sqrt{3}) \cdot 1 = 5(3 + \sqrt{3}) \text{ m}$ $\therefore x = BD - BC = 5(3 + \sqrt{3}) - 5(\sqrt{3} + 1) = 10 \text{ m}.$ **Functions, Limit, Continuity and Differentiability** (1)

1. (d)
$$f(0) = 0$$
 and, $f(x) = \sin\left(\frac{1}{x}\right)$
(i) $\lim_{x \to 0} f(x) = \lim_{x \to 0} \sin\left(\frac{1}{x}\right)$
if $x \to 0^+$; $\lim_{x \to 0^+} \sin\left(\frac{1}{x}\right) = \sin \infty$
if $x \to 0^-$; $\lim_{x \to 0^-} \sin\left(\frac{1}{x}\right) = -\sin \infty$
 $\therefore \sin \infty \neq -\sin \infty$
 $\therefore LHL \neq RHL$
(ii) at $x = 0$, LHL $\neq RHL$
 $\therefore f(x)$ is not continous
 \therefore both statements are wrong.

2. (d)
$$\lim_{x \to 0} \frac{\sin x^{\circ}}{\tan 3x^{\circ}} \times \frac{3x^{\circ}}{x^{\circ}} \times \frac{1}{3}$$
$$= \frac{1}{3} \lim_{x \to 0} \left(\frac{\sin x^{\circ}}{x^{\circ}} \right) \cdot \left(\frac{3x^{\circ}}{\tan 3x^{\circ}} \right) = \frac{1}{3}$$

3. (d) If f(x) has period T then,

a f (bx + c) has period
$$\frac{T}{|b|}$$

∴ period of g(x) = $\frac{2\pi}{1/4} = 8\pi$

- 4. (c) Period of $h(x) = \frac{2\pi}{4/5} = \frac{5\pi}{2}$
- 5. (c) Period of f(x) = LCM of period of g(x) & h(x)

$$\Rightarrow \text{LCM}\left[8\pi, \frac{5\pi}{2}\right]$$
$$=40\pi$$

6. (a)
$$f(x) = \begin{cases} 2x + \frac{1}{4} ; x < 0 \\ k ; x = 0 \\ \left(x + \frac{1}{2}\right)^2 ; x > 0 \end{cases}$$

at $x = 0$,
LHL = $\frac{1}{4}$ and RHL = $\frac{1}{4}$
 \therefore Function is continous at $x = 0$
 $\therefore k = \frac{1}{4}$
7. (a)

(1)
$$f(x) = e^{-|x|}$$
, $f(0) = e^{-|0|} = 1$.
 $f(x) = e^{-x}$, for $x \ge 0$
 $= e^x$, for $x < 0$.
LHL = $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} e^x = 1$
RHL = $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} e^{-x} = 1$
As, $f(0) = LHL = RHL$
Thus, $f(x)$ is continuous at $x = 0$.
(2) LHD = $\lim_{x \to 0^-} f'(x) = \lim_{x \to 0^-} e^x = e^0 = 1$
RHD = $\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} -e^{-x} = -e^0 = -1$
As $LHD^2 \neq RHD$
Hence, $f(x)$ is not differentiable at $x = 0$.
8. (a) $\lim_{x \to 0} \frac{3^x + 3^{-x} - 2}{x} = \lim_{x \to 0} \frac{3^x \cdot \log 3 - 3^{-x} \cdot \log 3}{1}$
(By L'Hospital rule)
 $= \frac{3^0 \cdot \log 3 - 3^0 \cdot \log 3}{1} = 0$
9. (b) Given graph $Y = \frac{1}{x-1}$
This is defined for all real x , except $x = 1$.
Range of the graph is $y \in R \mid y \neq 0$
Table for the graph :
 $\boxed{\frac{x - 4}{-3} - 2} - 1 0$
 $= \frac{1}{2} \frac{1}{1 - 2} \frac{1}{2 - 4} \frac{1}{4} \frac{2}{2} \frac{1}{1}$
Graph of function - Y
 $\frac{4}{3} \frac{2}{4} \frac{1}{4}$
Thus, graph intersect y -axis at $(0, -1)$.
10. (b) As the given function is continuous at $x = 0$, then LHL = RHL

$$\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{\sin x}{x} = \lim_{x \to 0^-} \left\lfloor \frac{\cos x}{1} \right\rfloor = 1$$
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sin x}{x} = \lim_{x \to 0^+} \left\lfloor \frac{\cos x}{1} \right\rfloor = 1$$
$$\therefore \frac{\sin x}{x} \text{ at } x = 0, \text{ should be } 1.$$

11. (b)
$$f(x) = \cos^{-1}(x-2)$$

Domain of $\cos^{-1}(x-2) = [-1, 1]$

$$\therefore -1 \le x - 2 \le 1$$

 $-1 + 2 \le x \le 1 + 2$
 $1 \le x \le 3$
 \therefore Domain = [1, 3]
12. (d) $\lim_{x \to 1} \frac{x + x^2 + x^3 - 3}{x - 1}$
This is in $\frac{0}{0}$ form, so we can use L' Hospital rule.
 $\lim_{x \to 1} \frac{x + x^2 + x^3 - 3}{x - 1} = \lim_{x \to 1} \frac{1 + 2x + 3x^2}{1} = \frac{1 + 2 + 3}{1} = 6$
13. (c) $\lim_{x \to 1} \frac{x^4 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)(x^2 + 1)}{(x - 1)}$
 $= \lim_{x \to 1} (x + 1)(x^2 + 1) = (1 + 1)(1 + 1) = 4.$
Now, $\lim_{x \to k} \frac{x^3 - k^3}{x^2 - k^2} = 4$
 $\lim_{x \to k} \frac{(x^2 + k^2 + xk)}{(x - k)(x + k)} = 4$
 $\lim_{x \to k} \frac{(x^2 + k^2 + xk)}{(x + k)} = 4$
 $\frac{k^2 + k^2 + k \cdot k}{k + k} = 4 \Rightarrow \frac{3}{2}k = 4 \Rightarrow k = \frac{8}{3}$
14. (a) $\lim_{x \to 0} \frac{\sin x \cdot \log(1 - x)}{x^2}$
This is in $\frac{0}{0}$ form, by using L' Hospital rule.
 $\lim_{x \to 0} \frac{\sin x \cdot \log(1 - x)}{x^2}$
 $= \lim_{x \to 0} \frac{\log(1 - x) \cdot (-\sin x) - \frac{\cos x}{(1 - x)} - \frac{1}{(1 - x)} \cos x - \frac{\sin x}{(1 - x)^2}}{2}$
 $= \frac{0 - 1 - 1 - 0}{2} = \frac{-2}{2} = -1.$
Image formed virtual, erect, magnified and behind the mirror.

15. (b) For $f(x+1) = x^2 - 3x + 2$

$$= (x^{2} + 2x + 1) - 5x - 5 + 6$$

= (x + 1)² - 5(x + 1) + 6
∴ f(x) = x² - 5x + 6.

16. (c) $\lim_{x \to a} \frac{a^x - x^a}{x^a - a^a}$ This is in $\frac{0}{0}$ form, by L'Hospital rule $\lim_{x \to a} \frac{a^{x} - x^{a}}{x^{a} - a^{a}} = \lim_{x \to a} \frac{a^{x} \cdot \ln a - a \cdot x^{a-1}}{a \cdot x^{a-1} - 0}$ $=\frac{a^a\cdot\ln a-a^a}{a^a}=\ln a-1.$ $\therefore \ln a - 1 = -1 \Longrightarrow \ln a = 0$ $\therefore a = (e)^0 = 1.$ 17. (b) $\lim_{x \to -1} \frac{x^3 + x^2}{x^2 + 3x + 2}$ By L'Hospital rule, $\lim_{x \to -1} \frac{3x^2 + 2x}{2x + 3} = \frac{3(-1)^2 + 2(-1)}{2(-1) + 3} = \frac{3 - 2}{-2 + 3} = 1.$ 18. (a) $\lim_{x \to -1} \frac{f(x)+1}{x^2-1} = \frac{-3}{2}$ $\left\lfloor \frac{f'(x)}{2x} \right\rfloor = \frac{-3}{2}$ f'(x) = -3xOn integrating both sides, $f(x) = \frac{-3}{2}x^2 + c$ where c = Constant $\lim_{x \to -1} f(x) = \lim_{x \to -1} \left[\frac{-3}{2} x^2 + c \right] = \frac{-3}{2}$ 19. (a) $f(x) = \begin{cases} a+bx, & x<1\\ 5, & x=1\\ b-ax, & x>1 \end{cases}$ is continuers $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$ $\lim_{x \to 1^{-}} (a+bx) = \lim_{x \to 1^{+}} (b-ax) = 5$ a+b=5(i) and and b - a = 5...... (ii) From (i) and (ii) b = 5 and a = 0 $\therefore a+b=0+5=5$ 20. (a) $y = f(x) = 3^x$ $Domain = (-\infty, \infty)$

Derivatives 1. (a) $x^y = e^{x-y}$

(a)
$$x^{y} = e^{x-y}$$

 $\left(\frac{dy}{dx}\right)_{x=1} = ?$
at $x = 1; x^{y} = e^{x-y}$
 $\Rightarrow 1 = e^{1-y}$
 $\Rightarrow y = 1$
 $\therefore x^{y} = e^{x-y}$

6.

8.

9.

$$\Rightarrow y \cdot \ln x = x - y$$

On differentiating w.r.t. x.
$$\Rightarrow y \cdot \frac{1}{x} = 1 - y^{1} - \ln x \cdot y^{1}$$

$$\Rightarrow 1 - \frac{y}{x} = y^{1}(1 + \ln x)$$

$$\Rightarrow y^{1} = \frac{x - y}{x(1 + \ln x)}$$

$$\therefore y^{1} at x = 1$$

$$= \frac{1 - 1}{1(1 + 0)} = 0$$

2. (b) $\because y^{1} = \frac{x - y}{x(1 + \ln x)(1 - y^{1}) - (x - y)(1 + 1 + \ln x)}$
$$\Rightarrow y^{11} = \frac{x(1 + \ln x)(1 - y^{1}) - (x - y)(1 + 1 + \ln x)}{x^{2}(1 + \ln x)^{2}}$$

$$\Rightarrow y^{11} = \frac{1(1)(1) - 0}{1(1)}$$

$$\Rightarrow y^{11} = \frac{1(1)(1) - 0}{1(1)}$$

$$\Rightarrow y^{11} = 1$$

3. (b) $y = 2^{\sin^{2}x}$
$$\Rightarrow \ln y = \sin^{2}x \cdot \ln 2$$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = 2 \sin x \cdot \cos x \cdot \ln 2$$

$$\Rightarrow \frac{dy}{dx} = y \cdot \sin x \cdot \cos x \cdot \ln 2$$

$$\Rightarrow \frac{dy}{dx} = \cos x$$

$$\therefore \frac{dy}{dx} = \frac{\ln 4 \cdot \sin x \cdot 2^{\sin^{2}x} \cdot \cos x}{\cos x}$$

$$\Rightarrow \frac{dy}{dx} = 2^{\sin^{2}x} \cdot \sin x \cdot \ln 4$$

4. (a) Let $y = \tan^{-1}x$; and $z = \cot^{-1}x$
Then, $\frac{dy}{dx} = \frac{1}{1 + x^{2}}$ and $\frac{dz}{dx} = -\frac{1}{1 + x^{2}}$
Now, $\frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dy}{dx}} = \frac{1}{-(\frac{1}{(1 + x^{2})})} = -1$.
5. (b) $e^{0\phi} = C + 4\theta \cdot \phi$
$$(\theta \cdot \phi) \ln e = \ln(C + 4\theta \cdot \phi)$$

$$\Rightarrow \theta \cdot g = 4\{\ln(\theta) + \ln(\phi)\} + \ln C$$

Differentiating both sides with respect to '0'.

$$\begin{split} \phi + \theta \cdot \frac{d\phi}{d\theta} &= 4 \left(\frac{1}{\theta} + \frac{1}{\theta} \cdot \frac{d\phi}{d\theta} \right) \\ \phi \cdot d\theta + \theta \cdot d\phi &= 4\phi \cdot d\theta + 4 \cdot \theta \cdot d\phi \\ \Rightarrow 3\theta \cdot d\phi &= -3\phi \cdot d\theta \\ \therefore \phi \cdot d\theta &= -\theta \cdot d\phi \\ 6. \quad (b) \quad x^m y^n &= a^{m+n} \\ \frac{x^m}{a^m} &= \frac{a^n}{y^n} \qquad ...(i) \\ \text{Differentiating equation (i) w.r.t. x, we get} \\ \frac{m \cdot x^{(m-1)}}{a^m} &= \frac{a^n \cdot (-n)}{y^{n+1}} \cdot \frac{dy}{dx} \\ \frac{dy}{dx} &= \frac{m \cdot y^{(n+1)} \cdot (x)^{(m-1)}}{-n \cdot a^m \cdot a^n} \\ &= -\frac{my}{n \cdot x} \cdot \left(\frac{x^m \cdot y^n}{a^{m+n}} \right) = -\frac{my}{nx} (1) = -\frac{my}{nx} \\ 7. \quad (a) \text{ Minimum value of any modulus is 0.} \\ 8. \quad (a) \quad y = \sin(l \ln x) + \cos(l \ln x) \\ \frac{dy}{dx} &= \frac{d}{dx} (\sin(i n x)) + \frac{d}{dx} (\cos(i n x)) \\ &= \cos(l \ln x) \cdot \frac{1}{x} + \{-\sin(l \ln x)\} \cdot \frac{1}{x} \\ &= \frac{\cos(\ln x) - \sin(\ln x)}{x} \\ \frac{dy}{dx} \Big|_{x=e} &= \frac{\cos(l n e) - \sin(l \ln e)}{e} = \frac{\cos(l) - \sin(l)}{e} \\ 9. \quad (b) \quad x = e^l \cdot \cos t \Rightarrow \frac{dx}{dt} = e^l \cdot \cos t - e^l \cdot \sin t \\ y &= e^l \cdot \sin t \Rightarrow \frac{dy}{dt} = e^l \cdot \sin t + e^l \cdot \cos t \\ \frac{dx}{dy} &= \frac{\frac{dx}{dt}}{\frac{dy}{dt}} = \frac{e^l(\cos t - \sin t)}{e(\sin t + \cos t)} = \frac{\cos t - \sin t}{\sin t + \cos t} \\ \frac{dx}{dy} \Big|_{t=0} &= \frac{\cos 0 - \sin 0}{\sin 0 + \cos 0} = \frac{1 - 0}{0 + 1} = 1. \\ 10. \quad (a) \quad \text{Let } y = e^x, \quad \frac{dy}{dx} = e^x \\ \text{and } z = x^e \Rightarrow \frac{dz}{dx} = e \cdot x^{(e-1)} \end{split}$$

Now,
$$\frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} = \frac{e^x}{e \cdot x^{(e-1)}} = \frac{x \cdot e^x}{e \cdot x^e}$$

for slope, differentiate w.r.t. x

$$\Rightarrow \frac{dy}{dx} = \frac{d}{dx} (m \cdot e^{mx})$$
$$\frac{dy}{dx} = m^2 \cdot e^{mx}$$
$$\left(\frac{dy}{dx}\right)_{(0,m)} = m^2$$

- 2. (a) $\tan \alpha = \frac{dy}{dx} = m^2$ $\therefore \alpha = \tan^{-1}(m^2)$ 3. (d) For equation of tangent $y - y_1 = \tan \alpha (x - x_1)$ $\Rightarrow y - m = m^2(x - 0)$ $\Rightarrow y = m^2x + m$

7. (c)
$$y = \sin x \cdot \cos x$$

$$= \frac{2 \sin x \cdot \cos x}{2} = \frac{\sin 2x}{2}$$
Now, maximum value of $\sin 2x = 1$.

$$\therefore y_{\max} = \frac{1}{2}$$
8. (a) Let $y = 3 \cdot \cos\left(A + \frac{\pi}{3}\right)$, $y' = -3 \cdot \sin\left(A + \frac{\pi}{3}\right)$
For extremum value, $y' = 0$

$$\sin\left(A + \frac{\pi}{3}\right) = 0 \Rightarrow A + \frac{\pi}{3} = 0 \Rightarrow A = -\frac{\pi}{3}$$
 $y'' = -3 \cdot \cos\left(A + \frac{\pi}{3}\right)$

$$= -3\cos\left(-\frac{\pi}{3} + \frac{\pi}{3}\right) = -3\cos(0) = -3.$$
9. (c)
(1) Graph of $f(x) = \ln(x)$

$$y'' = -3 \cdot \cos\left(-\frac{\pi}{3} + \frac{\pi}{3}\right) = -3\cos(0) = -3.$$

This is increasing function in the interval $(0, \infty)$.

10. (a) Circumference of a circle $C = 2\pi r$ Differentiating both sides w.r.t. time (t).

$$\frac{dc}{dt} = 2\pi \cdot \frac{dr}{dt} = 2\pi \cdot (0.7) = 1.4\pi = 1.4 \times \frac{22}{7} = 4.4 \text{ cm/sec}$$

11. (c)
$$\frac{dx}{dt} = x+1$$

 $\Rightarrow \frac{dx}{x+1} = dt$

Integrating both sides, we get $\ln(x+1) = t + c$. At t = 0, x = 0 (origin point) Then, $\ln(0+1) = 0 + c \Rightarrow c = 0$

 $\therefore \ln(x+1) = t$ when x = 24, $t = \ln(24 + 1) = \ln(25) = 2\ln(5)$. 12. (c) Curve $y = -x^3 + 3x^2 + 2x - 27$ Slope = $\frac{dy}{dx} = -3x^2 + 6x + 2$ Again, $\frac{d^2y}{dr^2} = -6x + 6$ For maximum slope $\frac{d^2 y}{dr^2} = 0 \Rightarrow 6(-x+1) = 0$ $\therefore x = 1$ Hence, the curve has maximum slope at x = 1. 13. (a) x + y = 20 and P = xyA.M. of x and $y = \frac{x+y}{2} = \frac{20}{2} = 10$. G.M. of x and $y = \sqrt{x \cdot y} = \sqrt{P}$ As, $A.M. \ge G.M.$ $\therefore 10 \ge \sqrt{P}$ Hence, $P_{\text{max}} = (10)^2 = 100$. 14. (a) $y = \sin 2x \cdot \cos 2x$ $\frac{dy}{dx} = \frac{d}{dx}(\sin 2x) \cdot \cos 2x + \frac{d}{dx}(\cos 2x) \cdot \sin 2x$ $=\cos^2 2x - \sin^2 2x = \cos 4x.$ For maximum or minimum value $\frac{dy}{dx} = 0 \Longrightarrow \cos 4x = 0$ $\therefore 4x = \frac{\pi}{2} \Longrightarrow x = \frac{\pi}{2 \times 4}$ Now, $\frac{d^2y}{dx^2} = -4 \cdot \sin 4x$ At $x = \frac{\pi}{2 \times 4}, \frac{d^2 y}{dx^2} = -4 \cdot \sin \frac{\pi}{2} = -4.$ \therefore y is max. at $x = \frac{\pi}{2 \times 4}$ $y_{\text{max.}} = \sin 2 \left(\frac{\pi}{2 \times 4} \right) \cdot \cos 2 \left(\frac{\pi}{2 \times 4} \right)$ $=\sin\frac{\pi}{4}\cdot\cos\frac{\pi}{4}=\frac{1}{\sqrt{2}}\cdot\frac{1}{\sqrt{2}}=\frac{1}{2}.$ 15. (b) $f(x) = \sin x$ Graph of $f(x) = \sin x$ from $x \in [0, 2\pi]$

Indefinite Integration

1. (d)
$$\int \frac{dx}{2x^2 - 2x + 1} = \frac{1}{2} \int \frac{dx}{x^2 - x + \frac{1}{2}}$$
$$= \frac{1}{2} \int \frac{dx}{\left(x - \frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2}$$
$$= \frac{1}{2} \left[\frac{1}{\frac{1}{2}} \cdot \tan^{-1} \left(\frac{x - \frac{1}{2}}{\frac{1}{2}} \right) \right] + C$$
$$= \frac{1}{2} \cdot 2 \cdot \tan^{-1} (2x - 1) + C$$
$$= \tan^{-1} (2x - 1) + C$$
2. (a)
$$\int \frac{dx}{x(1 + \ln x)^n}$$
Let $1 + \ln x = t$
$$\Rightarrow \frac{1}{x} dx = dt$$
$$\Rightarrow \int \frac{dt}{t^n} = \frac{t^{-n} + 1}{-n + 1}$$

$$= \frac{(1+\ell nx)^{-n+1}}{1-n} + C$$
3. (b) $\int P(x) \cdot dx = \int (4 \cdot e)^{2x} \cdot dx = \int e^{2x(\ln e + \ln 4)} \cdot dx$

$$= \int e^{2x(1+\ln 4)} \cdot dx = \frac{e^{2x(1+\ln 4)}}{2(1+\ln 4)} + C \quad \text{where } C = \text{constant}$$

$$= \frac{(4e)^{2x}}{2(1+2\ln 2)} + C$$

$$\therefore \int P(x) \cdot dx = \frac{P(x)}{2(1+2\ln(2))} + C.$$
4. (c) $\int (e^{\log x} + \sin x) \cdot \cos x \cdot dx = \int (x + \sin x) \cdot \cos x \cdot dx$

$$= \int (x \cdot \cos x + \sin x \cdot \cos x) \cdot dx$$

$$= \int x \cdot \cos x \cdot dx + \int \sin x \cdot \cos x \cdot dx$$

$$= x \cdot \int \cos x \cdot dx - \int \left(\frac{dx}{dx} \cdot \int (\cos x) \cdot dx\right) \cdot dx$$

$$+ \int \sin x \cdot \cos x \cdot dx$$

$$= x \cdot \sin x - \int \sin x \cdot dx + \int \sin x \cdot \cos x \cdot dx$$

$$= x \cdot \sin x - (-\cos x) + \int \sin x \cdot \cos x \cdot dx$$
Now, $\int \sin x \cdot \cos x \cdot dx$;
Let $\sin x = z$, $dz = \cos x \cdot dx$
 $\int \sin x \cdot \cos x \, dx = \int z \cdot dz = \frac{z^2}{2} = \frac{\sin^2 x}{2}$

$$\therefore I = x \cdot \sin x + \cos x + \frac{\sin^2 x}{2} + C.$$
5. (a) $\int \frac{dx}{x(x^n + 1)} = \int \frac{x^{n-1}}{x^n(x^n + 1)} \cdot dx$
Let $z = x^n \Rightarrow dz = nx^{n-1}dx$

$$\therefore \int \frac{dx}{x(x^n + 1)} = \int \frac{x^{n-1}}{x^n(x^n + 1)} \cdot dx = \int \frac{1}{n} \left[\int \frac{1}{z} \cdot dz - \int \frac{dz}{z+1} \right]$$

$$= \frac{1}{n} \left[\ln z - \ln(z+1) \right] + C \quad \text{where } C = \text{constant}$$

$$= \frac{1}{n} \cdot \ln\left(\frac{z}{z+1}\right) + C = \frac{1}{n} \ln\left(\frac{x^n}{x^n+1}\right) + C$$
6. (c) $I = \int \left(\frac{3x^2 + 8 - 4k}{x}\right) \cdot dx$

$$= \int 3x \, dx + \int \frac{8 - 4k}{x} \cdot dx$$

$$= \frac{3}{2}x^2 + (8 - 4k) \cdot \ln(x) + C \quad \text{where } C = \text{constant}$$
To get integration as rational function,
 $(8 - 4k) \cdot \ln(x) = 0 \Rightarrow 8 - 4k = 0 \Rightarrow k = \frac{8}{4} = 2$
7. (d) $I = \int \frac{dx}{\sec x + \tan x} = \int \frac{(\sec x - \tan x) \cdot dx}{(\sec^2 x - \tan^2 x)}$

$$= \int \sec x \cdot dx - \int \tan x \cdot dx$$

$$= I \ln |(\sec x + \tan x)| - (-I \ln |\cos x|) + C$$

$$= I \ln |\sec x + \tan x| - I \ln |\sec x| + C$$
8. (b) $\int \frac{dx}{\sec^2(\tan^{-1}x)}$
Let $\tan^{-1}x = y \Rightarrow \tan y = x$ and
 $\sec^2 y = 1 + \tan^2 y = 1 + x^2$
 $\therefore \int \frac{dx}{\sec^2(\tan^{-1}x)} = \int \frac{dx}{1 + x^2} = \tan^{-1}x + C$
9. (d) $I = \int e^{(2\ln x + \ln x^2)} \cdot dx$

$$= \int e^{(\ln x^4)} \cdot dx = \int x^4 \cdot dx = \frac{x^5}{5} + c$$

Definite Integration & Its Application

1. (c)
$$I_1 = \int_0^{\pi} \frac{x dx}{1 + \sin x} = \int_0^{\pi} \frac{\pi - x}{1 + \sin(\pi - x)} dx$$

 $\Rightarrow I_1 = \int_0^{\pi} \frac{\pi - x}{1 + \sin x} dx$
 $\Rightarrow 2I_1 = \int_0^{\pi} \frac{\pi}{1 + \sin x} dx$

x

4. (d)
$$l + b = K$$
, where $l = \text{length}$, $b = \text{breadth}$.
Area of the rectangle $A = l \cdot b$.
 $A = l(K - l) = lK - l^2$
For maximum area, $\frac{dA}{dl} = 0$
 $\frac{d}{dl}(lk - l^2) = 0$
 $K - 2l = 0 \Rightarrow l = \frac{K}{2}$
Now, $\frac{K}{2} + b = K \Rightarrow b = K - \frac{K}{2} = \frac{K}{2}$
Area, $A = l \cdot b = \frac{K}{2} \cdot \frac{K}{2} = \frac{K^2}{4}$
5. (b) $I = \int_{0}^{\frac{\pi}{4}} (\tan^3 x + \tan x) \cdot dx$
 $= \int_{0}^{\frac{\pi}{4}} \tan^3 x \cdot dx + \int_{0}^{\frac{\pi}{4}} \tan x \cdot dx$
 $= \int_{0}^{\frac{\pi}{4}} \tan x \cdot \tan^2 x \cdot dx + \int_{0}^{\frac{\pi}{4}} \tan x \cdot dx$
 $= \int_{0}^{\frac{\pi}{4}} \tan x \cdot \sec^2 x \cdot dx - \int_{0}^{\frac{\pi}{4}} \tan x \cdot dx + \int_{0}^{\frac{\pi}{4}} \tan x \cdot dx$
 $= \int_{0}^{\frac{\pi}{4}} \tan x \cdot \sec^2 x \cdot dx = \int_{0}^{\frac{\pi}{4}} \tan x \cdot dx + \int_{0}^{\frac{\pi}{4}} \tan x \cdot dx$
 $Let \tan x = z, dz = \sec^2 x \cdot dx$
Let $\tan x = z, dz = \sec^2 x \cdot dx$
 $\therefore \int \tan x \cdot \sec^2 x \cdot dx = \int z \cdot dz = \frac{z^2}{2} + C$
where $C = \text{constant}$
 $\therefore I = \left[\frac{\tan^2 x}{2}\right]_{0}^{\frac{\pi}{4}} = \frac{1}{2} - 0 = \frac{1}{2}$.
6. (c) From question, $dx = 10.1 - 10 = 0.1$
At, $x = 10$
 $y = (3)(10)^2 + 2 = 302$.

At x = 10.1, $y = 3(10.1)^2 + 2 = 308.03$. Total change in y = 308.03 - 302 = 6.03. 7. (c) Two given graphs are $y^2 = 2x$ and y = x. Point of intersections are :

 $x^2 = 2x \Longrightarrow x^2 - 2x = 0$

$$x(x-2)=0$$

x = 0 and 2 & y = 0 and 2.

So, points of intersections are (0, 0) and (2, 2). The graph are

The required area is the shaded portion

$$A = \left| \int_{0}^{2} (y_{1} - y_{2}) \cdot dx \right|$$

$$= \left| \int_{0}^{2} (\sqrt{2}x - x) \cdot dx \right| = \left[\frac{2\sqrt{2}(x)^{3/2}}{3} - \frac{x^{2}}{2} \right]_{0}^{2}$$

$$= \frac{2\sqrt{2}}{3} (2)^{\frac{3}{2}} - 2 = \frac{8}{3} - 2 = \frac{2}{3}$$

8. (d) $I = \int_{0}^{a} \frac{f(a - x)}{f(x) + f(a - x)} \cdot dx$

$$= \int_{0}^{a} \frac{f(a + 0 - a + x)}{f(a + 0 - x) + f(a - a - a + x)} \cdot dx$$

$$= \int_{0}^{a} \frac{f(x)}{f(a - x) + f(x)} \cdot dx$$

$$2I = \int_{0}^{a} \frac{f(a - x) + f(x)}{f(a - x) + f(x)} \cdot dx = [x]_{0}^{a}$$

$$\therefore I = \frac{a}{2}$$

9. (a) $\int_{0}^{a} [f(x) + f(-x)] \cdot dx = \int_{-a}^{a} g(x) \cdot dx$

$$= \int_{-a}^{0} g(x) \cdot dx + \int_{0}^{a} g(x) \cdot dx$$

$$= \int_{0}^{a} g(-x) \cdot dx + \int_{0}^{a} g(x) \cdot dx$$

$$= \int_{0}^{a} [g(x) + g(-x)] \cdot dx$$

$$\therefore f(x) = g(x).$$

(b) $y = \sqrt{16 - x^2}$
As, $y \ge 0, 16 - x^2 \ge 0$

$$\therefore x \in [-4, 4]$$

Now, from $I = \int \sqrt{a^2 - x^2} \cdot dx$

$$= \frac{x\sqrt{a^2 - x^2}}{2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C$$

Here $a^2 = 16$

$$\therefore$$
 Area bounded by the curve
 $I = \int_{-4}^{4} \sqrt{(4)^2 - x^2} \cdot dx$

$$= \left[\frac{x\sqrt{16 - x^2}}{2}\right]_{-4}^{4} + \frac{16}{2} \left[\sin^{-1}\left(\frac{x}{4}\right)\right]_{-4}^{4}$$

$$= 0 + 8 \cdot \left[\sin^{-1}\left(\frac{4}{4}\right) - \sin^{-1}\left(-\frac{4}{4}\right)\right]$$

$$= 8 \left[\sin^{-1}(1) + \sin^{-1}(1)\right]$$

$$= 16 \cdot \sin^{-1}(1) = 16 \cdot \frac{\pi}{2} = 8\pi$$
 square units
Differential Equation

10.

1. (a) Degree is 1.
2. (d)
$$y = \frac{1}{2x^2 - c}$$

 $\Rightarrow \frac{dy}{dx} = \frac{0 - (4x)}{(2x^2 - c)^2}$
 $= -4x \times \frac{1}{(2x^2 - c)^2}$
 $= -4x \cdot y^2$
 $\Rightarrow \frac{dy}{dx} = -4xy^2$
3. (a) $f(x) = x^2 + 2x - 5$
 $g(x) = 5x + 30$
 $g[f(x)] = 0$
 $\Rightarrow 5f(x) + 30 = 0$
 $\Rightarrow f(x) + 6 = 0$
 $\Rightarrow x^2 + 2x - 5 + 6 = 0$
 $\Rightarrow x^2 + 2x - 1 = 0$
 $\Rightarrow x^2 + 2x + 1 = 0$
 $\Rightarrow x^2 - 1, -1$
4. (d) (i) $f(g(x)) = (5x + 30)^2 + 2(5x + 30) - 5$
 $\Rightarrow f(g(x))$ is second degree.
(ii) $g(g(x)) = 5(5x + 30) + 30$

 \Rightarrow g(g(x)) is first degree : both statements are wrong. (b) h(x) = 5f(x) - x g(x)= $5[x^2 + 2x - 5] - x[5x + 30]$ 5. = -20x - 25 \therefore h'(x) = -20(b) $\tan y = c(1 - e^x)$ 6. $\Rightarrow \sec^2 y \frac{dy}{dx} = c(-e^x)$ $\Rightarrow c = \frac{1}{a^x} \sec^2 y \frac{dy}{dx}$ $\therefore \quad \tan y = \frac{-1}{e^x} \sec^2 y \cdot \frac{dy}{dx} (1 - e^x)$ $\Rightarrow e^x \cdot \tan y = \sec^2 y (1 - e^x) \frac{dy}{dx}$ $\Rightarrow e^x \tan y \, dx + (1 - e^x) \sec^2 y \, dy = 0$ 7. (b) x(dx - dy) + y(dy - dx) = 0On integrating both sides, we have $\int x(dx - dy) + \int y(dy - dx) = C \text{ (where } C = \text{constant)}$ $\frac{x^2}{2} - xy + \frac{y^2}{2} - xy = C$ $x^2 + y^2 - 2xy = C$ Or, $x^2 + v^2 = 2xv + C$. (a) $\ln\left(\frac{dy}{dx}\right) = x$ 8. $\frac{dy}{dx} = e^x$ Integrating both sides, we get $\int dy = \int e^x dx$ $y = e^{x} + C$, where C = integration constant. (b) $dy = (1 + y^2) \cdot dx$ 9. $\frac{1}{(1+y^2)} \cdot dy = dx$ Integrating both sides, we get

$$\int \frac{dy}{\left(1+y^2\right)} = \int dx$$

 $\tan^{-1}(y) = x + C$, where C =constant.

 $\therefore y = \tan(x+C).$

10. (b) Given differential equation is

$$k \cdot \frac{dy}{dx} = \int \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{2/3} \cdot dx$$

On differentiating both sides, we get

$$k \cdot \frac{d^2 y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{2/3}$$

 $\Rightarrow \left(k \cdot \frac{d^2 y}{dx^2}\right)^3 = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^2$ Now, order of the D.E. = 2Degree of the D.E. = 3. 11. (d) $f(x) = e^{|x|}$ $f'(x) = e^x, x > 0$ $= -e^{|x|}, x < 0$ $\lim_{x \to 0^{+}} f'(x) \neq \lim_{x \to 0^{-}} f'(x)$ \therefore f'(x) does not exist at x = 0. 12. (b) $v^2 + 2cv - cx + c^2 = 0$ $2y \cdot \frac{dy}{dx} + 2c \cdot \frac{dy}{dx} - c = 0$ $2\left(\frac{dy}{dx}\right)^2 + 2y \cdot \frac{d^2y}{dx^2} + 2c \cdot \frac{d^2y}{dx^2} = 0$ (y+c). $\frac{d^2y}{dx^2} + 2\frac{dy}{dx}$ 13. (a) $x = \sqrt{1 + \frac{dy^2}{dx^2}} \Rightarrow x^2 = 1 + \frac{d^2y}{dx^2}$ $\therefore \text{ degree of the D.E. is 1} \\ 14. \quad \text{(b)} \quad y = a.e^{x} + b.e^{-x}$ $\frac{dy}{dx} = a.e^{x} - b.e^{-x}$ $\frac{d^2y}{dr^2} = a.e^x + b.e^{-x} \Rightarrow \frac{d^2y}{dr^2} = y$ $\therefore \frac{d^2 y}{d^2} - y = 0$ 15. (c) $\ln\left(\frac{dy}{dx}\right) = x - y$ $e^{x-y} = \frac{dy}{dx}$ $e^x \cdot dx = e^y \cdot dy$ On integrating both sides, we get, $\int e^x \cdot dx = \int e^y \cdot dy$ $e^{x} = e^{y} + c$ $e^{x}-e^{y}=c$

Matrices & Determinants

		1!	2!	3!
1.	(c)	2!	3!	4!
		3!	4!	5!

Taking 2! common from C_2 and 3! common from C_3

$$\Rightarrow 2! \cdot 3! \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 6 & 12 & 20 \end{vmatrix}$$

On expanding, we get
 $12 \times [1(60-48)-1(40-24)+1(24-18)]$
 $= 12 \times [12-16+6]$
 $= 12 \times 2=24$
2 (a) On expanding both the determinants we get
 $[n(1)+2(2x-2)]+[3x+2x^2]=0$
 $\Rightarrow x^2+4x-2=0$
 $\Rightarrow x^2+4x-2=0$
 $\Rightarrow x=-2\pm\sqrt{6}$
3 (a) Given: $x+a+b+c=0$
 $\Delta = \begin{vmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+c \end{vmatrix}$
Replace $c, by \rightarrow c_1 + c_2 + c_3$
 $\Rightarrow \begin{vmatrix} x+a+b+c & b & c \\ x+a+b+c & b & x+c \\ \vdots \\ x+a+b+c & b & x+c \end{vmatrix}$
 $\therefore x+a+b+c=0$
 $\therefore \Delta=0$
4 (a) $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = 2A$
 $\therefore A^3 - 2A^2 = A \cdot A^2 - 2A^2$
 $= A(2A) - 2(2A)$
 $= 2A^2 - 4A$
 $= 2(2A) - 4A$
 $= 4A - 4A$
 $= 0$
5. (c) $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{bmatrix}; B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$
Order of $A = 3 \times 2$
Order of $B = 2 \times 2$
 \therefore by fundamental properties we can say
 AB exists while BA does not exist.
 $|P = q = r|$

6. (a)
$$D = \begin{vmatrix} p & q & r \\ q & r & p \\ r & p & q \end{vmatrix}$$
$$= p(rq - p^{2}) + q(pr - q^{2}) + r(pq - r^{2})$$

 $=3par - p^3 - a^3 - r^3$ $= -(p^{3} + q^{3} + r^{3} - 3pqr).$ For real and distinct positive real value of *p*, *q* and *r*. $p^{3} + q^{3} + r^{3} - 3pqr > 0$ $\therefore D < 0.$ 7. (a) (1) We know that, $A \cdot (\operatorname{adj} A) = (\operatorname{adj} A) \cdot A = |A| \cdot I$ Hence, statement (1) is correct. (2) $|\operatorname{adj}(A)| = |A^{-1} \cdot |A||$ Hence, statement (2) is not correct. 8. (c) $A = [i \times j]_{3 \times 5}, B = [i \times j]_{5 \times 3}$ Now, $AB = [i \times j]_{3 \times 3}$ and $BA = [j \times i]_{5 \times 5}$ (c) A square M matrix is said to be Hermitian (or self-9. adjoint) if it is equal to its. Own Hermitian conjugate, i.e. $(\overline{M})^T = M$ Given Matrix $A = \begin{bmatrix} 1-i & i \\ -i & 1-i \end{bmatrix}$ $(\overline{A})^T = \begin{bmatrix} 1+i & i \\ -i & 1+i \end{bmatrix}$ Now, $A + (\overline{A})^T = \begin{bmatrix} 1-i & i \\ -i & 1-i \end{bmatrix} + \begin{bmatrix} 1+i & i \\ -i & 1+i \end{bmatrix}$ $= \begin{bmatrix} 2 & 2i \\ -2i & 2 \end{bmatrix} = 2 \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$ Conjugate transpose of $(A + (\overline{A})^T) = 2 \begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$ Hence, $(A + (\overline{A})^T)$ is hermitian. 10. (d) For singular matrix, $\begin{bmatrix} 0 & K & 4 \\ -K & 0 & -5 \\ -K & K & -1 \end{bmatrix} = 0$ $K(5K - K) + 4(-K^2) = 0$ $4K^2 - 4K^2 = 0$ Hence, for all values of K, the given matrix is singular matrix. 11. (b) $AB = \begin{bmatrix} x+y & y \\ 2x & x-y \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ $= \begin{bmatrix} 2(x+y) - y \\ 4x - x + y \end{bmatrix} = \begin{bmatrix} 2x + y \\ 3x + y \end{bmatrix}$

As AB = C

 $\therefore \begin{bmatrix} 2x + y \\ 3x + y \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$

. |

2x + y = 3...(i) and 3x + y = 2...(ii) From equation (i) and (ii), we get x = -1, y = 5. $\therefore A = \begin{bmatrix} -1+5 & 5\\ -2 & -1-5 \end{bmatrix} = \begin{bmatrix} 4 & 5\\ -2 & -6 \end{bmatrix}$ =4(-6)-5(-2)=-1412. (d) $\begin{vmatrix} i & i^2 & i^3 \\ i^4 & i^6 & i^8 \\ i^9 & i^{12} & i^{15} \end{vmatrix} = \begin{vmatrix} i & -1 & -i \\ 1 & -1 & 1 \\ i & 1 & -i \end{vmatrix}$ = i(i-1) - 1(i - (-i)) - i(1+i) $=i^{2}-i-2i-i-i^{2}=-4i$. 13. (c) $AB = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + hy + gz \\ hx + by + fz \\ gx + fy + cz \end{bmatrix}$ (d) Here, $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ 14. Now, $\begin{vmatrix} pa_1 & b_1 & qc_1 \\ pa_2 & b_2 & qc_2 \\ pa_3 & b_3 & qc_3 \end{vmatrix} = p \cdot q \cdot \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = p \cdot q \cdot \Delta$ 15. (b) (a+b+c)=4(Given) Now, $\begin{vmatrix} a & v & c \\ b & c & a \\ c & a & b \end{vmatrix} = a(bc - a^2) + b(ac - b^2) + c(ab - c^2)$ $= 3abc - a^3 - b^3 - c^3$ $= -(a^{3} + b^{3} + c^{3} - 3abc) = -(a + b + c)^{3}$ $=-(4)^3 = -64.$ 16. (a) As $a_1, a_2, a_3, \dots, a_9$ are in G.P. $\therefore \frac{a_4}{a_1} = \frac{a_5}{a_2} = \frac{a_6}{a_3} \dots = r^3 \quad \text{(where } r = \text{common ratio)}$ $\ln a_1 \quad \ln a_2 \quad \ln a_3$ Now, $\ln a_4 \quad \ln a_5 \quad \ln a_6$ $\ln a_7 \quad \ln a_8 \quad \ln a_9$ $\ln a_4 - \ln a_1 \quad \ln a_5 - \ln a_2 \quad \ln a_6 - \ln a_3$ $= \ln a_7 - \ln a_4 \quad \ln a_8 - \ln a_5 \quad \ln a_9 - \ln a_6$ $\ln a_7$ $\ln a_8$ $\ln a_9$ (Applying $R_1 \rightarrow R_2 - R_1$ and $R_2 \rightarrow R_3 - R_2$)

$$= \begin{vmatrix} \ln \frac{a_4}{a_1} & \ln \frac{a_5}{a_2} & \ln \frac{a_6}{a_3} \\ \ln \frac{a_7}{a_4} & \ln \frac{a_8}{a_5} & \ln \frac{a_9}{a_6} \\ \ln a_7 & \ln a_8 & \ln a_9 \end{vmatrix}$$
$$= \begin{vmatrix} \ln r^3 & \ln r^3 & \ln r^3 \\ \ln r^3 & \ln r^3 & \ln r^3 \\ \ln a_7 & \ln a_8 & \ln a_9 \end{vmatrix} = 0$$

17. (d) Let *A* is matrix of order
$$n \times a$$

and *B* is matrix of order $b \times n$.
Now

Hence, order of A and B need not to be same.

18. (c) Prime number less than 30 are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29. Number of prime number = 10. Different order of matrices : $1 \times 10, 10 \times 1, 2 \times 5$ and 5×2 .

19. (c)
$$A = \begin{vmatrix} p & q \\ r & s \end{vmatrix}$$
, where (p, q, r, s) prime number < 20
 $\therefore (p, q, r, s) = (2, 3, 5, 7, 11, 13, 17 \text{ and } 19)$
Now, $A = p \cdot s - q \cdot r$.
For A_{max} , product $(p.s)$ should be max. and product $(q.r)$
should be min.

$$\therefore A_{\max} = p \cdot s - q \cdot r = 19 \times 17 - 2 \times 3 = 317.$$

20. (d) Let
$$A = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix}_{2 \times 2}$$
 and $B = \begin{vmatrix} 1 & 0 \\ 0 & 4 \end{vmatrix}_{2 \times 2}$
 $|A| = 4$ and $|B| = 4$.
det $(A \cdot B) = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} \cdot \begin{vmatrix} 1 & 0 \\ 0 & 4 \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 0 & 8 \end{vmatrix} = 16.$

unit

0]

$$det(B \cdot A) = \begin{vmatrix} 1 & 0 \\ 0 & 4 \end{vmatrix} \cdot \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} = \begin{vmatrix} 2 & 0 \\ 0 & 8 \end{vmatrix} = 16.$$

Here $det(A \cdot B) = det(B \cdot A)$, but A and B are not u matrices.
21. (c) $\begin{vmatrix} x & 1 & 3 \\ 0 & 0 & 1 \\ 1 & x & 4 \end{vmatrix} = 0$
 $\Rightarrow x(0-x) + 1(1-0) + 3(0-0) = 0$
 $\Rightarrow -x^2 + 1 = 0$
 $\therefore x = \pm 1.$
22. (a) $f(x) = \begin{vmatrix} 1 & x & x+1 \\ 2x & x(x-1) & x(x+1) \\ 3x(x-1) & 2(x-1)(x-2) & x(x+1)(x-1) \end{vmatrix}$
For $x = -1$, $C_3 \rightarrow \begin{bmatrix} -1+1 \\ -1(-1+1) \\ -1(-1+1)(-1-1) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
For $x = 1$,
 $R_3 \rightarrow [3(1-1) & 2(1-1)(1-2) & (1+1)(1-1)] = [0 & 0 & 0 \\ \therefore f(-1) + f(0) + f(1) = 0.$
23. (a) Determinant
 $= \begin{vmatrix} 4 & 6 & 8 \\ 6 & 8 & 10 \\ 8 & 10 & 12 \end{vmatrix} = 2\begin{vmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{vmatrix}$
 $= 2[2(24-25) + 3(20-18) + 4(15-16)] = 0.$
24. (d) All possible determinants from 2, 4, 6 and 8
 $\begin{vmatrix} 8 & 6 \\ 4 & 2 \end{vmatrix} + \begin{vmatrix} 8 & 4 \\ 2 & 6 \end{vmatrix} + \begin{vmatrix} 2 & 4 \\ 8 & 6 \end{vmatrix} + \begin{vmatrix} 4 & 2 \\ 6 & 8 \end{vmatrix} + \begin{vmatrix} 4 & 2 \\ 6 & 8 \end{vmatrix} + \begin{vmatrix} 6 & 8 \\ 6 & 2 \end{vmatrix} + \begin{vmatrix} 6 & 8 \\ 2 & 4 \end{vmatrix}$
 $= (16-24) + (48-8) + (12-32) + (32-12) + (8-48) + (24-16) = 0.$

Probability and Probability Distribution

- 1. (d) If P(Tails) = x $\therefore P(\text{Head}) = 3x$
 - $\therefore P(T) + P(H) = 1 \Longrightarrow x = \frac{1}{4}$

Probability of at most 2 tails

$$= 1 - P(\text{all tail}) = 1 - \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{63}{64} = .98$$

2. (a) Probability that all are defective

 $= \frac{5}{20} \times \frac{4}{19} \times \frac{3}{18} = \frac{1}{114} \approx .009$

3. (d) It can be observed that sample space will be {H, TH, TTH, TTTH,}

4. (a) Sum as prime number on 2 dices are: 2, 3, 5, 7, 11 no. of times each prime no. as sum occurs = No. Times 2 1 3 5 7 11 2 4 6 2 15 :. $P(E) = \frac{15}{36} = \frac{5}{12}$ 5. (c) P(None meets emission standard) $=\frac{5}{10}\times\frac{4}{9}\times\frac{3}{8}=\frac{1}{12}$ $= \frac{1}{10} \times \frac{1}{9} \times \frac{1}{8} = \frac{1}{12}$ 6. (c) $P(T) = \frac{1}{3}$; $P\left(\frac{H}{T}\right) = 1$ $P(F) = \frac{1}{3}$, $P\left(\frac{H}{F}\right) = \frac{1}{2}$ $P(B) = \frac{1}{3}, P\left(\frac{H}{B}\right) = \frac{3}{4}$ $P\left(\frac{T}{H}\right) = \frac{P(T).P\left(\frac{H}{T}\right)}{P(T).P\left(\frac{H}{T}\right) + P(F).P\left(\frac{H}{F}\right) + P(B).P\left(\frac{H}{R}\right)}$ $\Rightarrow P\left(\frac{T}{H}\right) = \frac{\frac{1}{3}}{\frac{1}{3} + \frac{1}{6} + \frac{1}{4}} = \frac{1}{\frac{9}{4}} = \frac{4}{9}$ 7. (b) (i) Since A & B are mutually exclusive. $\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)$ = .6 + .6 - 0 $\Rightarrow P(A \cup B) = 1.2$: statement 1 is wrong.

(ii)
$$\therefore P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)}$$

 $\Rightarrow 1 = \frac{P(A \cap B)}{P(B)} \Rightarrow P(B) = P(A \cap B) \Rightarrow B \subseteq A$
now,

$$P\left(\frac{B}{\overline{A}}\right) = \frac{P(B \cap A)}{P(\overline{A})} = \frac{1 - P(A \cup B)}{1 - P(A)}$$
$$(\because A \cup B = A) = \frac{1 - P(A)}{1 - P(A)} = 1$$

$$n = 4, p = \frac{1}{6}, q = \frac{5}{6} P(x = 2) = {}^{4}C_{2} \cdot p^{2} \cdot q^{2}$$
$$= 6 \cdot \left(\frac{1}{6}\right)^{2} \left(\frac{5}{6}\right)^{2} = \frac{25}{216}$$

(b) Number of days in February, when year is a leap year
= 29 days = 4 weeks + 1 odd day
4 weeks have 4 sundays.

Probability that 1 odd day is sunday $=\frac{1}{7}$.

10. (a) Probability for Husband's selection $P(H) = \frac{1}{7}$

Probability when Husband is not selection

$$P(H') = 1 - \frac{1}{7} = \frac{6}{7}$$

Probability for wife's selection $P(W) = \frac{1}{5}$

Probability when Wife is not selected $P(W') = 1 - \frac{1}{5} = \frac{4}{5}$ As both are independent event.

So, probability for atleast one of them will be selected = P(H)P(W') + P(H')P(W)

 $=\frac{1}{7}\times\frac{4}{5}+\frac{6}{7}\times\frac{1}{5}=\frac{11}{35}$

11. (a) Number of ways of picking 4 counterfeits gold coins out of 6 counterfeits coins = ${}^{6}C_{4}$

Number of ways of picking 4 coins out of 15 gold coins = ${}^{15}C_4$

:. Required probability
$$=\frac{{}^{6}C_{4}}{{}^{15}C_{4}}=\frac{15}{15\times7\times13}=\frac{1}{91}$$
.

12. (d) Number of ways of selecting 2 boys out of 2 boys = ${}^{2}C_{2}=1$.

Number of ways of selecting 1 girl out of 2 girls $= {}^{2}C_{1} = 2$. Number of ways of selecting 3 out of 4 persons $= {}^{4}C_{3} = 4$.

$$\therefore \text{ Required probability} = \frac{{}^{2}C_{1} \times {}^{2}C_{2}}{{}^{4}C_{3}} = \frac{2 \times 1}{4} = \frac{1}{2}$$

13. (c) Prime number between 1 to 10 are 2, 3, 5, 7. Now, number of ways of selecting 2 prime number out of 4 prime number = ${}^{4}C_{2} = 6$. Number of ways of selecting 2 numbers out of 10 numbers = ${}^{10}C_{2} = 45$.

$$\therefore \text{ Required probability} = \frac{6}{45} = \frac{2}{15}.$$

14. (d) From question $P = \frac{1}{5}$ Now P + a = 1

$$\Rightarrow \frac{1}{5} + q = 1 \Rightarrow q = 1 - \frac{1}{5} = \frac{4}{5}$$

and $n = 10$.

15. (d)
$$P(\overline{A}) = 1 - P(A) = 1 - 0.6 = 0.4.$$

 $P(\overline{B}) = 1 - P(B) = 1 - 0.5 = 0.5.$
Now, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $= 0.6 + 0.5 - 0.4 = 0.7.$
(1) Now $P(\overline{A} \cup B) = P(\overline{A}) + P(B) - P(\overline{A} \cap B)$
 $= P(\overline{A}) + P(B) - \{P(B) - P(A \cap B)\}$
 $= 0.4 + 0.5 - \{0.5 - 0.4\} = 0.8.$

Hence, statement (1) is not correct. (2) $P(\overline{B} \mid \overline{A}) = \frac{P(\overline{B} \cap \overline{A})}{P(\overline{A})} = \frac{P(B \cup A)'}{P(\overline{A})} = \frac{1 - P(A \cup B)}{P(\overline{A})}$ $= \frac{1 - 0.7}{0.4} = 0.75.$ Hence, statement (2) is not correct. (b) From question, we have $P(F \mid X) = 0.02, P(F \mid Y) = 0.03, P(F \mid Z) = 0.05$ and $P(F) = P(X) \cdot P(F \mid X) + P(Y) \cdot P(F \mid Y)$ $+P(Z) \cdot P(F \mid Z)$ $= 0.5 \times 0.02 + 0.3 \times 0.03 + 0.2 \times 0.05$ = 0.01 + 0.009 + 0.01 = 0.029.Now, $P(X \cap F) = P(X) \cdot P(F \mid X) = 0.5 \times 0.02 = 0.01.$ $\therefore P(X \mid F) = \frac{P(X \cap F)}{P(F)} = \frac{0.01}{0.029} = \frac{10}{29}$ (c) Number of ways in which one of the face having the

16.

18.

17. (c) Number of ways in which one of the face having the number 6 and no two dice show the same number. (1,2,6),(1,3,6),(1,4,6),(1,5,6),(2,3,6),(2,4,6),(2,5,6),(3,4,6),(3,5,6)..... Total favourable case = 20 + 20 + 20 = 60. Number of total output when three top faces of three dice shows different number = $6 \times 5 \times 4 = 120$.

$$\therefore \text{ Required probability } = \frac{60}{120} = \frac{1}{2}.$$
(c) $P(A \cup B) = \frac{5}{6}, P(A \cap B) = \frac{1}{3}, P(A') = \frac{1}{2}$
 $P(A) = 1 - P(A') = 1 - \frac{1}{2} = \frac{1}{2}$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $\frac{5}{6} = \frac{1}{2} + P(B) - \frac{1}{3}$
(a) $P(B) = \frac{5}{6} - \frac{1}{2} + \frac{1}{3} = \frac{5 - 3 + 2}{6} = \frac{4}{6} = \frac{2}{3}$
(b) $P(A \cap B) = \frac{1}{3} = \frac{1}{2} \cdot \frac{2}{3} = P(A) \cdot P(B)$
 $\therefore P(A \cap B) = P(A) \cdot P(B).$
(c) $P(A \cup B) = \frac{5}{6}$
 $P(A) + P(B) = \frac{1}{2} + \frac{2}{3} = \frac{7}{6}$
 $\therefore P(A \cup B) < P(A) + P(B)$
Hence, option (c) is not correct.
(d) $P(A' \cap B') = P(A') \cdot P(B')$
 $1 - P(A \cup B) = 1 - \frac{5}{6} = \frac{1}{6}$
and $P(A') \cdot P(B') = (1 - P(A)) \cdot (1 - P(B))$

50

$$= \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{2}{3}\right) = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}.$$
Hence, $P(A \cap B) = P(A') \cdot P(B').$
19. (c) $P(A|B) = \frac{P(A \cap B)}{P(B)}$
Now, $P(A \cap B) = P(A) + P(B) - P(A \cup B)$
 \therefore min. $(P(A \cap B) = L + M - 1$ {Here $P(A \cup B)$
 $= 1$ (max. value)
 $\therefore P(A|B) \ge \frac{L + M - 1}{M}$
20. (a) $P(\overline{A}) = \frac{1}{2} \therefore P(A) = 1 - P(\overline{A}) = 1 - \frac{1}{2} = \frac{1}{2}$
and $P(B) = P(A \cup B) - P(A) + P(A \cap B)$
 $= \frac{5}{6} - \frac{1}{2} + \frac{1}{3} = \frac{2}{3}$
Now, $P(A \cap B) = P(A) \cdot P(B) = \frac{1}{2} \times \frac{2}{3} = \frac{1}{3}$
 $\therefore A$ and B are independent events.
21. (c) $P(E) = \frac{1}{2}, P(F) = \frac{1}{2}$
 $P(E \cup F) = P(E) + P(F) - P(E \cap F)$
As $E \& F$ are two independent event
 $\therefore P(E \cap F) = P(E) \cdot P(F)$
 $P(E \cup F) = \frac{1}{2} + \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4}$
22. (d) Mean $(xp) = \frac{2}{3}$ Variance $(npq) = \frac{5}{9}$
 $\therefore \frac{\text{Variance}(npq)}{\text{mean}(np)} = q = \frac{\frac{5}{2}}{\frac{2}{3}} = \frac{5}{6}$
 $p = 1 - q = 1 - \frac{5}{6} = \frac{1}{6}$
Here number of trial $n \times \frac{1}{6} = \frac{2}{3}$ $n = 4$
Random Variable $X = 2$
 \therefore Probability = ${}^{4}C_{2}(P) {}^{4-2}Q^{2} = {}^{4}C_{2} \times \left(\frac{1}{6}\right)^{2} \times \left(\frac{5}{6}\right)^{2}$
 $= \frac{25}{216}$
23. (c) $P(A) = \frac{3}{4}$ and $P(B) = \frac{5}{8}$
 $P(A \cup B)$ is min when $P(A \cap B)$ is max i.e. $\frac{5}{8}$

 $P(A \cup B)_{\min} = \frac{3}{4} + \frac{5}{8} - \frac{5}{8} = \frac{3}{4}$ Hence, both (1) and (2) are correct.

Vectors

1. (b)
$$\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$$
,
 $\vec{b} = 4\hat{i} - 4\hat{j} + 7\hat{k}$
 \because projection of \vec{a} on \vec{b} is $=\frac{\vec{a}.\vec{b}}{|\vec{b}|}$
 $\vec{a}.\vec{b} = (\hat{i} - 2\hat{j} + \hat{k}).(4\hat{i} - 4\hat{j} + 7\hat{k})$
 $= 4 + 8 + 7 = 19$
 $|\vec{b}| = \sqrt{4^2 + 4^2 + 7^2} = \sqrt{81} = 9$
 \therefore projection $=\frac{19}{9}$
2. (b) Given: $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$
 $\Rightarrow |\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2$
 $\Rightarrow a^2 + b^2 + 2ab \cos \theta = a^2 + b^2 - 2ab \cos \theta$
 $\Rightarrow 4ab \cos \theta = 0$
 $\Rightarrow \cos \theta = 0$
 $\Rightarrow \theta = 90^\circ$
 \therefore Vectors are perpendicular.
3. (a) (i) $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = \vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} - \vec{b} \cdot \vec{b}$
 $= |\vec{a}|^2 - |\vec{b}|^2$
(ii) $(|\vec{a} + \vec{b}|) \cdot (|\vec{a} - \vec{b}|)$
 $= \sqrt{a^2 + b^2 + 2ab} \cdot \sqrt{a^2 + b^2 - 2ab}$
 $= \sqrt{(a^2 + b^2)^2 - 4a^2b^2} = \sqrt{(a^2 - b^2)^2} = a^2 - b^2$
 $= |\vec{a}|^2 - |\vec{b}|^2$
(iii) $|\vec{a} \cdot \vec{b}|^2 + |\vec{a} \times \vec{b}|^2$
 $= a^2b^2(\cos^2\theta + \sin^2\theta)$
 $= a^2b^2$
 $= |\vec{a}|^2 |\vec{b}|^2$
 \therefore All 3 statements are correct.
4. (b) (i) Area of triangle $= \frac{1}{2} |\vec{a} \times \vec{b}|$
 \therefore statement (i) is incorrect
(ii) $\vec{a} \times \vec{b} = 0$
 $\Rightarrow |\vec{a}| |\vec{b}| \cdot \sin\theta = 0$
 $\Rightarrow \sin \theta = 0$
 $\therefore \vec{a} \parallel \vec{b} \Rightarrow \vec{a} = \lambda \vec{b}$
 \therefore Statement (ii) is correct.
5. (b) Given:
 $|\vec{a} \models |\vec{b}| = 1$

 $\begin{array}{c|c} 2 & 1 \\ \hline 0 & 30^{\circ} \\ \hline \sqrt{3} & B \end{array} x$

Let $A(x\hat{i}, y\hat{j})$ is a point in the *xy*-plane. From question,

$$\angle AOB = 30^{\circ} \text{ and } OA = 1$$

$$x = |\overrightarrow{OA}| \cdot \cos 30^{\circ} = 1 \times \frac{\sqrt{3}}{2}\hat{i} = \frac{\sqrt{3}}{2}\hat{i}$$

$$y = |\overrightarrow{OA}| \cdot \sin 30^{\circ} = 1 \times \frac{1}{2}\hat{j} = \frac{\hat{j}}{2}$$

$$\therefore \vec{a} = \frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j} = \frac{\sqrt{3}\hat{i} + 1\hat{j}}{2}$$
(c) Let $A = (x, y, z)$
Then, $|\overrightarrow{OA}| = \sqrt{x^2 + y^2 + z^2} = 12$
Also, $x = |\overrightarrow{OA}| \cdot \cos 45^{\circ} = 12 \cdot \frac{1}{\sqrt{2}} = 6\sqrt{2}\hat{i}.$

$$y = |OA| \cdot \cos 60^\circ = 12 \cdot \frac{1}{2} = 6\hat{j}.$$

Hence, $\overrightarrow{OA} = 6\sqrt{2}\hat{i} + 6\hat{j} \pm 6\hat{k}$

8. (c) Let $\vec{a} = 2\hat{i} - 4\hat{j} + 5\hat{k}$ and $\vec{b} = \hat{i} - 2\hat{j} - 3\hat{k}$ Two diagonals of the parallelograms are given by $(\vec{a} + \vec{b}) = (2+1)\hat{i} - (4+2)\hat{j} + (5-3)\hat{k}$ $= 3\hat{i} - 6\hat{j} + 2\hat{k}$ and $(\vec{a} - \vec{b}) = (2-1)\hat{i} - (4-2)\hat{j} + (5-(-3))\hat{k}$ $= \hat{i} - 2\hat{j} + 8\hat{k}$ Dot products of the diagonals $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = (3\hat{i} - 6\hat{j} + 2\hat{k}) \cdot (\hat{i} - 2\hat{j} + 8\hat{k})$ = (3 + 12 + 16) = 31 units 9. (a) $|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = 144$ $\{|\vec{a}| \cdot |\vec{b}| \cdot \sin \theta\}^2 + \{|\vec{a}| \cdot |\vec{b}| \cdot \cos \theta\}^2 = 144$

$$(|\vec{a}| \cdot |\vec{b}|)^{2} (\sin^{2} \theta + \cos^{2} \theta) = 144$$
$$|\vec{a}| \cdot |\vec{b}| = \sqrt{144} = 12$$
$$4 \cdot |\vec{b}| = 12 \implies |\vec{b}| = \frac{12}{4} = 3.$$

10. (b) As the given vectors are coplanar, then

$$\vec{c} \times \vec{a} \times \vec{b} = 0 \Rightarrow \begin{vmatrix} 0 & 1 & p \\ 2 & -3 & 1 \\ 1 & 2 & -3 \end{vmatrix} = 0$$
$$\Rightarrow 0 + 1(1+6) + p(4+3) = 0 \Rightarrow 7 + 7p = 0 \Rightarrow p = -1$$

11. (c)
$$\vec{j}$$

 $\vec{r} = a\hat{i} + b\hat{j}$
 \vec{A}
 \vec{A}

$$= 0 \qquad (\because |\vec{a}| = |\vec{b}|)$$

 \therefore Vector $\vec{c} = (\vec{a} + \vec{b})$ is perpendicular to $(\vec{a} - \vec{b})$.

Also,
$$\vec{c} \cdot (\vec{a} - \vec{b}) = \begin{bmatrix} \vec{c} & \vec{a} & \vec{b} \end{bmatrix}$$

 $\therefore \vec{c}$ is perpendicular to $(\vec{a} \times \vec{b})$.

- 13. (c) $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}|$ On squaring both sides, we get $|\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2$ $|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}$ $\vec{a} \cdot \vec{b} = 0$ \therefore $\vec{a} \perp \vec{b}$
- 14. (a) $(2\vec{a} \times 3\vec{b}) \cdot 4\vec{c} = (5\vec{b} \times 3\vec{c}) \cdot 6\vec{a} = 0 + 0$ $\{ \because \vec{a}, \vec{b} \text{ and } \vec{c} \text{ are coplaner} = 0 \}$
- 15. (a) Let \vec{a} and \vec{b} are two unit vectors then cross product $\vec{a} \times \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \sin \theta \cdot \hat{n}$
 - (i) This is always a unit vector.
 - (ii) Dot product $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \theta$
 - This is always equal to one.

6.

7.

(iii)
$$|\vec{a} + b| > |\vec{a} - b|$$
 squaring on both sides
 $|\vec{a} + \vec{b}| > |\vec{a} - \vec{b}|^2$
 $|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} > |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b}$
 $\vec{a} \cdot \vec{b} > 0$
 $|\vec{a}| \cdot |\vec{b}| \cdot \cos\theta > 0$
But if $\theta \in [90^\circ, 180^\circ]$, $\cos\theta < 0$
Hence acts expression difference of the statements of the statemen

Hence, statement i and ii are correct, but Statement iii is not correct.

3D Geometry

1. (d) given point is $(P+1, P-3, \sqrt{2}p)$

→I I

to determine direction ratios of a line we require 2 points. ... DR's can't be determined as infinite lines will pass through this point. Thus direction cosines can not be obtained.

2. (b)
$$\frac{x-1}{1} = \frac{y-3}{2} = \frac{z+2}{7}$$

Verify from options

Only (2, 5, 5) satisfies the above equation.

3. (d) Line
$$\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$$

passes through (4, 2, k) are lies in plane
 $2x-4y+z=7$
so it must satisfy
 $2(4)-4(2)+k=7 \Rightarrow k=7$
4. (b) given angle from z-axis = 60°

$$\therefore \quad n = \cos 60^\circ = \frac{1}{2}$$

5.

Let the cosines of angle made by line with y-axis and x-axis be $\sqrt{3}x$ and x

$$\therefore ln b c q q b x diff x diff x = 1$$

$$\Rightarrow 3x^{2} + x^{2} + \frac{1}{4} = 1 \quad x = \pm \frac{\sqrt{3}}{4} \quad \therefore \sqrt{3}x = \frac{3}{4}$$

$$x = \frac{\sqrt{3}}{4} \therefore (l, m, n) = \left(\frac{3}{4}, \frac{\sqrt{3}}{4}, \frac{1}{2}\right) \text{ or } \left(\frac{-3}{4}, \frac{-\sqrt{3}}{4}, \frac{1}{2}\right)$$
for angle

$$|l_{1} l_{2} + m_{1} m_{2} + n_{1} n_{2}|$$

$$= \left|\frac{-9}{16} - \frac{3}{16} + \frac{1}{4}\right| = \left|\frac{-1}{2}\right| = \cos \theta$$

$$\Rightarrow \text{ Angle} = \theta = 60^{\circ}$$
(a) Given points are
 $(x, y, -3); (2, 0, -1); (4, 2, 3)$
since they lie on same line
 \therefore their DR's must be same
DR's = (2 - x, -y, 2)
 $(2, 2, 4)$
 $\therefore \frac{2 - x}{2} = \frac{-y}{2} = \frac{2}{4}$
 $\Rightarrow x = 1; y = -1$

6.

9.

$$=\frac{6(1)-3(-2)+2(3)-4}{\sqrt{(6)^2+(-3)^2+(2)^2}}=\frac{6+6+6-4}{7}=\frac{14}{7}=2$$

Diameter of the sphere $= 2 \times 2 = 4$ units

7. (b) Perpendicular distance
$$=\sqrt{(4)^2 + (3)^2} = 5$$
 units.

8. (d) Direction ratios are < a + b, b + c, c + a >Then, direction cosine,

$$l = \frac{(a+b)}{\sqrt{(a+b)^2 + (b+c)^2 + (c+a)^2}}$$
$$m = \frac{(b+c)}{\sqrt{(a+b)^2 + (b+c)^2 + (c+a)^2}}$$
$$n = \frac{(c+a)}{\sqrt{(a+b)^2 + (b+c)^2 + (c+a)^2}}$$

Sum of squares of direction cosines

$$l^{2} + m^{2} + n^{2} = \frac{(a+b)^{2} + (b+c)^{2} + (c+a)^{2}}{(a+b)^{2} + (b+c)^{2} + (c+a)^{2}} = 1.$$

Co-ordinate plane divide the space into 8 octanes. 10. (b) Equation of the plane which cuts an intercept 5 units on the z-axis and is parallel to xy-plane, is z = 5, y = 0, x = 0.

11. (b) Angle between two lines

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}$$
Here, $(a_1, b_1, c_1) = (6, 3, 6)$
and $(a_2, b_2, c_2) = (, 3, 3, 0)$
 $\therefore \cos \theta = \frac{6 \times 3 + 3 \times 3 + 0}{\sqrt{6^2 + 3^2 + 6^2} \cdot \sqrt{3^2 + 3^2 + 0}}$
 $= \frac{27}{9 \cdot 3\sqrt{2}} = \frac{1}{\sqrt{2}}$
 $\therefore \theta = \cos^{-1} \left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$
12. (b) Let $x - 1 = (y - 3) = 1 - z = k$ (Say)
 $\therefore l = k, m = \frac{k}{2}$ and $n = k$
From $l^2 + m^2 + n^2 = 1$

$$k^{2} + \left(\frac{k}{2}\right)^{2} + k^{2} = 1 \implies k = \frac{2}{3}$$

$$\therefore l = \frac{2}{3}, m = \frac{1}{3} \text{ and } n = \frac{2}{3}$$

$$\therefore l^4 + m^4 + n^4$$

$$= \left(\frac{2}{3}\right)^4 + \left(\frac{1}{3}\right)^4 + \left(\frac{2}{3}\right)^4 = \frac{11}{27}$$

(c) Point $A = (1, 7, -5)$ and $B = (-3, 4, -2)$
Equation of plane $AB : al + bm + cn = 0$
 $a = (1 - (-3)) = 4$
 $b = (7 - 4) = 3$
 $c = (-5 - (-2)) = -3$
 \therefore Projection on y-taxis = 3.

14. (c) As three points are collinear.

So,
$$\Delta = \begin{vmatrix} k & 1 & 3 \\ 1 & -2 & k+1 \\ 15 & 2 & -4 \end{vmatrix} = 0$$

 $\Rightarrow k(8-2(k+1))+1(15(k+1)+4)+3(2+30)=0$

4, -2)

 $\Rightarrow k(6-2k) + (15k+19) + 96 = 0$

 $\Rightarrow 2k^2 - 21k - 105 = 0$

On solving, we will get two different values of k. (c) Given equation of plane x + y + z = 3Let point P is (0, 0, 0) and point Q is the foot of perpendicular drawn from point P on the plane.

- Since, PQ is perpendicular to the plane, so direction ratio of line PQ < 1, 1, 1 >.
- \therefore Equation of line PQ,

$$\frac{x-0}{1} = \frac{y-0}{1} = \frac{z-0}{1} = \lambda$$

$$\therefore (x, y, z) = (\lambda, \lambda, \lambda)$$

As point Q lies on the given plane.

$$\therefore \lambda + \lambda + \lambda = 3 \implies \lambda = 1$$

Hence, Co-ordinate of point Q = (1, 1, 1).

Statistics

(b) 22, 24, 33, 37, x+1, x+3, 46, 47, 57, 581. given median = 42

$$\frac{(x+1) + (x+3)}{2} = 42$$

$$\Rightarrow \frac{2x+4}{2} = 42 \Rightarrow x+2 = 42 \Rightarrow x = 40$$

$$\therefore x+1 = 41 x+3 = 43$$

2. (a) Given,
$$\overline{x} = 60$$
 and $n = 10$

and
$$\sum (\overline{x} - 50)^2 = 5000$$

 $\Rightarrow \sum (x^2 - 100x + 2500) = 5000$
 $\Rightarrow \sum x^2 - 100 \sum x = -20000 \Rightarrow \sum x^2 = 60000 - 20000$
 $\Rightarrow \sum x^2 = 40,000$
now,

$$\sigma = \sqrt{\frac{\sum x^2}{n} - (\overline{x})^2}$$
$$\Rightarrow \sigma = \sqrt{4000 - 3600} = 20$$

(d) Given regression lines 3. 6x + v = 30and 3x + 2y = 25point of intersection of both lines $=(\overline{x}, \overline{y}) = \left(\frac{35}{9}, \frac{20}{3}\right)$ for 6x = -y + 30 $\Rightarrow x = -\frac{1}{6}y + 5$ and for 2y = -3x + 25 $y = -\frac{3}{2}x + \frac{25}{2}$ $\therefore r^2 = \left(-\frac{1}{6}\right) \cdot \left(-\frac{3}{2}\right) \implies r = \pm \frac{1}{2}$ \therefore sign of $\overline{x}, \overline{y} \& r$ is same. $\therefore r = \frac{1}{2}$ 4. (b) It can be clearly seen from options that class limits are 2.5-7.5, 7.5-12.5, 5. (b) Given: n=5, $\overline{x} = 4.4$ $\sigma^2 = 8.24$ $\therefore \Sigma x = \overline{x} \cdot x$ $\Rightarrow \Sigma x = 5 \times 4.4 = 22$ also 1 + 2 + 6 + p + q = 22 $\Rightarrow p+q=13$ 9, 4 = p, q.*.*.. 6. (b) *x* cumulative frequency 1 3 3 2 15 18 3 45 63 57 4 120 5 50 170 6 7 36 206 25 231 8 9 240 $\Sigma f = 240 = N$ Median = $\left(\frac{N+1}{2}\right)^{\text{th}}$ data = 120.5th data =5 7. (c) Given: n = 100 $\overline{x} = 50, \sigma = 10$ 5 is added to each observation \therefore new mean = 55 & standard deviation remains same. 8. (c) Given: Range of x = 25and y = 40 + 3xRange of $y = 3 \times 25$

9. (c) For first 15 natural numbers.

Mean
$$(M) = \frac{15+1}{2} = 8$$
 and $V = \frac{n^2 - 1}{12} = \frac{224}{12} = \frac{56}{3}$
 $\therefore \quad V + M^2 = \frac{56}{3} + 64 = \frac{248}{3}$

13.

15.

10.	(c)
10.	(c)

Number of students		Marks	Difference of	
Physics	Maths	Range	students	
11	21	20-30	21 - 11 = 10	
30	38	30-40	38 - 30 = 8	
26	15	40 - 50	26 - 15 = 11	←Maximum
15	10	50 - 60	15 - 10 = 5	

Hence, difference is largest for the interval (40-50).

11. (a)

(1) Modal value of the marks of Physics is the interval in which maximum number of students got his marks. In the marks interval of (30-40), number of students in Physics is 30, which is largest number of students in any interval. Hence, modal values of marks in Physics is (30-40). Statement (1) is correct.

(2) Median class is given by
$$\left(\frac{N}{2}\right)^{\text{th}}$$
 item i.e. $\left(\frac{100}{2}\right)^{\text{th}}$ item

which is 50th item. This corresponds to the class interval of (40-50) for Physics and (30-40) for Mathematics.

Marks	Number of Physics students	Cumulative Frequency	Number of Maths student	Cumulative Frequency
10-20	8	8	10	10
20-30	11	19	21	31
30-40	30	49	38	69
40-50	26	75	15	84
50-60	15	90	10	94
60-70	10	100	6	100

Medium =
$$l_1 + \frac{\frac{N}{2} - C.f.}{f} \times i$$

$$\therefore \text{ Median for Physics} = 40 + \frac{\frac{100}{2} - 49}{26} \times 10$$

$$= 40 + \frac{50 - 49}{26} \times 10 = 40.385$$
$$\underline{100}$$

Median for Maths = $30 + \frac{\frac{100}{2} - 31}{38} \times 10$

$$= 30 + \frac{50 - 31}{38} \times 10 = 35$$

Thus, median of the marks in Physics is more than median of the marks in Mathematics. Hence, statement (2) is not correct.

12. (c) For physics					
Marks	Ci	fi	cifi		
10-20	15	8	120		
20-30	25	11	275		
30-40	35	30	1050		
40-50	45	26	1170		
50-60	55	15	825		
60-70	65	10	650		
$\frac{\sum_{i} = 100}{100} \frac{\sum_{i} = 4090}{\sum_{i} = 4090}$ Mean of marks of physics $= \frac{4090}{100} = 40.9$. 13. (b) Standard deviation $= \sqrt{\frac{(x-\bar{x})^{2}}{N}}$ Given data: $-\sqrt{6}, -\sqrt{5}, -\sqrt{4}, -1, 1, \sqrt{4}, \sqrt{5}, \sqrt{6}$. $\bar{x} = \frac{\text{Sum of datas}}{\text{Number of data}} = 0$ $(x-\bar{x})^{2} = (-\sqrt{6}-0)^{2} + (-\sqrt{5}-0)^{2} + (-\sqrt{4}-0)^{2} + (-1-0)^{2} + (\sqrt{4}-0)^{2} + (\sqrt{4}-0)^{2} + (\sqrt{5}-0)^{2} + (\sqrt{6}-0)^{2} = 6+5+4+1+1+4+5+6=32$					
14. (d) Coefficient of Variation (C.V.) $= \frac{\text{Standard Deviation } (\sigma)}{\text{Mean } (\mu)} \times 100$ Now, standard deviation $(\sigma) = \sqrt{\frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2}$					
$=\sqrt{\frac{200}{10}} - \left(\frac{2}{1}\right)$	$\left(\frac{0}{0}\right)^2 = 4$	Mean	$(\mu) = \frac{\Sigma x_i}{n} = \frac{20}{10}$	$\frac{0}{0} = 2.$	
∴ Со-е	fficient of vari	ation (C.V.) =	$\frac{-100}{2} = 200$).	
15. (b) Cor	rect arithmeti	c mean			
$= 40 + \frac{1}{3}$ 16. (b) Reg $Y = \begin{cases} \frac{\sigma}{\sigma} \\ \Rightarrow Y = \\ \therefore Y = 1 \end{cases}$	$\frac{(-83+53)}{100} = 4$ gression of Y of $\frac{y}{x} \times r(x, y) \bigg\} X$ $\left(\frac{3.5}{2.5} \times 0.8\right) X$ $.12X - 5.8.$	$40 + \frac{(-30)}{100} = 3$ on X: X - a (where X - 5.8	a = constant to	erm)	
17. (b) Ari	thmetic mean	$=\frac{\text{Sum of } c}{\text{Number of } c}$	lata f data		
$6 = \frac{4 \times 1}{6}$	$\frac{x+9(x-1)}{x+x-1}$	inumber of	i uata		

12x - 6 = 13x - 9
x = 9 - 6 = 3.

- 18. (d) Number of data set = n. Mean = 2.5 Sum of deviations = 50 Again, sum of deviations, when mean = 3.5 is -50. So, $(3.5-2.5) \times n = 50 - (-50)$ $\therefore n = 100$
- 19. (d) Sum of *n* observation = $2M \times n$ Sum of 2n observation = $M \times 2n$

Mean of combined data sets $=\frac{2Mn+2Mn}{(n+2n)}=\frac{4}{3}M.$

20. (a) (i) Arithmetic mean = $\frac{\text{Sum of observation}}{\text{Number of observation}}$

(ii) Geometric mean = $\sqrt[n]{Product of n observation}$ Here, only Arithmetic mean measures central tendency.

21. (b) Science graduate (angle) =
$$\left(\frac{30}{30+70+50}\right) \times 360^\circ = 72^\circ$$

22. (b) 23. (c)

24.

(a)	Number of Peas	Frequency	Cummulative frequency
	1	4	4
	2	33	37
	3	76	113
	4	50	163
	5	26	189
	6	8	197
	7	1	198

Group of S.D.
$$=\frac{198}{2} = 99$$

 \therefore S.D. = 3.
25. (b) $M = \sum_{i=1}^{n} (x_i - k)$ $M + K = \sum_{i=1}^{n} x_i$
 \therefore Meen = M + K
26. (c) Mean = $\frac{73 + 85 + 92 + 105 + 120}{5} = 95$
 \therefore Sum of the deviation from the mean
 $= (95 - 73) + (95 - 85) + (95 - 92) + (95 - 105)$
 $+ (95 - 180)$
 $= 22 + 10 + 3 - 10 - 25 = 0$
27. (a) Co-efficient of variation $(C.V) = \frac{S.D.}{Mean}$
 $\frac{45}{100} = \frac{S.D.}{100} \Rightarrow S.D. = 45$
Then, variance = $(S.D.)^2 = (45)^2 = 2025$
28. (b) For set of numbers : 6, 18, 18, 18, 30
Mean = 18, Median = 18, Mode = 18.
29. (b) Mean of discarded observation
 $= \frac{Sum of 12 \text{ observation - Sum of 10 observation}}{2}$

$$=\frac{12\times75-10\times65}{2}=125$$

30. Mode = Data with highest frequency As mode is 15, So x = 15.

Sets, Relations, Functions and Number System

8.

9

10.

11.

13.

14.

- 1. Universal set, $U = \{x \mid x^5 - 6x^4 + 11x^3 - 6x^2 = 0\}$ A = {x | $x^2 - 5x + 6 = 0$ } $B = \{x \mid x^2 - 3x + 2 = 0\}$ What is $(A \cap B)'$ equal to ? [2006-I] (a) $\{1,3\}$ (b) $\{1, 2, 3\}$ (c) $\{0, 1, 3\}$ (d) $\{0, 1, 2, 3\}$
- Suppose that A denotes the collection of all complex numbers 2. whose square is a negative real number. Which one of the following statements is correct? [2006-I]
 - (a) $A \subseteq R$
 - (b) $A \supseteq R$
 - (c) $A = \{x + iy | x^2 \in R | x, y \in R\}$
 - (d) $A = \{iy | y \in R\}$
- A relation R is defined on the set Z of integers as follows : 3. mRn \Leftrightarrow m+n is odd.

Which of the following statements is/are true for R?

- 1. R is reflexive 2. R is symmetric
- 3. R is transitive

Select the correct answer using the code given below :

- (a) 2 only (b) 2 and 3
- (c) 1 and 2(d) 1 and 3 [2006-1]
- 4 Let A and B be two non-empty subsets of a set X. If $(A - B) \cup (B - A) = A \cup B$, then which one of the following is correct?
 - (a) $A \subset B$ (b) $A \subset (X-B)$

(c)
$$A=B$$
 (d) $B \subseteq A$ [2006-I]

Let $A = \{(n, 2n) : n \in N\}$ and $B = \{(2n, 3n) : n \in N\}$. What is 5. $A \cap B$ equal to ?

(a)
$$\{(n, 6n) : n \in N\}$$
 (b) $\{(2n, 6n) : n \in N\}$

(c)
$$\{(n, 3n) : n \in N\}$$
 (d) ϕ [2006-I]

- Which one of the following operations on sets is not correct 6. where B' denotes the complement of B? [2006-1]
 - (a) $(B'-A') \cup (A'-B') = (A \cup B) (A \cap B)$ B')

(b)
$$(A-B) \cup (B-A) = (A' \cup B') - (A' \cap B)$$

- (c) $(B'-A') \cap (A'-B') = (B-A) \cap (A-B)$
- (d) $(B'-A') \cap (A'-B') = (B-A') \cup (A'-B)$
- Which one of the following sets has all elements as odd 7. positive integers ? [2006-I]
 - (a) $S = \{x \in R | x^3 8x^2 + 19x 12 = 0\}$ (b) $S = \{x \in R | x^3 9x^2 + 23x 15 = 0\}$

 - (c) $S = \{x \in R | x^3 7x^2 + 14x 8 = 0\}$
 - (d) $S = \{x \in R | x^3 12x^2 + 44x 48 = 0\}$

- Which of the following statements is not correct for the relation R defined by aRb if and only if b lives within one kilometer from a? [2006-I] (a) R is reflexive (b) R is symmetric (c) R is not anti-symmetric (d) None of the above Let X be any non-empty set containing n elements. Then what is the number of relations on X? [2006-1] (a) 2^{n^2} (b) 2ⁿ (c) 2^{2n} (d) n^2 What is the region that represents $A \cap B$ if [2006-1] $A = \{(x, y) | x + y \le 4\}$ and $B = \{(x, y) | x + y \le 0\}$? (a) $\{(x, y) | x + y \le 2\}$ (b) $\{(x, y) | 2x + y \le 4\}$ (c) $\{(x, y) | x + y \le 0\}$ (d) $\{(x, y) | x + y \le 4\}$ In a group of 500 students, there are 475 students who can speak Hindi and 200 can speak Bengali. What is the number of students who can speak Hindi only? [2006-1] (a) 275 (b) 300 (c) 325 (d) 350 Let X and Y be two non-empty sets and let R_1 and R_2 be two relations from X into Y. Then, which one of the following is correct? [2006-1] (a) $(R_1 \cap R_2)^{-1} \subset R_1^{-1} \cap R_2^{-1}$ (c) $(R_1 \cap R_2)^{-1} \supset R_1^{-1} \cap R_2^{-1}$ (b) $(R_1 \cap R_2)^{-1} \supset R_1^{-1} \cap R_2^{-1}$ (c) $(R_1 \cap R_2)^{-1} = R_1^{-1} \cap R_2^{-1}$ (d) $(R_1 \cap R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$ What is the value of $\frac{(1001)_2^{(11)_2} - (101)_2^{(11)_2}}{(1001)_2^{(10)_2} + (1001)_2^{(01)_2} (101)_2^{(01)_2} + (101)_2^{(10)_2}}?$ (a) $(1001)_2$ (b) $(101)_2$ (c) $(110)_2$ (d) $(100)_2$ [2006-1] Let x > y be two real numbers and $z \in R$, $z \neq 0$. Consider the following:
- 1. x+z > y+z and xz > yz2. x + z > y - z and x - z > y - z3. xz > yz and $\frac{x}{z} > \frac{y}{z}$ 4. x-z > y-z and $\frac{x}{z} > \frac{y}{z}$ Which of the above is/are correct? (a) 1 only (b) 2 only (c) 1 and 2 only (d) 1, 2, 3 and 4

[2006-1]

NDA Topicwise Solved Papers - MATHEMATICS

- 15. If A, B and C are any three arbitrary events then which one of the following expressions shows that both A and B occur but not C? [2006-1] (a) $A \cap \overline{B} \cap \overline{C}$ (b) $A \cap B \cap \overline{C}$ (c) $\overline{A} \cap \overline{B} \cap \overline{C}$ (d) $(A \cup B) \cap \overline{C}$ Let $P = \{p_1, p_2, p_3, p_4\}$ 16. $Q = \{q_1, q_2, q_3, q_4\}$ and $\mathbf{R} = \{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4\}.$ If $S_{10} = \{(p_i, q_i, r_k) : i + j + k = 10\},\$ how many elements does S₁₀ have ? [2006-I]
- (c) 6 (d) 8 17. Which one of the following is correct? [2006-I] (a) $A \cup (B - C) = A \cap (B \cap C')$

(b) 4

(a)
$$A \cup (B-C) = A \cap (B \cap C)$$

(b) $A \cup (B \cup C) = (A \cap B') \cap (C)$

(a) 2

(b) $A-(B\cup C) = (A \cap B') \cap C'$ (c) $A-(B \cap C) = (A \cap B') \cap C$

(d)
$$A \cap (B-C) = (A \cap B) \cap C$$

- 18. The maximum three digit integer in the decimal system will be represented in the binary system by which one of the following? [2006-II]
 - (a) 1111110001 (b) 111111110
 - (c) 1111100111 (d) 1111000111
- 19. What is the difference between the smallest five digit binary integer and the largest four digit binary integer ? [2006-II](a) The smallest four digit binary integer
 - (b) The smallest one digit binary integer
 - (c) The greatest one digit binary integer
 - (d) The greatest three digit binery integer
 - (d) The greatest three digit binary integer.
- 20. If F(n) denotes the set of all divisors of n except 1, what is the least value of y satisfying [F(20) ∩ F(16)] ⊆ F(y)? [2006-II]

(a) 1 (b) 2

- (c) 4 (d) 8
- 21. On the set Z of integers, relation R is defined as "a R b \Leftrightarrow a + 2b is an integral multiple of 3". Which one of the following statements is correct for R? [2006-II]
 - (a) R is only reflexive
 - (b) R is only symmetric
 - (c) R is only transitive
 - (d) R is an equivalence relation
- 22. For non-empty sets A, B and C, the following two statements are given:

Statement $P: A \cap (B \cup C) = (A \cap B) \cup C$

Statement Q : C is a subset of A

Which one of the following is correct ? [2006-II]

- (a) $P \Leftarrow Q$
- (b) $P \Leftrightarrow Q$
- (c) $P \Rightarrow Q$
- (d) Nothing can be said about the correctness of the above three with certainty
- 23. If $X = \{x : x > 0, x^2 < 0\}$, and $Y = \{$ flower, Churchill, moon, Kargil), then which one of the following is a correct statement?
 - (a) X is well defined but Y is not a well defined set
 - (b) Y is well defined but X is not a well defined set
 - (c) Both X and Y are well defined sets
 - (d) Neither X nor Y is a well defined set [2006-II]

24. Consider the following for any three non-empty sets A, B and C. $A - (B \cup C) = (A - B) \cup (A - C)$ 1. 2. $A - B = A - (A \cap B)$ 3. $A = (A \cap B) \cup (A - B)$ Which of the above is/are correct? (a) Only 1 (b) 2 and 3 (c) 1 and 2(d) 1 and 3[2006-II] 25. Consider the following statements : There are infinitely many rational numbers between two distinct integers. 1. rational numbers. 2. 3. real numbers. Which of the statements above are correct? (a) Only 1 and 2 (b) Only 2 and 3

- (c) Only 1 and 3 (d) 1, 2 and 3 [2006-II]
- 26. What does the shaded region represent in the figure given below ?

(a)
$$(P \cup Q) - (P \cap Q)$$
 (b) $P \cap (Q \cap R)$
(c) $(P \cap Q) \cap (P \cap R)$ (d) $(P \cap Q) \cup (P \cap R)$

27. If
$$a^x = b$$
, $b^y = c$, $c^z = a$, then what is the value of [2006-II]

$$\frac{1}{(xy+yz+zx)} \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)?$$
(a) 0 (b) abc
(c) 1 (d) -1 [2006-II]
If $2^x = 3^y = 12^z$, then what is $(x + 2y)/(xy)$ equal to ?

(a) z (b)
$$\frac{1}{z}$$

(c) 2z (d) $\frac{z}{z}$

28.

- (c) 2z (d) $\frac{z}{2}$ [2006-II] If a set X contains n (n > 5) elements, then what is the
- 29. If a set X contains n (n > 5) elements, then what is the number of subsets of X containing less than 5 elements ?
 (a) C (n, 4)
 (b) C (n, 5)

(c)
$$\sum_{r=0}^{5} C(n,r)$$
 (d) $\sum_{r=0}^{4} C(n,r)$ [2006-II]

- 30. Which one of the following is an infinite set ?
 - (a) The set of human beings on the earth
 - (b) The set of water drops in a glass of water
 - (c) The set of trees in a forest
 (d) The set of all primes [2006-II]
 - (u) The set of an primes [200
- 31. What is the value of $0.\overline{2} + 0.\overline{23}$?

(a)
$$0.\overline{43}$$
 (b) $0.\overline{45}$

(c) $0.\overline{223}$ (d) $0.2\overline{23}$ [2006-II]

- 32. If $3^{(x-1)} + 3^{(x+1)} = 30$, then what is the value of $3^{(x+2)} + 3^x$? (a) 30 (b) 60 (c) 81 (d) 90 [2007-1]
- 33. Let f: $[-100 \pi, 100 \pi] \rightarrow [-1, 1]$ be defined by $f(\theta) = \sin \theta$. Then what is the number of values of $\theta \in [-100 \pi, 1000 \pi]$ for which $f(\theta) = 0$?
 - (a) 1000 (b) 1101
 - (c) 1100 (d) 1110 [2007-I]
- 34. For non-empty subsets A,B and C of a set X such that $A \cup B = B \cap C$, which one of the following is the strongest inference that can be derived?

(a)
$$A=B=C$$
 (b) $A\subseteq B=C$

- (c) $A=B\subseteq C$ (d) $A\subseteq B\subseteq C$ [2007-I] 35. If μ is the universal set and P is a subset of μ , then what is $P \cap (P-\mu) \cup (\mu-P)$ } equal to ?
 - (a) ϕ (b) P'

- 36. let μ = the set of all triangles, P = the set of all isosceles triangles, Q = the set of all equilateral triangles, R = the set of all right-angled triangles. What do the sets P \cap Q and R P represents respectively ?
 - (a) The set of isosceles triangles; the set of non- isosceles right angled triangles
 - (b) The set of isosceles triangles; the set of right angled triangles
 - (c) The set of equilateral triangles; the set of right angled triangles
 - (d) The set of isosceles triangles; the set of equilateral triangles [2007-I]
- 37. Consider the following statements:

For non empty sets A, B and C

- 1. $A-(B-C)=(A-B)\cup C$
- 2. $A-(B \cup C) = (A-B)-C$

Which of the statements given above is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2
 (d) Neither 1 nor 2 [2007-1]
 38. A relation R is defined over the set of non-negative integers
 - as $xRy \Rightarrow x^2 + y^2 = 36$ what is R?
 - (a) $\{(0,6)\}$
 - (b) $\{(6,0), (\sqrt{11},5), (3,3,\sqrt{3})\}$
 - (c) $\{(6,0), (0,6)\}$

(d)
$$(\sqrt{11},5),(2,4\sqrt{2}),(5\sqrt{11}),(4\sqrt{2},2)\}$$
 [2007-I]

- 39. Consider the following statements:
 - 1. Parallelism of lines is an equivalence relation.
 - 2. x R y, if x is a father of y, is an equivalence relation. Which of the statements given above is/are correct?
 - (a) 1 only (b) 2 only
 - (c) Both 1 and 2 (d) Neither 1 nor 2 [2007-I]
- 40. Which one of the following binary numbers is the prime number?
 - (a) 111101 (b) 111010 (c) 111111 (d) 100011 [2007-I]
- 41. What is the product of the binary numbers 1001.01 and 11.1?

(a)	101110.011	(b)	1 00000.011	
(c)	101110.101	(d)	100000.101	[2007-I]

- 42. Among the following equations, which are linear?
 - $1. \quad 2x+y-z=5$
 - $2. \quad \pi x + y ez = \log 3$
 - 3. $3^{x} + 2y = 7$
 - $4. \quad \sin x y 5z = 4$

Select the correct answer using the code given below

- (a) 1 only (b) 1 and 2 only
- (c) 3 and 4 (d) 1, 2 and 4 [2007-II]
- 43. The multiplication of the number $(10101)_2$ by $(1101)_2$ yields which one of the following ? (a) $(100011001)_2$ (b) $(100010001)_2$
 - (a) $(100011001)_2$ (b) $(100010001)_2$ (c) $(110010011)_2$ (d) $(100111001)_2$
- (c) $(110010011)_2$ (d) $(100111001)_2$ [2007-II] 44. If A and B are two sets satisfying A - B = B - A, then which
- one of the following is correct? (a) $A = \phi$ (b) $A \cap B = \phi$

(a)
$$A = \varphi$$
 (b) $A \cap B = \varphi$

(c)
$$A=B$$
 (d) None of these [2007-11]

$$\sqrt[3]{2+\sqrt{5}} + \sqrt[3]{2-\sqrt{5}}$$
 is:

- (a) an integer
- (b) a rational number but not an integer
- (c) an irrational number
- (d) none of the above [2007-II]
- 46. If $(A-B) \cup (B-A) = A$ for subsets A and B of the universal set U, then which one of the following is correct?
 - (a) B is proper non-empty subset of A
 - (b) A and B are non-empty disjoint sets
 - (c) $B = \phi$
 - (d) None of the above [2007-II]
- 47. If A, B and C are three sets and U is the universal set such that n(U) = 700, n(A) = 200, n(B) = 300 and $n(A \cap B) = 100$, then what is the value of $(A' \cap B')$?
 - (a) 100 (b) 200
 - (c) 300 (d) 400 *[2007-II]*
- 48. What does the shaded region in the Venn diagram given below represent ? [2007-II]

- (c) $C \cup (C \cap A) \cup (C \cap B)$ (d) $C \cup (A/B)$
- 49. Let N be the set of integers. A relation R on N is defined as $R = \{(x, y) : xy > 0, x, y, \in N\}$. Then, which one of the following is correct? [2007-II]
 - (a) R is symmetric but not reflexive
 - (b) R is reflexive but not symmetric
 - (c) R is symmetric and reflexive but not transitive
 - (d) R is an equivalence relation

м-4

NDA Topicwise Solved Papers - MATHEMATICS

50. What is the value of $\log_{27} 9 \times \log_{16} 64$

$$\frac{\log_{27} 9 \times \log_{16} 04}{\log_4 \sqrt{2}}$$

$$\frac{1}{6}$$

(c) 8

(a)

4 1

[2007-II]

61.

51. Elements of a population are classified according to the presence or absence of each of 3 attributes A, B and C. What is the number of smallest ultimate classes into which the population is divided?

(b)

(d) 4

- (a) 5 (b) 6 (c) 8 (d) 9 [2007-II]
- 53. The following question consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer.

Assertion (A): If events, A, B, C, D are mutually exhaustive,

then $(A \cup B \cup C)^C = D$.

Reason (R) : $(A \cup B \cup C)^{C} = D$ implies if any element is excluded from the sets A, B and C, then it is included in D.

- (a) Both A and R are individually true, and R is the correct explanation of A.
- (b) Both **A** and **R** are individually true but **R** is not the correct explanation of **A**.
- (c) **A** is true but **R** is false.

54. For what value (s) of x is $\log_{10} \{999 + \sqrt{x^2 - 3x + 3}\} = 3?$

55. Which one of the following is correct? The function $f: A \rightarrow$

R where $A = \left\{ x \in \mathbb{R}, -\frac{\pi}{2} < x < \frac{\pi}{2} \right\}$ defined by $f(x) = \tan x$.

- (a) Injective (b) Not injective
- (c) Bijective (d) Not bijective [2008-1]
- 56. Which one of the following real valued functions is never zero?
 - (a) Polynomial function
 - (b) Trigonometric function
 - (c) Logarithmic function
 - (d) Exponential function [2008-1]
- 57. The following question consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer.

Assertion (A): $\{x \in R | x^2 < 0\}$ is not a set. Here R is the set of real numbers.

Reason (R): For every real number $x, x^2 > 0$.

- (a) Both A and R are individually true, and R is the correct explanation of A.
- (b) Both **A** and **R** are individually true but **R** is not the correct explanation of **A**.
- (c) \mathbf{A} is true but \mathbf{R} is false.
- (d) \mathbf{A} is false but \mathbf{R} is true. [2008-I]

58.	58. Let R be the relation defined on the set of natural number			l number N				
	as a	as aRb; a, $b \in N$, if a divides b. Then, which one of the						
	foll	owing is correct ?						
	(a)	(a) R is reflexive only						
	(b)	R is symmetric only						
	(c) R is transitive only							
	(d)	R is reflexive and trans	sitive		[2008-1]			
59.	If 1	$0^{(\log 10 x)} = 2$, what is	the v	alue of x ?				
	(a)	2 only	(b)	-2 only				
	(c)	2 or -2	(d)	1 or – 1	[2008-1]			
60.	Cor	sider the following stat	emen	its				
	1.	$\varphi \in \left\{\varphi\right\}$	2.	$\{ \varphi \} \subseteq \varphi$				
	Wh	Which of the statements given above is/are correct?						
	(a)	1 only	(b)	2 only				

(c) Both 1 and 2 (d) Neither 1 nor 2 [2008-1]

What does the shaded region in the above diagram represent? [2008-I]

(a) $(A \cap B) \cap C$ (b) $(A \cup B) \cap C$

- (c) $(A \cup B) C$ (d) None of the above
- 62. The binary number 0.111111 (where the digit 1 is recurring) is equivalent in decimal system to which one of the following?

(a)
$$\frac{1}{10}$$
 (b) $\frac{11}{10}$ 10

(c) 1 (d)
$$\frac{1}{11}$$
 [2008-1]

63. The difference of two numbers 10001100 and 1101101 in binary system is expressed in decimal system by which one of the following?

64. Let
$$A = \{x \in R \mid -9 \le x < 4\}; B = \{x \in R \mid -13 < x \le 5\}$$
 and

$$C = \{ x \in R \mid -7 \le x \le 8 \}.$$

65.

Then, which one of the following is correct? [2008-1]
(a)
$$-9 \in (A \cap B \cap C)$$
 (b) $-7 \in (A \cap B \cap C)$

(c)
$$4 \in (A \cap B \cap C)$$
 (d) $5 \in (A \cap B \cap C)$
Which one of the following is correct? [2008-1]

(a)
$$A \cup P(A) = P(A)$$
 (b) $A \cap P(A) = A$

(c)
$$A - P(A) = A$$
 (d) $P(A) - \{A\} = P(A)$

Here P(A) denotes the power set of a set A.

Sets	, Relations, Function and Number System		м-5
66.	A function f is defined by $f(x) = x + \frac{1}{x}$. Consider the	77.	What is the number of proper subsets of a given finite setwith n elements?[2009-I]
	following [2008-II]		(a) $2n-1$ (b) $2n-2$
	(1) $(f(x))^2 = f(x^2) + 2$	-	(c) $2^n - 1$ (d) $2^n - 2$
	(2) $(f(x))^3 = f(x^3) + 3f(x)$	78.	If A, B and C are three finite sets, then what is Γ'
	Which of the above is/are correct?		$\lfloor (A \cup B) \cap C \rfloor \text{ equal to?} \qquad [2009-I]$
	(a) 1 only (b) 2 only		(a) $A' \cup B' \cap C'$ (b) $A' \cap B' \cap C'$
	(c) Both 1 and 2 (d) Neither 1 nor 2		(c) $A' \cap B' \cup C'$ (d) $A \cap B \cap C$
67.	If a set A contains 4 elements, then what is the number of	79.	If A and B are subsets of a set X , then what is
	elements in $A \times P(A)$? [2008-II]		$\{A \cap (X-B)\} \cup B \text{ equal to}?$ [2009-1]
	(a) 16 (b) 32		(a) $4 + B$ (b) $4 \cap B$
(0)	(c) 64 (d) 128		$\begin{array}{ccc} (a) & A & b \\ (b) & A & (c) & A \\ (c) & A & (d) & B \end{array}$
68.	If A, B, C are three sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$, then which one of the following is correct? [2008-III]	80.	The total number of subsets of a finite set A has 56 more elements than the total number of subsets of another finite
	(a) $A = B$ only (b) $B = C$ only		set <i>B</i> . What is the number of elements in the set $A?[2009-I]$
	(c) $A = C$ only (d) $A = B = C$		(a) 5 (b) 6
(0)	$(2 + \sqrt{2})^2$; (2000 M)	01	(c) 7 (d) 8
69.	The number $(2+\sqrt{2})$ is [2008-11]	81.	Which one of the following is correct? [2009-1]
	(a) a natural number (b) an irrational number		(a) $A \times (B - C) = (A - B) \times (A - C)$ (b) $A \times (B - C) = (A \times B) \cdot (A \times C)$
	(c) a rational number (d) a whole number		$ \begin{array}{c} (0) A \wedge (B - C) - (A \wedge B) - (A \wedge C) \\ (c) A \cap (B + C) - (A \cap B) + C \end{array} $
70.	If A and B are disjoint sets, then $A \cap (A' \cup B)$ is equal to		(c) $A \mapsto (B \cup C) = (A \mapsto B) \cup C$ (d) $A \mapsto (B \cup C) = (A \mapsto B) \cup C$
	which one of the following? [2008-II]	82	$(d) = A \odot (B \cap C) = (A \odot B) \cap C$ In an examination out of 100 students 75 passed in English
	(a) (b) A	02.	60 passed in Mathematics and 45 passed in both English
	(c) $A \cup B$ (d) $A - B'$		and Mathematics. What is the number of students passed
71.	If A, B, C are three sets, then what is $A - (B - C)$ equal to?		in exactly one of the two subjects? [2009-I]
	[2008-II]		(a) 45 (b) 60
	(a) $A - (B \cap C)$ (b) $(A - B) \cup C$		(c) 75 (d) 90
	(c) $(A-B)\cup(A\cap C)$ (d) $(A-B)\cup(A-C)$	83.	Let $R = \{x \mid x \in N, x \text{ is a multiple of 3 and } x \le 100\}$
72	If A and B are two subsets of a set X then what is		$S = \{x \mid x \in N, x \text{ is a multiple of 5 and } x \le 100\}$
, <u> </u>	$A \cap (A \cup B)$ equal to? [2008-II]		What is the number of elements in $(R \times S) \cap (S \times R)$?
	(a) A (b) B		[2009-I]
	(c) ϕ (d) A'		(a) 36 (b) 33
73	$f:\{1,2,3\} \rightarrow \{4,5\}$ is not a function if it is defined by	0.4	(c) 20 (d) 6
15.	which one of the following? $[2008-II]$	84.	If $A = \{a, b, c\}$ and $R = \{(a, a), (a, b), (b, c), (b, b), (c, c), (c, a)\}$ is a binary relation of A, then which one of the following is
	(a) $\{(2,4), (3,5), (1,5)\}$ (b) $\{(1,4), (2,4), (2,4)\}$		correct? [2009-1]
	(b) $\{(1,4), (2,4), (3,4)\}$ (c) $\{(1,4), (2,5), (3,4)\}$		(a) R is reflexive and symmetric, but not transitive
	$ \begin{array}{c} (1, 4), (2, 5), (3, 4) \\ (1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5) \\ \end{array} $		(b) R is reflexive and transitive, but not symmetric
74	If $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 3), (2, 2), (3, 1)\}$		(c) R is reflexive, but neither symmetric nor transitive
,	$(3, 4), (4, 3), (4, 4)$ is a relation on $A \times A$, then which one of	85	(d) K is relieving, symmetric and it ansitive If $\log_1(x+1) + \log_2(5-3)$ then what is the value of x^2
	the following is correct? [2008-II]	65.	$11 \log_{10}(x + 1) + \log_{10} 5 - 5$, then what is the value of x? [2009-1]
	(a) R is reflexive		(a) 199 (b) 200
	(b) <i>R</i> is symmetric and transitive		(c) 299 (d) 300
	(c) <i>R</i> is transitive but not reflexive		$\log_2 9$
	(d) R is neither reflexive nor transitive	86.	What is the value of $2\log_8 2 - \frac{103}{3}$? [2009-1]
75.	If X and Y are any two non-empty sets, then what is		(a) 0 (b) 1
	(X - Y)' equal to? [2009-1]		(c) 8/3 (d) 16/3
	(a) $X' - Y'$ (b) $X' \cap Y$	87.	What is the decimal equivalent of $(101.101)_2$? [2009-I]
	(c) $X' \cup Y$ (d) $X - Y'$		(a) $(5.225)_{10}$ (b) $(5.525)_{10}$
76.	What is the binary equivalent of decimal number	00	(c) $(5.625)_{10}$ (d) $(5.65)_{10}$
	$(0.8125)_{10}$? [2009-1]	88.	Let $A = \{x \mid x \le 9, x \in N\}$. Let $B = \{a, b, c\}$ be the subset of A where $(a + b + c)$ is a multiple of 2. What is the lower
	(a) $(0.1101)_2$ (b) $(0.1001)_2$		nossible number of subsets like R^2 [2000_III]
	(c) $(0.1111)_2$ (d) $(0.1011)_2$		(a) 12 (b) 21 (c) 27 (d) 30

NDA Topicwise Solved Papers - MATHEMATICS100. If $\log_k x \log_5 k = 3$, then what is x equal to?[2009-II]

89.	Let $A = \{-1, 2, 5, 8\}, B = \{0, 1, 3, 6, 7\}$ and R be the relation 'is	100.	If $\log_k x \log_5 k = 3$, then what is x equal to? [2009-II]
	one less than' from A to B , then how many elements will R		(a) k^5 (b) $5k^3$
	contain? [2009-11] (a) 2 (b) 3		(c) 243 (d) 125
	(a) 2 (b) 3 (c) 5 (d) 9	101.	If $N_a = \{ax \mid x \in N\}$, then what is $N_{12} \cap N_8$ equal to?
90.	Natural numbers are divided into groups as (1), (2, 3),		[2009-II]
	(4, 5, 6), (7, 8, 9, 10) and so on. What is the sum of the		(a) N_{12} (b) N_{20}
	numbers in the 11th group? [2009-II]		(c) N_{24} (d) N_{48}
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102.	If $X = \{(4^n - 3n - 1) n \in N\}$ and $Y = \{9(n-1) n \in N\}$, then
			what is $X \cup Y$ equal to? [2009-II]
91	What is the value of $\frac{\log_{27} 9 \log_{16} 64}{5}$ (2009-11)		(a) X (b) Y
<i>J</i> 1.	$\log_4 \sqrt{2}$	103	(c) N (d) A null set Sets A and B have n elements in common How many
	(a) 1 (b) 2	105.	elements will $(A \times B)$ and $(B \times A)$ have in common?
00	(c) 4 (d) 8 (1101) (110) (1		[2009-II]
92.	If $x = (1 \ 1 \ 0 \ 1)_2$ and $y = (1 \ 1 \ 0)_2$, then what is the value of $x^2 - y^2 \ 2$		(a) 0 (b) 1 (b) $\frac{1}{2}$
	(a) $(1000101)_{2}$ (b) $(10000101)_{2}$	104	(c) n (d) n^2 Let $f: P \rightarrow P$ be defined by $f(x) = x / x + x \neq 0$ $f(0) = 2$
	(c) $(10001101)_2$ (d) $(10010101)_2$	104.	What is the range of f ? [2009-II]
93.	If $(1 0 x 0 1 0)_2 - (1 1 y 1)_2 = (1 0 z 1 1)_2$, then what are the		(a) $\{1,2\}$ (b) $\{1,-1\}$
	possible values of the binary digits x, y, z respectively?	105	(c) $\{-1, 1, 2\}$ (d) $\{1\}$
	[2009-11]	105.	13 625? <i>[2010-11]</i>
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(a) 1101.111 (b) 1111.101
94.	The number 0.0011 in binary system represents [2009-II]		(c) 1101.101 (d) 1111.111
	(a) rational number 3/8 in decimal system	106.	The order of a set A is 3 and that of a set B is 2. What is the
	(b) rational number 1/8 in decimal system		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	(c) rational number 3/16 in decimal system (d) rational number 5/16 in decimal system		
95	If $n(A) = 115$ $n(B) = 326$ $n(A - B) = 47$ then what is	107	What is the value of $\frac{\log \sqrt{\alpha \beta} H}{2010 - H}$? [2010-H]
<i>))</i> .	$n(A \cup B)$ equal to? [2009-III]	107.	what is the value of $\log \sqrt{\alpha \beta \gamma} H$
	(a) 373 (b) 165		(a) $\log_{\alpha\beta}(\alpha)$ (b) $\log_{\alpha\beta\gamma}(\alpha\beta)$
	(c) 370 (d) 394	100	(c) $\log_{\alpha\beta}(\alpha\beta\gamma)$ (d) $\log_{\alpha\beta}(\beta)$ For a set A -consider the following statements: (2010 II)
96.	If $P(A)$ denotes the power set of A and A is the void set, then	106.	For a set A, consider the following statements. $[2010-1]$ 1 $A \cup P(A) = P(A)$ 2 $\{A\} \cap P(A) = A$
	what is number of elements in $P\{P\{P\{P(A)\}\}\}$?		3. $P(A) - \{A\} = P(A)$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		where P denotes power set. [2010-I]
97.	During a certain plane period a state out of a total budget of		Which of the statements given above is/are correct?
	Rs 1400 crores had spent 28% of the total amount on		(a) 1 only (b) 2 only (c) 3 only (d) $1 2 \text{ and } 3$
	Agriculture, 35% on Industry, 12% on Energy and 8% on Social Walfara, 105 areas on Education and the balance	109.	If $A = P(\{1, 2\})$ where P denotes the power set, then which
	amount on Transport. What is the amount spent on		one of the following is correct? [2010-I]
	Transport in crores of rupees? [2009-II]		(a) $\{1,2\} \subset A$ (b) $1 \in A$
	(a) 123 (b) 145	110	(c) $\emptyset \notin A$ (d) $\{1, 2\} \in A$ Let X be the set of all graduates in India Elements x and y in X
00	(c) 165 (d) 133	110.	are said to be related if they are graduates of the same university.
98.	education up to primary school 18 6% have education up		Which one of the following statements is correct? [2010-I]
	to middle school. The people with education up to high		(a) Relation is symmetric and transitive only
	school are twice the number of people with education up to		(c) Relation is reflexive and transivitive only (c) Relation is reflexive and symmetric only
	Pre-University. Of the remaining, 660 are graduates. If the		(d) Relation is reflexive and symmetric and transitive
	population of the town is 15000, then what is the number of neople with education up to high school?	111.	What is the value of [2010-I]
	(a) 3120 (b) 1560 <i>[2009-II]</i>		$(0.101)^{(11)_2} + (0.011)^{(11)_2}$
	(c) 1460 (d) None of these		$\frac{(0.101)_2}{(0.101)(0)_2} + (0.011)_2}{(0.101)(0)_2} = (0.011)(0)_2$
99.	If $(\log_x x) (\log_3 2x) (\log_{2x} y) = \log_x x^2$, then what is the value		$(0.101)_2^{(0.12)} - (0.101)_2^{(0.12)} (0.011)_2^{(0.12)} + (0.011)_2^{(0.12)}$
	(a) $9/2$ (b) 9 [2009-11]		(a) $(0.001)_2$ (b) $(0.01)_2$
	(c) 18 (d) 27		(c) $(0.1)_2$ (d) $(1)_2$
	× *		

- 112. If $A = \{a, b, c, d\}$, then what is the number of proper subsets of A? [2010-1] (a) 16 (b) 15 (c) 14 (d) 12 113. Out of 32 persons, 30 invest in National Savings Certificates and 17 invest in shares. What is the number of persons who invest in both? [2010-I] (b) 15 (d) 19 (a) 13 (c) 17 114. What is $(1111)_2 + (1001)_2 - (1010)_2$ equal to? [2010-II] (a) $(111)_2$ (b) (1100)₂ (d) (1010)₂ (c) $(1110)_2$ 115. The relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (2, 3), (2, 3), (2, 3), (3, 3), (1, 2), (2, 3), (3, 3$ (1, 3) on a set A = $\{1, 2, 3\}$ is [2010-II] (a) reflexive, transitive but not symmetric (b) reflexive, symmetric but not transitive (c) symmetric, transitive but not reflexive (d) reflexive but neither symmetric nor transitive 116. If $\log_3 [\log_3 [\log_3 x]] = \log_3 3$, then what is the value of x? [2010-II] (a) 3 (b) 27 (c) 3⁹ (d) 3^{27} 117. What is the binary number equivalent of the decimal number 32.25? [2010-II] (a) 100010.10 (b) 100000.10 (c) 100010.01 (d) 100000.01 118. If A and B are two disjoint sets, then which one of the [2010-II] 126. following is correct? (b) $B-A'=A\cap B$ (a) $A-B=A-(A \cap B)$ (c) $A \cap B = (A - B) \cap B$ (d) All of these 119. Let N denote the set of natural numbers and 127. $A = \{n^2 : n \in N\}$ and $B = \{n^3 : n \in N\}$. Which one of the following is incorrect? [2010-II] (a) $A \cup B = N$ 128. (b) The complement of $(A \cup B)$ is an infinite set (c) $A \cap B$ must be a finite set (d) A \cap B must be a proper subset of $\{m^6 : m \in N\}$ 129. 120. If $A = \{2, 3\}, B = \{4, 5\}, C = \{5, 6\}$, then what is the number of elements of $A \times (B \cap C)$? [2010-II] (a) 2 (b) 4 (d) 8 (c) 6 121. Let $U = \{1, 2, 3, \dots, 20\}$. Let A, B, C be the subsets of U. Let
- *A* be the set of all numbers, which are perfect squares, B be the set of all numbers which are multiples of 5 and *C* be the set of all numbers, which are divisible by 2 and 3. Consider the following statements : [2010-II]
 - I. A, B, C are mutually exclusive.
 - II. *A*, *B*, *C* are mutually exhaustive.
 - III. The number of elements in the complement set of $A \cup B$ is 12.

Which of the statements given above are the correct?

- (a) I and II only (b) I and III only
- (c) II and III only (d) I, II and III
- 122. If the cardinality of a set A is 4 and that of a set B is 3, then what is the cardinality of the set $A \Delta B$? [2010-II]
 - (a) 1 (b) 5
 - (c) 7
 - (d) Cannot be determined as the sets A and B are not given

23.	wna	at is the range of $f(x) =$	$\cos 2x - \sin 2x?$	[2011-1]
	(a)	[2,4]	(b)	[-1,1]
	(c)	$\left[-\sqrt{2},\sqrt{2}\right]$	(d) $(-\sqrt{2},2)$	
24.	If A	$= \{1, 2, 5, 6\}$ and	$B = \{1, 2, 3\},$	then what is
	(A >	$(B) \cap (B \times A)$ equal to	o?	[2011-I]
	(a)	{(1,1), (2,1), (6,1), (3	,2)}	
	(b)	$\{(1, 1), (1, 2), (2, 1), (2,$	(,2)	

c c

(c) $\{(1, 1), (2, 2)\}$

(d)

 $\{(1,1), (1,2), (2,5), (2,6)\}$

DIRECTIONS (Qs. 125-129) : Read the following passage and give answer.

The students of a class are offered three languages (Hindi, English and French). 15 students learn all the three languages whereas 28 students do not learn any language. The number of students learning Hindi and English but not French is twice the number of students learning Hindi and French but not English. The number of students learning English and French but not Hindi is thrice the number of students learning Hindi and 17 students learn only English. The total number of students learning French is 11. *[2011-I]* 125. How many students learn precisely two languages?

(a)	55	(b)	40
(c)	30	(d)	13
How	v many students learn a	t leas	st two languages?
(a)	15	(b)	30
(c)	45	(d)	55
Wha	at is the total strength o	of the	class?
(a)	124	(b)	100
(c)	96	(d)	66
How	v many students learn E	nglis	h and French?
(a)	30	(b)	43
(c)	45	(d)	73
How	v many students learn a	t leas	st one languages?
(a)	45	(b)	51

(c) 96 (d) None of these

130. What is

$$\log\left(a + \sqrt{a^2 + 1}\right) + \log\left(\frac{1}{a + \sqrt{a^2 + 1}}\right) \text{ equal to? [2011-1]}$$

(a) 1 (b) 0

(c) 2 (d) $\frac{1}{2}$

131. Consider the following with regard to a relation *R* on a set of real numbers defined by xRy if and only if 3x + 4y = 5

[2011-1]

I.	0 <i>R</i> 1	II.	$1R\frac{1}{2}$
I.	0 <i>R</i> 1	II.	$1R\frac{1}{2}$

III.
$$\frac{2}{3} R \frac{3}{4}$$

Which of the above are correct?

- (a) I and II (b) I and III
- (c) II and III only (d) I, II and III

м-7

NDA Topicwise Solved Papers - MATHEMATICS

132. What is the value of

$$\log_{10}\left(\frac{9}{8}\right) - \log_{10}\left(\frac{27}{32}\right) + \log_{10}\left(\frac{3}{4}\right)?$$
(a) 3
(b) 2
(c) 1
(d) 0
[2011-I]

133. In a binary number system, assume that a = 00111 and h

<i>b</i> =	01110, then in a decima	al syst	em	$\frac{a}{a}$, which is equal to
(a)	1	(b)	2	[2011-I]
(c)	4	(d)	5	

- 134. Let *M* be the set of men and *R* is a relation 'is son of' defined on M. Then, R is [2011-I]
 - (a) an equivalence relation
 - (b) a symmetric relation only
 - (c) a transitive relation only
 - (d) None of the above
- 135. The number 10101111 in binary system is represented in decimal system by which one of the following numbers? [2011-I] (a) 157 (b) 175 (c) 571 (d) 751
- 136. If A, B and C are non-empty sets such that $A \cap C = \phi$, then what is $(A \times B) \cap (C \times B)$ equal to?

(a)
$$A \times C$$
 (b) $A \times B$ [2011-I]
(c) $B \times C$ (d) ϕ

- 137. If $A = \{4n + 2 | n \text{ is a natural number}\}$ and $B = \{3n | n \text{ is a }$ natural number}, then what is $(A \cap B)$ equal to? [2011-I]
 - (a) $\{12n^2 + 6n | n \text{ is a natural number}\}\$
 - (b) $\{24n-12 \mid n \text{ is a natural number}\}$
 - (c) $\{60n+30|n \text{ is a natural number}\}$
 - (d) $\{12n-6 | n \text{ is a natural number}\}$
- 138. If P, Q and R are three non-collinear points, then what is $PO \cap PR$ equal to? [2011-1]
 - (a) Null set (b) $\{P\}$
 - (c) $\{P, Q, R\}$ (d) $\{Q, R\}$
- 139. In binary system the decimal number 0.3 can be expressed as [2011-II]
 - (a) $(0.01001....)_2$ (b) $(0.10110....)_2$
 - (c) $(0.11001....)_{2}$ (d) (0.10101.....)₂
- 140. If $\tan \theta = \sqrt{m}$, where m is non-square natural number, then sec 2θ is [2011-II]
 - (a) a negative number
 - (b) a transcendental number
 - (c) an irrational number
 - (d) a rational number
- 141. If $A = \{a, b, c\}$, then what is the number of proper subsets of [2011-II] A?
- (a) 5 (d) 8 (b) 6 (c) 7 [2011-II] 142. What is the value of $\log_2 (\log_3 81)$? (d) 9 (a) 2 (b) 3 (c) 4
- 143. If ϕ is a null set, then which one of the following is correct? [2011-II]

(a)
$$\phi = 0$$
 (b) $\phi = \{0\}$

(c) $\phi = \{\phi\}$ (d) $\phi = \{ \}$

144.	Out and in e	Out of 500 first year students, 260 passed in the first semester and 210 passed in the second semester. If 170 did not pass in either semester, how many passed in both semesters?				
	(a)	30	(b)	40	[2012-I]	
	(c)	70	(d)	140		
145.	Wh	at is the decimal numb	er rep	presentation of	the binary	
	nun	nber $(11101.001)_2$?			[2012-I]	
	(a)	30.125	(b)	29.025		
	(c)	29.125	(d)	28.025		
146.	Let	$\mathbf{U} = \left\{ \mathbf{x} \in \mathbf{N} : 1 \le \mathbf{x} \le 10 \right\}$	} be t	he universal set	t, N being	
	thes	set of natural numbers. If	A=	1, 2, 3, 4} and B	$= \{2, 3, 6,$	
	10}	then what is the comple	ment	of $(A-B)$?	[2012-1]	
	(a)	{6, 10}	(b)	{1,4}	1 1	
	(c)	{2, 3, 5, 6, 7, 8, 9, 10}	(d)	{5, 6, 7, 8, 9, 10	}	
147.	Let	$A = \{x : x \text{ is a square of a } \}$	natura	al number and x	is less than	
	100} and B is a set of even natural numbers. What is the					
	carc	linality of $A \cap B$?			[2012-I]	
	(a)	4	(b)	5		
	(c)	9	(d)	None of the ab	ove	
148.	The	number 292 in decima	l syst	em is expressed	l in binary	
	syst	em by			[2012-I]	
	(a)	100001010	(b)	100010001		
	(c)	100100100	(d)	101010000		
149.	The	set $A = \{x : x + 4 = 4\} c$	an al	so be represente	d by:	
	(a)	0	(b)	φ	[2012-I]	
	(c)	{φ}	(d)	{0}		
DIR	ЕСТ	TONS (Qs. 150-153) : I	n a ci	ty, three daily no	ewspapers	
A, B,	Ca	re published, 42% read	! A; 5	1% read B; 68	% read C;	

30% read A and B; 28% read B and C; 36% read A and C; 8% do not read any of the three newspapers.

150.	Wha	at is the percentage of p	perso	ns who read all the three
	pape	ers?		[2012-I]
	(a)	20%	(b)	25%
	(c)	30%	(d)	40%
151.	Wha	at is the percentage of	f per	sons who read only two
	pape	ers?		[2012-I]
	(a)	19%	(b)	31%
	(c)	44%	(d)	None of the above
152.	Wha	at is the percentage of pe	rsons	who read only one paper?
	(a)	38%	(b)	48% <i>[2012-I]</i>
	(c)	51%	(d)	None of the above
153.	Wha	at is the percentage of	perso	ons who read only A but
	neith	ner B nor C?		[2012-I]
	(a)	4%	(b)	3%
	(c)	1%	(d)	None of the above
			. 1	
154.	Wha	at is the value of $2\log_8$	$2 - \frac{1}{3}$	$\log_3 9$? [2012-I]
	(a)	0	(h)	1
	(a)	0	(0)	1/2
155		-10 1) and $B = (1 0)$	(u) then	1/3
155.	II A	$-\{0,1\}$ and $D-\{1,0\}$,	then	what $ISA \land D$ equal to: [2012] II
	(a)	f(0, 1) (1, 0)	(h)	$\{(0, 0), (1, 1)\}$
	(a)	$\{(0, 1), (1, 0)\}$	(0)	$\{(0,0),(1,1)\}$
156		$\{(0, 1), (1, 0), (1, 1)\}$	(u)	$A \wedge A$
150.	II A	mon then what is the n	umba	er of common elements in
	thes	sets $\Delta \times B$ and $B \times \Delta ?$	unio	
	(a)		(h)	[2012-1] n ²
	(a)	11	(D)	11-

(c) 2n (d) zero

м-8

Sets, Relations, Function and Number System

157.	If A and B are any two se	ets, th	then what is $A \cap (A \cup B)$
	equal to?		[2012-I]
	(a) Complement of A	(b)	Complement of B
150	(c) B The relation the sthe serve ((d)	
158.	is:	ather	as over the set of children [2012-II]
	(a) only reflexive	(b)	only symmetric
	(c) only transitive	(d)	an equivalence relation
159.	The decimal representation	of the	e number $(1011)_2$ in binary
	system is:	(h)	[2012-11]
	$ \begin{array}{c} (a) & 5 \\ (a) & 0 \end{array} $	(0)	/ 11
160	The decimal number (57.3)	(u) 75)	when converted to binary
100.	number takes the form.	/ 5/10	[2012-II]
	(a) $(111001.011)_2$	(b)	(100111.110)
	(c) $(110011.101)_2^2$	(d)	$(111011.011)_{2}^{2}$
161.	$If(\log_3 x)(\log_x 2x)(\log_2 x)$	r) = lc	x^2 , then what is y equal
	to?		[2012-II]
	(a) 4.5	(b)	9
	(c) 18	(d)	27
162.	Let $P = \{1, 2, 3\}$ and a rela	tion (on set P is given by the set $P = P = P$
	$R = \{(1, 2), (1, 3), (2, 1), (1, 1)\}$), (2,	(3, 3), (2, 3). Then R is:
	(a) Paflaviva transitiva b	it not	[2012-11]
	(b) Symmetric transitive	n noi	symmetric streflexive
	(c) Symmetric reflexive h	ut no	t transitive
	(d) None of the above		
163.	If a non-empty set A contain	ıs n e	lements, then its power set
163.	If a non-empty set A contain contains how many element	ns n e ts ?	lements, then its power set [2012-II]
163.	If a non-empty set A contain contains how many element (a) n^2	ns n e ts ? (b)	lements, then its power set [2012-II] 2 ⁿ
163.	If a non-empty set A contain contains how many elemen (a) n ² (c) 2n	ns n e ts ? (b) (d)	lements, then its power set [2012-II] 2 ⁿ n+1
163. 164.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set } \}$	ns n e ts ? (b) (d) of wh	lements, then its power set [2012-II] n+1 nole numbers and $x < 3$ },
163. 164.	If a non-empty set A contain contains how many elemen (a) n^2 (c) $2n$ Let A = {x \in W, the set B = {x \in N, the set of nature	ns n e ts ? (b) (d) of wh ral nu	lements, then its power set [2012-II] n+1 nole numbers and $x < 3$, numbers and $2 \le x < 4$ and
163. 164.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let A = {x \in W, the set B = {x \in N, the set of nature C = {3, 4}, then how ma	ns n e ts ? (b) (d) of wh cal nu ny el	lements, then its power set [2012-II] 2^{n} n+1 nole numbers and $x < 3$ }, imbers and $2 \le x < 4$ } and ements will $(A \cup B) \times C$
163. 164.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set} \in B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matcontain}\}$	ns n e ts ? (b) (d) of wh cal nu ny el	lements, then its power set [2012-II] 2^{n} n+1 nole numbers and $x < 3$ }, imbers and $2 \le x < 4$ } and ements will $(A \cup B) \times C$ [2012-II]
163. 164.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set} B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how material} (a) 6$	ns n e ts ? (b) (d) of wh cal nu ny el (b)	lements, then its power set [2012-II] 2^{n} n+1 nole numbers and $x < 3$ }, umbers and $2 \le x < 4$ } and ements will $(A \cup B) \times C$ [2012-II] 8
163. 164.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set} B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matcontain} \}$ (a) 6 (c) 10	ns n e ts ? (b) (d) of wh cal nu ny el (b) (d)	lements, then its power set [2012-II] 2^{n} n+1 hole numbers and $x < 3$ }, umbers and $2 \le x < 4$ } and ements will $(A \cup B) \times C$ [2012-II] 8 12
163. 164.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set} B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matcontain} \}$ (a) 6 (c) 10	ns n e ts ? (b) (d) of wh cal nu ny el (b) (d)	lements, then its power set [2012-II] n+1 nole numbers and $x < 3$ }, imbers and $2 \le x < 4$ } and ements will $(A \cup B) \times C$ [2012-II] 8 12 $x \le x $
163.164.165.	If a non-empty set A contain contains how many elemen (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set } G = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matcontain} \}$ (a) 6 (c) 10 What is the range of the fu	ns n e ts ? (b) (d) of wh ral nu ny el (b) (d) nction	lements, then its power set [2012-II] 2 ⁿ n+1 nole numbers and x < 3}, umbers and 2 ≤ x < 4} and ements will $(A \cup B) \times C$ [2012-II] 8 12 n f(x) = $\frac{ x }{x}$, x ≠ 0?
163.164.165.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set } B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matcontain} \}$ (a) 6 (c) 10 What is the range of the fu	ns n e ts ? (b) (d) of wh cal nu ny el (b) (d) nction	lements, then its power set [2012-II] 2 ⁿ n+1 nole numbers and x < 3}, umbers and 2 ≤ x < 4} and ements will $(A \cup B) \times C$ [2012-II] 8 12 n f(x) = $\frac{ x }{x}$, x ≠ 0? [2013-I]
163.164.165.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set } B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matcontain} \}$ (a) 6 (c) 10 What is the range of the fut (a) Set of all real numbers	ns n e ts ? (b) (d) of wh cal nu ny el (b) (d) nction (b)	lements, then its power set [2012-II] 2 ⁿ n+1 nole numbers and x < 3}, imbers and 2 ≤ x < 4} and ements will (A \cup B)×C [2012-II] 8 12 n f(x) = $\frac{ x }{x}$, x ≠ 0? [2013-I] Set of all integers
163.164.165.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set} B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matrix} (a) 6(c) 10What is the range of the fut(a) Set of all real numbers(c) \{-1, 1\}$	ns n e ts ? (b) (d) of wh ral nu ny el (b) (d) nction (b) (d)	lements, then its power set [2012-II] n+1 nole numbers and x < 3}, imbers and 2 ≤ x < 4} and ements will $(A \cup B) \times C$ [2012-II] 8 12 n f(x) = $\frac{ x }{x}$, x ≠ 0? [2013-I] Set of all integers {-1,0,1}
163.164.165.166.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set } B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matrix} (a) 6(c) 10What is the range of the fut(a) Set of all real numbers(c) \{-1, 1\}The binary representation of$	ns n e ts? (b) (d) of wh cal nu ny el (b) (d) nction (b) (d) f the	lements, then its power set [2012-II] 2 ⁿ n+1 nole numbers and x < 3}, imbers and 2 ≤ x < 4} and ements will $(A \cup B) \times C$ [2012-II] 8 12 n f(x) = $\frac{ x }{x}$, x ≠ 0? [2013-I] Set of all integers {-1,0,1} decimal number 45 is
163.164.165.166.	If a non-empty set A contain contains how many elemen (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set of nature} B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matrix} (a) 6(c) 10What is the range of the fut(a) Set of all real numbers(c) \{-1, 1\}The binary representation of(a) 110011$	ns n e ts? (b) (d) of wh cal nu ny el (b) (d) nction (b) (d) f the (b)	lements, then its power set [2012-II] 2 ⁿ n+1 nole numbers and x < 3}, imbers and $2 \le x < 4$ } and ements will $(A \cup B) \times C$ [2012-II] 8 12 n $f(x) = \frac{ x }{x}, x \ne 0?$ [2013-I] Set of all integers $\{-1, 0, 1\}$ decimal number 45 is 101010 [2013-I]
163.164.165.166.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set} B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matrix} C = \{3, 6\}, then $	ns n e ts ? (b) (d) of wh cal nu ny el (b) (d) f the (b) (d) (d)	lements, then its power set [2012-II] n+1 nole numbers and x < 3}, imbers and 2 ≤ x < 4} and ements will $(A \cup B) \times C$ [2012-II] 8 12 n f(x) = $\frac{ x }{x}$, x ≠ 0? [2013-I] Set of all integers {-1, 0, 1} decimal number 45 is 101010 [2013-I] 101101
163.164.165.166.167.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set} B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matrix} C = \{3, 4\}, thenh$	ns n e ts ? (b) (d) of wh ral nu ny el (b) (d) (d) (d) (d) f the (b) (d) (d) s cont	lements, then its power set [2012-II] 2 ⁿ n+1 nole numbers and x < 3}, imbers and 2 ≤ x < 4} and ements will $(A \cup B) \times C$ [2012-II] 8 12 n $f(x) = \frac{ x }{x}, x \neq 0?$ [2013-I] Set of all integers {-1,0,1} decimal number 45 is 101010 [2013-I] 101101 rained in an angle, m is the
163.164.165.166.167.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set} B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matrix} (a) 6(c) 10What is the range of the full(a) Set of all real numbers(c) \{-1, 1\}The binary representation of(a) 110011(c) 1101101If d is the number of degreesnumber of minutes and s is$	ns n e ts ? (b) (d) of wh cal nu ny el (b) (d) (d) f the (b) (d) f the (b) (d) s cont	lements, then its power set [2012-II] 2 ⁿ n+1 nole numbers and x < 3}, imbers and 2 ≤ x < 4} and ements will $(A \cup B) \times C$ [2012-II] 8 12 n $f(x) = \frac{ x }{x}, x \neq 0?$ [2013-I] Set of all integers {-1,0,1} decimal number 45 is 101010 [2013-I] 101101 cained in an angle, m is the umber of seconds, then the
163.164.165.166.167.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set } B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matrix} C = \{3, 4\}, \text{ then how matrix} (a) 6(c) 10What is the range of the full(a) Set of all real numbers(c) \{-1, 1\}The binary representation of(a) 110011(c) 1101101If d is the number of degreestnumber of minutes and s isvalue of (s - m)/(m - d) is:$	ns n e ts? (b) (d) of wh cal nu ny el (b) (d) (b) (d) (b) (d) f the (b) (d) s cont the nu	lements, then its power set [2012-II] 2 ⁿ n+1 nole numbers and x < 3}, imbers and 2 ≤ x < 4} and ements will $(A \cup B) \times C$ [2012-II] 8 12 n $f(x) = \frac{ x }{x}, x \neq 0?$ [2013-I] Set of all integers {-1,0,1} decimal number 45 is 10100 [2013-I] 101101 trained in an angle, m is the umber of seconds, then the [2013-I]
163.164.165.166.167.	If a non-empty set A contain contains how many elemen (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set } B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matrix} C = \{3, 4\}, \text{ then how matrix} (a) 6(c) 10What is the range of the full(a) Set of all real numbers(c) \{-1, 1\}The binary representation of(a) 110011(c) 1101101If d is the number of degreesnumber of minutes and s isvalue of (s - m)/(m - d) is:(a) 1$	ns n e ts? (b) (d) of wh cal nu ny el (b) (d) f the (b) (d) f the nu (b) (d) f the nu (b) (d)	lements, then its power set [2012-II] 2 ⁿ n+1 nole numbers and x < 3}, imbers and 2 ≤ x < 4} and ements will $(A \cup B) \times C$ [2012-II] 8 12 n $f(x) = \frac{ x }{x}, x \neq 0?$ [2013-I] Set of all integers {-1,0,1} decimal number 45 is 101010 [2013-I] 101101 rained in an angle, m is the umber of seconds, then the [2013-I] 60
163.164.165.166.167.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set of natures} B = \{x \in N, \text{ the set of natures} C = \{3, 4\}, \text{ then how matrix} C = \{3, 6\}, \text{ then how matrix} C = \{3, $	ns n e ts? (b) (d) of wh ral nu ny el (b) (d) f the (b) (d) f the (b) (d) s cont the nu (b)	lements, then its power set [2012-II] 2 ⁿ n+1 nole numbers and x < 3}, imbers and 2 ≤ x < 4} and ements will $(A \cup B) \times C$ [2012-II] 8 12 n $f(x) = \frac{ x }{x}, x \neq 0?$ [2013-I] Set of all integers {-1,0,1} decimal number 45 is 101010 [2013-I] 101101 rained in an angle, m is the umber of seconds, then the [2013-I] 60
163.164.165.166.167.	If a non-empty set A contain contains how many element (a) n^2 (c) $2n$ Let $A = \{x \in W, \text{ the set } B = \{x \in N, \text{ the set of nature} C = \{3, 4\}, \text{ then how matrix} C = \{1, 4\}, then$	ns n e ts ? (b) (d) of wh cal nu ny el (b) (d) (d) f the (b) (d) (d) f the nu (b) (d) (d) (d)	lements, then its power set [2012-II] 2 ⁿ n+1 nole numbers and x < 3}, imbers and 2 ≤ x < 4} and ements will $(A \cup B) \times C$ [2012-II] 8 12 n $f(x) = \frac{ x }{x}, x \neq 0?$ [2013-I] Set of all integers {-1,0,1} decimal number 45 is 101010 [2013-I] 101101 cained in an angle, m is the umber of seconds, then the [2013-I] 60 None of these

DIRECTIONS (Qs. 168-173) : For the next six (06) questions that follow :

In a state with a population of 75×10^6 , 45% of them know Hindi, 22% know English, 18% know Sanskrit, 12% know Hindi and English, 8% know English and Sanskrit, 10% know Hindi and Sanskrit and 5% know all the three languages.

168.	What is the number of peop	ple w	ho do not know	any of the
	above three languages ?			[2013-I]
	(a) 3×10^{6}	(b)	4×10^{6}	
	(c) 3×10^7	(d)	4×10^{7}	
169.	What is the number of peop	ole wl	ho know Hindi	only?
	(a) 21×10^6	(b)	25×10^{6}	[2013-1]
	(c) 28×10^6	(d)	3×10^7	. ,
170.	What is the number of peop	ple w	ho know Sansk	rit only?
	(a) 5×10^6	(b)	45×10^{5}	[2013-1]
	(c) 4×10^{6}	(d)	None of the al	bove
171.	What is the number of peop	ble w	ho know Englis	sh only?
	(a) 5×10^6	(b)	45×10^{5}	[2013-]]
	(c) 4×10^{6}	(d)	None of the al	hove
172	What is the number of	neoi	nle who know	only one
	language ?	P. o		[2013-]]
	(a) 3×10^6	(b)	4×10^{6}	[=0101]
	(c) 3×10^7	(d)	4×10^{7}	
173	What is the number of	neor	le who know	only two
175.	languages ?	peop	Jie who khow	[2013_I]
	(a) 11.25×10^5	(h)	11.25×10^{6}	[2015 1]
	(c) 12×10^5	(0)	12.5×10^5	
174	Which one of the following	tic a	null set ?	[2013_]]
174.	(a) $\{0\}$	(h)		[2013 1]
	$ \begin{array}{c} (a) \{0\} \\ (c) \{1\}\} \end{array} $	(0)	$\int \mathbf{v} \mathbf{v}^2 + 1 = 0 \mathbf{v}$	$ \subset \mathbb{R}^{1}$
175	$If A = \{x, y\} B = \{2, 3\} C =$	= {3 4	1) then what is t	the number
170.		(5,	ry, then what is t	
	of elements in $A \times (B \cup C)$)?		[2013-1]
	(a) 2 (b) 4	(c)	6 (d)	8
176.	What is the value of $\log_{v} x$	o log	$g_x y^2 \log_z z^3$?	[2013-I]
	(a) 10 (b) 20	(c)	30 (d)	60
177.	If A is a relation on a set R,	then	which one of the	e following
	is correct ?			[2013-I]
	(a) $R \subseteq A$	(b)	$A \subseteq R$	
	(c) $A \subset (\mathbf{R} \times \mathbf{R})$	(d)	$\mathbf{R} \subset (\mathbf{A} \times \mathbf{A})$	
179	f(t) = (1, 2) P = (2, 2) on	d C-	$= \begin{pmatrix} 2 & 4 \end{pmatrix}$ then	what is the
1/0.	$II A = \{1, 2\}, B = \{2, 5\}$ all	iu C -	$= \{ 5, 4 \}, \text{ then }$	what is the
	cardinality of $(A \times B) \cap (A$	$\times C$?	[2013-II]
	(a) 8 (b) 6	(c)	2 (d)	1
179.	If A is a finite set having n	elen	nents, then the	number of
	relations which can be defin	ned in	n A is	[2013-II]
	(a) 2^n	(b)	n^2	
	(2) (2)		<i>n</i>	
	(c) 2^n	(u)	n	
180.	Which one of the followin	g is a	an example of	non-empty
	set ?			[2013-II]
	(a) Set of all even prime no	umbe	ers	
	(b) $(x: x^2 - 2 = 0 \text{ and } x \text{ is rate})$	ationa	al)	
	(c) $\{x : x \text{ is a natural num}\}$	nber,	x < 8 and simu	ıltaneously
	$x > 12$ }			
	(d) $\{x : x \text{ is a point commons}\}$	on to a	any two parallel	lines}
181.	The number 83 is written in	the	binary system as	S
				[2013-II]

(b) 101101

(c) 1010011 (d) 110110

182. The relation R in the set Z of integers given by $R = \{(a, b) : a - b \text{ is divisible by 5} \}$ is [2013-II]

(a) reflexive

(a) 100110

- (b) reflexive but not symmetric
- (c) symmetric and transitive
- (d) an equivalence relation

NDA Topicwise Solved Papers - MATHEMATICS

- 183. In a group of 50 people, two tests were conducted, one for diabetes and one for blood pressure. 30 people were diagnosed with diabetes and 40 people were diagnosed with high blood pressure. what is the minimum number of people who were having diabetes and high blood pressure ? [2013-II] (a) 0 (b) 10
 - (c) 20 (d) 30
- 184. Let $A = \{a, b, c, d\}$ and $B = \{x, y, z\}$. What is the number of elements in $A \times B$? [2013-II] (b) 7 (a) 6
 - (d) 64 (c) 12
- 185. If A is a subset of B, then which one of the following is correct? [2013-II]

(b) $B^c \subset A^c$ (a) $A^c \subset B^c$

(c)
$$A^c B^c$$
 (d) $A \subset A \cap B$

186. What is the angle (in circular measure) between the hour hand and the minute hand of a clock when the time is half past 4? [2013-II]

[2013-II]

[2013-II]

(a) 3 4 $\frac{\pi}{6}$ (d) None of these (c)

187. Consider the following :

 $A \cup (B \cap C) = (A \cap B) \cup (A \cap C)$ 1.

 $A \cap (B \cup C) = (A \cup B) \cap (A \cup C)$ 2.

Which of the above is/are correct?

(a	a) 1 only	(b) 2 only
~~	,	(0) = 0111

- (c) Both 1 and 2 (d) Neither 1 nor 2
- 188. A number in binary system is 110001. It is equal to which one of the following numbers in decimal system?

(a)	45	(b)	46	
(c)	48	(d)	49	

- 189. If $A = \{1, 3, 5, 7\}$, then what is the cardinality of the power set P(A)? [2013-II]
- 17 (a) 8 (b) 15 (c) 16 (d) 190. What is $\log_{81}243$ equal to? [2013-II] (a) 0.75 (b) 1.25
 - (d) 3 (c) 1.5
- 191. Let X be the set of all citizens of India. Elements x, y in X are said to be related if the difference of their age is 5 years. [2014-I] Which one of the following is correct?
 - (a) The relation is an equivalence relation on X.
 - The relation is symmetric but neither reflexive nor (b) transitive.
 - The relation is reflexive but neither, symmetric nor (c) transitive.

(d) None of the above

192. Consider the following relations from A to B where

[2014-I] $A = \{u, v, w, x, y, z\}$ and $B = \{p, q, r, s\}.$

1. $\{(u, p), (v, p), (w, p), (x, q), (y, q), (z, q)\}$ 2.

 $\{(u, p), (v, q), (w, r), (z, s)\}$

- 3. $\{(u, s), (v, r), (w, q), (u, p), (v, q), (z, q),\}$
- 4 $\{(u, q), (v, p), (w, s), (x, r), (y, q), (z, s),\}$

Which of the above relations are not functions?

- (a) 1 and 2 (b) 1 and 4
- (c) 2 and 3(d) 3 and 4

- 193. Let S denote set of all integers. Define a relation R on S as aRb if $ab \ge 0$ where $a, b \in S'$. Then R is : [2014-I]
 - (a) Reflexive but neither symmetric nor transitive relation
 - (b) Reflexive, symmetric but not transitive relation
 - (c) An equivalence relation
 - (d) Symmetric but neither reflexive nor transitive relation
- 194. What is the sum of the two numbers $(11110)_2$ and $(1010)_2$? [2014-I]
 - (a) $(101000)_2$ (b) (110000)₂ (c) $(100100)_2$ (d) $(101100)_{2}$
- 195. p, q, r, s, t, are five numbers such that the average of p, q and r is 5 and that of s and t is 10. What is the average of all the five numbers? [2014-1] (a) 7.75 (b) 7.5 (c) 7 (d) 5
- 196. The number 251 in decimal system is expressed in binary system by : [2014-1] (b) 11111011 (a) 11110111 (c) 11111101 (d) 11111110

DIRECTIONS (Qs. 197-199): For the next three (03) items that follow:

In a survey of 25 students, it was found that 15 had taken Mathematics, 12 had taken Physics and 11 had taken Chemistry, 5 had taken Mathematics and Chemistry, 9 had taken Mathematics and Physics, 4 had taken Physics and Chemistry and 3 had taken all the three subjects. [2014-I]

- 197. The number of students who had taken only physics is :
 - (a) 2 (b) 3 (d) 6 (c) 5
- 198. The number of students who had taken only two subjects is :
 - (a) 7 (b) 8
 - (c) 9 (d) 10
- 199. Consider the following statements :
 - The number of students who had taken only one 1. subject is equal to the number of students who had taken only two subjects.
 - The number of students who had taken at least two 2. subjects is four times the number of students who had taken all the three subjects.
 - Which of the above statements is/are correct? (b) 2 only
 - (a) 1 only
 - (c) Both 1 and 2 (d) Neither 1 nor 2
- 200. Consider the following statements : [2014-I]
 - The function $f(x) = \sin x$ decreases on the interval 1. $(0, \pi/2)$.
 - 2. The function $f(x) = \cos x$ increases on the interval $(0, \pi/2).$
 - Which of the above statements is/are correct?
 - (b) 2 only (a) 1 only
 - (c) Both 1 and 2 (d) Neither 1 nor 2
- 201. The relation S is defined on the set of integers Z as xSy if integer x devides integer y. Then [2014-II] (a) *s* is an equivalence relation.

[2014-II]

- (b) *s* is only reflexive and symmetric.
- (c) *s* is only reflexive and transitive.
- (d) *s* is only symmetric and transitive.
- 202. What is $(1001)_2$ equal to?
 - (b) (9)₁₀ (a) $(5)_{10}$
 - (d) $(11)_{10}$ (c) $(17)_{10}$
(a) 0

203. A and B are two sets having 3 elements in common. If n(A) = 5, n(B) = 4, then what is $n(A \times B)$ equal to ?

> [2014-II] (b) 9 (c) 15 (d) 20

204. Let X be the set of all persons living in a city. Persons x, yin X are said to be related as x < y if y is at least 5 years older than *x*. Which one of the following is correct? [2015-I]

- (a) The relation is an equivalence relation on X
- (b) The relation is transitive but neither reflexive nor symmetric
- The relation is reflexive but neither transitive nor (c) symmetric
- (d) The relation is symmetric but neither transitive nor reflexive
- 205. In a class of 60 students, 45 students like music, 50 students like dancing, 5 students like neither. Then the number of students in the class who like both music and dancing is [2015-1]

(b) 40 (a) 35 (c) 50 206. If $\log_{10} 2$, $\log_{10} (2^x - 1)$ and $\log_{10}(2^x + 3)$ are three consecutive terms of an A.P, then the value of x is [2015-I]

(b) $\log_5 2$ (d) $\log_{10} 5$ (a) 1 (c) $\log_2 5$

- 207. Let Z be the set of integers and aRb, where a, $b \in Z$ if and only if (a - b) is divisible by 5. [2015-1] Consider the following statements:
 - The relation R partitions Z into five equivalent classes. 1. 2 Any two equivalent classes are either equal or disjoint. Which of the above statements is/are correct? (a) 1 only (b) 2 only(c) Both 1 and 2 (d) Neither 1 nor 2
- 208. Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Then the number of subsets of A containing exactly two elements is [2015-I] (a) 20 (b) 40 (c) 45 (d) 90
- 209. The decimal number $(127.25)_{10}$, when converted to binary nunber, takes the form [2015-I] (b) (1111110.01), (a) $(111111111)_{2}$
 - (d) $(1111111.01)_{7}$ (c) $(1110111.11)_{2}$
- 210. If $A = \{x : x \text{ is a multiple of } 3\}$ and
 - $B = \{x : x \text{ is a multiple of } 4\}$ and $C = \{x : x \text{ is a multiple of } 12\}, \text{ then which one of the following}\}$ is a null set? [2015-I]

(a)	$(A / B) \cup C$	(b) $(A / B) / C$	
(c)	$(A \cap B) \cap C$	(d) $(A \cap B)/C$	
- 0 /			

- 211. If $(11101011)_2$ is converted decimal system, then the [2015-I] resulting number is
 - (a) 235 (b) 175 (d) 126 (c) 160
- 212. For each non-zero real number x, let $f(x) = \frac{x}{|x|}$. The range

- (a) a null set
- (b) a set consisting of only one element
- (c) a set consisting of two elements
- (d) a set consisting of infinitely many elements

213. Let X be the set of all persons living in Delhi. The persons a and b in X are said to be related if the difference in their ages is at most 5 years. The relation is [2015-II] (a) an equivalence relation (b) reflexive and transitive but not symmetric (c) symmetric and transitive but not reflexive (d) retlexive and symmetric but not transitive 214. What is $(100000001)_2 - (0.0101)_2$ equal to? [2015-II] (a) $(512.6775)_{10}$ (b) (512.6875)₁₀ (c) $(512.6975)_{10}^{10}$ (d) (215. If $A = |x \in IR : x^2 + 6x - 7 < 0$ } and (d) $(512.0909)_{10}$ $B = \{x \in IR : x^2 + 9x + 14 > 0\}$, then which of the following is/ are correct? [2015-II] 1. $(A \cap B) = (-2, 1)$ 2 (A B) = (-7, -2)Select the correct answer using the code given below: (a) 1 only (b) 2 Only (c) Both 1 and 2 (d) Neither 1 nor 2 216. A, B, C and D are four sets such that $A \cap B = C \cap D = \phi$. Consider the following : [2015-II] 1. $A \cup C$ and $B \cup D$ are always disjoint. $A \cap C$ and $B \cap D$ are always disjoint 2 Which of the above statements is/are correct? (a) 1 only (b) 2 only(c) Both 1 and 2 (d) Neither 1 nor 2 217. If $\log_8 m + \log_8 \frac{1}{6} = \frac{2}{3}$, then m is equal to [2015-II] (b) 18 (d) 4 (a) 24 (c) 12 218. f(xy) = f(x) + f(y) is true for all [2015-II] (a) Polynomial functions f (b) Trigonometric functions f (c) Exponential functions f (d) Logarithmic functions f 219. Suppose there is a relation * between the positive numbers x and y given by x * y if and only if $x \le y^2$. Then which one of the following is correct? [2016-I] * is reflexive but not transitive and symmetric (a) * is transitive but not reflexive and symmetric (b) (c) * is symmetric and reflexive but not transitive * is symmetric and but not reflexive and transitive (d) 220. If $f(x_1) - f(x_2) = f\left(\frac{x_1 - x_2}{1 - x_1 x_2}\right)$ for $x_1, x_2 \in (-1, 1)$, then what is f(x) equal to? [2016-I] (a) $\ln\left(\frac{1-x}{1+x}\right)$ (b) $\ln\left(\frac{2+x}{1-x}\right)$ (c) $\tan^{-1}\left(\frac{1-x}{1+x}\right)$ (d) $\tan^{-1}\left(\frac{1+x}{1-x}\right)$

221. What is the range of the function $y = \frac{x^2}{1+x^2}$, where $x \in \mathbf{R}$? [2016-1]

(a)
$$[0, 1)$$
 (b) $[0, 1]$ (c) $(0, 1)$ (d) $(0, 1]$
222. What is the binary equivalent of the decimal number 0.3125 ?
[2016-1]

- (b) 0.1010 0.0111 (a)
 - 0.0101 (d) 0.1101 (c)

- м-12
- 223. Let R be a relation on the set N of natural numbers defined by 'nRM \Leftrightarrow n is a factor of m'. Then which one of the following is correct? [2016-I]
 - (a) R is reflexive, symmetric but not transitive
 - (b) R is transitive, symmetric but not reflexive
 - (c) R is reflexive, transitive but not symmetric
 - (d) R is an equivalence relation
- 224. What is the number of natural numbers less than or equal to 1000 which are neither divisible by 10 nor 15 nor 25?

[2016-1]

- (c) 840 (a) 860 (b) 854 (d) 824 225. If $\log_a(ab) = x$, then what is $\log_b(ab)$ equal to? [2016-I]
 - (b) $\frac{x}{x+1}$ (d) $\frac{x}{x-1}$ (c)
- 226. Let S be a set of all distinct numbers of the form $\frac{P}{Q}$, where
 - $p, q \in \{1, 2, 3, 4, 5, 6\}$. What is the cardinality of the set S? [2016-II]
 - (a) 21 (b) 23 (c) 32 (d) 36
- 227. If A = { $x \in R : x^2 + 6x 7 < 0$ } and

 $B = \{x \in \mathbb{R} : x^2 + 9x + 14 > 0\}$, then which of the following is/are correct? [2016-II]

- 1. $A \cap B = \{X \in R : -2 < x < 1\}$
- 2. $A \setminus B = \{x \in R : -7 < x < -2\}$

Select the correct answer using the code given below: (a) 1 only (b) 2 only

- (c) Both 1 and 2 (d) Neither 1 nor 2
- 228. Let R be a relation from $A = \{1, 2, 3, 4\}$ to $B = \{1, 3, 5\}$ such that $R = [(a, b) : a < b, where a \in A and b \in B]$. What is RoR^{-1} equal to? [2016-II]
 - (a) $\{(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)\}$
 - (b) $\{(3,1), (5,1), (3,2), (5,2), (5,3), (5,4)\}$
 - (c) $\{(3,3), (3,5), (5,3), (5,5)\}$
 - (d) $\{(3,3), (3,4), (4,5)\}$
- 229. If the number 235 in decimal system is converted into binary system, then what is the resulting number? [2016-II] (a) (11110011

(a)
$$(11110011)_2$$
 (b) $(11101011)_2$

- (c) $(11110101)_{2}$ (d) (11011011), 230. In an examination, 70% students passed in Physics, 80%
- students passed in Chemistry, 75% students passed in Mathematics and 85% students passed in Biology, and x% students failed in all the four subjects. What is the minimum value of x? [2016-II] (a) 10 (b) 12
 - (c) 15
- (d) None of the above 231. A coin is tossed three times. Consider the following events:

A: No head appears

- B: Exactly one head appears
- C. At least two heads appear

Which one of the following is correct? [2016-II]

- $A \cup B \cap A \cup C = B \cup C$ (a)
- $A \cap B' \cup A \cap C' = B' \cup C'$ (b)

- (c) $A \cap B' \cup C' = A \cup B \cup C$
- (d) $A \cap B' \cup C' = B' \cap C'$
- 232. Let S be the set of all persons living in Delhi. We say that x, y in S are related if they were born in Delhi on the same day. Which one of the following is correct? [2017-1]
 - (a) The relation is an equivalent relation
 - (b) The relation is not reflexive but it is symmetric and transitive
 - The relation is not symmetric but it is reflexive and (c) transitive
 - (d) The relation is not transitive but it is reflexive and symmetric
- 233. Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Then the number of subsets of A containing two or three elements is [2017-I] (a) 45 (c) 165 (b) 120 (d) 330
- 234. Three-digit numbers are formed from the digits 1, 2 and 3 in such a way that the digits are not repeated. What is the sum of such three-digit numbers? [2017-1] (c) 1323 (d) 1332 (a) 1233 (b) 1322
- 235. Consider the following in respect of sets A and B :

[2017-II]

1. $(A-B) \cup B = A$ 2. $(A-B) \cup A = A$ 3. $(A-B) \cap B = \phi$ 4. $A \subseteq B \Longrightarrow A \cup B = B$ Which of the above are correct? (a) 1, 2 and 3(b) 2, 3 and 4(c) 1, 3 and 4 (d) 1, 2 and 4 236. In the binary equation [2017-I]

$$(1p101)_2 + (10q1)_2 = (100r00)_2$$

where p, q and r are binary digits, what are the possible values of p, q and r respectively?

- (b) 1,1,0 (a) 0, 1, 0 (c) 0, 0, 1 (d) 1,0,1 237. If $S = (x : x^2 + 1 = 0, x \text{ is real})$, then S is [2017-I] (b) {0} (a) $\{-1\}$
 - (c) $\{1\}$ (d) an empty set
- 238. The mean weight of 150 students in a certain class is 60 kg. The mean weight of boys in the class is 70 kg and that of girls is 55 kg. What is the number of boys in the class? [2017-I]

- 239. If $x + \log_{10}(1+2^x) = x \log_{10} 5 + \log_{10} 6$ then x is equal to
 - (b) 2 only (a) 2,-3 (c) 1 (d) 3
- 240. The remainder and the quotient of the binary division $(101110)_2 \div (110)_2$ are respectively [2017-II] (a) $(111)_{2}$ and $(100)_{2}$ (b) $(100)_2$ and $(111)_2$
- (d) $(100)_{2}$ and $(100)_{2}$ (c) $(101)_{2}$ and $(101)_{2}$ 241. If E is the universal set and $A = B \cup C$, then the set E - (E - E)(E - (E - (E - A)))) is same as the set [2017-II]
 - (a) $B' \cup C'$ (b) $B \cup C$
 - (c) $B' \cap C'$ (d) $B \cap C$

- 242. If $A = \{x : x \text{ is a multiple of } 2\}$, $B = \{x : x \text{ is a multiple of } 5\}$ and $C = \{x : x \text{ is a multiple of } 10\}, \text{ then } A \cap (B \cap C) \text{ is equal to}$ [2017-II]
 - (a) A (b) B (c) C (d) $\{x : x \text{ is a multiple of } 100\}$
- 243. If we define a relation R on the set N \times N as $(a, b) R(c, d) \Leftrightarrow a + d = b + c$ for all $(a, b), (c, d) \in N \times N$, then the relation is: [2017-II]
 - (a) symmetric only
 - (b) symmetric and transitive only
 - (c) equivalence relation
 - (d) reflexive only
- 244. If n = (2017)!, then what is [2018-I] 1 1

1	I	1	1
$log_2 n$	log ₃ n	log ₄ n	$\frac{1}{\log_{2017} n}$
equal to	?		
(a) 0			(b) 1
(c) $\frac{n}{2}$			(d) n

- 245. Let A and B be subsets of X and $C = (A \cap B') \cup (A' \cap B)$, where A' and B' are complements of A and B respectively in X. What is C equal to? [2018-1] (b) $(A' \cup B) - (A' \cap B)$ (a) $(A \cup B') - (A \cap B')$
 - (d) $(A' \cup B') (A' \cap B')$ (c) $(A \cup B) - (A \cap B)$
- 246. If $x + \log_{15} (1 + 3^x) = x \log_{15} 5 + \log_{15} 12$, where x is an integer, then what is x equal to? [2018-I] (c) 1 (d) 3 (a) -3 (b) 2

DIRECTION (Qs. 247-248) : Consider the information given below and answer the two items (02) that follow:

In a class, 54 students are good in Hindi only, 63 students are good in Mathematics only and 41 students are good in English only. There are 18 students who are good in both Hindi and Mathematics. 10 students are good in all three subjects. [2018-I] 247. What is the number of students who are good in either Hindi or Mathematics but not in English? (d) 130 (a) 99 (b) 107 (c) 125

- 248. What is the number of students who are good in Hindi and Mathematics but not in English? (a) 18 (b) 12 (c) 10 (d) 8
- 249. The binary number expression of the decimal number 31 is [2018-I]

250. What is $\overline{\log_2 N}$ $\overline{\log_3 N}$ $\overline{\log_4 N}$ $\log_{100} N$ equal []_810c to $(N \neq 1)$?

(a)
$$\frac{1}{\log_{100!} N}$$
 (b) $\frac{1}{\log_{99!} N}$
(c) $\frac{99}{\log_{100!} N}$ (d) $\frac{99}{\log_{99!} N}$

251. What is the greatest integer among the following by which the number $5^5 + 7^5$ is divisible? [2018-1] **(L-1)** (a) 6

(

252. A survey of 850 students in a University yields that 680 students like music and 215 like dance. What is the least number of students who like both music and dance?/2018-1] (a) 40 (b) 45 (c) 50 (d) 55

- 253. If $0 \le a \le 1$, the value of $\log_{10} a$ is negative. This is justified by [2018-1]
 - (a) Negative power of 10 is less than 1
 - Negative power of 10 is between 0 and 1 (b) Negative power of 10 is positive (c)
 - (d) Negative power of 10 is negative
- 254. A train covers the first 5 km of its journey at a speed of 30 km/hr and the next 15 km at a speed of 45 km/hr. What is the average speed of the train? [2018-I] (a) 35 km/hr (b) 37.5 km/hr
 - (d) 40 km/hr (c) 39.5 km/hr
- 255. What is the value of $\log_7 \log_7 \sqrt{7\sqrt{7}\sqrt{7}}$ equal to?

(a)
$$3 \log_2 7$$
 (b) $1 - 3 \log_2 7$

(c)
$$1 - 3 \log_7 2$$
 (d) $\frac{7}{8}$

- 256. If A, B and C are subsets of a Universal set, then which one of the following is not correct? [2018-II]
 - (a) $A \cup B \cap C = A \cup B \cap A \cup C$
 - (b) $A' \cup A \cup B = B' \cap A' \cup A$
 - (c) $A' \cup B \cup C = C' \cap B' \cap A$

(a) 2480 (b) 2481

(d) $A \cap B \cup C = A \cup C \cap B \cup C$

Where A' is the complement of A.

257. Let x be the number of integers lying between 2999 and 8001 which have at least two digits equal. Then x is equal to

DIRECTION (Os. 258-259): Consider the information given below and answer the two (02) items that follow:

(c) 2482

A survey was conducted among 300 students. If was found that 125 students like to play cricket, 145 students like to play football and 90 students like to play tennis, 32 students like to play exactly two games out of the three games. [2018-II]

- 258. How many students like to play all the three games?
- (a) 14 (b) 21 (c) 28 (d) 35 259. How many students like to play exactly only one game? (a) 196 (b) 228 (c) 254 (d) 268
- 260. What is the value of $\log_9 27 + \log_8 32$? [2018-II]

(a)
$$\frac{7}{2}$$
 (b) $\frac{19}{6}$
(c) 4 (d) 7

- 261. The sum of the binary numbers (11011), (10110110), and $(10011x0y)_{2}$ is the binary number $(101101101)_{2}$. What are the values of x and y? [2018-II] (a) x=1, y=1(b) x=1, y=0
 - (c) x=0, y=1(d) x=0, y=0
- 262. If $(0.2)^{x} = 2$ and $\log_{10} 2 = 0.3010$, then what is the value of x to [2018-II] the nearest tenth? (a) -10.0 (b) -0.5 (c) -0.4 (d) -0.2
- 263. Suppose $X = \{1, 2, 3, 4\}$ and R is a relation on X. If $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)\},$ then which one of the following is correct? [2019-I]
 - (a) R is reflexive and symmetric, but not transitive
 - (b) R is symmetric and transitive, but not reflexive

- (c) R is reflexive and transitive, but not symmetric
- (d) R is neither reflexive nor transitive, but symmetric
- 264. A relation R is defined on the set N of natural numbers as $xRy \Rightarrow x^2 4xy + 3y^2 = 0$, Then which one of the following is correct? [2019-1]
 - (a) R is reflexive and symmetric, but not transitive
 - (b) R is reflexive and transitive, but not symmetric
 - (c) R is reflexive, symmetric and transitive
 - (d) R is reflexive, but neither symmetric nor transitive
- 265. Consider the following statements for the two non-empty sets A and B :
 - (1) $(A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B) = A \cup B$
 - (2) $(A \cup (\overline{A} \cap \overline{B})) = A \cup B$

Which of the above statements is/are correct ?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 266. Let X be a non-empty set and let A, B, C be subsets of X. Consider the following statments :
 - (1) $A \subset C \Rightarrow (A \cap B) \subset (C \cap B)(A \cup B) \subset (C \cap B)$
 - (2) $(A \cup B) \subset (C \cap B)$ for all sets $B \Rightarrow A \subset C$
 - (3) $(A \cup B) \subset (C \cup B)$ for all sets $B \Rightarrow A \subset C$
 - Which of the above statements are correct ?
 - (a) 1 and 2 only (b) 2 and 3 only
 - (c) 1 and 3 only (d) 1, 2 and 3

- 267. If A = { λ , (λ , μ)}, then the power set of A is [2019-I]
 - (a) $\{\phi, \{\phi\}, \{\lambda\}, \{\lambda, \mu\}\}$
 - (b) { ϕ , { λ }, {{ λ , μ }}, { λ , { λ , μ }}}
 - (c) { ϕ , { λ }, { λ , μ }, { λ , { λ , μ }}}
 - (d) $\{\{\lambda\}, \{\lambda, \mu\}, \{\lambda, \{\lambda, \mu\}\}\}$

DIRECTION (Qs. 268-269) : Consider the following for the next 02 (two) items that follow:

In a school, all the students play at least one of three indoor games - chess, carrom and table tennis, 60 play chess, 50 play table tennis, 48 play carrom, 12 play chess and carrom, 15 play carrom and table tennis, 20 play table tennis and chess.

268. What can be the minimum number of students in the school? [2019-I]

- (a) 123 (b) 111 (c) 95 (d) 63 269. What can be the maximum number of students in the school ? [2019-1]
- (a) 111 (b) 123 (c) 125 (d) 135 270. If $f(x) = \log_{10}(1+x)$, then what is $4 f(4) + 5f(1) - \log_{10} 2$ equal to ? [2019-I]
- (a) 0 (b) 1 (c) 2 (d) 4 271. For r > 0, f(r) is the ratio of perimeter to area of a circle of radius r. Then f(1) + f(2) is equal to [2019-I]
 - (a) 1 (b) 2 (c) 3 (d) 4 2 In a aircle of diameter 44 are the length of a though 22
- 272. In a circle of diameter 44 cm, the length of a chord is 22 cm. What is the length of minor arc of the chord ? [2019-I]

(a)	$\frac{484}{21}$ cm	(b) $\frac{242}{21}$ cm
(c)	$\frac{121}{21}$ cm	(d) $\frac{44}{7}$ cm

ANSWER KEY

1	(c)	24	(b)	47	(c)	70	(a)	93	(b)	116	(d)	139	(a)	162	(a)	185	(b)	208	(c)	231	(d)	254	(d)
2	(d)	25	(d)	48	(b)	71	(c)	94	(c)	117	(d)	140	(a)	163	(b)	186	(b)	209	(d)	232	(a)	255	(c)
3	(a)	26	(d)	49	(d)	72	(c)	95	(a)	118	(a)	141	(c)	164	(b)	187	(d)	210	(d)	233	(c)	256	(c)
4	(b)	27	(c)	50	(d)	73	(d)	96	(d)	119	(a)	142	(a)	165	(c)	188	(d)	211	(a)	234	(d)	257	(b)
5	(d)	28	(b)	51	(c)	74	(d)	97	(d)	120	(a)	143	(d)	166	(d)	189	(c)	212	(c)	235	(b)	258	(a)
6	(d)	29	(d)	52	(b)	75	(c)	98	(c)	121	(b)	144	(d)	167	(c)	190	(b)	213	(d)	236	(a)	259	(c)
7	(b)	30	(d)	53	(a)	76	(a)	99	(b)	122	(d)	145	(c)	168	(c)	191	(b)	214	(b)	237	(d)	260	(b)
8	(b)	31	(b)	54	(d)	77	(c)	100	(d)	123	(c)	146	(c)	169	(a)	192	(c)	215	(a)	238	(a)	261	(b)
9	(a)	32	(d)	55	(a)	78	(c)	101	(c)	124	(b)	147	(a)	170	(d)	193	(c)	216	(b)	239	(c)	262	(c)
10	(c)	33	(b)	56	(d)	79	(a)	102	(b)	125	(c)	148	(c)	171	(d)	194	(a)	217	(a)	240	(b)	263	(d)
11	(b)	34	(d)	57	(a)	80	(b)	103	(d)	126	(c)	149	(d)	172	(c)	195	(c)	218	(d)	241	(c)	264	(d)
12	(d)	35	(a)	58	(d)	81	(b)	104	(c)	127	(a)	150	(b)	173	(b)	196	(b)	219	(a)	242	(c)	265	(a)
13	(d)	36	(a)	59	(c)	82	(a)	105	(c)	128	(a)	151	(d)	174	(d)	197	(a)	220	(a)	243	(c)	266	(b)
14	(d)	37	(b)	60	(d)	83	(a)	106	(b)	129	(c)	152	(b)	175	(c)	198	(c)	221	(a)	244	(b)	267	(b)
15	(b)	38	(c)	61	(b)	84	(c)	107	(c)	130	(b)	153	(c)	176	(c)	199	(b)	222	(c)	245	(c)	268	(b)
16	(c)	39	(a)	62	(c)	85	(a)	108	(a)	131	(c)	154	(a)	177	(c)	200	(d)	223	(c)	246	(c)	269	(b)
17	(b)	40	(a)	63	(c)	86	(a)	109	(d)	132	(d)	155	(d)	178	(c)	201	(c)	224	(b)	247	(c)	270	(d)
18	(c)	41	(b)	64	(b)	87	(c)	110	(d)	133	(b)	156	(b)	179	(c)	202	(b)	225	(d)	248	(d)	271	(c)
19	(c)	42	(b)	65	(a)	88	(d)	111	(d)	134	(d)	157	(d)	180	(a)	203	(d)	226	(b)	249	(d)	272	(a)
20	(b)	43	(b)	66	(c)	89	(b)	112	(b)	135	(b)	158	(a)	181	(c)	204	(b)	227	(c)	250	(a)		
21	(d)	44	(c)	67	(c)	90	(c)	113	(b)	136	(d)	159	(d)	182	(d)	205	(b)	228	(c)	251	(d)		
22	(b)	45	(b)	68	(b)	91	(c)	114	(c)	137	(d)	160	(a)	183	(c)	206	(c)	229	(c)	252	(b)		
23	(c)	46	(c)	69	(b)	92	(b)	115	(a)	138	(b)	161	(b)	184	(c)	207	(c)	230	(d)	253	(b)		

HINTS & SOLUTIONS

7.

8.

9

- 1. (c) $U = \{x : x^5 6x^4 + 11x^3 6x^2 = 0\}$ Solving for values of x, we get $= \{0, 1, 2, 3\}$ $A = \{x : x^2 - 5x + 6 = 0\}$ Solving for values of x, we get $= \{2, 3\}$ and $B = \{x : x^2 - 3x + 2 = 0\}$ Solving for values of x, we get $= \{2, 1\}$ $A \cap B = \{2\}$ $\therefore (A \cap B)' = U - (A \cap B)$ $= \{0, 1, 2, 3\} - \{2\} = \{0, 1, 3\}$
- 2. (d) If A denotes the collection of all complex number whose square is a negative real number, then Square of a complex number is a negative real number only if it has no real part and has only imaginary part. Hence, A = {iy : y ∈ R}
- 3. (a) ∴ R is a relation defined on the set Z of integers as follows:

 $mRn \Leftrightarrow m+n \text{ is odd}$

- Then, mRm = 2m and nRn = 2n are not odd multiples of 2 are not odd. Thus, it is not reflexive.
- (2) If m and n are numbers such that $mRn \Leftrightarrow m+n$ is odd. Thus, $nRm \Leftrightarrow n+m$ is odd.
- \therefore This relation is symmetric.

5.

- (3) mRn = m + n, if there is third number p and nRp = n + p is odd. (for ex: 2 + 3 = 5 is odd 3 + 4 = 7 is odd. But, 2 + 4 = 6 is not odd.) Then mRp = m + p may not be odd. So, this relation is not transitive.
- 4. (b) A and B are subsets of X and its, Venn diagram is shown.

A – B indicates region a, B – A indicates c, A \cup B indicates a, b, c.

If a, c = a, b, c indicates, the b is zero. A and B are mutually exclusive. So, when $(A-B) \cup (B-A) = A \cup B$ $A \subset (X-B)$ (d) $A = \{(n, 2n) : n \in N\}$ and $B = \{(2n, 3n)\}: n \in N$ Listing faw members of each set

- Listing few members of each set $A = \{(1, 2), (2, 4), (3, 6),\}$ $B = \{(2, 3), (4, 6), (6, 9),\}$ There is no member common to both these sets, hence. $A \cap B = \phi$
- 6. (d) Let there be two sets A and B and universal set of A and B, be U.

Then drawing these sets on a Venn-diagram, four regions are created as shown in the figure :

 $B \equiv regions b, c$

- $B' \equiv regions a, d$
- $A \equiv regions a, b$
- $A' \equiv regions c, d$
- $A B \equiv region a$
- $B A \equiv region c$
- $B' A' \equiv region a$
- $A' B' \equiv region c$ B - A' = region b

$$B - A \equiv region b$$

A' $B = region d$

$$A' - B \equiv region d$$

From these we check the operations given in the choice. choices (a), (b) and (c) are correct

(d) LHS = region $a \cap c = \phi$ RHS = region $b \cup$ region d = b, d. So, for (d) LHS \neq RHS

(b) We take option (a):
$$x^3 - 8x^2 + 19x - 12 = 0$$

$$\Rightarrow (x-1)(x^2-7x+12)=0$$

- \Rightarrow (x-1)(x-3)(x-4)=0
- $\Rightarrow x=1,3,4$

Thus, it is not a set of elements as odd positive integers. (b) $x^3-9x^2+23x-15=0$

$$\Rightarrow (x-1)(x^2-8x+15)=0$$

$$\Rightarrow (x-1)(x-3)(x-5)=0$$

$$\Rightarrow x=1,3,5$$

Thus, S will be a set of elements as odd positive integers.

- (b) aRb means b lives with one km from a, and bRa means a lives within one km from b but distance from a to b = distance from b to a.
 So, R is symmetric.
- (a) Number of elements in X, is n, then the number of relations on X means, number of elements of cartesian product X × X.
 Since, n (X) = n.
 So, n (X × X) = n.n

then the total number of relations is $2^{n.n} = 2^{n^2}$

10. (c) As given $A = \{(x, y) | x + y \le 4\}$

and $B = \{(x, y) | x + y \le 0\}$ Set A contains all the pairs in the interval $(-\infty, 2)$ and set B contains all the pairs in the interval $(-\infty, 0)$ so, $A \cap B$ shows a set containing all the pairs in the interval $[-\infty, 0]$ So, $A \cap B = \{(x, y) | x + y \le 0\}$ 11. (b) Total number of students = 500Let H be the set showing number of students who can speak Hindi = 475 and B be the set showing number of students who can speak Bengali = 200 So, n(H) = 475 and n(B) = 200 and given that $n(B \cup$ H) = 500we have $n(B \cup H) = n(B) + n(H) - n(B \cap H)$ \Rightarrow 500=200+475-n (B \cap H) so, $n(B \cap H) = 175$ Hence, persons who speak Hindi only = $n(H) - n(B \cap H)$ =475 - 175 = 30012. (d) The correct relations as per De Morgan's theorem is $(R_1 \cap R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$ Converting from binary to decimal 13. (d) $(1001)_2 = 1 \times 2^3 + 2^0 = 8 + 1 = 9$ $(11)_2 = 2^1 + 2^0 = 2 + 1 = 3$ $=2^2+2^0=4+1=5$ $(101)_{2}$ $(10)_2 = 2^1 = 2$ and $(01)_2 = 1$ $\frac{(1001)_2^{(11)_2} - (101)_2^{(11)_2}}{(1001)_2^{(10)_2} - (1001)_2^{(01)_2} - (101)_2^{(01)_2} - (101)_2^{(10)_2}}$ $=\frac{9^3-5^3}{2^2+2-5+5^2}$

$$= \frac{(9-5)(9^2+9\times5-5^2)}{(9^2+9\times5-5^2)} = \frac{4\times(81+45+25)}{(81+45+25)}$$

$$=4 = (100)_2$$
 [Converting from decimal to binary]

14. (d) All statements are correct.

15. (b) If A, B and C are any three arbitrary events occurrence of both A and B is given by $A \cap B$ and non-occurrence of C as \overline{C} then the event both A and B occur but not C

is represented by $A \cap B \cap \overline{C}$.

16. (c) Given that
$$P = \{p_1, p_2, p_3, p_4\}$$

 $Q = \{q_1, q_2, q_3, q_4\}$
and $R = \{r_1, r_2, r_3, r_4\}$
 $S_{10} = \{p_2, q_4, r_4\}, (p_3, q_3, r_4), (p_3, q_4, r_3), (p_4, q_2, r_4), (p_4, q_2, r_4), (p_4, q_3, r_3), (p_4, q_4, r_2)\}$
Total number of elements in S_{12} are 6

A has regions a, b, d, e B has regions b, c, e, f

NDA Topicwise Solved Papers - MATHEMATICS

C has regions d, e, f, g
C' has regions a, b, c, h
B' has regions a, d, g, h
Statement (a) :
$$A \cup (B - C) = A \cap (B \cap C)$$

LHS = (a, b, e, d) \cup b, c = a, b, c, d, e.
RHS = a, b, d, e \cap e, f = e,
So, statement (a) is not correct.
Statement (b) : $A - (B \cup C) = (A \cap B') \cap C'$
LHS = (a, b, d, e) - (b, c, d, e, f, g) = a.
RHS = (a, b, d, e \cap a, d, g, h) \cap (a, b, c, h) = a,
So, statement (b) is correct.
Correct statement is :
 $A - (B \cup C) = (A \cap B') \cap C'$

18. (c) The maximum three digit integer in decimal system = 999. We go on dividing till we get a dividend < 2 and write remainders from last to first as shown below:

2	999	
2	499	1
2	249	1
2	124	1
2	62	0
2	31	0
2	15	1
2	7	1
2	3	1
	1	1

Hence, $(999)_{10} = (1111100111)_2$

19. (c) The largest four digit number in binary system is 1111 which is equivalent to 15 in decimal system and smallest five digit number in binary system is 10000 which is equivalent to 16 in decimal system.
Difference between numbers = 16 - 15 = 1
Which is the greatest one digit binary integer.

20. (b) Given that
$$F(n) = \text{set of all divisors of } n \text{ except } 1$$

$$\therefore \quad F(20) = \{2, 4, 5, 10, 20\} \\ \text{and } F(16) = \{2, 4, 8, 16\}$$

21.

- $\begin{array}{rl} \therefore & F(20) \cap F(16) = \{2, 4, 5, 10, 20\} \cap \{2, 4, 8, 16\} \\ &= \{2, 4\} \\ & Also, \{F(20) \cap F(16)\} \subseteq F(y) \\ & So, least value of y = 2 \\ (d) & The given relation is \end{array}$
 - a) The given relation is aRb \Leftrightarrow a + 2b, is an integral multiple of 3. In this relation aRa \Leftrightarrow a + 2a = 3a, an integral multiple of 3. So, it is reflexive aRb \Leftrightarrow a + 2b and bRa = b + 2a + 4b - 4b = 2(a + 2b) - 3b is also an integral multiple of 3. So, it is symmetric. Let there be another value c, bRc = b + 2c, be an integral multiple of 3. Then aRc = a + 2c So, aRb + bRc = a + 2b + b + 2c = a + 2c + 3b is integral

multiple of 3, hence, a + 2c is also integral multiple of 3 so, aRb and bRc \Rightarrow aRc. So, it is transitive. Therefore, relation is reflexive, symmetric as well as transitive. Hence, R is an equivalence relation.

22. (b) A Venn diagram is drawn for 3 intersecting set A, B, C under a universal set U; creating 8 regions in total named, a to h as shown

Statement P: $A \cap (B \cup C) = (A \cap B) \cup C$ LHS = a, b, c, d, \cap (b, c, d, e, f, g,) = b, c, d. RHS = $(c, d) \cup (b, c, f, g) = b, c, d, f, g$ If P is correct then region f, g do not lie in set C and set C has regions b, c only.

This follows that C is subset of A. Since, Set A has regions a, b, c, d and C has regions b, c.

Thus,
$$P \Rightarrow Q$$
.

Also, if C is a subset of A, Q is true, then the Venn diagram appears as below:

 $\{A \cap (B \cup C)\}$

23.

LHS of P statement gives region a, b, c, d \cap region b, c, d, e = b, c, d. RHS: { $(A \cap B) \cup C$ } gives : region c, d, \cup region b,c. \equiv b, c, d and LHS = RHS shows $Q \Rightarrow P$, Comparing both gives $P \Leftrightarrow Q$. (c) $X = \{x : x > 0, x^2 < 0\}$

We know that the square of each number greater than zero is always greater than zero. So, X contains no member and so, X is null set but a well defined set. Also, $Y = \{$ flower, Churchill, Moon, Kargil $\}$ is well defined. So, Y is also a well defined set.

(b) A Venn diagram of the three non-empty and intersecting 24. sets is drawn, dividing into 7 regions, a to g as shown below and consider statements one by one. Statement (1): $A - (B \cup C) = (A - B) \cup (A - C)$

LHS = regions a, b, c, d - b, c, d, e, f, g = a.

RHS = a, d, \cup a, b = a, b, d. So, statement (1) is not correct. Statement (2): $A - B = A - (A \cap B)$ LHS \equiv region a, d. RHS = region a, b, c, d-(region b, c,) = a, d. So, statement (2) is correct. Statement (3): $A = (A \cap B) \cup (A - B)$ LHS \equiv regions a, b, c, d. RHS = regions b, c, \cup region a, d = a, b, c, d so, statement (3) is correct.

- 25. (d) There are infinitely many rational numbers between two distinct integers, so, statement 1 is correct. Same is true in case of two distinct rational numbers and real numbers. So, statement (2) and (3) are also correct.
- 26. (d) The shaded region represents $(P \cap Q) \cup (P \cap R)$. Let the intersecting sets P, Q, R divide it into 7 regions marked, a to g as shown below.

The shaded part contains regions b, c, and d.

- (a) $(P \cup Q) (P \cap Q) \equiv \text{regions a, b, c, d, f, g, -b, c}$ \equiv a, d, f, g, . not correct.
- (b) $(P \cap (Q \cap R) \equiv a, b, c, d, \cap c, f \equiv c \text{ not correct.}$
- (c) $(P \cap Q) \cap (P \cap R) \equiv \text{regions b}, c, \cap \text{region}, c, d \equiv c, \text{ so}$ not correct
- (d) $(P \cap Q) \cup (P \cap R) \equiv \text{regions } b, c, \cup c, d \equiv b, c, d \text{ so}$ correct.

27. (c) Given that
$$a^x = b$$
, $b^y = c$, $c^z = a$

$$\Rightarrow c^{z} = b^{yz} = a \Rightarrow b^{yz} = a^{xyz} = a$$
$$\Rightarrow xyz = 1$$

$$\Rightarrow$$
 xyz=

28.

Now,
$$\frac{1}{(xy+yz+zx)} \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right)$$
$$1 \qquad (xy+yz+zx) \qquad 1$$

$$= \frac{1}{(xy + yz + zx)} \left(\frac{xy + yz + zx}{xyz} \right) = \frac{1}{xyz} = 1$$

(b) Given that
$$2^x = 3^y = 12^z = k$$

Taking \log_2 on both the sides
 $x = \log_2 k, y = \log_3 k$ and $z = \log_{12} k$

$$\frac{x+2y}{xy} = \frac{\log_2 x + 2\log_3 k}{\log_2 k \log_3 k}$$

$$=\frac{1}{\log_3 k} + \frac{2}{\log_2 k}$$

$$= \log_k 3 + 2 \log_k 2 = \log_k 3 + \log_k 4$$

$$= \log_k 12 = \frac{1}{\log_{12} k} = \frac{1}{z}$$

29. (d) Number of subsets of X containing less than 5 elements is given by

${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4}$ $\sum_{r=0}^{4} {}^{n}C_{r} = \sum_{r=0}^{4} C(n,r)$

30. (d) In the given sets, the set of all primes is an infinite set.

31. (b)
$$0.\overline{2} + 0.\overline{23}$$

$$=\frac{2}{9}+\frac{23}{99}=\frac{22+23}{99}=\frac{45}{99}=0.\overline{45}$$

32. (d) Given: $3^{(x-1)} + 3^{(x+1)} = 30$

$$\Rightarrow \frac{3^x}{3} + 3.3^x = 30 \qquad \dots (i)$$

Multiplying both the sides by 3 in equation (i) $3^x + 3^2 \cdot 3^x = 90$

$$\Rightarrow 3^{x} + 3^{x+2} = 90$$

- 33. (b) $f(\theta) = 0$, if θ is an integral multiple of π . From -100π to 0π there are 101 values of θ for which $f(\theta) = 0$. From π to 1000π , there are 1000 values for which $f(\theta) = 0$ so, total values number is 101 + 1000 = 1101
- 34. (d) $\therefore A \cup B = B \cap C$

Since union of $A \cup B$ is same as infersection $B \cap C$ where ABC are non-empty subsets of X, strongest inference is $A \subseteq B \subseteq C$ which can be shown in Venn diagram as below :

- 35. (a) Since μ is universal set and $P \subseteq \mu$, $P - \mu = \phi$ and $\mu - P = P'$ So, $(P - \mu) \cup (\mu - P) = \phi \cup P' = P'$ Now, $P \cap \{P - \mu\} \cup (\mu - P)\} = P \cap P' = \phi$
- 36. (a) As given : μ = the set of all triangles P = the set of all isosceles triangles Q = the set of all equilateral triangles R = the set of all right angled triangles
 - ∴ P ∩ Q represents the set of isosceles triangles and R − P represents the set of non-isosceles right angled triangles.
- 37. (b) Let there be three non empty, non overlapping sets; inside a universal set U. This creates 8 regions marked as: a, b, c, d, e, f, g, h.

NDA Topicwise Solved Papers - MATHEMATICS

Statement 1: $A-(B-C) = (A-B) \cup C$ LHS represent region a, RHS represents a, d, g. Hence, this is not correct. Statement 2: $A-(B \cup C)=(A-B)-C$ LHS represents, region 'a' RHS also represents a. Hence, only statement 2 is correct. R is defined over the set of non negative integers,

38. (c) R is defined over the set of non negative integers, $x^2 + y^2 = 36$

$$\Rightarrow y = \sqrt{36 - x^2} = \sqrt{(6 - x)(6 + x)}, x = 0 \text{ or } 6$$

for x = 0, y = 6 and for x = 6, y = 0
So, y is 6 or 0
so, R = {(6, 0), (0, 6)}

39.

40.

(a) Statement 1: Let *l*, m, n are parallel line and R is a relation.
∴ *l* || *l*, then R is reflexive.
and *l* || m and m || *l*, the R is symmetric.
also *l* || m, m || n ⇒ *l* || n, then R is transitive.
Hence, R is an equivalence relation.
Statement 2: x is father of y then x is not the father of x, so relation is not reflexive.
Also, x is father of y but y is not father of x, so it is not symmetric.
And x is father of y and y is father of z does not imply that x is father of z so, it is not transitive too. So, this is not an equivalence relation. so, only statement 1 is correct.

(a)
$$111101 = 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0$$

= $32 + 16 + 8 + 4 + 1 = 61$
Which is a prime number.

(b)
$$111010 = 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^1$$

= $32 + 16 + 8 + 2 = 58$
Which is not a prime number.

(c)
$$111111 = 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0$$

= $32 + 16 + 8 + 4 + 2 + 1 = 63$
Which is not a prime number.

(d) $100011 = 1 \times 2^5 + 1 \times 2^1 + 1 \times 2^0$ = 32 + 2 + 1 = 35Which is not a prime number Thus, option (a) is correct.

41. (b)
$$1001.01 = 1 \times 2^3 + 1 \times 2^0 + 1 \times 2^{-2}$$
,
corresponding to number of base 10.

$$= 8 + 1 + \frac{1}{4} = \frac{37}{4} = 9.25$$

and $11.1 = 1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1}$
 $= 2 + 1 + \frac{1}{4} = \frac{7}{4} = 3.5$

 $=2+1+\frac{1}{2}=\frac{1}{2}=3.5$ Corresponding to the number of base 10.

 $\therefore \quad 1001.01 \times 11.1 = 9.25 \times 3.5 = 32.375$ From decimal to binary $(32)_{10} = (100000)_2$ and $(.375)_{10} = 0.25 + 0.125$

$$= \frac{1}{4} \quad \frac{1}{8} = 1 \times 2^{-2} + 1 \times 2^{-3} = (0.011)_2$$

 \therefore (32.375)₁₀=(100000.011)₂

Sets, Relations, Function and Number System

42. (b) An equation of the form
$$ax + by + cz = d$$
, where a, b, c,
d are real number, not all zero, is linear.

$$\Rightarrow 2x + y - z = 5$$
and $\pi x + y - ez = \log 3$ are linear.
43. (b) $\therefore (10101)_2 = 2^4 \times 1 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2 + 1 \times 2^0$
 $= 16 + 4 + 1 = 21$
and $(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
 $= 8 + 4 + 1 = 13$
 $\therefore (10101)_2 \times (1101)_2 = 21 \times 13$
 $= 273 = 256 + 16 + 1 = 2^8 + 2^4 + 2^0$
So, there will be 1 at 9th, 5th and first place from right
and zero at other places
So, $(273)_{10} = (100010001)_2$
44. (c) We draw the Venn diagram,
 $A = B$
 $B = A$

$$A-B=A-(A \cap B)$$
 and $B-A=$

$$A-B=A-(A \cap B)$$
 and $B-A=B-(A \cap B)$
 $A-B=B-A$

$$\Rightarrow A-(A \cap B) = B - (A \cap B)$$

$$\Rightarrow$$
 A=B

45. (b) The given number

$$\sqrt[3]{2+\sqrt{5}+\sqrt[3]{2}-\sqrt{5}}$$

can be written as :

$$(2 \quad \sqrt{5})^{1/3} \quad (2 - \sqrt{5})^{1/3}$$
$$= 2^{1/3} \left[1 \quad \frac{1}{2} \sqrt{5} \right]^{1/3} \quad 2^{1/3} \left[1 - \frac{1}{2} \sqrt{5} \right]^{1/3}$$
$$= 2^{1/3} \left[1 \quad \frac{1}{6} \sqrt{5} \quad \dots \quad 1 - \frac{1}{6} \sqrt{5} \quad \dots \right]$$

Thus the given number is a rational number but not an integer.

46. (c) For subsets A and B of U, If $(A-B) \cup (B-A) = A$, $\Rightarrow B = \phi$.

47. (c) From the given data

$$n(U) = 700, n(A) = 200, n(B) = 300$$
 and
 $n(A \cap B) = 100.$
We know that,
 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$
 $= 200 + 300 - 100 = 400$
Now, $n(A' \cap B') = \cap (A \cup B)' = n(U) - n(A \cup B)$
 $= 700 - 400 = 300$
48. (b) In the given Vann diagram shaded region is

- 48. (b) In the given Venn diagram shaded region is $C \cup (C' \cap A \cap B)$
- 49. (d) A relation is equivalent if it is (i) Reflexive (ii) Symmetric and

(iii) Transitive We check for the same, one by -one $x, y \in N \implies x > 0, y > 0$ $R = \{(x, y) | xy > 0, x, y, \in N\}$ (i) Reflexive $X, Y \in N$ •:• $x, x, \in N \Rightarrow x^2 > 0$ *:*.. R is reflexive *:*.. Symmetric (ii) $x, y \in N$... and $xy > 0 \Rightarrow yx > 0$ R is also symmetric *:*.. Transitive (iii) ... $x, y, z \in N$ $\Rightarrow xy > 0, yz > 0$ $\Rightarrow xz > 0$ R is also transtive. *:*.. Conclusion : R is an equivalence relation. 50. (d) The given logarithm expression $\frac{\log_{27}9\log_{16}64}{\log_4\sqrt{2}}$ is simplified as : $\frac{\log 9}{\log 27} \times \frac{\log 64}{\log 16} \times \frac{\log 4}{\log \sqrt{2}}$

$$= \frac{2\log 3}{3\log 3} \times \frac{6\log 2}{4\log 2} \times \frac{2\log 2}{\frac{1}{2}\log 2}$$
$$= \frac{2}{3} \times \frac{6}{4} \times 4 \quad 4$$

- 51. (c) Elements of a population are classified according to the presence or absence of each of 3 attributes A, B and C. Then, the smallest number of smallest ultimate classes into which the population is divided, is 2³= 8
- 53. (a) Both (A) and (R) are true and R is the correct explanation of A.
- 54. (d) Given equation is :

$$\log_{10} \{999 + \sqrt{x^2 - 3x} \quad 3\} \quad 3$$

$$\Rightarrow \quad 999 + \sqrt{x^2 - 3x + 3} = 10^3 = 1000$$

$$\Rightarrow \quad \sqrt{x^2 - 3x} \quad 3 \quad 1$$

$$\Rightarrow \quad x^2 - 3x + 3 = 1$$

$$x^2 - 3x + 2 = 0$$

$$\Rightarrow \quad x^2 - 2x - x + 2 = 0$$

$$\Rightarrow \quad x(x - 2) - 1(x - 2) = 0$$

$$\Rightarrow \quad x(x - 1)(x - 2) = 0$$

$$\Rightarrow \quad x = 1, 2.$$
55. (a) $\because \quad f(x) = \tan x$

$$f(x) \text{ is increasing in the interval } \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

Hence, f(x) is injective in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

 $\Rightarrow A \cap B \cap C = \{x \in R : -7 \le x < 4\}$ Hence, $-7 \in (A \cap B \cap C)$

65. (a) $A \cup P(A) = P(A)$ is correct. Since A is a subset of its power set.

66. (c)
$$f(x^2) + 2 = x^2 + \frac{1}{x^2} + 2$$

= $\left(x + \frac{1}{x}\right)^2 = \{f(x)\}^2$

and $f(x^3) + 3f(x)$

$$= x^{3} + \frac{1}{x^{3}} + 3\left(x + \frac{1}{x}\right) = \left(x + \frac{1}{x}\right)^{3} = \{f(x)\}^{2}$$

Thus, both 1 and 2 are correct.

- 67. (c) Since, set A contains 4 elements, then number of elements in $P(A) = 2^4 = 16$ So, the number of elements in $A \times P(A) = 4 \times 16 = 64$
- 68. (b) Let A, B, C be three sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Let $x \in A \cup B \Rightarrow x \in A$ or $x \in B$...(1) Since, $A \cup B = A \cup C$ there fore $x \in A$ or $x \in C$...(2) Also, Given $A \cap B = A \cap C$ $\therefore x \in A \cap B \Rightarrow x \in A$ and $x \in B$...(3) and $x \in A$ and $x \in C$ ($\because A \cap B = A \cap C$) ...(4) Thus, from (1), (2), (3), and (4), we have B = C only
- 69. (b) $(2+\sqrt{2})^2 = 4+2+4\sqrt{2} = 6+4\sqrt{2}$ So, it is an irrational number

70. (a)
$$A \cap (A' \cup B) = A \cap A' = \phi$$

71. (c) Following venn diagram shows the relation A-(B-C)

In the above venn diagram, horizontal lines shows

(A–B) and vertical lines show $(A \cap C)$

$$(A - B) \cup (A \cap C) = A - (B - C)$$

72. (c) On applying Demorgan's law, we get

 $A \cap (A \cup B)' = A \cap (A' \cap B')$ On applying associative law, we get,

$$(A \cap A') \cap B' = \phi \cap B' = \phi$$

73. (d) If the relation is defined by option (d), then each 1, 2 and 3 has two images. So, it is not a function.

74. (d) Since, $3 \in A$ but $(3, 3) \notin R$

So, it is not reflexive. and $(3, 4) \in \mathbb{R}$ and $(4, 3) \in \mathbb{R}$

$$f(x) \neq 0, \forall x \in R$$

$$\Rightarrow An exponential function is never zero.$$
57. (a) Since $x^2 < 0$ is not possible for real numbers. A is true.
Since $x^2 > 0$ for $\forall x \in R$. Both (A) and (R) are true and
(R) is the correct explanation of (A).
58. (d) For reflexive :
aRa \Rightarrow a divides a
 \therefore R is reflexive.
For symmetric :
aRb \Rightarrow a divides b
bRa \Rightarrow b divides a
which may not be true
 \Rightarrow R is not symmetric.
For transitive
aRB \Rightarrow a divides $b \Rightarrow b = ka$
bRc \Rightarrow b divides $c \Rightarrow c = lb$
Now, $c = lka$
 \Rightarrow a divides c
 \Rightarrow a Rc
 \Rightarrow aRb, bRc \Rightarrow cR a

59. (c) Given equation is :

 $10^{\log_{10}|x|=2}$

Taking log₁₀ on both sides

$$\Rightarrow \log_{10} | x \models \log_{10} 2$$

 \Rightarrow R is transitive.

$$\Rightarrow |x| = 2$$

- \Rightarrow x = 2 or -2
- 60. (d) Both statements are incorrect.
- 61. (b) In the given Venn diagram, shaded region shows $(A \cup B) \cap C.$
- 62. (c) Let binary number 0.1111111... = x

$$\Rightarrow x = 2^{-1} + 2^{-2} + 2^{-3} + \dots = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = \infty$$

1

This is an infinite G.P. series with first term = $\frac{1}{2}$ and

common ratio =
$$\frac{1}{2}$$

$$\Rightarrow x = \frac{1/2}{1 - \frac{1}{2}} = \frac{1/2}{1/2} = 1$$

63. (c) The given binary number $10001100 = 1 \times 2^7 + 1 \times 2^3 + 1 \times 2^2$ = 128 + 8 + 4 = 140 (decimal numbers) and $1101101 = 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^0$ = 64 + 32 + 8 + 4 + 1 = 109their difference = 140 - 109 = 31

64. (b) Given sets in set builder form are :

$$A = \{x \in R : -9 \le x < 4\}$$

B= \{x \in R : -13 < x 5\}
and C = \{x \in R : -7 \le x \le 8\}

(d) When $f(x) = e^x$

84. but $(3, 3) \notin \mathbb{R}$ So, it is also not transitive. Hence, *R* is neither reflexive nor transitive. 75. We know (c) $X - Y = X \cap Y'$ $(X - Y)' = (X \cap Y')'$ $= X' \cup (Y')' = X' \cup Y$ (a) Work with option 76. 85. $(0.1101)_2 = 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-4}$ $=\frac{1}{2}+\frac{1}{4}+\frac{1}{16}=\frac{13}{16}=(0.8125)_{10}.$ Hence option (a) gives the binary equivalent of given decimal number. 77. We know that Total number of proper subsets of a (c) finite set with *n* elements is $2^n - 1$ 78. (c) We know that $[(A \cup B) \cap C]' = A' \cap B' \cup C'$ (a) Since, A and B are subsets of set X therefore 79. $A \subset X$ and $B \subset X$ 87. Consider $\{(A \cap (X-B)\} \cup B$ $= (A \cap B') \cup B$ $(:: B' \cap B \quad B)$ $= A \cup B$ 80. (b) Let sets A and B have m and n elements respectively. 88. (d) Given The set made by subsets of a finite sets A and B is known as power set i.e. P(A) and P(B). We know, if set A has *n* elements then P(A) has 2^n elements. Thus, The total no. of subsets of a finite set $A = 2^m$ and set $B = 2^n$ So, According to the question $2^m - 2^n = 56$ $\Rightarrow 2^{n}(2^{m-n}-1) = 8 \times 7 = 2^{3} \times (2^{3}-1)$ On comparing the powers, both side n = 3 and m - n = 3 \Rightarrow m=6 and n=3 81. (b) We know that $A \times (B - C) = (A \times B) - (A \times C)$ 82. Total no. of students = 100(a) Let E denote the students who have passed in English. Let *M* denote the students who have passed in Maths. :. n(E) = 75, n(M) = 60 and $n(E \cap M) = 45$ we know $n(E \cup M) = n(E) + n(M) - n(E \cap M)$ =75+60-45=90Required number of students = 90 - 45 = 4589. (b) (a) Let $R = x : x \in N$, x is a multiple of 3 and $x \le 100$ 83. and $S = x : x \in N$, x is a multiple of 5 and $x \le 100$ 90. $\therefore R = \{3, 6, 9, 12, 15, \dots, 99\}$ and $S = \{5, 10, 15, \dots, 95, 100\}$ Now, $(R \times S) \cap (S \times R) = (R \cap S) \times (S \cap R)$ $=(15, 30, 45, 60, 75, 90) \times (15, 30, 45, 60, 75, 90)$ S \therefore Number of elements in $(R \times S) \cap (S \times R)$ Their sum is 671 $=6 \times 6 = 36$

(c) Let $A = \{a, b, c\}$ and $\mathbf{R} = \{(a, a), (a, b), (b, c), (b, b), (c, c), (c, a)\}$ Since, $(a, a), (b, b), (c, c) \in R$ \therefore *R* is reflexive relation. But $(a, b) \in R$ and $(b, a) \notin R$. *R* is not symmetric relation. Also, $(a, b), (b, c) \in R$ \Rightarrow $(c, a) \in R$ But $(a, c) \notin R$ \therefore *R* is not transitive relations. (a) Let $\log_{10} (x+1) + \log_{10} 5 = 3$ $\Rightarrow \log_{10} 5(x+1) = 3$ ($\because \log m + \log n = \log mn$) $\Rightarrow 5(x+1)=10^3$ \Rightarrow (x 1) $\frac{1000}{5}$ 200 $\Rightarrow x = 200 - 1 = 199$ 86. (a) $2\log_8 2 - \frac{\log_3 9}{3} = 2\log_{2^3} 2 - \frac{\log_3 3^2}{3}$ $=\frac{2}{3}\log_2 2 - 2\frac{\log_3 3}{3} = \frac{2}{3} - \frac{2}{3} \quad 0 \quad (\because \log_a a = 1)$ (c) Consider $(101, 101)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$ $4 \quad 1 \quad \frac{1}{2} \quad \frac{1}{8} \quad \frac{40 \quad 4 \quad 1}{8} \quad \frac{45}{8} \quad (5.625)_{10}$ $A = \{x : x \le 9, x \in N\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Total possible multiple of 3 are 3, 6, 9, 12, 15, 18, 21, 24, 27 But 3 and 27 are not possible because 3 and 27 can not be express as such that a + b + c is multiple of 3 $6 \rightarrow 1 \quad 2 \quad 3$ $9 \rightarrow 2$ 3 4,5 3 1,6 2 1 $12 \rightarrow 9$ 2 1.8 3 1.7 1 4.7 2 3. 6 4 2,6 5 1,5 4+3 $15 \rightarrow 9$ 4 2,9 5 1,8 6 1,8 5 2, 8 4 3,7 6 2,7 5 3,6 5 4 $18 \rightarrow 9 \ 8 \ 1,9 \ 7 \ 2,9 \ 6 \ 3,$ 9 5 4,8 7 3,8 6 4,7 6+5 $21 \rightarrow 9 \ 8 \ 4.9 \ 7 \ 5.8 \ 7 \ 6$ $24 \rightarrow 9 \quad 8 \quad 7$ Hence, total largest possible subsets are 30. Given, $A = \{-1, 2, 5, 8\}$ and $B = \{0, 1, 3, 6, 7\}$ Since, R be the relation 'is one less than' from A to B \therefore R = {(-1, 0), (2, 3), (5, 6)} Hence, R contains 3 elements.

(c) The 11th term of the group is (56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66)

sum =
$$\frac{n(n^2 + 1)}{2} = \frac{11(121 + 1)}{2} = 11 \times 61 = 671$$

Their sum is 671

(c) Consider $\frac{(\log_{27} 9)(\log_{16} 64)}{\log_4 \sqrt{2}}$ 91. $=\frac{\log_{3^3}(3^2)\log_{4^2}(4)^3}{\log_{2^2}(2^{1/2})}$ $=\frac{\frac{2}{3}\log_3 3 \times \frac{3}{2}\log_4 4}{\frac{1}{2}\times 2} = \frac{1}{\frac{1}{4}} = 4$ (b) Given, $x = (1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2$ = 8 + 4 + 1 = 13and $y = (110)_2 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$ = 4 + 2 = 692. $\therefore x^2 - y^2 = (13)^2 - (6)^2 = 169 - 36 = 133$ Now, $\begin{array}{r} 2 & 133 \\ \hline 2 & 66 & 1 \\ \hline 2 & 33 & 0 \\ \hline 2 & 16 & 1 \\ \hline 2 & 8 & 0 \\ \hline 2 & 4 & 0 \\ \hline 2 & 2 & 0 \\ \hline 1 & 0 \end{array}$ 0 $\therefore 133 = (10000101)_2$ 93. (b) $(10 x 010)_2 - (11y1)_2^2 = (10z11)_2$ $\Rightarrow (2^5 \times 1 + 0 + x \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0)$ $-(2^3 \times 1 + 2^2 \times 1 + y \times 2^1 + 1 \times 2^0)$ $= 2^4 \times 1 + 0 + 2^2 \times z + 2^1 \times 1 + 2^0$ $\Rightarrow (34+8x)-(13+2y)=19+4z$ $\Rightarrow 2 = -8x + 2y + 4z$ $\Rightarrow x = 0, y = 1, z = 0$ (c) $(0.0011) = 0 \times \frac{1}{2} + 0 \times \frac{1}{2^2} + 1 \times \frac{1}{2^3} + 1 \times \frac{1}{2^4}$ 94. $=0+0+\frac{1}{8}+\frac{1}{16}=\frac{3}{16}$ Hence, option (c) is correct. 95. (a) We know, for two sets A and B $A-B=A-(A \cap B)$ $\therefore n(A-B) = n(A) - n(A \cap B)$ Given, n(A) = 115, n(B) = 326 and n(A - B) = 47. \Rightarrow 47 = 115 - $n(A \cap B)$ $\Rightarrow n(A \cap B) = 68$ Consider $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ =115+326-68=37396. (d) Since, A is void set therefore the number of elements in power set of A is 1. $\therefore P\{P(A)\} = 2^1 = 2$ because If set A has n elements then P(A) has 2^n elements. $\Rightarrow P P\{P(A)\} = 2^2 - 4$ $\Rightarrow P\{P\{P\{P(A)\}\}\} = 2^4 = 16$

97. (d) Total Budget = 1400 crores
Total expenditure =
$$28\% + 35\% + 12\% + 8\% + 105$$
 cr.
= $83\% + 105$ crores
Thus, total expenditure = $\left(1400 \times \frac{83}{100} \quad 105\right)$ cr.
= $(1162 + 105)$ cr.
= 1267 cr.
Now, Balance amount = $(1400 - 1267)$ cr. = 133 cr.
Hence, Amount spent an Transport in crores of rupees
is 133.
98. (c) No. of people who are illiterates = $15000 \times \frac{34.5}{100} = 5175$
No. of people who have education up to primary school
= $15000 \times \frac{27}{100}$ 4050
Similarle by a free place between a base time are to middle

Similarly, No. of people who have education upto middle school = 2790

Let the no. of people who have education upto high school = x.

: According to the question.

No. of people who have education upto pre-university

$$\frac{x}{2}$$

97

So, Total no. of people who are not graduates

$$= 5175 + 4050 + 2790 + \mathbf{x} + \frac{x}{2} = 12150 + \mathbf{x} + \frac{x}{2}$$

Since, 660 are graduates, therefore

$$15000 - (12150 + x + \frac{x}{2}) = 660$$
$$\Rightarrow 15000 - 660 = 12150 + \frac{3x}{2}$$
$$\Rightarrow 2 (15000 - 660) = 24300 + 3x$$
$$\Rightarrow 28680 - 24300 = 3x$$
$$\Rightarrow \frac{4380}{3} \quad x \Rightarrow x = 1460$$

Hence, 1460 students have education upto high school. 99. (b) $(\log_x x) (\log_3 2x) (\log_{2x} y) = \log_x x^2$

$$\Rightarrow 1 (\log_3 2x) (\log_{2x} y) = 2 (\because \log_x x^2) \quad 2 \log_x x)$$
$$\Rightarrow \left(\frac{\log 2x}{\log 3}\right) \left(\frac{\log y}{\log 2x}\right) = 2$$

$$\Rightarrow \frac{\log y}{\log 3} = 2 \Rightarrow \log y = 2 \log 3$$
$$\Rightarrow \log y = \log 3^2 \Rightarrow y = 3^2 \Rightarrow y = 9$$
100. (d) Given, $\log_{e} k \log_{e} x = 3$

$$(\mathbf{u}) \quad \text{Orven, } \log_5 k \log_k x = 3$$

 $\frac{\log k}{\log 5} \cdot \frac{\log x}{\log k} \quad 3 \implies \frac{\log x}{\log 5} = 3$ $\Rightarrow \log x = 3 \log 5 \Rightarrow \log x = \log 5^3$ $\Rightarrow x = 5^3 \Rightarrow x = 125$

Sets, Relations, Function and Number System

10

() C

101. (c) Given,
$$N_a = \{ax | x \in N\}$$

 $\therefore N_{12} = \{12, 24, 36, 48, ...\}$
and $N_8 = \{8, 16, 24, ...\}$
 $\therefore N_{12} \cap N_8 = \{24, 48, ...\}$
 $= N_{24}$
102. (b) Let $X = \{(4^n - 3n - 1) | n \in N\}$
and $Y = \{9 (n - 1) | n \in N\}$
 $\Rightarrow X = \{0, 9, 54, ...\}$ (By putting $n = 1, 2,$)
and $Y = \{0, 9, 18, 27, 36, 54,\}$
(By putting $n = 1, 2, ...$)
 $\therefore X \cup Y = \{0, 9, 18, 27, 36, 54,\} = Y$
103. (d) The total number of elements common in $(A \times B)$ and
 $(B \times A)$ is n^2 .
104. (c) Let $f: R \to R$ be defined as $f(x) = \frac{|x|}{x}, x \neq 0$.
Also, $f(0) = 2$
ie. value of function at $x = 0$ is 2.
Consider, $f(x) = \begin{cases} \frac{x}{x} = 1 \text{ if } x > 0 \\ -x, x = 0 \end{cases}$
because we have $|x| = \begin{cases} x, x \ge 0 \\ -x, x = 0 \end{cases}$
Thus, Range of $f(x) = \{1, -1, 2\}$
105. (c) 13.625
 $\frac{2}{2} = \frac{13}{6} = \frac{1}{2}$

106. (b) Since, order of a set A is 3 and order of set B is 2 therefore

1

n(A) = 3 and n(B) = 2

 \therefore Number of relations from *A* to *B*

$$= n(A) \times n(B) = 3 \times 2 = 6$$

107. (c) Consider
$$\frac{\log_{\sqrt{\alpha \ \beta}} H}{\log_{\sqrt{\alpha \ \beta\gamma}} H} = \frac{\log_H \sqrt{\alpha \ \beta \ \gamma}}{\log_H \sqrt{\alpha \ \beta}}$$

$$= \log_{\sqrt{\alpha \ \beta}} \sqrt{\alpha \ \beta \ \gamma} = \log_{\alpha \ \beta} \left(\alpha \ \beta \ \gamma \right)$$

108. (a) Since, Power set is the collection of all the subsets of the set A therefore
A U P (A) = P(A)
∴ statement (1) is correct.

109. (d) $A = P(\{1, 2\}) = \{\phi, \{1\}, \{2\}, \{1, 2\}\}$

(: Power set is the collection of all subsets of the set A) From above it is clear that $\{1, 2\} \in A$

110. (d) $xRy \Leftrightarrow x$ and y are graduates of the same university.

Reflexive $x R x \Leftrightarrow x$ and x are graduates of the same university.

:. Relation is reflexive.

Symmetric $x R y \Leftrightarrow x$ and y are graduates of the same university

 \Rightarrow *yRx* \Leftrightarrow *y* and *x* are graduates of the same university.

: Relation is symmetric.

Transitive
$$xRy$$
, $yRz \Leftrightarrow xRz$

It means *x* and *y*, *y* and *z* are graduates of the same university, then *x* and *z* are also graduates of the same university.

: Relation is transitive.

Hence, relation is reflexive, symmetric and transitive.

111. (d)
$$(0.101)_2 = 2^{-1} \times 1 + 2^{-2} \times 0 + 2^{-3} \times 1$$

$$= \frac{1}{2} + 0 + \frac{1}{8} = \frac{5}{8}$$

and $(0.011)_2 = 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}$
$$= 0 + \frac{1}{4} + \frac{1}{8} = \frac{3}{8}$$

Also, $(11)_2 = 1 \times 2^1 + 1 \times 2^0 = 3$
and $(01)_2 = 0 \times 2^1 \times 1 \times 2^0 = 1$
 $(0.101)^{(11)} + (0.011)^{(11)_2}$

$$\therefore \frac{(0.101)_2 + (0.011)_2}{(0.101)_2^{(10)_2} - (0.101)_2^{(01)_2} (0.011)_2^{(01)} + (0.011)_2^{(10)_2}}$$

$$=\frac{\left(\frac{5}{8}\right)^{3}+\left(\frac{3}{8}\right)^{3}}{\left(\frac{5}{8}\right)^{2}-\left(\frac{5}{8}\right)\left(\frac{3}{7}\right)+\left(\frac{3}{8}\right)^{2}}=\frac{5}{8}+\frac{3}{8}=\frac{8}{8}=1=(1)_{2}$$

- 112. (b) Let $A = \{a, b, c, d\}$ Let n = no. of elements in A = n(A) = 4Now, number of subsets $= 2^n = 2^4 = 16$ As we know that no. of proper subsets $= 2^n - 1$ \therefore Number of proper subsets $= 2^4 - 1 = 16 - 1 = 15$
- 113. (b) Let N = National savings certificates S = Shares Total no. of persons = 32 No. of persons who invest in National savings certificates = 30 No. of persons who invest in shares = 17

Therefore $n(N \cup S) = 32$, n(N) = 30, n(S) = 17We know that,

$$n(N \cup S) = n(N) + n(S) - n(N \cap S)$$

 $\Rightarrow 32 = 30 + 17 - n(N \cap S)$ $\Rightarrow n(N \cap S) = 47 - 32 = 15$ 114. (c) Since, $(1111)_2 = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^{1+} + 1 \times 2^{0}$ $=8+4+2+\tilde{1}=15$ $(1001)_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^{1} + 1 \times 2^0 = 8 + 1 = 9$ and $(1\overline{0}10)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 8 + 2 = 10$ \therefore $(1111)_{2} + (1001)_{2} - (1010)_{2} = 15 + 9 - 10 = 14$ $(14)_{10} = (1110)_2$ 115. (a) Let $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$ Reflexive Since, IR1, 2R2, 3R3 in the set R \therefore R is reflexive relation. **Symmetric** Since 1R2 but 2 is not related to 1 in R \therefore R is not symmetric relation. Transitive $1R2, 2R3 \Rightarrow 1R3$ \therefore R is transitive relation. Hence, R is reflexive and transitive only. 116. (d) Consider $\log_3 [\log_3[\log_3 x]] = \log_3 3$ $\Rightarrow \log_3[\log_3 x] = 3$ $\Rightarrow \log_3 x = 3^3$ $\Rightarrow \log_3 x = 27 \Rightarrow x = 3^{27}$ Remainder 117. (d) 2 32 0 0.25 2 16 0 $\times 2$ 2 8 0 0.5 0 4 0 $\times 2$ 2 2 0 2 1 1 1 1 : Required binary number equivalent to 32.25 is 100000.01

118. (a) Since, A and B are two disjoints therefore $A \cap B = \phi$

$$\therefore \quad \mathbf{A} - \mathbf{B} = \mathbf{A} - (\mathbf{A} \cap \mathbf{B})$$

119. (a) Let $A = \{n^2 : n \in N\}$ and $B = \{n^3 : n \in N\}$ $A = \{1, 4, 9, 16,\}$ and $B = \{1, 8, 27, 64,\}$ Now, $A \cap B = \{1\}$ which is a finite set. Also, $A \cup B = \{1, 4, 8, 9, 27,\}$ So, complement of $A \cup B$ is infinite set. Hence, $A \cup B \neq N$ 120. (a) Given $A = \{2,3\}, B = \{4,5\}, C = \{5,6\}$ $\therefore B \cap C = \{5\}$ $\Rightarrow A \times (B \cap C) = \{2,3\} \times \{5\} = \{(2,5), (3,5)\}$ Hence, required number of elements in $A \times (B \cap C) = 2$ 121. (b) Let, $U = \{1, 2, 3, ..., 20\}$

C = Set of all numbers which are divisible by 2 and 3= {6,12,18} $A \cup B = \{1,4,9,16,5,10,15,20\}$ $\Rightarrow n(A \cup B) = 8$ $\Rightarrow n(A \cup B)' = 20 - 8 = 12$ Also, n(A \cdot B)' = 20 - 8 = 12 Also, n(A \cdot B)' = 20 - 8 = 12 $A \cup B \cup C = n(A) + n(B) + n(C)$ $\therefore A \cup B \cup C = \{1,4,9,16,5,10,15,20,6,12,18\}$ n(A \cdot B \cdot C) = 11 and n(A) + n(B) + n(C) = 4 + 4 + 3 = 11 Hence, only statement I and III are correct. 122. (d) Given, n(A) = 4, n(B) = 3 Since, the sets A and B are not known, then cardinality of the set A \text{ B cannot be determined.}

123. (c) Let
$$f(x) = \cos 2x - \sin 2x$$

$$f(x) = \frac{1}{\sqrt{2}} \left[\sqrt{2} \cos 2x - \sin 2x \right]$$
$$f(x) = \sqrt{2} \left[\frac{1}{\sqrt{2}} \cos 2x - \frac{1}{\sqrt{2}} \sin 2x \right]$$
$$f(x) = \sqrt{2} \left[\cos \frac{\pi}{4} \cos 2x - \sin \frac{\pi}{4} \sin 2x \right]$$
$$f(x) = \sqrt{2} \left[\cos \left(\frac{\pi}{4} - 2x \right) \right]$$

We know,

$$-1 \le \cos\left(\frac{\pi}{4} + 2x\right) \le 1$$
$$\Rightarrow -\sqrt{2} \le \sqrt{2} \cos\left(\frac{\pi}{4} + 2x\right) \le \sqrt{2}$$
$$\Rightarrow -\sqrt{2} \le f(x) \le \sqrt{2}$$

$$\therefore \quad \text{Range of } f(x) = [-\sqrt{2}, \sqrt{2}]$$
124. (b) Let A = {1, 2, 5, 6} and B = {1, 2, 3}

$$\therefore \quad A \times B = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (5, 1), (5, 2), (5, 3), (6, 1), (6, 2), (6, 3)\}$$

and
$$B \times A = \{(1, 1), (1, 2), (1, 5), (1, 6), (2, 1), (2, 2), (2, 5), (2, 6), (3, 1), (3, 2), (3, 5), (3, 6)\}$$

 $\Rightarrow (A \times B) \cap (B \times A) = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$

тт

- {((125-129).

Given:

$$k=15, c+f+k+e=46$$

 $c=11, a=23, b=17$
 $d=2f$ and $e=3f$
 $\Rightarrow d \frac{2}{3}e$
on solving above these we get
 $e=15, d=10, f=5$
(c) Required number of students = $d+e+f$

125. (c) Required number of students = d + e + f= 10 + 15 + 5 = 30

126. (c) Number of students learn at least two languages = d + e + k + f = 10 + 15 + 15 + 5 = 45

Sets, Relations, Function and Number System

- 127. (a) Total number of students in class = 96 + 28 = 124
- 128. (a) Required number of students = e + k = 15 + 15 = 30
- 129. (c) Number of students learn at least one languages =23+10+17+15+5+11=96

130. (b) Let
$$\log (a + \sqrt{a^2 + 1}) + \log \left(\frac{1}{a + \sqrt{a^2 + 1}}\right)$$

= $\log (a + \sqrt{a^2 + 1}) + \log 1 - \log (a + \sqrt{a^2 + 1})$
= $\log (a + \sqrt{a^2 + 1}) - \log (a + \sqrt{a^2 + 1})$
= 0

- 131. (c) Let on the set of real numbers, *R* is a relation defined by *xRy* if and only if 3x + 4y = 5Consider, 3x + 4y = 5
 - (I) Put x = 0 and y = 1, we get
 - LHS = $3(0) + 4(1) = 4 \neq 5$ (= RHS) Hence 0 is not related to 1.

(II) Now, Put
$$x = 1$$
 and $y = \frac{1}{2}$, we get

LHS = 3(1) + 4 ×
$$\frac{1}{2}$$
 = 5 = 5 (= RHS)

Hence 1 is related to $\frac{1}{2}$.

(III) Similarly,
$$\frac{2}{3}$$
 is related to $\frac{3}{4}$.
Hence, both statements II and III are correct.

132. (d) Consider,
$$\log \frac{9}{8} - \log \frac{27}{32} + \log \frac{3}{4}$$

$$= \log \frac{9}{8} + \log \frac{32}{27} + \log \frac{3}{4}$$

$$= \log \left(\frac{9}{8} \times \frac{32}{27}\right) + \log \frac{3}{4}$$

$$= \log \left(\frac{4}{3}\right) + \log \frac{3}{4} = \log \left(\frac{4}{3} \times \frac{3}{4}\right) = \log 1 = 0$$
133. (b) Let $a = 00111 = 2^2 \times 1 + 2^1 \times 1 + 2^0 \times 1$

$$= 4 + 2 + 1 = 7$$
Let $b = 01110 = 2^3 \times 1 + 2^2 \times 1 + 2^1 \times 1 + 2^0 \times 0$

$$= 8 + 4 + 2 = 14$$

$$\therefore \qquad \frac{b}{a} = \frac{14}{7} = 2$$
134. (d) Let $M = \text{Set of men and } R \text{ is a relation 'is son of defined on } M$

defined on *M*. Reflexive : aRa(\because *a* can not be a son of *a*) Symmetric : $aRb \Rightarrow bRa$ which is not also possible. (\because If *a* is a son of *b* then *b* can not be a son of *a*) Transitive : aRb, $bRc \Rightarrow aRc$ which is not possible.

135. (b) The number 10101111 can be rewritten as

$$10101111 = 2^7 \times 1 + 2^6 \times 0 + 2^5 \times 1 + 2^4 \times 0 + 2^3 \times 1 + 2^2 \times 1 + 2^1 \times 1 + 2^0 \times 1 + 2^2 \times 1 + 2^1 \times 1 + 2^0 \times 1 + 2^1 \times 1 + 2^0 \times 1 + 2^1 \times 1 + 2^0 \times 1 + 2^0$$

136. (d) Let A, B and C are non-empty sets such that

$$A \cap C = \phi$$

Consider, $(A \times B) \cap (C \times B) = (A \cap C) \times (B \cap B)$

 $= (A \cap C) \times B = \phi \times B = \phi$ 137. (d) Let $A = \{4n+2 : n \in N\}$ and $B = \{3n : n \in N\}$ $\Rightarrow A = \{6, 10, 14, 18, 22, 26, 30, 34, 38, 42,\}$ and $B = \{3, 6, 9, 12, 15, 18, 21, 24, 27, 30,\}$ $\therefore A \cap B = \{6, 18, 30, 42,\}$ = 6 + 12n - 12 = 12n - 6.

Hence,
$$A \cap B = \{12n - 6 : n \text{ is a natural number}\}$$
.

138. (b) Since, P, Q and R are three non-collinear points.∴ We have P, Q and R are like as

Now, only P is common between PQ and PR Hence, $PQ \cap PR = \{P\}$

- 139. (a) Consider $0.3 \times 2 = 0.6 \times 2 = 1.2 \times 2$ Now, treated 1 as 0 So, $0.2 \times 2 = 0.4 \times 2 = 0.8 \times 2 = 1.6 \times 2$ Again, $1.6 \times 2 = 0.6 \times 2 = 1.2$ Thus, $0.3 \times 2 = \boxed{0}.6 \times 2 = \boxed{1}.2 \times 2 = \boxed{0}.4 \times 2$ $= \boxed{0}.8 \times 2 = \boxed{1}.6 \times 2 = \boxed{1}.2$ ------- so on Hence, $0.3 = (0.01001 ----)_2$.
- 140. (a) Let $\tan \theta = \sqrt{m}$, where m is a non-square natural number.

$$\Rightarrow \sin \theta = \sqrt{m} \cos \theta$$

Consider, $\sec 2\theta = \frac{1}{\cos 2\theta} = \frac{1}{\cos^2 \theta - \sin^2 \theta}$
$$= \frac{1}{\cos^2 \theta - m \cos^2 \theta} = \frac{1}{\cos^2 \theta (1 - m)}$$
$$= \frac{\sec^2 \theta}{1 - m} = \frac{1 + \tan^2 \theta}{1 - m} = \frac{1 + m}{1 - m}$$
$$= \frac{(1 + m)(1 - m)}{(1 - m)(1 - m)} = \frac{(1 - m^2)}{(1 - m)^2}$$

Numerator will always be negative and denominator will always be positive.

Hence, $\sec 2\theta = \frac{1 - m^2}{(1 - m)^2}$ is a negative number.

м-26

141. (c) Let
$$A = \{a, b, c\} \Rightarrow O(A) = 3$$

Now, number of proper subsets of
 $A = 2^{O(A)} - 1 = 2^3 - 1 = 7$
142. (a) Let $\log_2 (\log_3 81) = x$
 $\Rightarrow \log_2 (\log_3 3^4) = x$
 $\Rightarrow \log_2 (4 \log_3 3) = x$
 $\Rightarrow \log_2(4) = x$ ($\because \log_a a = 1$)
 $\Rightarrow 4 = 2^x$
 $\Rightarrow 2^2 = 2^x \Rightarrow x = 2$

- 143. (d) Since ϕ is null set therefore $\phi = \{ \}$
- 144. (d) Let A = no. of students passed in the first semester. B = no. of students passed in second semester. Given, n(A) = 260, n(B) = 210
 - $\therefore \quad n(\overline{A}) = no. \text{ of students did not pass in first semester.}$ = 500 260 = 240Similarly, $n(\overline{B}) = 500 210 = 290$ Thus, we have $n(\overline{A} \cup \overline{B}) = 170$,

$$n(\overline{A}) = 240$$
, $n(\overline{B}) = 290$
 $\therefore n(\overline{A} \cup \overline{B}) = n(\overline{A}) + n(\overline{B}) - n(\overline{A} \cap \overline{B})$
 $\Rightarrow 170 = 240 + 290 - n(\overline{A} \cap \overline{B})$

$$\Rightarrow n(\overline{A} \cap \overline{B}) = 360$$

So, n (students passed in both semester) = 500 - 360 = 140

145. (c) 11101.001 = $1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \cdot 0 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$

$$= (16+8+4+0+1) \cdot \left(0+0+\frac{1}{8}\right) = 29.125$$

146. (c)
$$A-B=\{1,4\}$$

 $(A-B)^{c}=U-(A-B)=\{2,3,5,6,7,8,9,10\}$
147. (a) Here $A=\{1,4,9,16,25,36,49,64,81\}$
 $B=\{even natural numbers\}$
 $A \cap B=\{4,16,36,64\}$
So, cardinality of $A \cap B=4$

148. (c) Remainder

2	292	0
2	146	0
2	73	1
2	36	0
2	18	0
2	9	1
2	4	0
2	2	0
	1	

Required answer = 100 100 100

149. (d) Let

$$A = \{x : x + 4 = 4\} = \{x : x = 4 - 4\}$$

$$= \{x : x = 0\} = \{0\}$$

(150-153):

Let the people who read all three papers A, B, C = x%So, people who read only A and B not C = (30 - x)%People who read only B and C, not A = (28 - x)%People who read only A and C, not B = (36 - x)%Venn diagram representing these is shown below.

Remaining numbers in circles are filled as shown below. People who read only A + 30 - x + x + 36 - x = 42 \Rightarrow People reading only A = 42 - 30 - 36 + x = (x - 24)%Similarly, people who read only B = 51 - (30 - x + x + 28 - x) = 51 - (58 - x) = 51 - 58 + x = (x - 7)%People who read only C = 68 - (36 - x + x + 28 - x)= 68 - (64 - x) = (x + 4)%

Let x % people read all the three newspapers.

Since 8% people do not read any newspapers.

$$\therefore$$
 $(x-24)+(x-7)+(x+4)+(30-x)+(36-x)+(28-x)+x=92$

 $\Rightarrow x+98-31=92$

$$\Rightarrow x = 92 - 67 = 25$$

150. (b) Hence people who read all the three newspapers = 25%

151. (d)
$$(30-x)+(36-x)+(28-x)=94-3x$$

= 98-3 × 25 = 23
Hence percentage of people who read only

Hence percentage of people who read only two newspapers = 23%

152. (b) (x-24)+(x-7)+(x+4)=3x-27= $3 \times 25-27=48$ Hence percentage of people who read only one newspaper = 48%

153. (c)
$$x-24=25-24=1$$

Hence percentage of people who read only Newspaper
A but neither B nor C = 1%

154. (a) Consider
$$2\log 2 - \frac{1}{3}\log 3 = 2$$

 $2 \cdot \frac{\log 2}{\log 8} - \frac{1}{3} \cdot \frac{\log 9}{\log 3} = 2 \cdot \frac{\log 2}{\log 2^3} - \frac{1}{3} \cdot \frac{\log 3^2}{\log 3}$
 $= 2 \cdot \frac{\log 2}{\log 2} - \frac{1}{3} \cdot \frac{\log 9}{\log 3} = 2 \cdot \frac{2}{3} - \frac{2}{3} = 0$
155. (d) Let $A = \{0, 1\}, B = \{1, 0\}$
 $A \land B = \{0, 0\}, (1, 0), (0, 0), (1, 0)\}$.
 $A \land A = \{0, 00, 0, 0, 1, (1), (1, 0)\}$.
 $A \land A = \{0, 00, 0, 0, 1, (1), (1, 0)\}$.
 $A \land A = \{0, 00, 0, 0, 1, (1), (1, 0)\}$.
 $A \land A = \{0, 0, 0, 0, 0, 1, (1), (1, 0)\}$.
 $A \land A = B = A \land A$
157. (d) $A = B = A \land A$
157. (d) $A = B = A \land A$
158. (a) The relation 'has the same father as' over the set of children is only reflexive.
(\because : In reflexivity an element is related to itself)
159. (d) $(1011)_2 = 2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1]$
 $= 8 + 0 - 2 + 1 = (11)_{10}$.
160. (a) $(101010, 11)_2 = 12^2 \times 1 + 2^2 \times 1 + 2^2 \times 1 + 2^2 \times 0 + 2^1 \times 0)$
 $+ 2^9 \times 1], [2^{-1} \times 0 + 2^2 \times 1 + 2^3 \times 1] = (57.375)_{10}$
161. (b) $(\log_3 x) (\log_2 x) (\log_2 x) (\log_2 x) (\log_2 x)$
 $\log y = 2 \log 3$
 $\log y = \log 9$
 $\boxed{y = 9}$
162. (a) Given relation
 $R = (1, 2), (1, 3), (2, 1), (1, 1), (2, 2), (3, 3), (2, 3))$ is
reflexive and transitive only but not symmetric
 $\because (3, 1)$ and $(3, 2) \in R$.
163. (b) No. of elements in power set of $A = 2^n$.
164. (b) We have
 $A = \{0, 1, 2\}$
 $B = \{2, 3\}$
 $(A \cup B) \times C = \{(0, 3), (0, 4), (1, 3); (1, 4); (2, 3), (2, 4); (3, 3); (3, 4)$)
 $\therefore n[(A \cup B) \times C] = 8$
165. (c) A swe know
 $|x| = \left\{ \frac{x + if x}{2} = \frac{x}{2} = \frac{x}{2} = \frac{1}{2} = \frac{$

$$|\mathbf{x}| = \begin{cases} \mathbf{x} & \text{if } \mathbf{x} > 0\\ -\mathbf{x} & \text{if } \mathbf{x} < 0 \end{cases}$$
$$\therefore \mathbf{f}(\mathbf{x}) = \frac{|\mathbf{x}|}{\mathbf{x}} = \begin{cases} \frac{\mathbf{x}}{\mathbf{x}} & \text{if } \mathbf{x} > 0\\ \frac{-\mathbf{x}}{\mathbf{x}} & \text{if } \mathbf{x} < 0 \end{cases}$$
$$= \begin{cases} 1 & \text{if } \mathbf{x} > 0\\ -1 & \text{if } \mathbf{x} < 0 \end{cases}$$

{-1, 1}.

67. (c)
$$d = 60 \times 60s$$

 $m = 60s$
 $\frac{s - m}{m - d} = \frac{s - 60s}{60s - 60 \times 60s} = \frac{-59}{60 \times (-59)} = \frac{1}{60}$

 $ulation = 0.4 \times 75 \times 10^6 = 3 \times 10^7.$

li

$$=\frac{43}{100}\times75\times10^{6}=33.75\times10^{6}$$
...(i)

lish `P

$$=\frac{22}{100}\times75\times10^{6}=16.50\times10^{6}$$
...(2)

krit.

$$= \{(x, 2), (x, 3), (x, 4), (y, 2), (y, 3), (y, 4)\}$$

Hence, number of element in $A \times (B \cup C) = 6$.

176. (c)
$$\log_y x^5 \times \log_x y^2 \log_z z^3$$

= $\frac{5 \ln x}{\ln y} \times \frac{2 \ln y}{\ln x} \times \frac{3 \ln z}{\ln z} = 30$

177. (c) Since A is a relation on a set R

$$\therefore A \subseteq (R \times R)$$

178. (c) $A \times B = \{(1, 2), (1, 3), (2, 2), (2, 3)\}$ $A \times C = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$ Number of elements in $(A \times B) \cap (A \times C) = 2$

179. (c) If A is a finite set having n elements, then the number of relations which can be defined in A set is n²

$$2^{n \times n} = 2$$

S be the set of all even prime numbers 180. (a) S = 2 in an even prime number = (Non-empty set)

181. (c)	2	83	1	
	2	41	1	
	2	20	0	
	2	10	0	
	2	5	1	
	2	2	0	
		1		

Therefore, $(83)_{10} = (1010011)_2$

182. (d) For reflexive : (a, a) = a - a = 0 is divisible by 5. For symmetric : If (a - b) is divisible by 5, then b - a = -(a - b)is also divisible by 5. Thus relation is symmetric. For transitive If (a - b) and (b - c) is divisible by 5. Then (a - c) is also divisible by 5. Thus relation is transitive. \therefore R is an equivalence relation. 183. (c) n(T) = 50n(D) = 30n(H) = 40n(T) = n(D) + n(H) - n(DnH) $50 = 30 + 40 - n (D \cap H)$ $n(D \cap H) = 70 - 50 = 20$ Number of people having diabetes and high blood pressure = 20184. (c) n(A) = 4 and n(B) = 3Number of elements in n (A \times B) = 4 \times 3 = 12 185. (b) Suppose $U = \{a, b, c, d, e, f, g, h\}$

 $A = \{a, b, c, d\}$ $B = \{a, b, c, d, e\}$ Given $A \subseteq B$ $A^{c} = \{e, f, g, h\}, B^{C} = \{f, g, h\}$ Hence, $B^C \subseteq A^C$

$$d+g+e+c = 18\% \text{ of P}$$

= $\frac{18}{100} \times 75 \times 10^6 = 13.5 \times 10^6$...(3)

12% population knows Hindi and English

f+g=12% of P =
$$\frac{12}{100} \times 75 \times 10^6 = 9 \times 10^6$$
 ...(4)

8% population knows English and Sanskrit

$$g + e = 8\%$$
 of $P = \frac{8}{100} \times 75 \times 10^6 = 6 \times 10^6$...(5)

10% population Hindi and Sanskrit

$$g + d = 10\%$$
 of $P = \frac{10}{100} \times 75 \times 10^6 = 7.5 \times 10^6$...(6)

5% population knows all three languages

g = 5% of P =
$$\frac{5}{100} \times 75 \times 10^6 = 3.75 \times 10^6$$
 ...(7)

From (6), (7) $3.75 \times 10^6 + d = 7.5 \times 10^6$ \Rightarrow d=10⁶(7.5-3.75)=3.75 × 10⁶ From (5), (7) $3.75 \times 106 + e = 6 \times 10^{6}$ $\Rightarrow e = 10^{6}(6 - 3.75) = 2.25 \times 106$ From (4), (7) \Rightarrow f+3.75 × 106 = 9 × 10⁶ \Rightarrow f=10⁶(9-3.75)=5.25 × 10⁶ From (2), $b = 16.5 \times 10^{6} - (f + g + e)$ $= 16.5 \times 10^{6} - (5.25 \times 10^{6} + 3.75 \times 10^{6} + 2.25 \times 10^{6})$ $= 10^{6}[16.5 - 5.25 - 3.75 - 2.25] = 5.25 \times 10^{6}$ From (3), $c = 13.5 \times 10^{6} - (d + g + e)$ $= 13.5 \times 10^{6} - 9.75 \times 10^{6} = 3.75 \times 10^{6}$

From (4),
$$a = 33.75 \times 10^6 - (f + g + d)$$

= 33.75 × 10⁶ - 12.75 × 10⁶ = 21 × 10⁶

- 168. (a) Now, Number of people who don't know any of three languauges
 - = Total population -(a+b+c+d+e+f+g) $=75 \times 10^{6} - (21 + 5.25 + 3.75 + 3.75 + 2.25 + 5.25 + 375)10^{6}$ $=75 \times 10^{6} - 45 \times 10^{6} = 30 \times 10^{6} = 3 \times 10^{7}$

169. (d) Number of people who know only Hindi =
$$a = 21 \times 10^6$$
.

- 170. (d) Number of people who know only Sanskrit $= c = 3.75 \times 10^6$.
- 171. (c) Number of people who know only English $= b = 5.25 \times 10^6$.
- 172. (b) Number of people who know only one language $= a + b + c = 21 \times 10^{6} + 5.25 \times 10^{6} + 3.75 \times 10^{6}$ $= 30 \times 10^6 = 3 \times 10^7$.
- 173. (c) Number of people who know only two language $= d + e + f = 3.75 \times 10^{6} + 2.25 \times 10^{6} + 5.25 \times 10^{6}$ $= 11.25 \times 10^{6}$
- Consider the set given in option 'd'. 174. (d) $\{x | x^2 + 1 = 0, x \in R\}$ Let $x^2 + 1 = 0 \implies x^2 = -1 \implies x = \pm i$ which is complex. But $x \in R$. Hence for, any $x \in R$, $x^2 + 1$ can not be zero. 175. (c) Let $B = \{2, 3\}$ and $C = \{3, 4\}$

Now,
$$B \cup C = \{2, 3, 4\}$$
 consider $A \times (B \cup C)$
= $\{x, y\} \times \{2, 3, 4\}$

186. (b) Angle traced by the hour hand in 12 hours =
$$360^{\circ}$$

Angle traced by it in 4 hr 30 min $\left(4h \quad \frac{30}{60} hr\right) = \frac{9}{2}$ hr
 $= \frac{9}{2} \times \frac{360}{12}$ 135
Angle traced by minute hand is 60° min = 360°
Angle traced by it in $30 \text{ min} = \frac{30}{60} \times 360 = 180^{\circ}$
Required Angle = $180^{\circ} - 135^{\circ} = 45^{\circ} \Rightarrow 45 \times \frac{\pi}{100} = \frac{\pi}{4}$ radian
187. (d) According to 'Distribution law' in set theorry the given
both statements are wrong.
 $1.A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 $2.A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
188. (d) $(110001)_2 = 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
 $= 32 + 16 + 0 + 0 + 1 = (49)_{10}$
189. (c) Number of element in set A is 4.
Cordinality of the power set $P(A) = 2^4 = 16$
190. (b) $\log_{81} 243 = \log_{35} 3^6 = \frac{\log_3 3^6}{\log_3 3^5} = \frac{6}{5} = 1.25$
191. (b) $X = \text{Set of all citizens of India}$
 $R = \{(x, y) : x, y \in X, |x - y| = 5\}$
 $|x - x| = 0 \neq 5$ (R is not reflexive)
 $xRy \Rightarrow |x - y| = 5$
 $\Rightarrow |y - x| = 5$ (R is not transitive)
 $xRy \Rightarrow |x - y| = 5$
 $yRz \Rightarrow |y - z| = 5$
But $|x - z| \neq 5$ (R is not transitive)
192. (c) Given that $A = \{u, y, y, y, z\}$: $B = \{n, q, r, s\}$

192. (c) Given that, $A = \{u, v, x, y, z\}$; $B = \{p, q, r, s\}$ As we know, a mapping f: $x \rightarrow y$ is said to be a function, if each element in the set x has its image in set y. It is also possible that these are few elements in set y which are not the image of any element in set x. Every element in set x should have one and only one image.

- (ii) and (iii) are not function. 193. (c) S = Set of all integers and $R = \{(a, b), a, b \in S \text{ and } ab \ge 0\}$
 - $R = \{(a, b), a, b \in S \text{ and } ab \ge 0\}$ For reflexive : $aRa \Rightarrow a.a = a^2 \ge 0$

for all integers a. $a \ge 0$ For symmetric : $aRb \Rightarrow ab \ge 0 \forall a, b \in S$ If $ab \ge 0$, then $ba \ge 0 \Rightarrow bRa$ For transitive : If $ab \ge 0$, $bc \ge 0$, then also $ac \ge 0$ Relation R is reflexive, symmetric and transitive. Therefore relation is equivalence. a) $(11110)_2 = 2^4 \times 1 + 2^3 \times 1 + 2^2 \times 1 + 2^1 \times 1 + 2^0 \times 0$

194. (a) $(11110)_2 = 2^4 \times 1 + 2^3 \times 1 + 2^2 \times 1 + 2^1 \times 1 + 2^0 \times 0$ = 16 + 8 + 4 + 2 + 0 = 30 $(1010)_2 = (2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 0 = 8 + 0 + 2$ + 0) = 10Sum = 30 + 10 = 40= $(101000)_2$

2	40	
2	20	0
2	10	0
2	5	0
2	2	1
	1	0

195. (c) According to question $p + q + r = 5 \times 3 = 15$...(i) $s + t = 10 \times 2 = 20$...(ii) From equations (i) and (ii), p + q + r + s + t = 15 + 20 = 35

Average p, q, r, s and t =
$$\frac{35}{5} = 7$$

(b)	2	251	1
	2	125	1
	2	62	0
	2	31	1
	2	15	1
	2	7	1
	2	3	1
		1	

196.

Therefore, $(251)_{10} = (11111011)_2$ Sol. (197-199)

- 197. (a) Only Physics = 12 (1 + 3 + 6) = 2
- 198. (c) Only two subjects = 6 + 2 + 1 = 9
- 199. (b) Statement 1: Students, who had taken only one subject =2+5+4=11Students, who had taken only two subjects =6+2+1=9 $1 \neq 9$

then $y \not < x$ Hence, relation is not symmetry. **For Transitive:** if x < y and y < z, then x < zHence, relation is transitive.

205. (b) Music Dancing
$$45-x$$
 (x) $50-x$

Let 'x' be the number of students who likes both music and dance.

5 students likes neither music nor dancing. Hence, total number of remaining students = 60-5=55Now from Venn diagram, 45-x+x+50-x=55 $\therefore 95-x=55$ $\therefore x=95-55=40$.

206. (c)
$$\log_{10} 2$$
, $\log_{10} (2^x - 1)$ and $\log_{10} (2^x + 3)$ are in A.P.
Hence, common difference will be same.
∴ $\log_{10} (2^x - 1) - \log_{10} 2 = \log(2^x + 3) - \log_{10} (2^x - 1)$

$$\therefore \log_{10} \left(\frac{2^{x} - 1}{2} \right) = \log_{10} \left(\frac{2^{x} + 3}{2^{x} - 1} \right)$$
$$\Rightarrow \frac{2^{x} - 1}{2} = \frac{2^{x} + 3}{2^{x} - 1}$$
$$\frac{(2^{x} - 1)^{2} = 2(2^{x} + 3)}{2^{2x} - 2^{x+1} + 1 = 2^{x+1} + 6}$$
$$\frac{2^{2x} - 2^{x+2} - 5}{2^{2x} - 2^{x+2} - 5}$$

$$2^{2} - 2^{2} - 5$$

Let $2^{x} = y$, then
 $y^{2} - 4y - 5 = 0$
 $y^{2} - 5y + y - 5 = 0$
 $y(y - 5) + 1(y - 5) = 0$
 $y = -1, y = 5$
Therefore, $2^{x} = 5$
 $x = \log_{2} 5$.

208. (c)
$$A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

Number of subsets of A containing two elements
 $= 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1$

$$\frac{9(9+1)}{2} = \frac{90}{2} = 45$$

: Option (c) is correct

Alternate Method

The number of subsets of A containing exactly two elements is:

$${}^{10}C_2 = \frac{10 \times 9}{2 \times 1} = 45$$

Statement 2 :
Stude nts who had taken at least two subject
=
$$1 + 2 + 6 + 3 = 12$$

м-30

= 1 + 2 + 6 + 3 = 12Students who had taken all three subjects = $4 \times 3 = 12$

200. (d) sin x increases on the interval $\left(0, \frac{\pi}{2}\right)$

The relation S is defined on the set of integers Z and 201. (c) xSy, if integer x divides integer y. Reflexive : Since, every integer divides itself : integer x divides integer x ⇒xSx Hence, S is reflexive. **Symmetric :** Let $x, y \in Z$ such that xSyi.e., integer x divides integer y Now, this does not implies that integer y divides integer x. e.g. Take x = 2 and y = 4Then, 2 divides 4 but 4 does not divides 2. Thus, S is not symmetric. **Transitive :** Let x, y, $z \in Z$ such that xSy and ySz. \Rightarrow integer x divides integer y and integer y divides integer z \Rightarrow integer x divides integer z ⇒xSz Hence, S is transitive. $(1001)_2 = (2^3 \times 1 + 2^2 \times 0 + 2^1 \times 0 + 2^0 \times 1)_{10}$ = (8+1)_{10} = (9)_{10} 202. (b) Here, n(A) = 5 and n(B) = 4203. (d) $\therefore n (A \times B) = 5 \times 4 = 20$ $[:: n(A) = m, n(B) = n \Rightarrow n(A \times B) = mn]$ Given that x < y if $y \ge x + 5$ 204. (b) For Reflexive: $X \not < X$ Hence, relation is not reflexive.

For Symmetry: if x < y,

Sets, Relations, Function and Number System

29. (d)
$$(127.25)_{10}$$

Now,

$$2 \left[\frac{127}{63-1} \\
2 \left[\frac{31-1}{2} \\
2 \left[\frac{31-1}{2} \\
2 \\ \frac{3}{2} \\ \frac{12}{7-1} \\
2 \\ \frac{3}{2} \\ \frac{1}{7-1} \\
2 \\ \frac{3}{2} \\ \frac{3}{7-1} \\
2 \\ \frac{3}{7-1}$$

м-32				N	IDA Topicwise Solved Papers - MATHEMATICS			
219. ((a)	x and y are positive numbers.			2			
		$x \le y^2$	221.	(a)	Function $y = \frac{x}{1+x^2}$ $x \in R$			
		Reflexive -			x=0 $y=0$			
		$x \le x^2 \forall$ positive numbers.			1			
		Hence relation is reflexive. Transitive -			$x=1,-1 \qquad \qquad y=\frac{1}{2}$			
		$x \le y^2$ $y \le z^2$			$x=2,-2$ $y=\frac{4}{5}$			
		Let $x = 5, y = 3, z = 2$						
		$5 \le (3)^2$ (3) $\le (2)^2$			$x=3,-3$ $y=\frac{9}{10}$			
		but $5 \leq (2)^2$						
		Hence, $x \le y^2$ $y \le z^2$			· · ·			
		but $x \not\leq z^2$			Clearly $0 \le y = 1$			
		Thus relation is not transitive. Symmetric			$\Rightarrow y \in [0,1)$ Hence Range of $y = [0,1)$			
		$1 \le (2)^2$ while $2 \le (1)^2$	222.	(c)	$0.3125 \times 2 = 0.6250$			
		Hence relation is not symmetric.			$0.0250 \times 2 = 0.5000$ $0.2500 \times 2 = 0.5000$			
		Thus $x \le y^2 \forall$ positive numbers is reflexive, but not			$0.5000 \times 2 = \bigvee 1.0000$			
		transitive and symmetric.	222	(-)	$(0.3125)_{10} = (0.0101)_2$			
220. ((a)	$f(x_1) - f(x_2) = f\left(\frac{x_1 - x_2}{1 - x_1 x_2}\right)$	223.	(c)	$nRm \Leftrightarrow n$ is a factor of m . $\Rightarrow m$ is divisible by n . Reflexivity We know that			
		$x_1, x_2 \in (-1, 1)$			<i>n</i> is divisible by $n \forall n \in N$			
		then $f(x) = \log \frac{(1-x)}{(1+x)}$			$(n, n) \in R \forall n \in N$ <i>R</i> is reflexive.			
		$f(x_1) = \log \frac{1 - x_1}{1 + x_1} \qquad \qquad f(x_2) = \log \frac{1 - x_2}{1 + x_2}$			symmetric $n, m \in N$			
		$f(x_1) - f(x_2) = \log \frac{1 - x_1}{1 + x_1} - \log \frac{1 - x_2}{1 + x_2}$			Let $n = 2, m = 6$ m is divisible by n but n is not divisible by m. Hence R is not symmetric. Transitivity			
		$= \log \frac{(1-x_1)}{(1+x_2)} \times \frac{(1+x_2)}{(1-x_2)}$			Let $(n, m) \in R$ and $(m, p) \in R$ then $(n, m) \in R$ and			
		$= \log \frac{(1 - x_1 + x_2 - x_1 x_2)}{(1 + x_1 - x_2 - x_1 x_2)}$			$(m, p) \in R \Rightarrow (n, p) \in R$ or If m is divisible by n and p is divisible by m. Hence p is divisible by n.			
		$\log \frac{(1-x_1x_2) - (x_1 - x_2)}{(1-x_1x_2) + (x_1 - x_2)}$			$(n, p) \in R \ \forall \ n, p \in N$ <i>R</i> is transitive relation on <i>N</i> . Hence <i>R</i> is reflexive, transitive but not symmetric.			
		$= \log \frac{1 - \left(\frac{x_1 - x_2}{1 - x_1 x_2}\right)}{1 + \left(\frac{x_1 - x_2}{1 - x_2}\right)}$	224	(h)	$\therefore \int_{0}^{2a} f(x) dx = 2 \int_{0}^{a} f(x) dx \text{ if } f(2a-x) \text{ fx}$ Let A B & C be the sets of numbers divisible by 10, 15			
		$f(x_1) - f(x_2) = f\left(\frac{x_1 - x_2}{1 - x_1 x_2}\right)$	<i>22</i> 7.		& 25 respectively No. divisible by $10 = 100 = n(A)$ No. divisible by $15 = 66 = n$ (B) No. divisible by $25 = 40 = n$ (C)			
					No. divisible by $(10 \& 15) = 33 = n (A \cap B)$			

No. divisible by $(15 \& 25) = 13 = n (B \cap C)$ No. divisible by $(25 \& 10) = 20 = n (A \cap C)$ No. divisible by $(10, 15 \& 25) = 6 = n (A \cap B \cap C)$ No. divisible by 10, 15 and $25 = n (A \cup B \cup C)$ = 100 + 66 + 40 - 33 - 13 - 20 + 6 = 146Thus, no. which are neither divisible by 10 nor 15 nor 25 = 1000 - 146 = 854.

225. (d) $log_a ab = x$

 $log_a a + log_a b = x$ $\frac{1}{\log_b a} = x - 1$

$$\log_b a = \frac{1}{x - 1} \tag{1}$$

 $\log_{b}ab = \log_{b}a + \log_{b}b$

x-1

$$= \frac{1}{x-1} + 1$$
 (From (1))
- $\frac{1+x-1}{2}$

$$\log_b ab = \frac{x}{x-1}$$

n

226. (b) Given that p, q: (1, 2, 3, 4, 5, 6)

For
$$\frac{p}{q}$$
 form, when $p = 1$, $q = 1, 2, 3, 4, 5, 6$
thus, $\frac{p}{q} = 1$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$ and $\frac{1}{6}$
 $n = \left(\frac{p}{q}\right) = 6$
When $p = 2$, $q = 1, 3, 5$
thus $\frac{p}{q} = 2$, $\frac{2}{3}$, $\frac{2}{5}$ and $n\left(\frac{p}{q}\right) = 3$
When $p = 3$, $q = 1, 2, 4, 5$
thus $\frac{p}{q} = 3$, $\frac{3}{2}$, $\frac{3}{4}$, $\frac{3}{5}$ and $n\left(\frac{p}{q}\right) = 4$
When $p = 4$, $q = 1, 3, 5$
thus $\frac{p}{q} = 4$, $\frac{4}{3}$, $\frac{4}{5}$ and $n\left(\frac{p}{q}\right) = 3$
When $p = 5$, $q = 1, 2, 3, 4, 6$
thus $\left(\frac{p}{q}\right) = 5$, $\frac{5}{2}$, $\frac{5}{3}$, $\frac{5}{4}$ and $\frac{5}{6}$ and $n\left(\frac{p}{q}\right) = 5$
When $P = 6$, $q = 1, 5$
thus $\left(\frac{p}{q}\right) = 6$, $\frac{6}{5}$ and $n\left(\frac{p}{q}\right) = 2$
Hence, cardinality of the set (s)
 $= 6 + 3 + 4 + 3 + 5 + 2 = 23$.

227. (c) We have : $x^2 + 6x - 7 < 0$ & $x^2 + 9x + 14 > 0$

$$\Rightarrow (x-1)(x+7) < 0 \& \Rightarrow (x+2)(x+7) > 0$$

$$\Rightarrow x \in (-7, 1) \& \Rightarrow x \in (-\infty, -7) \cup (-2, \infty)$$

$$\therefore A \cap B = \{x \in R : -2 < x < 1\} \rightarrow \text{It is true.}$$

$$A \setminus B = A - B = \{x \in R : -7 < x < -2\} \rightarrow \text{It is also true.}$$

228. (c) $R = \{(1,3), (1,5), (2,3), (2,5), (3,5), (4,5)\}.$

$$\Rightarrow RoR^{-1} = \{(3,1), (5,1), (3,2), (5,2), (5,3), (5,4)\}.$$

$$\Rightarrow RoR^{-1} = \{(3,3), (3,5), (5,3), (5,5)\}.$$

229. (b) $\frac{2}{2} \frac{235}{1} \frac{1}{2} \frac{117}{1} \frac{1}{2} \frac{58}{1} \frac{0}{2} \frac{29}{1} \frac{1}{2} \frac{14}{1} \frac{0}{2} \frac{2}{7} \frac{1}{1} \frac{1}{1}$

230. (d) Here, maximum number of students failed in all the four subjects = 15%But, minimum number of students failed in all the four

subjects varies from 0 to 15%. So, correct option is (d).

231. (d) $U = \{(HHH)(HHT)(HTT)(HTT)(THH)(THT)(TTT)\}$

 $A = \{(TTT)\}$

$$B = \{(HTT)(THT)(TTH)\}$$

 $C = \{(HHH)(HHT)(HTH)(THH)\}$

By checking the options

(d) $A \cap (B' \cup C') = B' \cap C'$ is correct.

- 232. (a) S = {All persons living in Delhi} A relationship is said to be equivalence relation if it is reflexive, symmetric and transitive.
 - \Rightarrow Here, $(x, y) \in R \Rightarrow$ reflexive relation.
 - $\Rightarrow Since, x \in y are born on the same day,$ $x R y \Rightarrow y R x$
 - So, it is symmettric relation.
 - \Rightarrow x R y, y R Z \Rightarrow x R Z (Date of births are same)
 - So, it is transitive relation.
 - So, the given relation is an equivalent relation.

233. (c) Given, A {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} Set A has 10 elements. Number of sub sets Containing 2 and 3 elements is

$$10_{c_2} + 10_{c_3}$$
.

$$10_{c_2} + 10_{c_3} = \frac{10 \times 9}{2} + \frac{10 \times 9 \times 8}{3 \times 2}$$

$$=45+120=165$$

234. (d) Sum of the numbers = Sum of given numbers. $(n-1)! [10^0 + 10^1 + 10^2 +]$ Here, sum of three digit numbers = Sum of the numbers $(3-1)! [10^0 + 10^1 + 10^2]$ $= (1+2+3)(3-1)! [10^0 + 10^1 + 10^2]$ $= 6 \times 2 \times 1 [1+10+100]$ $= 12 \times 111$ = 1332 235. (b) Venn diagram

from, Venn diagram we can observe that A – B is the shaded part. $(A-B) \cup A = A$ $(A-B) \cap B = \phi$ $A \subseteq B \Rightarrow A \cup B = B$ 236. (a) $(1p101)_2 + (10q1)_2 = (100r00)_2$ $\Rightarrow (1 \times 2^4 + p \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0)$ $+ (1 \times 2^3 + 0 \times 2^2 + q \times 2^1 + 1 \times 2^0)$

$$+(1 \times 2^{3} + 0 \times 2^{2} + q \times 2^{1} + 1 \times 2^{2})$$

$$= 1 \times 2^{3} + 0 + 0 + r \times 2^{2} + 0 + 0$$

$$\Rightarrow 16 + 8p + 4 + 1 + 8 + 2q + 1 = 32 + 4r$$

$$\Rightarrow$$
 30 + 8p + 2q = 32 + 4r

 \Rightarrow 8p + 2q = 2 + 4r

from options, substitute p = 0, q = 1, r = 0 we get $0+2(1)=2+0 \Rightarrow 2=2$.

237. (d)
$$S = \{x : x^2 + 1 = 0, x : 5 \text{ real}\}$$

$$x^2 + 1 = 0 \Rightarrow x^2 = -1 \Rightarrow x = \sqrt{-1} \rightarrow \text{complex number}$$

No real numbers. So, S is empty set

238. (a) Number of students = 150.

By aligation, ratio = 1:2

$$\therefore \text{ No. of boys } = \frac{1}{3} \times 150 = 50$$

239. (c)
$$x + \log_{10}(1+2^x) = x \log_{10} 5 + \log_{10} 6$$

 $\Rightarrow x - x \log_{10} 5 = \log_{10} 6 - \log_{10}(1+2^x)$
 $\Rightarrow x(1 - \log_{10} 5) = \log_{10} 6 - \log_{10}(1+2^x)$

$$\Rightarrow x(1 - \log_{10}5) = \log_{10}6 - \log_{10}(1 + 2^{x})$$
$$\Rightarrow x(\log_{10}10 - \log_{10}5) = \log_{10}\left(\frac{6}{1 + 2^{x}}\right)$$

$$\Rightarrow x \left(\log_{10} \left(\frac{10}{5} \right) \right) \quad \log_{10} \left(\frac{6}{1 \cdot 2^{x}} \right)$$
$$\Rightarrow x \log_{10} 2 = \log_{10} \left(\frac{6}{1 + 2^{x}} \right)$$
This is possible only when $x = 1$

240. (b)
$$(101110)_2 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

= 32 + 0 + 8 + 4 + 2 + 0
= (46)_{10}

NDA Topicwise Solved Papers - MATHEMATICS

Similarly, $(110)_2 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$ =4+2 $=(6)_{10}$ Quotient = 7Remainder = 4 $(7)_{10} = (111)_2$ and $(4)_{10} = (100)_2$ 241. (c) E is the universal set and $A = B \cup C$. Since, E is the universal set, E - A = A' $\therefore E - (E - (E - (E - (E - A))))$ = E - (E - (E - (E - A')))= E - (E - (E - A)) $= \mathbf{E} - (\mathbf{E} - \mathbf{A})$ = E - A= A' $=(B \cup C)'$ $= B^1 \cap C'$ 242. (c) $A = \{x : x \text{ is multiple of } 2\}$ $B = \{x : x \text{ is multiple of } 5\}$ $C = \{x : x \text{ is multiple of } 10\}$ We know, multiples of 2 include multiples of 10. $\therefore C \subset A$ Also, multiples of 5 include multiples of 10. $\therefore C \subset B$ Also, $C = A \cap B$ But $B = A \cap C$, $B \cap C = B$ $\therefore A \cap (B \cap C) = A \cap B = C.$ 243. (c) (a, b) $R(c, d) \Leftrightarrow a + d = b + c$ (i) a+a=a+a. \therefore (a, a) R (a, a) \Rightarrow R is reflexive. (ii) (a, b) $R(c, d) \Rightarrow a + d = b + c$ $(c, d) R (a, b) \Longrightarrow c + b = d + a$ \therefore R is symmetric. (iii) Let (a, b) R (c, d) and (c, d) R (e, f) \Rightarrow a + d = b + c and c + f = d + e \Rightarrow a + d + c + f = b + c + d + e \Rightarrow a + f = b + e \Rightarrow (a, b) R (e, f) \therefore R is transitive. from (i), (ii), (iii) R is an equivalence relation. 244. (b) n = (2017)!

$\frac{1}{\log_2 n}$	$\frac{1}{\log_3 n}$	$\frac{1}{\log_4 n}$	 $\frac{1}{\log_{2017}n}$
$\frac{1}{\frac{\log_n}{\log_2}}$	$\frac{1}{\frac{\log_n}{\log_3}}$	$\frac{1}{\frac{\log_n}{\log_4}}$	 $\frac{1}{\log_n}{\log_{2017}}$

$$\left(\because \log_a b \quad \frac{\log_b}{\log_a} \right)$$

$$= \frac{\log_2}{\log_n} + \frac{\log_3}{\log_n} + \frac{\log_4}{\log_n} + \dots + \frac{\log_{2017}}{\log_n}$$
$$= \frac{\log_2 + \log_3 + \log_4 + \dots + \log_{2017}}{\log_n}$$
$$= \frac{\log(2.3.4....2017)}{\log_n}$$
$$(\because \log_3 + \log_3 + \log_5 + \log_5 + \dots = \log_3.5.5....)$$
$$= \frac{\log(2017!)}{\log_3 - 1}$$

$$-\frac{\log_n \log_n}{\log_n}$$
245. (c) $C = (A \cap B') \cup (A' \cap B)$

Let us draw venn diagram and compare it with options.

This also represents $(A \cup B) - (A \cap B)$

246. (c)
$$x + \log_{15}(1+3^x) = x \log_{15}5 + \log_{15}12$$

 $\Rightarrow x.\log_{15}15 + \log_{15}(1+3^x) = x\log_{15}5 + \log_{15}12$
 $(\because \log_{15}15 = 1)$
 $\Rightarrow \log_{15}15^x + \log_{15}(1+3^x) = \log_{15}5^x + \log_{15}12$
 $\Rightarrow \log_{15}15^x (1+3^x) = \log_{15}(5^x \times 12)$
 $(\because \log a + \log b = \log ab)$
 $\Rightarrow 15^x (1+3^x) = 5^x \times 12$
 $\Rightarrow 3^x (1+3^x) = 12$
 $3^x + 3^{2x} = 12$.
 $x = 1$ satisfies the above equation.
247. (c) Let us represent the given data in Venn diagram as

Let us represent the given data in Venn diagram as 247. (c) shown.

Number of students who are good in either Hindi or Maths but not in English = 54 + 18 + 63 = 125

248. (d) From the same Venn diagram, Number of students who are good in Hindi and Maths but not English = 8

249.	(d)	Decimal number = 31.
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		So, binary form of 31 is 11111.
250.	(a)	$\frac{1}{\log_2 N} + \frac{1}{\log_3 N} + \frac{1}{\log_4 N} + \dots + \frac{1}{\log_{100} N}$
		$= \frac{\frac{1}{\log N} + \frac{1}{\log N}}{\log_2} + \frac{1}{\frac{\log N}{\log_3}} + \frac{1}{\frac{\log N}{\log_4}} + \dots + \frac{1}{\frac{\log N}{\log_{100}}}$
		$\left(\because \log_a b = \frac{\log b}{\log a}\right)$
		$= \frac{\log_2}{\log N} + \frac{\log_3}{\log N} + \frac{\log_4}{\log N} + \dots + \frac{\log_{100}}{\log N}$
		$=\frac{\log_2 + \log_3 + \log_4 + \dots + \log_{100}}{\log N}$
		$=\frac{\log(2.3.4100)}{\log N}$
		$= \frac{\log 100!}{\log N} = \frac{1}{\frac{\log N}{\log 100!}} = \frac{1}{\log_{100!} N}$
251.	(d)	We know, $a^n + b^n$ is divisible by $(a + b)$, if n is odd. Here, $n = 5$ is odd $\therefore 55 + 75$ is divisible by $5 + 7 = 12$
252.	(b)	Number of students who like music, $n(m) = 680$ Number of students who like dance, $n(d) = 215$ Total number of students, $n(m \cup d) = 850$ $n(m \cup d) = n(m) + n(d) - n(m \cap d)$
253.	(b)	$\Rightarrow 850 = 680 + 215 - n(m \cap d)$ $\Rightarrow n(m \cap d) = 895 - 850 = 45$ 0 < a < 1 Let $\log_{10}a = -x$ $\Rightarrow a = 10^{-x}$ $10^{-x} \text{ can have values only between 0 and 1}$

- Distance Speed 254. (d) Time taken by train to cover first 5km =

$$=\frac{5}{30}=\frac{1}{6}$$
hr

Time taken by train to cover next $15\text{km} = \frac{15}{45} = \frac{1}{3}\text{hr}$.

Average speed
$$\frac{5}{1} \frac{15}{6} \frac{1}{3}$$
$$\frac{20}{1 \cdot \frac{2}{6}} \frac{120}{3} \frac{40 \text{ km/hr}}{40 \text{ km/hr}}$$
255. (c) Let $\log_7 \log_7 \sqrt{7} \sqrt{7} \sqrt{7}$ x
then $7^x = \log_7 \sqrt{7} \sqrt{7} \sqrt{7}$
 $7^x = \frac{1}{2} \cdot \log_7 7 \sqrt{7} \sqrt{7}$
 $7^x = \frac{1}{2} \left[\log_7 7 - \frac{1}{2} \log_7 7 \sqrt{7} \right]$
 $= \frac{1}{2} \left[1 - \frac{1}{2} \log_7 7 - \frac{1}{2} \log_7 \sqrt{7} \right]$
 $= \frac{1}{2} \left[1 - \frac{1}{2} \log_7 7 - \frac{1}{2} \log_7 \sqrt{7} \right]$
 $= \frac{1}{2} \left[1 - \frac{1}{2} - \frac{1}{4} \right]$
 $7^x = \frac{7}{8}$
 $x = \log_7 \left(\frac{7}{8} \right)$
 $x = \log_7 7 - \log_7 8$
 $x = \log_7 7 - \log_7 8$
 $x = \log_7 - \log_7 8$
($\because \log_7 8 = \log_7 2^3$)
256. (c) Checking through option 'c' is incorrect.
257. (b) Number of numbers between 2999 and 8001
 $= 8001 - 2999 - 1 = 5001$
 $\boxed{3 - 1}$
Number of numbers with all digit distinct and having 3
as starting digit
 $= 9 \times 8 \times 7 = 504$
Number of numbers with all digit distinct and having 4
as starting digit
 $= 9 \times 8 \times 7 = 504$
Similarly number of numbers with starting digit 5, 6 and 7
respectively are 504, 504 and 504.
Total numbers $= 5 \times 504 = 2520$
Hence, required number $= 5001 - 2520 = 2481$
258. (a) $300 = 125 + 145 + 90 -$
 $(|A \cap B| + |B \cap C| + |A \cap C|) + |A \cap B \cap C|$
 $|A \cap B| + |B \cap C| + |A \cap C| - 3|A \cap B \cap C| = 32$
 $\Rightarrow |A \cap B| + |B \cap C| + |A \cap C| - 3|A \cap B \cap C| = 32$
 $\Rightarrow |A \cap B| + |B \cap C| + |A \cap C| - 3|A \cap B \cap C| = 32$
 $\Rightarrow |A \cap B| + |B \cap C| + |A \cap C| - 3|A \cap B \cap C| = 32$
 $\Rightarrow |A \cap B| + |B \cap C| + |A \cap C| - 3|A \cap B \cap C| = 32$
 $\Rightarrow |A \cap B| + |B \cap C| + |A \cap C| - 3|A \cap B \cap C| = 32$
 $\Rightarrow |A \cap B| + |B \cap C| + |A \cap C| - 3|A \cap B \cap C| = 32$
 $\Rightarrow |A \cap B| + |B \cap C| + |A \cap C| - 3|A \cap B \cap C| = 32$
 $\Rightarrow |A \cap B| + |B \cap C| + |A \cap C| - 3|A \cap B \cap C| = 32$
 $\Rightarrow |A \cap B| + |B \cap C| + |A \cap C| - 3|A \cap B \cap C| = 32$
 $\Rightarrow |A \cap B| + |B \cap C| = 14$

259. (c) Exactly on e = |A| + |B| + |C| - $2[|A \cap B| + |B \cap C| + |A \cap C|] + 3|A \cap B \cap C|$ $= 125 + 145 + 90 - 2[32 + 3 \times 14] + 3 \times 14$ =360 - 106 = 254260. (b) $\log_9 27 + \log_8 32$ $= \log_9 3^3 + \log_8 2^5$ $= 3\log_9 3 + 5\log_8 2$ $3\log_{(3)}^2 3 + 5\log_{(2)}^3 2$ $\frac{3}{2}\log_3 3 + \frac{5}{3}\log_2 2$ $\frac{3}{2}$ $\frac{5}{3}$ $\frac{19}{6}$ 261. (b) On substraction, we get 101101101 -1011011010110111 -1101110011100 $\Rightarrow x = 1, y = 0$ 262. (c) $(0.2)^x = 2$ Taking log on both sides, $x \log_{10} \frac{2}{10} = \log_{10} 2$ $x [\log_{10} 2 - \log_{10} 10] = \log_{10} 2$ x[0.3010-1]=0.3010 $x = -\frac{0.3010}{0.6990} \approx -0.43$ 263. (d) Given, $x = \{1, 2, 3, 4\}$ $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)\}$ R is reflexive, if aRa for all $a \in x$ $(4, 4) \notin \mathbb{R}$: R is not reflexive ...(1) R is transitive, if a R b, b R c \Rightarrow a R C for all a, b, c \in x (1, 2), $(2, 3), \in \mathbb{R}$, but $(1, 3) \notin \mathbb{R}$: R is not transitive ...(2) R is symmetric, if a R b \Rightarrow b R a, for all a, b \in x : R is symmetric ...(3) From (1), (2), (3) we can say, R, is neither reflexive nor transitive, but symmetric. 264. (d) Given, x R Y \Rightarrow x²-4xy+3y²=0 \Rightarrow x²-xy-3xy+3y²=0 \Rightarrow x (x - y) - 3y (x - y) = 0 \Rightarrow (x - y) (x - 3y) = 0 Reflexive property : $x R x \Longrightarrow (x-x)(-3x)=0$ So, R is reflexive ...(1) Symmetric property: Let us check using an example (1, 2) and (2, 1)for $(1, 2) \Rightarrow (1-2)(1-6) = (-1)(-5) = 10$ For $(2, 1) \Rightarrow (2-1)(2-3) = (1)(-1) = -1$

Sets, Relations, Function and Number System

- So, R is not symmetric(2) Transitive property : For $(9x, 3x) \Rightarrow (9x-3x)(9x-9x)=0$ for $(3x, x) \Rightarrow (3x-3x)(3x-9x)=0$ For $(9x, x) \Rightarrow (9x-x)(9x-3x) = 0$ So, $(9x, 3x) \in R$, $(3x, x) \in R$ but $(9x, x) \notin R$ So, R is not transitive ...(3) From (1), (2), (3), R is reflexive, but not symmetric and transitive.
- 265. (a) 1. $(A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B) = A \cup B$ Let us draw Venn diagram.

 \therefore 1 is correct.

2.
$$A \cup (\overline{A} \cap \overline{B}) = A$$

 \therefore 2 is not correct.

- 266. (b) Statements (2) and (3) are correct.
- 267. (b) $A = \{\lambda, \{\lambda, \mu\}\}$
- Power set = { ϕ , { λ }, {{ λ , μ }}, { λ , { λ , μ }}
- 268. (b) Number of students who play chess, n(A) = 60Number of students who play tennis, n(B) = 50Number of students who play carrom, n(C) = 48Given, $n(A \cap B) = 20$ $n(B \cap C) = 15$

$$n (A \cap C) = 12$$

$$n (A \cup B \cup C) = n(A) + n(B) + n(C) - n (A \cap B) - n (B \cap C)$$

$$= 60 + 50 + 48 - 20 - 15 - 12 + n (A \cap B \cap C)$$

$$= 111 + n (A \cap B \cap C)$$

So, minimum number of students = 111
269. (b) $n (A \cup B \cup C) = 111 + n (A \cap B \cap C)$

- Maximum number of students = 111 + 12 = 123270. (d) $f(x) = \log_{10}(1 + x)$ $4 \cdot f(4) + 5 \cdot f(1) - \log_{10} 2$ $= 4 \cdot \log_{10}(1 + 4) + 5 \cdot \log_{10}(1 + 1) - \log_{10} 2$ $= 4 \log_{10} 5 + 5 \log_{10} 2 - \log_{10} 2$ $= 4 (\log_{10} 5 + \log_{10} 2)$ $= 4 (\log_{10} 5 + \log_{10} 2)$ $= 4 (\log_{10} 10) = 4$
- 271. (c) f(r) is ratio of perimeter to area of circle of radius r. Perimeter of circle = $2\pi r$ Area of circle = πr^2

$$f(r) = \frac{2\pi r}{\pi r^2} = \frac{2}{r}$$

So,
$$f(1) + f(2) = \frac{2}{1} + \frac{2}{2} = 2 + 1 = 3$$

272. (a) Given, diameter of circle = 44 cm. radius of circle = 22 cmChord of circle = 22 cm

In figure $\triangle OAB$ is equilateral triangle. Angle is 60°. So,

arc is $\frac{1}{6}$ times circumstance.

Length of arc =
$$\frac{1}{6} \times 2\pi r = \frac{1}{6} \times 2 \times \frac{22}{7} \times 22$$

$$=\frac{484}{21}$$
 cm

Polynomial, Quadratic Equation & Inequalities

8.

9

11.

13

14.

15.

If the roots of the equation $4\beta^2 + \lambda\beta - 2 = 0$ are of the from 1.

$$\frac{k}{1}$$
 and $\frac{k+1}{1}$, then what is the value of λ ?

- k+1k+2
- (a) 2k (b) 7 (c) 2
- (d) k+1 [2006-I] 2. Given 4a - 2b + c = 0 where a, b, $c \in \mathbb{R}$, which of the following statements is/are not true in general?
 - (x+2) will always be a factor of the expression 1 $ax^2 + bx + c$.
 - 2. (x-2) will always be a factor of the expression $ax^2 + bx + c$.
 - There will be a factor of the expression $ax^2 + bx + c$ 3. different from (x+2).

Select the correct answer using the code given below :

(b) 1, 2 and 3 (a) 1 and 2 only

(c) 2 only (d) 1 only [2006-I] If the sum of the squares of the roots of 3. $x^{2} - (p-2)x - (p+1) = 0 (p \in R)$ is 5, then what is the value of p? [2006-1] (a) 0 (b) -1

(c) 1

[2006-I] What is the number of real solutions of 4. $|x^2-x-6| = x+2?$ (a) 4 (b) 3

(d)

- (c) 2 (d) 1
- If the roots of $x^2 2mx + m^2 1 = 0$ lie between -2 and 4, 5. then which one of the following is correct?

(a)
$$-1 \le m \le 3$$
 (b) $-3 \le m \le 3$

(c)
$$-3 \le m \le 5$$
 (d) $-1 \le m \le 5$ [2006-I]

If $(\log_3 x)^2 + \log_3 x < 2$, then which one of the following is 6. correct?

(a)
$$0 < x < \frac{1}{9}$$
 (b) $\frac{1}{9} < x < 3$
(c) $3 < x < \infty$ (d) $\frac{1}{9} \le x \le 3$ [2006-I]

For what values of a does the equation $\cos 2x + a \sin x = 2a - 7$ possess a real solution ? [2006-II]

(a) a < 2(b) $a \ge 8$

7.

(c)
$$a > 8$$
 (d) $a \text{ is any integer} < -2$

If sin θ and cos θ are the roots of $ax^2 + bx + c = 0$, then constants a, b, c will satisfy which one of the following conditions? [2006-II] (a) $a^2 + b^2 + 2ac = 0$ (b) $a^2 + b^2 - 2ac = 0$ (c) $a^2 - b^2 + 2ac = 0$ (d) If $a^2 + b^2 + c^2 = 0$, then what is (d) $-a^2 + b^2 + 2ac = 0$ $\frac{(a^4-b^4)^3+(b^4-c^4)^3+(c^4-a^4)^3}{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}$ equal to? (b) $-a^2b^2c^2$ (d) $3a^2b^2c^2$ (a) $a^2b^2c^2$ (c) abc [2006-11] 10. If $0 < x < y < \pi$, then which one of the following is correct? (a) $x - \cos x > y - \cos y$ (b) $x - \cos x < y - \cos y$ (c) $x + \cos x > y + \cos y$ [2006-II] (d) $x + \cos x < y + \cos y$ What is the $(m-1)^{\text{th}}$ root of $\left[(a^m)^m - \left(\frac{1}{m}\right) \right]^{\overline{m+1}}$? (a) $a^{m+(1/m)}$ (b) a^{m-(1/m)} (d) 1 (c) a [2006-II] 12. Let $a, b \in \{1, 2, 3\}$. What is the number of equations of the form $ax^2 + bx + 1 = 0$ having real roots? (a) 1 (b) 2 [2006-II] (c) 5 (d) 3 If $px^2 + qx + r = p(x - \alpha)(x - \beta)$, and $p^3 + pq + r = 0$; p,q and r being real numbers, then which of the following is not possible ? (a) $\alpha = \beta = p$ (b) $\alpha \neq \beta = p$ (c) $\alpha = \beta \neq p$ (d) $\beta \neq \alpha = p$ [2006-II] If the equation $x^2 + k^2 = 2 (k + 1) x$ has equal roots, then what is the value of k? [2007-I] $(a) - \frac{1}{3}$ (b) (d) 1 If $x = a^{1/3} - a^{-1/3}$, then what is $x^3 + 3x$ equal to? [2007-I] (b) $a + \left(\frac{1}{a}\right)$ (a) zero

(c)
$$a - \left(\frac{1}{a}\right)$$
 (d) $a^3 + \left(\frac{1}{a^3}\right)$

Polynomial, Quadratic Equation & Inequalities

16.	If $x^{1/3} + y^{1/3} + z^{1/3} = 0$) then what is $(x + y + z)$	³ equal to?
	(a) 1	(b) 3	
	()	(n n -	

- (c) 3xyz (d) 27 xyz [2007-I] If α , β are the roots of $ax^2 + 2bx + c = 0$ and $\alpha + \delta$, $\beta + \delta$ are the 17. roots of $Ax^2 + 2Bx + C = 0$, then what is $(b^2 - ac)/(B^2 - AC)$ equal to? [2007-I]
 - (a) $(b/B)^2$ (b) $(a/A)^2$
 - (c) $(a^2b^2)/(A^2B^2)$ (d) (ab)/(AB)
- 18. If α , β are the roots of the equation $ax^2 + bx + c = 0$, then what is the value of $(a\alpha + b)^{-1} + (a\beta + b)^{-1}$? [2007-I] (b) b/ac (a) a/(bc)(c) -b/(ac)(d) -a/(bc)
- 19. If α , β are the roots of the equations $x^2 - 2x - 1 = 0$, then what is the value of $\alpha^2 \beta^{-2+} \alpha^{-2} \beta^2$ [2007-1] (a) −2 (b) 0
 - (c) 30 (d) 34
- 20. Which one of the following values of x, y satisfies the in equation $2x + 3y \le 6$; $x \ge 0$, $y \ge 0$? [2007-I] (b) x=1, y=2(d) x=4, y=0(a) x=0, y=3

(c)
$$x=1, y=1$$
 (d) $x=4, y=1$

- What is the value of x at the intersection of $y = \frac{8}{(x^2 + 4)}$ 21. [2007-I]
 - and x + y = 2?
 - (a) 0 (b) 1
 - (c) 2 (d) -1
- 22. If the roots of the equations $x^2 (a 1)x + (a + b) = 0$ and $ax^2 - 2x + b = 0$ are identical, then what are the values of a and b?
 - (a) a=2, b=4(b) a=2, b=-4(c) $a = 1, b = \frac{1}{2}$ (d) $a = -1, b = -\frac{1}{2}$ [2007-I]
- 23. How many real values of x satisfy the equation |x|+|x-1|=1? (a) 1 (b) 2
 - (c) Infinite (d) No value of x / 2007-I
- What is the number of digits in the numeral form of 8^{17} ? 24. (Given $\log_{10}^2 = 0.3010$)
 - (a) 51 (b) 16 (c) 15 (d) 14
- [2007-I] 25. If α and β are the roots of the equation $x^2 + x + 1 = 0$, then what is the equation whose roots are α^{19} and β^7 ?

(a)
$$x^2-x-1=0$$

(b) $x^2-x+1=0$
(c) $x^2+x-1=0$
(d) $x^2+x+1=0$ [2007-II]

- If α and β are the roots of the equation $x^2 + 6x + 1 = 0$, then 26. what is $|\alpha - \beta|$ equal to ?
 - (a) 6 (b) $3\sqrt{2}$

(c)
$$4\sqrt{2}$$
 (d) 12 [2007-II]

27. If $r^{1/3} + \frac{1}{r^{1/3}} = 3$ for a real number $r \neq 0$, then what is

$$r + \frac{1}{2007-II}$$
 [2007-II]

(a) 27 (b) 36

(c) 9 (d) 18

- 28. The number of rows in a lecture hall equals the number of seats in a row. If the number of rows is doubled and the number of seats in every row is reduced by 10, the number of seats is increased by 300. If x denotes the number of rows in the lecture hall, then what is the value of x?
 - (a) 10 (b) 15 (c)

If α , β are the roots of the equation $\ell x^2 - mx + m = 0$, 29. $\ell \neq m, \ell \neq 0$, then which one of the following statements is correct? [2007-II]

(a)
$$\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} - \sqrt{\frac{m}{\ell}} = 0$$

(b)
$$\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{m}{\ell}} = 0$$

(c)
$$\sqrt{\frac{\alpha+\beta}{\alpha\beta}} - \sqrt{\frac{m}{\ell}} = 0$$

- (d) The arithmetic mean of α and β is the same as their geometric mean
- For what value of k, are the roots of the quadratic equation 30. $(k+1)x^2-2(k-1)x+1=0$ real and equal? [2007-II]
 - (a) k = 0 only (b) k = -3 only
 - (d) k = 0 or k = -3(c) k = 0 or k = 3
- If roots of an equation $ax^2 + bx + c = 0$ are positive, then 31. which one of the following is correct?
 - (a) Signs of a and c should be like
 - (b) Signs of b and c should be like
 - (c) Signs of a and b should be like
 - (d) None of the above [2007-II]

32. Which one of the following is correct ? If
$$4 < x^2 < 9$$
, then [2007-II]

- (b) -3 < x < -2 only (a) 2 < x < 3 only
- (c) $2 \le x \le 3, -3 \le x \le -2$ (d) None of these
- If α and β are the roots of the equation $ax^2 + bx + c = 0$, then 33. what are the roots of the equation $cx^2 + bx + a = 0$?

(a)
$$\beta, \frac{1}{\alpha}$$
 (b) $\alpha, \frac{1}{\beta}$

(c)
$$-\alpha, -\beta$$
 (d) $\frac{1}{\alpha}, \frac{1}{\beta}$ [2007-II]

34. If x and y are real numbers such that x > y and |x| > |y|, then which one of the following is correct?

(a) x > 0(b) y > 0(c) y < 0(d) x < 0[2007-II]

35. What are the linear constraints for which the shaded area in the above figure is the solution set ? [2007-II]

- (a) $x y \ge 1, x + 2y \le 0, x + y \ge 1, x, y \ge 0$
- (b) $x-y \le 1; x+2y \ge 8; x+y \le 1; x, y \ge 0$
- (c) $x-y \le 1; x+2y \le 8; x+y \ge 1; x, y \ge 0$
- (d) $x-y \le 1; x+2y \le 8; x+y \le 1; x, y \ge 0$
- 36. If x is real and $x^2-3x+2>0$, $x^2-3x-4 \le 0$, then which one of the following is correct? [2008-I]
 - (a) $-1 \le x \le 4$ (b) $2 \le x \le 4$
- (c) $-1 < x \le 1$ 37. If $x = 2^{1/3} - 2^{-1/3}$, then what is the value of $2x^3 + 6x$? (a) 1
 (b) 2
- (c) 3 (d) 4 [2008-1] 38. What is the value of

$$\sqrt{5\sqrt{5\sqrt{5\sqrt{5\sqrt{\dots\infty}}}}}?$$
[2008-1]

- (a) 5 (b) $\sqrt{5}$
- (c) 1 (d) $(5)^{1/4}$ 39. For the real numbers p, q, r, x, y, let p < x < q and p < y < r. Which one of the following is correct? [2008-I] (a) p < x < y < r (b) p < x < q < r
 - (c) p < y < x < q (d) None of these
- 40. One root of the equation $x^2 = px + q$ is reciprocal of the other and $p \neq \pm 1$. What is the value of q? [2008-I] (a) q = -1 (b) q = 1

(c)
$$q=0$$
 (d) $q=\frac{1}{2}$

41. If the equation $x^2 + kx + 1 = 0$ has the roots α and β , then what is the value of $(\alpha + \beta) \times (\alpha^{-1} + \beta^{-1})$? [2008-I]

(a)
$$k^2$$
 (b) $\frac{1}{k^2}$
(c) $2k^2$ (d) $\frac{1}{(2k^2)}$

- 42. If the roots of the equation $x^2 bx + c = 0$ are two consecutive integers, then what is the value of $b^2 4c$? [2008-II] (a) 1 (b) 2
 - (c) -2 (d) 3

43. If *r* and *s* are roots of $x^2 + px + q = 0$, then what is the value of $(1/r^2) + (1/s^2)$? [2008-II]

(a)
$$p^2 - 4q$$
 (b) $\frac{p^2 - 4q}{2}$
(c) $\frac{p^2 - 4q}{q^2}$ (d) $\frac{p^2 - 2q}{q^2}$

- 44. If x is an integer and satisfies $9 < 4x 1 \le 19$, then x is an element of which one of the following sets? [2008-II] (a) $\{3,4\}$ (b) $\{2,3,4\}$ (c) $\{3,4,5\}$ (d) $\{2,3,4,5\}$
- 45. If $a = x + \sqrt{x^2 + 1}$, then what is *x* equal to? [2008-II]

(a)
$$(1/2)(a+a^{-1})$$
 (b) $(1/2)(a-a^{-1})$
(c) $a+a^{-1}$ (d) $a-a^{-1}$

- 46. A quadratic polynomial with two distinct roots has one real root. Then, the other root is [2008-II]
 - (a) not necessarily real, if the coefficients are real
 - (b) always imaginary
 - (c) always real
 - (d) real, if the coefficients are real
- 47. If sin α and cos α are the roots of the equation $px^2 + qx + r = 0$, then which one of the following is correct? [2008-II] (a) $p^2 + q^2 - 2pr = 0$
 - (a) p' + q' = 2pr = 0(b) $p^2 - q^2 + 2pr = 0$
 - (c) $(p+r)^2 = 2(p^2+r^2)$
 - (c) $(p+r)^2 = 2(p+r)^2$ (d) $(p-r)^2 = q^2 + r^2$
 - (d) $(p-r)^2 = q^2 + r^2$
- 48. If α and β are the roots of $x^2 + 4x + 6 = 0$, then what is the value of $\alpha^3 + \beta^3$? [2008-II]
 - (a) -2/3 (b) 2/3
 - (c) 4 (d) 8
- 49. If sum of the roots of $3x^2 + (3p+1)x (p+5) = 0$ is equal to their product, then what is the value of p? [2008-II] (a) 2 (b) 3
 - (c) 4 (d) 9
- 50. If a polygon has 20 diagonals, then what is the number of sides? [2008-II] (a) 6 (b) 10
 - (c) 12 (d) 8

51. Let α, γ be the roots of $Ax^2 - 4x + 1 = 0$ and β, δ be the roots of $Bx^2 - 6x + 1 = 0$. If $\alpha, \gamma, \beta, \delta$ are in HP, then what are the values of A and B respectively? [2009-I] (a) 3,8 (b) -3,-8

- (c) 3, -8 (d) -3, 8 52. If $2^{x} + 3^{y} = 17$ and $2^{x+2} - 3^{y+1} = 5$, then what is the value of x? [2009-I] (a) 3 (b) 2 (c) 1 (d) 0
- 53. If (x + a) is a factor of both the quadratic polynomials $x^2 + px + q$ and $x^2 + lx + m$, where *p*, *q*, *l* and *m* are constants, then which one of the following is correct? [2009-I] (a) x = (m - x)/(l - x)
 - (a) $a = (m-q)/(l-p)(l \neq p)$
 - (b) $a = (m+q)/(l+p)(l \neq -p)$
 - (c) $l = (m-q)/(a-p) (a \neq p)$
 - (d) $p = (m-q) / (a-l) (a \neq l)$

Polynomial, Quadratic Equation & Inequalities

54.	Which one of the following is one of the roots of the equation $(b-c)x^2 + (c-a)x + (a-b) = 0$? [2009-I] (a) $(c-a)/(b-c)$ (b) $(a-b)/(b-c)$	66.	If $\frac{1}{2-\sqrt{-2}}$ is one of the roots of $ax^2 + bx + c = 0$, where <i>a</i> ,
55.	(c) $(b-c)/(a-b)$ (d) $(c-a)/(a-b)$ What is the value of x satisfying the equation		b, c are real, then what are the values of a, b, c respectively? (a) $6,-4,1$ (b) $4,6,-1$ [2010-I] (c) $3,-2,1$ (d) $6,4,1$
	$16\left(\frac{a-x}{a+x}\right)^{3} = \frac{a+x}{a-x}?$ [2009-1]	67.	If α , β are the roots of the quadratic equation $x^2 - x + 1 = 0$, then which one of the following is correct? [2010-I]
	$\begin{array}{cccc} (a) & a/2 & (b) & a/3 \\ (c) & a/4 & (d) & 0 \end{array}$		(a) $(\alpha^{2} - \beta^{2})$ is real (b) $2(\alpha^{2} + \beta^{2}) - (\alpha\beta)^{2}$ (c) $(\alpha^{6} - \beta^{6}) = 0$ (d) $(\alpha^{8} + \beta^{8}) = (\alpha\beta)^{8}$
56.	If α , β are the roots of the equation $2x^2 - 2(1 + n^2)x + (1 + $	68.	If p and q are positive integers, then which one of the
	$n^2 + n^4$ = 0, then what is the value of $\alpha^2 + \beta^2$? [2009-I]		following equations has $p - \sqrt{q}$ as one of its roots?
	(a) $2n^2$ (b) $2n^4$ (c) 2 (d) n^2		(a) $r^2 - 2nr - (n^2 - a) = 0$ (b) $r^2 - 2nr + (n^2 - a) = 0$
57.	The roots of $Ax^2 + Bx + C = 0$ are r and s. For the roots of $x^2 + px + q = 0$ to be r^2 and s^2 , what must be the value of p?	69.	(a) $x^{2} - 2px + (p^{2} - q) = 0$ (b) $x^{2} - 2px + (p^{2} - q) = 0$ (c) $x^{2} + 2px - (p^{2} - q) = 0$ (d) $x^{2} + 2px + (p^{2} - q) = 0$ If the product of the roots of the equation $x^{2} - 5x + k = 15$ is
	[2009-I]		-3, then what is the value of k? [2010-I]
	(a) $(B^2 - 4AC)/A^2$ (b) $(B^2 - 2AC)/A^2$ (c) $(2AC - B^2)/A^2$ (d) $B^2 - 2C$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
58.	If α , β are the roots of $ax^2 + bx + b = 0$, then what is	70.	If the equation $x^2 - bx + 1 = 0$ does not possess real roots,
	$\frac{\sqrt{\alpha}}{\sqrt{\alpha}} + \frac{\sqrt{\beta}}{\sqrt{\beta}} + \frac{\sqrt{b}}{\sqrt{\beta}} \text{ accurates to 2} $ (2000 III)		then which one of the following is correct? [2010-I] (a) $-3 \le h \le 3$ (b) $-2 \le h \le 2$
	$\sqrt{\beta} \sqrt{\alpha} \sqrt{a}$ equal to? [2009-11]		(a) $b > 10^{-10}$ (b) 2^{-10} (c) $b > 2$ (d) $b < -2$
	(a) 0 (b) 1 (c) 2 (d) 3	71.	If p and q are the roots of the equation $x^2 - px + q = 0$, then what are the values of p and q respectively?
59.	If the roots of $ax^2 + bx + c = 0$ are sin α and cos α for some		(a) $1, 0$ (b) $0, 1$
	a, then which one of the following is correct? [2009-11] (a) $a^2 + b^2 = 2ac$ (b) $b^2 - c^2 = 2ab$	72	(c) $-2,0$ (d) $-2,1$
	(c) $b^2 - a^2 = 2ac$ (d) $b^2 + c^2 = 2ab$	12.	If the equations $x^2 + kx + 64 = 0$ and $x^2 - 8x + k = 0$ have real roots, then what is the value of k? [2010-II]
60.	If $x = 2+2^{1/3} + 2^{2/3}$, then what is the value of $x^3 - 6x^2 + 6x^2$		(a) 4 (b) 8
	(a) 1 (b) 2 (2000) (1)	73.	(c) 12 (d) 16 If the roots of the equation
61	(c) 3 (d) -2 The roots of the equation $(x-p)(x-q) = r^2$ where p q rare		$(a^2 + b^2) x^2 - 2b (a + c) x + (b^2 + c^2) = 0$ are equal, then
01.	real, are $[2009-II]$		which one of the following is correct? [2010-II] (a) $2b = a + c$ (b) $b^2 = ac$
	(a) always complex (b) always real		(a) $2b^{2} u^{2} c^{2}$ (b) $b^{2} u^{2} c^{2}$ (c) $b + c = 2a$ (d) $b = ac$
	(c) always purely imaginary	74.	If α and β are the roots of the equation $x^2 - 2x + 4 = 0$, then
62	(d) None of these The equation $x = 2(x + 1)^{-1} - 1 = 2(x + 1)^{-1}$ has (2000 III)		what is the value of $\alpha^3 + \beta^3$? [2010-11] (a) 16 (b) -16
02.	(a) no roots (b) one root $2009-11$		(c) 8 (d) -8
62	(c) two equal roots (d) infinite roots	75.	Which of the following are the two roots of the equation $(x^2 + 2)^2 + 8x^2 - 6x(x^2 + 2)^2$ [2010 II]
05.	(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are always		(a) $1 \pm i$ (b) $2 \pm i$
	[2009-II]		(c) $1 \pm \sqrt{2}$ (d) $2 \pm i \sqrt{2}$
	(d) real (b) inaginary (c) positive (d) negative	76.	If α and β are the roots of the equation $x^2 + x + 1 = 0$,
64.	For the two equations $x^2 + mx + 1 = 0$ and $x^2 + x + m = 0$, what is/are the values of m for which these equations have		then which of the following are the roots of the equation $r^2 + 1 = 02$
	at least one common root? [2009-II]		x = x + 1 = 0 [2010-1]
	(a) -2 only (b) 1 only (c) $-2 \text{ and } 1$ (d) $-2 \text{ and } 1$		(a) α' and β'' (b) α'' and β'
65.	Consider the equation $(x-p)(x-6) + 1 = 0$ having integral		(c) α^{20} and β^{20} (d) None of these
	coefficients. If the equation has integral roots, then what	77.	What is the solution set for the equation [2011-I] $x^4 = 26x^2 + 25 = 0$
	(a) 4 or 8 (b) 5 or 10		(a) $\{-5, -1, 1, 5\}$ (b) $\{-5, -1\}$
	(c) 6 or 12 (d) 3 or 6		(c) $\{1,5\}$ (d) $\{-5,0,1,5\}$

78. If α and β are the roots of the equation $4x^2 + 3x + 7 = 0$, then what is the value of $(\alpha^{-2} + \beta^{-2})$? (a) 47/49 (b) 49/47 [2011-1] (d) -49/47(c) -47/4979. What is the set of points (x, y) satisfying the equations $x^2 + y^2 = 4$ and x + y = 2? [2011-I] (a) $\{(2,0), (-2,0), (0,2)\}$ (b) $\{(0,2), (0,-2)\}$ (c) $\{(0,2),(2,0)\}$ (d) $\{(2,0), (-2,0), (0,2), (0,-2)\}$ 80. If p, q and r are rational numbers, then the roots of the equation $x^2 - 2px + p^2 - q^2 + 2qr - r^2 = 0$ are [2011-I] (a) complex (b) pure imaginary (c) irrational (d) rational 81. What is the sum of the roots of the equation $(2-\sqrt{3})x^2 - (7-4\sqrt{3})x + (2+\sqrt{3}) = 0?$ [2011-I] (a) $2-\sqrt{3}$ (b) $2+\sqrt{3}$ (c) $7 - 4\sqrt{3}$ (d) 4 One of the roots of the quadratic equation $ax^2 + bx + c = 0$, 82. $a \neq 0$ is positive and the other root is negative. The condition for this to happen is [2011-I] (a) a > 0, b > 0, c > 0(b) a > 0, b < 0, c > 0(c) a < 0, b > 0, c < 0(d) a < 0, c > 083. What is the condition that one root of the equation $ax^2 + bx$ $+ c = 0, a \neq 0$ should be double the other? [2011-I] (a) $2a^2 = 9bc$ (b) $2b^2 = 9ac$ (c) $2c^2 = 9ab$ (d) None of these 84. If $x + y \le 4$, then the how many non-zero positive integer ordered pair (x, y)? [2011-1] (a) 4 (b) 5 (d) 8 (c) 6 85. If 3 is the root of the equation $x^2 - 8x + k = 0$, then what is the value of *k*? [2011-I] (a) -15 (b) 9 (c) 15 (d) 24 86. If sum of squares of the roots of the equation $x^{2} + kx - b = 0$ is 2b, what is k equal to? [2011-I] (a) 1 (b) *b* (c) -b(d) 0 If one root of the equation $ax^2 + bx + c = 0$, $a \neq 0$ is reciprocal 87. of the other root, then which one of the following is correct? [2011-I] (a) a = c(b) b = c(c) a = -c(d) b = 0The equation $x^2 - 4x + 29 = 0$ has one root 2 + 5i. What is the 88. other root? [2011-II] $(i = \sqrt{-1})$ (a) 2 (b) 5 (c) 2+5i(d) 2-5iLet α , β be the roots of the equation $(x - a)(x - b) = c, c \neq c$ 89. 0. Then the roots of the equation $(x - \alpha)(x - \beta) + c = 0$ are

			[2011-II]
(a)	а, с	(b) <i>b</i> , <i>c</i>	
			-

(c) a, b (d) a+b, a+c

90.	If th com ther	ie equation imon root a which one	s $x^2 - px + q$ nd the roots e of the follo	q = 0 and of the sec owing is c	$x^2 - ax + b$ ond equatio orrect?	0 = 0 have a n are equal,
				0		[2011-II]
	(a)	aq = 2(b +	- <i>p</i>)	(b)	aq = (b+p))
	(c)	ap = 2(b +	(q)	(d)	ap = b + q	
91.	Let	α and β be	the roots of	the equat	tion $x^2 + x$ -	+1=0. The
	equa	ation whose	e roots are o	x^{19} and β	7 is	[2011-II]
	(a)	$x^2 - x - 1$	= 0	(b)	$x^2 - x + 1 =$	= 0
	(c)	$x^2 + x - 1$	= 0	(d)	$x^2 + x + 1 =$	= 0
92.	Wha	at is the val	lue of			[2011-II]
	Γ					
	$\sqrt{8}$	$+2\sqrt{8}+2\sqrt{8}$	$8 + 2\sqrt{8 + \dots}$. ∞?	_	
	(a)	10		(b)	8	
	(c)	6		(d)	4	
93.	If si	$\mathbf{n}\theta = x + \frac{a}{x}$	for all $x \in$	$R-\{0\},$	then which	one of the
	follo	owing is co	rrect?			[2011-II]
					1	
	(a)	$a \ge 4$		(b)	$a \ge \frac{1}{2}$	
					2	
	(c)	$a \leq \frac{1}{2}$		(d)	$a \leq \frac{1}{2}$	
	(0)	<i>••</i> = 4		(u)	^u = 2	
94.	The real	equation ta solution if	$an^4x - 2 \sec^2$	$a^{2}x + a^{2} =$	0 will have	at least one [2011-II]
	(a)	$ a \leq 4$		(b)	$ a \leq 2$	
	(c)	$ a \leq \sqrt{3}$		(d)	None of th	e above
95.	Ifth	e roots of th	e equation y	$x^2 - 4x - 1$	$\log_2 N = 0$ at	re real, then
	wha	t is the min	imum value	of N?	-83-1	[2011-11]
	(a)	1/256		(b)	1/27	
	(c)	1/64		(d)	1/81	
96.	If or	ne of the ro	ots of the ec	juation a	$(b-c)x^2 +$	b(c-a)x +
	c(a	(-b) = 0 is	l, what is th	e second	root?	[2011-II]
		h(c-a))		h(c-a)	
	(a)	$-\frac{\partial (\mathbf{c} \cdot \mathbf{u})}{(1 \cdot \mathbf{c})}$	<u>/</u>	(b)	$\frac{b(\mathbf{c} \cdot \mathbf{u})}{(1-\mathbf{v})}$	
	()	a(b-c))	(-)	a(b-c)	
		c(a-b)			c(a-b)	
	(c)	$\frac{c(a - b)}{c(1 - a)}$		(d)	$-\frac{c(u-c)}{c(1-c)}$	
		a(b-c)			a(b-c)	
97.	What	at are the ro	oots of the eq	uation 2($(y+2)^2 - 5(y+2)^2 -$	(y+2) = 12?
		_ /				[2011-II]
	(a)	-7/2,2		(b)	-3/2, 4	
00	(c)	-5/3,3		2 ^(d)	3/2,4	1 .1
98.	If th	e roots of t	he equation	$3x^2 - 5x$	+q=0 are	equal, then
	wha	it is the val	ue of q?	(h -)	5/10	[2011-11]
	(a)	Z 12/25		(D) (d)	5/12 25/12	
00	(C) If th	12/23 a difference	hatwaan th	(u) Ne roots o	$\frac{23}{12}$ f $ax^2 \pm bx =$	$-\alpha = 0$ is 1
<i>77</i> .	then	which one	of the follow	wing is co	rrect?	C = 0.18.1, $I = 2012_{-}I1$
	(a)	$h^2 = a(a + b)$	4c)	(h) a^2	= h(h + 4c)	[2012-1]
	(α)	$a^2 = c(a + b)$	4c)	(d) b^2	= a(b + 4c)	
100	If on	e of the roc	is, of the ear	$uation x^2$	+ ax = 6 =	0 is 1 then
100.	what	t is (a - 6) e	aual to?	auton A	un U	[2012-I]
	(a)	-1	1	(b) 1		L
	· · /			× /		

(c) 2 (d) -2

м-42

Polynomial, Quadratic Equation & Inequalities

101. If α and β are the roots of the equation $x^2 - q(1 + x) - r = 0$,						
	then	what is $(1 + \alpha)(1 + \beta)\epsilon$	equal	to	o?	[2012-I]
	(a)	1-r	(b)	C	q — r	
	(c)	1+r	(d)	C	q+r	
DIR	ECT	TIONS (Qs. 102-103): 1	For th	he	next [02] que	estions that
folle	ow:					
The	equa	tion formed by multiply	ing e	ac	ch root of	
ax^2	+ bx +	$c = 0$ by 2 is $x^2 + 36x + $	24 = 0	0		
102	Wha	t is b c equal to?		-		[2012-1]
10-	(a)	3.1	(b)	1	1 · 2	[=01=1]
	(a)	1.3	(d)	2	3 · 2	
103	Whi	ch one of the following	is co	rre	ect?	[2012_1]
105.	(a)	$bc = a^2$	(h)	11. 	$c = 36a^2$	[2012 1]
	(a)	$bc = 72a^2$	(0)	1 1	$r_{c} = 108 a^{2}$	
104	Who	00 = 72a	(u)	י רו	$\mathcal{L} = 100 a$	aquation
104.	vv na	2x = 1.42 - 0		11		
	$\mathbf{X} \top$	2x - 143 - 0	(h)	1	190	[2012-1]
	(a)	1/0	(U) (L)	ן ר	100	
107	(C)	190	(a)	∠ 1 ·		2
105.	Ine	solution of the simultan	eous	lir	near equations	$s_2x + y = 6$
	and	3y = 8 + 4x will also b	e sati	151	hed by which	one of the
	follo	wing linear equations?		_		[2012-1]
	(a)	x+y=5	(b)	2	2x + y = 5	
101	(c)	2x - 3y = 10	(d)	4	2x + 3y = 6	
106.	lfthe	e roots of a quadratic equ	uatioi	n a	are $m + n$ and m	m - n, then
	theq	juadratic equation will t	be:	~		[2012-11]
	(a)	$x^2 + 2mx + m^2 - mn + 2mx +$	$n^2 = 0$	0		
	(b)	$x^2 + 2mx + (m-n)^2 = 0$)			
	(c)	$x^2 - 2mx + m^2 - n^2 = 0$)			
	(d)	$x^2 + 2mx + m^2 - n^2 = 0$)			
107.	Ifα,	β are the roots of $x^2 + pz$	x – q	=	$0 \text{ and } \gamma, \delta \text{ are }$	the roots of
	$x^2 - $	px + r = 0 then what is ($(\beta + \gamma)$)($\beta + \delta$) equal to	o?
	(a)	p+r	(b)	p + q	[2012 - II]
	(c)	q + r	(d)	p-q	
108.	Ifthe	e roots of the quadratic e	quati	or	$x^{2} - 5x + p^{2}$	=0 are real
	and	unequal, then which on	e of t	he	e following is	correct?
	(a)	p = 25/12	(b)	p<25/12	[2012-II]
	(c)	p>25/12	(d)	$p \le 25/12$	
109.	If 4 ^x	$-6.2^{x} + 8 = 0$, then the	value	es	of x are	[2013-I]
	(a)	1,2	(b)	1,1	
	(c)	1,0	(d)	2,2	
110.	Ifthe	e roots of a quadratic equ	atior	1 a	$ax^2 + bx + c = b$	0 are α and
	β, th	en the quadratic equation	on ha	avi	ing roots α^2 a	nd β^2 is
	(a)	$x^2 - (b^2 - 2ac)x + c = 0$)		-	[2013-1]
	(b)	$a^{2}x^{2} - (b^{2} - 2ac)x + c$	=0			2 3
	(c)	$ax^2 - (b^2 - 2ac)x + c^2$	= 0			
	(d)	$a^{2}x^{2} - (b^{2} - 2ac)x + c^{2}$	2 = 0			
111.	Ifthe	e roots of the equation 3a	$ax^2 +$	2	bx + c = 0 are	in the ratio
	2:3	then which one of the f	follov	vii	ng is correct?	
	(a)	8ac = 25b	(b)	$8ac = 9b^2$	[2013-1]
	(c)	$8b^2 = 9ac$	(d))	$8b^2 = 25ac$	L= 010 1
112	If the	e sum of the roots of a	e) theun	9 rai	tic equation is	s 3 and the
11 <i>4</i> ,	nrod	luct is 2, then the equation	on is	. u	a quaton h	[20]3_17
	(a)	$2x^2 - x + 3 = 0$	(h)	$x^2 - 3x + 2 = 0$)
	1 /	~ ~ ~	,0	/		-

(c)
$$x^2+3x+2=0$$
 (d) $x^2-3x-2=0$

113.	Ifαa what	and β are the roots of the is the value of $\alpha^{-1} + \beta^{-1}$	equa ?	tion $x^2 + bx +$	c = 0, then [2013-I]
	(a)	$-\frac{b}{c}$	(b)	$\frac{b}{c}$	
	(c)	$\frac{c}{b}$	(d)	$-\frac{c}{b}$	
114.	The its wi	area of a rectangle whose idth is 75 square unit. Th	lengt e leng	th is five more gth is	than twice [2013-I]
	(a)	15 unit	(0)	20 unit	
115	(x + 1)	$1)^2 - 1 = 0$ has	(u)	20 unit	[2013-1]
110.	(a)	one real root	(b)	two real root	s
	(c)	two imaginary roots	(d)	four real root	S
116.	Wha	t is the positive square re	oot of	$57 + 4\sqrt{3}?$	[2013-II]
	(a)	$\sqrt{3} - 1$	(b)	$\sqrt{3} + 1$	
	(c)	$\sqrt{3} - 2$	(d)	$\sqrt{3} + 2$	
117.	If α,	β are the roots of the e	quati	ion $x^{2} + x + 2$	e = 0, then
	what	is $\frac{\alpha^{10} + \beta^{10}}{\alpha^{-10} + \beta^{-10}}$ equal to	o?		[2013-11]
	(a)	4096	(b)	2048	
	(c)	1024	(d)	512	
118.	If <i>a</i> a quad	and b are rational and b is ratic equation with ration	s not al co	perfect squar efficients who	e, then the se one root
	is 3 <i>a</i>	$a + \sqrt{b}$ is			[2013-II]
	(a)	$x^2 - 6ax + 9a^2 - b = 0$	(b)	$3ax^2 + x - \sqrt{2}$	$\overline{b} = 0$
	(c)	$x^2 + 3ax + \sqrt{b} = 0$	(d)	$\sqrt{b}x^2 + x - 3$	a = 0
119.	How	many real roots doe	es th	e quadratic	equation
	f(x)	$y = x^2 + 3 x + 2 = 0$ have	?	-	[2013-II]
		â		-	

(a)	One	(b)	Two
(c)	Fore	(d)	No real root

120. If α , β are the roots of the equation $ax^2 + bx + b = 0$, then

what is the value of $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{b}{a}}$? [2013-II]

- 121. The roots of the equation [2013-11] $x^2 - 8x + 16 = 0$
 - (a) are imaginary (b) are distinct and real
 - (c) are equal and real (d) cannot be ascertained
- 122. What is the difference in the roots of the equation $x^2-10x+9=0?$ [2013-II] (a) 2 (b) 3
 - (c) 5 (d) 8

123. If 8x-9y=20 and 7x-10y=9, then what is 2x-y equal to? [2013-II]

(a) 10 (b) 11 (c) 12 (d) 13

124.	The	quadratic equation $x^2 + bx$	x+4	= 0 will have real roots if $(2012, 11)$	134.	If the sum
	(a)	t i contra	(h)	[201 5- 11]		(a) $a^2 +$
	(a)	$b \leq -4$ only	(0)	$b \ge 4$ only		(c) $ab +$
	(c)	-4 < b < 4	(d)	$b \leq -4, b \geq 4$	135.	If the root
125.	If $\alpha a \neq 0$ (a)	and β are the roots of the ex $(a\alpha + b)(a\beta + b)$ is ab	quatio equa (b)	on $ax^2 + bx + c = 0$, where al to: [2014-1] bc abc	126	(a) $n^2 - (c) m^2 - 1$
126.	The and <i>l</i>	roots of the equation $2a^2x$ $b > 0$ are \cdot	$x^2 - 2$	abc = 0 $abx + b^2 = 0$ when $a < 0$ [2014-1]	150.	following
	(a) (c)	Sometimes complex Always complex	(b) (d)	Always irrational Always real		(a) $ p $ (c) $ p $:
127.	Ever $a \neq 0$	y quadratic equation ax^2 -) has	bx -	$c = 0$ where $a, b, c, \in R$, [2014-II]	DII that	RECTION
	(a) (c)	exactly one real root. at least two real roots.	(b) (d)	at least one real root. at most two real roots.	Con	sider the f
128.	Ifα,	β are the roots of $ax^2 + b$	bx + c	$c = 0$ and $a + h$, $\beta + h$ are	107	
	the r	oots of $px^2 + qx + r = 0$,	then	what is <i>h</i> equal to ?	137.	(a) One
				[2014-11]	138.	How man
	(a)	$\frac{1}{2} \left(\frac{b}{a} - \frac{q}{p} \right)$	(b)	$\frac{1}{2}\left(-\frac{b}{a}+\frac{q}{p}\right)$		(a) One(c) Three
		1(h a)		1 (1)	DIF	RECTION
	(c)	$\frac{1}{2}\left(\frac{b}{p}+\frac{q}{a}\right)$	(d)	$\frac{1}{2}\left(-\frac{b}{n}+\frac{q}{a}\right)$	that	t follow:
120	Con	- (P)		$2 \left(p \right)$	Let	α and $p(\alpha)$
129.	equa $(r^2 \perp$	tion : $2)^2 + 8x^2 - 6x(x^2 + 2)$	nent	[2015-I]	139.	Consider
	$(\lambda \top 1)$	$2) + \alpha = 0x (x + 2)$ All the roots of the equa	tion	are complex		I. $\beta <$
	1. 2	The sum of all the roots	of th	e equation is 6		Which of $(a) = 1$ on
	 Whie	ch of the above statemen	ts is/	are correct?		(c) Both
	(a)	1 only	(b)	2 only	140.	Consider
	(c)	Both 1 and 2	(d)	Neither 1 nor 2		1. α +
130.	In so	lving a problem that red	uces	to a quadratic equation,		2. $\alpha^2\beta$
	ones	tudent makes a mistake in	the	constant term and obtains		Which of
	8 and	d 2 for roots. Another stu	dent	makes a mistake only in		(a) 1 on
	roots	5. The correct equation is	term	2015-11 [2015-1]	1.4.1	(c) Both
	(a)	$x^2 - 10x + 9 = 0$	(b)	$x^2 - 10x + 9 = 0$	141.	other and
	(c)	$x^2 - 10x + 16 = 0$	(d)	$x^2 - 8x - 9 = 0$		other and
131.	If <i>m</i> a	and <i>n</i> are the roots of the e	quati	ion (x+p) (x+q) - k = 0,		0
	then	the roots of the equation	(x – 1	m) $(x-n) + k = 0$ are [2015-1]		(a) $-\frac{9}{8}$
	(a)	<i>P</i> and <i>q</i>	(b)	$\frac{1}{p}$ and $\frac{1}{q}$		(c) $-\frac{8}{9}$
	(c)	-p and $-q$	(d)	p+q and $p-q$	142.	If $c > 0$ as
132.	If 2 <i>p</i> (2 <i>p</i> +	$4p^{2} + 3q = 18 \text{ and } 4p^{2} + 4pq^{2}$ + q) equal to?	y – 30	$q^2 - 36 = 0$, then what is [2015-1]		which one (a) $(0,2)$
	(a)	6	(b)	7	1/13	(c) $(3,4)$ If both th
	(c)	10	(d)	20	143.	between -
133.	The	number of real roots of the	e equ	ation $x^2 - 3 x + 2 = 0$ is		correct?
			<i>a</i> :	[2015-II]		(a) _2 <
	(a)	4	(b)	3		(c) _3 <
	(0)	4	(a)	1		· · · ·

(c)	2	(d)
(\mathbf{C})	Z	(u

134.	If the	e sum of the roots of the eq	uatio	$n ax^2 + bx + c = 0$ is equal
	to th	e sum of their squares, th	en	[2015-11]
	(a)	$a^2 + b^2 = c^2$	(b)	$a^2 + b^2 = a + b$
	(c)	$ab + b^2 = 2ac$	(d)	$ab - b^2 = 2ac$
135.	Ifthe	e roots of the equation x ² .	-nx	+m=0 differ by 1, then
				[2015-II]
	(a)	$n^2 - 4m - 1 = 0$	(b)	$n^2 + 4m - 1 = 0$
	(c)	$m^2 + 4n + 1 = 0$	(d)	$m^2 - 4n - 1 = 0$
136.	Ìf x ²	+ px + 4 > 0 for all real val	ues c	of x, then which one of the
	follo	wing is correct?		[2016-1]
	(a)	p <4	(b)	$ p \leq 4$
	(c)	p >4	(d)	$ p \ge 4$
DIF	RECI	FIONS (Qs. 137-138):	For	the next two (2) items
hat	foll	ow:		
		27/	2/3)
Con	sider	the function $f(x) = \frac{27(x)}{x}$	4	<u>x)</u> [2016-I]
37.	How	many solutions does the	func	tion $f(x) = 1$ have?
	(a)	One	(b)	Two
	(c)	Three	(d)	Four
38.	How	many solutions does the	func	tion $f(x) = -1$ have?
	(a)	One	(b)	Two
	(c)	Three	(d)	Four
DIF	RECT	FIONS (Os. 139-140):	For	the next two (2) items
hat	foll	ow:		
Let	αand	$\beta(\alpha < \beta)$ be the roots of	the e	quation $x^2 + bx + c = 0$,
whe	reh `	0 and c < 0		[2016-1]
VIIC	100-	r = 0 and $c = 0$.		1201011

r the following:

1.	$\beta < -\alpha$	2.	$\beta < \alpha $
Whi	ich of the above is/are	correct?	
(a)	1 only	(h)	2 only

- (b) 2 only(d) Neither 1 nor 2 nly th 1 and 2
- the following:

1.
$$\alpha + \beta + \alpha\beta > 0$$

2.
$$\alpha^2\beta + \beta^2\alpha > 0$$

of the above is/are correct?

- nly (b) 2 only
- th 1 and 2 (d) Neither 1 nor 2 ot of the equation $(1 m) x^2 + 1 x + 1 = 0$ is double the d l is real, then what is the greatest value of m?

[2016-I]

(a)
$$-\frac{9}{8}$$
 (b) $\frac{9}{8}$
(c) $-\frac{8}{9}$ (d) $\frac{8}{9}$

- and 4a + c < 2b, then $ax^2 bx + c = 0$ has a root in ne of the following intervals? [2016-II] (b) (2,3)) (d) (-2,0)
- he roots of the equation $x^2 2kx + k^2 4 = 0$ lie -3 and 5, then which one of the following is [2016-II]
 - (b) -5 < k < 3< k < 2
 - (d) -1 < k < 3(c) -3 < k < 5

Polynomial, Quadratic Equation & Inequalities

DIRECTIONS (Os. 144-145): Consider the following for the next two (02) items that follow: Let α and β be the roots of the equation $x^{2} - (1 - 2a^{2})x + (1 - 2a^{2}) = 0$ 144. Under what condition does the above equation have real roots? [2016-II] (b) $a^2 > \frac{1}{2}$ (a) $a^2 < \frac{1}{2}$ (c) $a^2 \le \frac{1}{2}$ (d) $a^2 \ge \frac{1}{2}$ 145. Under what condition is $\frac{1}{\alpha^2} + \frac{1}{\beta^2} < 1$? [2016-II] (b) $a^2 > \frac{1}{2}$ (a) $a^2 < \frac{1}{2}$ (d) $a^2 \in \left(\frac{1}{3}, \frac{1}{2}\right)$ only (c) $a^2 > 1$ 146. What is the greatest value of the positive integer n satisfying the condition [2016-II] $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}} < 2 - \frac{1}{1000}?$ (a) 8 (b) 9 (c) 10 (d) 11 **DIRECTIONS (Qs. 147-148):** Consider the following for the next two (02) items that follow: $2x^2 + 3x - \alpha - 0$ has roots -2 and β while the equation $x^2 - 3mx + \beta$ $2m^2 = 0$ has both roots positive, where $\alpha > 0$ and $\beta > 0$. 147. What is the value of α ? [2016-II] (a) 1/2 (b) 1 (c) 2 (d) 4

148. If β , 2, 2m are in GP, then what is the value of $\beta \sqrt{m}$? [2016-II] (b) 2 (d) 6 (a) 1

149. If the point (a, a) lies between the lines |x + y| = 2, then which one of the following is correct? [2016-II]

(b) $|a| < \sqrt{2}$ (a) |a| < 2(d) $|a| < \frac{1}{\sqrt{2}}$ (c) |a| < 1

- 150. If the roots of the equation $x^2 + px + q = 0$ are in the same ratio as those of the equation $x^2 + lx + m = 0$, then which one of the following is correct? [2017-I] (a) $p^2m = l^2q$ (b) $m^2p = l^2p$
 - (d) $m^2p^2 = l^2q$ (c) $m^2 p = q^2 l$
- 151. If 1, ω , ω^2 are the cube roots of unity, then $(1 + \omega)(1 + \omega^2)$ $(1 + \omega^3)(1 + \omega + \omega^2)$ is equal to [2017-I] (a) −2 (b) -1 (c) 0 (d) 2
- 152. If the graph of a quadratic polynomial lies entirely above x-axis, then which one of the following is correct? [2017-I]
 - (a) Both the roots are real
 - (b) One root is real and the other is complex
 - (c) Both the roots are complex
 - (d) Cannot say

153. If $\cot \alpha$ and $\cot \beta$ are the roots of the equation $x^2 + bx + c = 0$ with $b \neq 0$, then the value of cot $(\alpha + \beta)$ is [2017-1]

(a)
$$\frac{c-1}{b}$$
 (b) $\frac{1-c}{b}$
(c) $\frac{b}{c-1}$ (d) $\frac{b}{1-c}$

154. The roots of the equation

$$(q-r)x^{2} + (r-p)x + (p-q) = 0$$
 are
(a) $(r-p)/(q-r), 1/2$ (b) $(p-q)/(q-r), 1$
(c) $(q-r)/(p-q), 1$ (d) $(r-p)/(p-q), 1/2$

155. If
$$\alpha$$
 and β are the roots of the equation $1 + x + x^2 = 0$, then

the matrix product $\begin{bmatrix} 1 & \beta \\ \alpha & \alpha \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ 1 & \beta \end{bmatrix}$ is equal to [2017-II]

(a)
$$\begin{bmatrix} 1 & 2 \end{bmatrix}$$
 (b) $\begin{bmatrix} -1 & 2 \end{bmatrix}$
(c) $\begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & -1 \\ -1 & -2 \end{bmatrix}$

- 156. If |a| denotes the absolute value of an integer, then which of the following are correct? [2017-II] 1. |ab| = |a| |b|2. $|a+b| \le |a|+|b|$ $|a-b| \ge ||a|-|b||$ 3 Select the correct answer using the code given below. (a) 1 and 2 only (b) 2 and 3 only (c) 1 and 3 only (d) 1, 2 and 3 157. The sum of all real roots of the equation $|x - 3|^2 +$
- |x-3|-2=0 is [2017-II] (a) 2 (b) 3 (c) 4 (d) 6
- 158. It is given that the roots of the equation $x^2 4x \log_3 P = 0$ are real. For this, the minimum value of P is [2017-II]

(a)
$$\frac{1}{27}$$
 (b) $\frac{1}{64}$
(c) $\frac{1}{81}$ (d) 1

159. If α and β are the roots of the equation $3x^2 + 2x + 1 = 0$, then the equation whose roots are $\alpha + \beta^{-1}$ and $\beta + \alpha^{-1}$ is

- (a) $3x^2 + 8x + 16 = 0$ (b) $3x^2 8x 16 = 0$ (c) $3x^2 + 8x 16 = 0$ (d) $x^2 + 8x + 16 = 0$
- 160. In $\triangle PQR, \angle R = \frac{\pi}{2}$. If than $\left(\frac{P}{2}\right)$ and tan $\left(\frac{Q}{2}\right)$ are the roots of the equation $ax^2 + bx + c = 0$, then which one of the following is correct? [2017-II] (a) a = b + c(b) b = c + a(d) b = c(c) c = a + b
- 161. The equation $|1 x| + x^2 = 5$ has [2018-I] (a) a rational root and an irrational root
 - (b) two rational roots
 - (c) two irrational roots
 - no real roots (d)

[2017-II]

 $\begin{bmatrix} -1 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \end{bmatrix}$

165. Suppose f(x) is such a quadrant expression that it is positive

for all real x. interval [0, 2]? [2018-I] If g(x) = f(x) + f'(x) + f''(x), then for any real x. Then for any (b) One (a) Zero (No solution) real x. [2018-11] (d) Three (b) g(x) > 0(c) Two (a) g(x) < 0(c) g(x) = 0(d) g(x) > 0163. Consider the following expressions: [2018-II] 166. The ration of roots of the equations $ax^2 + bx + c = 0$ and 1. $x + x^2 - \frac{1}{x}$ $px^2 + qx + r = 0$ are equal. If D₁ and D₂ are respective discriminates, then what is $\frac{D_1}{D_2}$ equal to? 2. $\sqrt{ax^2 + bx + x - c + \frac{d}{c} - \frac{e}{x^2}}$ [2018-II] (a) $\frac{a^2}{p^2}$ (b) $\frac{b^2}{a^2}$ 3. $3x^2 - 5x + ab$ (c) $\frac{c^2}{r^2}$ 4. $\frac{2}{x^2 - ax + b^3}$ (d) None of these 167. What are the roots of the equation $|x^2 - x - 6| = x + 2$? [2019-I] 5. $\frac{1}{x} - \frac{2}{x+5}$ (a) -2, 1, 4(b) 0,2,4 (c) 0, 1, 4(d) -2, 2, 4Which of the above are rational expressions? 168. The equation $px^2 + qx + r = 0$ (where p, q, r, all are positive) (a) 1, 4 and 5 only (b) 1, 3, 4 and 5 only has distinct real roots a and b. (c) 2, 4 and 5 only (d) 1 and 2 onlyWhich one of the following is correct? [2019-I] 164. If α and $\beta \neq 0$ are the roots of the quadratic equation $x^2 + \alpha x$ (a) a > 0, b > 0(b) a < 0, b < 0 $-\beta = 0$, then the quadratic expression $-x^2 + \alpha x + \beta$ where $x \in$ (d) a < 0, b > 0(c) a > 0, b < 0R has [2018-II] 169. If the roots of the equation $x^2 + px + q = 0$ are tan 19° and tan 26°, then which one of the following is correct? (a) Least value $-\frac{1}{4}$ [2019-1] (b) p-q=1(a) q - p = 1(b) Least value $-\frac{9}{4}$ (c) p + q = 2(d) p + q = 3170. The number of real roots for the equation $x^2 + 9 |x| + 20 = 0$ (c) Greatest value $\frac{1}{4}$ [2019-1] is (b) One (a) Zero (d) Greatest value $\frac{1}{4}$ (d) Three (c) Two **ANSWER KEY** 1 (b) 18 (b) 35 52 69 86 (d) 103 (d) 120 (b) 137 (b) 154 (b) (c) (a) (a) 2 (d) 19 53 87 104 121 138 155 (b) (d) 36 (d) (a) 70 (b) (a) (d) (c) (a) 105 122 139 3 (c) 20 (c) 37 (c) 54 (b) 71 (a) 88 (d) (a) (d) (c) 156 (d) 4 140 21 55 89 106 123 157 (b) 38 72 (d) (a) (b) (d) (a) (a) (b) (c) (c) 5 (b) 22 (b) 39 (b) 56 (d) 73 (b) 90 (c) 107 (c) 124 (d) 141 (b) 158 (c) 108 125 142 (b) 23 40 57 74 91 (b) 159 6 (c) (a) (c) (b) (b) (c) (a) (a) 7 24 41 58 75 92 109 126 143 (d) 160 (b) (b) (a) (a) (a) (d) (a) (c) (c) 144 8 25 (d) 42 59 76 (d) 93 110 (d) 127 (d) (d) 161 (c) (a) (c) (c) (a) 9 (b) 26 43 (d) 60 (b) 77 94 111 (d) 128 (a) 145 (a) 162 (b) (c) (a) (c) 10 (b) 27 (d) 44 61 78 95 (d) 112 (b) 129 (b) 146 (c) 163 (b) (c) (b) (c) 11 (c) 28 (d) 45 (b) 62 (a) 79 (c) 96 (c) 113 (a) 130 (a) 147 (c) 164 (d) 12 97 131 148 29 80 (d) 114 165 (b) (d) 46 63 (c) (c) (a) (a) (c) (a) (a) 13 47 81 98 115 132 149 (a) 30 (c) (b) 64 (c) (a) (d) (b) (c) (c) 166 (b) 99 14 (b) 31 48 (d) 65 82 (b) 116 (d) 133 (a) 150 (a) 167 (d) (a) (a) (a) 15 32 49 100 117 134 151 83 (b) (c) (c) (c) 168 (b) (c) (c) (a) 66 (a) (a)

162. Let [x] denote the greatest integer function. What is the number of solutions of the equation $x^2 - 4x + [x] = 0$ in the

(d)

(b)

16

17

33

34

(d)

(a)

50

51

(d)

(d)

67

68

84

85

(c)

(b)

101

102

(c)

(c)

118

119

(a)

(a)

135

136

(a)

(b)

(a)

(d)

152

153

(c)

(b)

169

170

(a)

(a)
HINTS & SOLUTIONS

5.

6.

7.

8.

 $\Rightarrow a^2 + 2ca = b^2$

 $\Rightarrow a^2 - b^2 + 2ac = 0$

(b) Let $\frac{k}{k+1}$ and $\frac{k+1}{k+2}$ are the roots of the equation 1. $4\beta^2 + \lambda\beta - 2 = 0$, then Sum of the roots = $\frac{k}{k+1} + \frac{k+1}{k+2} = -\frac{\lambda}{A}$...(i) and product of the roots, $\frac{k}{k+1} \times \frac{k+1}{k+2} = -\frac{2}{4}$ $\Rightarrow \frac{k}{k+2} = -\frac{1}{2} \Rightarrow 2k = -k-2 \Rightarrow k = -\frac{2}{3}$ Putting the value of k in (i), we get $\frac{-\frac{2}{3}}{-\frac{2}{3}+1} + \frac{-\frac{2}{3}+1}{-\frac{2}{3}+2} = -\frac{\lambda}{4}$ $\Rightarrow \frac{-\frac{2}{3}}{\frac{1}{3}} + \frac{\frac{1}{3}}{\frac{4}{3}} = -\frac{\lambda}{4} \Rightarrow -2 + \frac{1}{4} = -\frac{\lambda}{4}$ $\Rightarrow \lambda = 7$ 2. (d) Given 4a - 2b + c = 0Substitute 2 in the equation, $ax^2 + bx + c = 0$ $\Rightarrow a(2)^2 + b(2) + c = 0$ \Rightarrow 4a+2b+c=0 So, (x-2) is not the factor. Substitute -2 in the equation, $ax^2 + bx + c = 0$ $\Rightarrow a(-2)^2 + b(-2) + c = 0$ \Rightarrow 4a-2b+c=0 So, (x + 2) is the factor. : Only statement 1 is true. (c) Let α and β be the roots of 3. $x^2 - (p-2)x - (p+1) = 0$, Then $\alpha + \beta = (p-2)$ and $\alpha\beta = -(p+1)$ $\therefore \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $\Rightarrow (\alpha + \beta)^2 - 2\alpha\beta = 5$ $\Rightarrow (p-2)^2 + 2(p+1) = 5$ $\Rightarrow p^2 - 4p + 4 + 2p + 2 = 5$ $\Rightarrow p^2 - 2p + 1 = 0$ $\Rightarrow (p-1)^2 = 0$ $\Rightarrow p=1$ (b) The equation is $|x^2 - x - 6| = x + 2$ 4. for $x \ge 0$ $x^2 - x - 6 = x + 2$ $\Rightarrow x^2 - 2x - 8 = 0$ \Rightarrow (x-4)(x+2)=0 $\Rightarrow x=4,-2$ and for x < 0 $-x^2 + x + 6 = x + 2$ $\Rightarrow x^2 = 4 \Rightarrow x = \pm 2$ Thus, the number of real solutions are, -2, 2 and 4. So, numbers of real solution of the equation $|x^2 - x - 6| = x + 2$ are 3.

(b) Since, the roots of
$$x^2 - 2mx + m^2 - 1 = 0$$
 lie between

$$-2 \text{ and } 4 \text{ i.e., } b^2 - 4ac \ge 0 \text{ and } -2 < \frac{-b}{2a} < 4$$

$$\therefore (2m)^2 - 4(m^2 - 1) \ge 0 \qquad ...(1)$$
and $-2 < \frac{2m}{2} < 4$

$$\Rightarrow -2 < m < 4$$
From (i)
 $4m^2 - 4m^2 + 4 \ge 0$

$$\Rightarrow m \in R$$
and $f(-2) > 0$, also $f(4) > 0$
 $4 + 4m + m^2 - 1 > 0$, $16 - 8m + m^2 - 1 > 0$

$$\Rightarrow m^2 + 4m + 3 > 0$$
, $m^2 - 8m + 15 > 0$

$$\Rightarrow (m + 1) (m + 3) > 0$$
, $(m - 3) (m - 5) > 0$

$$\Rightarrow -3 < m < -1 \text{ and } 3 < m < 5$$
.
Thus, the inteval in which it lies is $-1 \le m \le 5$
(b) Given equation is $(\log_3 x)^2 + \log_3 x < 2$

$$\Rightarrow (\log_3 x)^2 + (\log_3 x) - 2 < 0$$

$$\Rightarrow (\log_3 x + 2) (\log_3 x - 1) < 0$$

$$\Rightarrow -2 < \log_3 x < 1$$

$$\Rightarrow \log_3 3^{-2} < \log_3 x < \log_3 3$$

$$\Rightarrow \frac{1}{9} < x < 3$$
(b) Given equation $\cos 2x + a \sin x = 2a - 7$ can be written
as
 $\cos^2 x - \sin^2 x + a \sin x = 2a - 7$

$$\Rightarrow 1 - \sin^2 x - \sin^2 x + a \sin x = 2a - 7$$

$$\Rightarrow 2\sin^2 x - a \sin x + (2a - 7 - 1) = 0$$

$$\Rightarrow 2\sin^2 x - a \sin x + (2a - 7 - 1) = 0$$

$$\Rightarrow 2\sin^2 x - a \sin x + 2a - 8 = 0$$
This is a quadratic equation in sin x and its discriminant ≥ 0
Here, $a = 2, b = -a, c = 2a - 8$

$$\Rightarrow a^2 - 16a + 64 \ge 0$$

$$\Rightarrow (a - 8)^2 \ge 0 \Rightarrow a \ge 8$$
(c) As given sin θ and $\cos \theta$ are the roots of the equation
 $ax^2 + bx + c = 0$.
So, sum of roots $= \sin \theta + \cos \theta = -\frac{b}{a}$...(1)
and product of roots $= \sin \theta \cos \theta = \frac{c}{a}$...(2)
On squaring both sides in Eq. (1), we get
 $(\sin \theta + \cos \theta)^2 = \frac{b^2}{a^2}$

$$\Rightarrow \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = \frac{b^2}{a^2}$$

$$\Rightarrow \sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta = \frac{b^2}{a^2}$$

м-48

9. (b) We know that if
$$x + y + z = 0$$

 $x^{3} + y^{3} + z^{3} = 3xyz$
Here both in nominator and denominator
 $a^{4} - b^{4} + b^{4} - c^{4} + c^{4} - a^{4} = 0$
and $a^{2} - b^{2} + b^{2} - c^{2} + c^{2} - a^{2} = 0$
Hence, $\frac{(a^{4} - b^{4})^{3} + (b^{4} - c^{4})^{3} + (c^{4} - a^{4})^{3}}{(a^{2} - b^{2})^{3} + (b^{2} - c^{2})^{3} + (c^{2} - a^{2})^{3}}$
 $= \frac{3(a^{4} - b^{4})(b^{4} - c^{4})(c^{4} - a^{4})}{3(a^{2} - b^{2})(b^{2} - c^{2})(c^{2} - a^{2})}$
 $= (a^{2} + b^{2})(b^{2} + c^{2})(c^{2} + a^{2})$
 $= (-c^{2})(-a^{2})(-b^{2})$ ($\because a^{2} + b^{2} + c^{2} = 0$)
 $= -a^{2}b^{2}c^{2}$
10. (b) Given that $0 < x < y < \pi$
We have $x < y \Rightarrow \cos y < \cos x$
 $\Rightarrow x - \cos x < y - \cos y$
11. (c) The given expression $\left[(a^{m})^{m - \frac{1}{m}} \right]^{\frac{1}{m+1}}$
 $= \left[(a^{m})^{\frac{m^{2}-1}{m}} \right]^{\frac{1}{m+1}} = \left[(a^{m})^{\frac{(m-1)(m+1)}{m}} \right]^{\frac{1}{m+1}}$

$$= [a^m]^{\frac{m-1}{m}} = a^{m-1}$$

Its $(m-1)^{th}$ root = $(a^{m-1})^{1/m-1} = a$.

Hence,
$$(m-1)^{\text{th}}$$
 root of $\left[\left(a^m\right)^{m-\left(\frac{1}{m}\right)} \right]^{\frac{1}{(m+1)}}$

 $= (m - 1) \text{th root of } a^{m-1} = a$ 12. (d) The given equation is $ax^2 + bx + 1 = 0$ This equation has real roots. When discriminant ≥ 0 $\therefore b^2 - 4a \ge 0$ $\Rightarrow b^2 \ge 4a$

13.

a, b has to be selected from, three numbers, so total 3 selections are possible when (a, b) are (1,2), (1, 3) and (2, 3).

Thus, the number of equations of the form $ax^2 + bx + 1 = 0$ having real root is 3.

(a) Given equation is

$$px^{2} + qx + r = p(x - \alpha)(x - \beta)$$

$$\Rightarrow px^{2} + qx + r = px^{2} - p(\alpha + \beta)x + \alpha\beta p$$

$$\Rightarrow \alpha\beta p = r \text{ and } q = -(\alpha + \beta)p \qquad ...(1)$$
Also given that

$$p^{3} + pq + r = 0$$
Putting value of q and r from (1)

$$\Rightarrow p^{3} - p^{2}(\alpha + \beta) + \alpha\beta p = 0$$

$$\Rightarrow p^{2} - p(\alpha + \beta) + \alpha\beta = 0$$

$$\Rightarrow (p - \alpha)(p - \beta) = 0 \Rightarrow \alpha = \beta = p$$

NDA Topicwise Solved Papers - MATHEMATICS

14.

15.

16.

17.

(b)
$$x^2 + k^2 = 2(k + 1)x$$

 $\Rightarrow x^2 - 2(k + 1)x + k^2 = 0$
For roots to be equal discriminant = 0
So, $\{-2(k + 1)\}^2 - 4k^2 = 0$
or, $4(k + 1)^2 - 4k^2 = 0$
or, $(k + 1)^2 - k^2 = 0$
or, $(k + 1)^2 - k^2 = 0$
or, $2k + 1 = 0$
 $k = -\frac{1}{2}$
(c) In the given equation,
Given formula, $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$
 $x = a^{1/3} - a^{-1/3}$
Raising both the sides to the power of cube
 $x^3 = a - 3a^{1/3} + 3a^{-1/3} - a^{-1} = a - 3(a^{1/3} - a^{-1/3}) - a^{-1}$
 $\Rightarrow x^3 = a - 3x - a^{-1}$ or $x^3 + 3x = a - \frac{1}{a}$
(d) $x^{1/3} + y^{1/3} + z^{1/3} = 0$
Given formula, $(a + b)^3 = a^3 + b^3 + 3ab(A + b)$
so, $x^{1/3} = -(y^{1/3} + z^{1/3})$
Raising both the sides to the power of cube
 $x = -\{y + z + 3y^{1/3}z^{1/3}(y^{1/3} + z^{1/3})\}$
 $= -\{y + z + 3y^{1/3}z^{1/3}(y^{1/3} + z^{1/3})\}$
 $= -\{y + z + 3y^{1/3}y^{1/3}z^{1/3} \Rightarrow x + y + z = 3x^{1/3}y^{1/3}z^{1/3}\}$
 $= -y - z + 3x^{1/3}y^{1/3}z^{1/3} \Rightarrow x + y + z = 3x^{1/3}y^{1/3}z^{1/3}\}$
or $x + y + z = 3(xyz)^{1/3}$
 $\Rightarrow (x + y + z)^3 = 27xyz$
(b) Since, α and β are the roots of $ax^2 + 2bx + c = 0$
 \therefore so, $\alpha + \beta = -\frac{2b}{a}$ and $\alpha\beta = \frac{c}{a}$
Also $\alpha + \delta$ and $\beta + \delta$ are the roots of
 $Ax^2 + 2Bx + C = 0$
so, sum of the roots $= \alpha + \beta + 2\delta = -\frac{2B}{A}$ and product
of the roots $(\alpha + \delta)$ $(\beta + \delta) = \frac{C}{A}$
 $\Rightarrow -\frac{2b}{a} + 2\delta = -\frac{2B}{A}$
 $\Rightarrow \delta = \frac{b}{a} - \frac{B}{A}$...(i)
and $(\alpha + \delta)(\beta + \delta) = \frac{C}{A}$
 $\Rightarrow \alpha\beta + (\alpha + \beta)\delta + \delta^2 = \frac{C}{A}$...(ii)
Putting value of δ from equation (i) in equation (ii),
 $\frac{c}{a} - \frac{2b}{a}(\frac{b}{a} - \frac{B}{A}) + (\frac{b}{a} - \frac{B}{A})^2 = \frac{C}{A}$

 $\Rightarrow \frac{c}{a} - \frac{2b^2}{a^2} + \frac{2bB}{aA} + \left(\frac{b}{a}\right)^2 + \left(\frac{B}{A}\right)^2 - \frac{2bB}{aA} = \frac{C}{A}$

$$\Rightarrow \frac{c}{a} - \left(\frac{b}{a}\right)^2 + \left(\frac{B}{A}\right)^2 = \frac{C}{A}$$
$$\Rightarrow \frac{B^2}{A^2} - \frac{C}{A} = \frac{b^2}{a^2} - \frac{c}{a} \Rightarrow \frac{B^2 - AC}{A^2} = \frac{b^2 - ac}{a^2}$$
$$\Rightarrow \frac{b^2 - ac}{B^2 - AC} = \left(\frac{a}{A}\right)^2$$

22.

23.

24.

18. (b) Since, α and β are the roots of the equation $ax^2 + bx + c = 0$, then

Sum of the roots, $\alpha + \beta = -\frac{b}{a}$ and Product of the roots,

$$\alpha\beta = \frac{c}{a}$$
The expression, $(a\alpha + b)^{-1} + (a\beta + b)^{-1}$

$$= \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} = \frac{\alpha\beta + b + a\alpha + b}{(a\alpha + b)(a\beta + b)}$$

$$= \frac{a(\alpha + \beta) + 2b}{a^2\alpha\beta + ab(\alpha + \beta) + b^2}$$

$$= \frac{a(-b/a) + 2b}{a^2(c/a) + ab(-b/a) + b^2} = \frac{-b + 2b}{ac - b^2 + b^2} = \frac{b}{ac}$$
O) Since, α and β are the roots of the equation $x^2 - 2x - 1 = 0$, then
Sum of roots, $\alpha + \beta = 2$ and
product of the roots $\alpha\beta = -1$
Since, $(\alpha + \beta) = \alpha^2 + \beta^2 + 2\alpha\beta$
 $\Rightarrow 4 = \alpha^2 + \beta^2 - 2$
 $\Rightarrow \alpha^2 + \beta^2 = 6$
Now, $\alpha^2\beta^{-2} + \alpha^{-2}\beta^2 = \frac{\alpha^2}{\beta^2} + \frac{\beta^2}{\alpha^2} = \frac{\alpha^4 + \beta^4}{(\alpha\beta)^2}$
 $\Rightarrow (\alpha^2 + \beta^2)^2 = 6^2$
 $\Rightarrow \alpha^4 + \beta^4 + 2\alpha^2\beta^2 = 36$
 $\Rightarrow \alpha^4 + \beta^4 + 2^3 = 34$...(i)
 $\Rightarrow \frac{\alpha^4 + \beta^4}{\alpha^4} = \frac{34}{\alpha^4} = -24$

 $\Rightarrow \frac{1}{(\alpha\beta)^2} = \frac{1}{(-1)^2} = \frac{1}{34}$ [Putting value of $\alpha^4 + \beta^4 = 34$ from Equation (i)]

20. (c) There can be many values of x and y for this in equation. In the given options only x = 1, y = 1 satisfy the given equation.

21. (a) Given equations are

19.

(ď

$$y = \frac{8}{x^2 + 4}$$
 and $x + y = 2$

Putting value of y from 1st equation into second equation.

$$x + \frac{8}{x^2 + 4} = 2$$

 $\Rightarrow x^3 + 4x + 8 = 2x^2 + 8$ $\Rightarrow x^3 - 2x^2 + 4x = 0$ $\Rightarrow x(x^2-2x+4)=0$ $\Rightarrow x=0$ [The other value of x is not real] (b) Let α and β be the roots of both the equations $x^2 - (a-1)x + (a+b) = 0$ $\Rightarrow \alpha + \beta = (a - 1) \text{ and } \alpha \beta = (a + b)$ and $ax^2 - 2x + b = 0$ $\Rightarrow \alpha + \beta = \frac{2}{a} \text{ and } \alpha \beta = \frac{b}{a}$ Equating the sums of roots $\therefore a-1=\frac{2}{a}$ $\Rightarrow a^2 - a - 2 = 0 \Rightarrow a = -1, 2$ Equating the products of roots and $a + b = \frac{b}{a}$ If a = -1, $b = \frac{1}{2}$ and if a = 2, b = -4From the given option, a = 2, b = -4 matches. (c) The given equation is |x| + |x-1| = 1We know that $|x| = \begin{cases} -x, \text{ if } x < 0 \\ x, \text{ if } x \ge 0 \end{cases}$ $|\mathbf{x} - 1| = \begin{cases} -(x-1) = 1 - x, & \text{if } x < 1 \\ x - 1, & \text{if } x \ge 1 \end{cases}$ Thus, three cases arise, case I; x < 0**Case I**: if x < 0 then |x| + |x-1| = 1 becomes -x - (x - 1) = 11) = 1 or -x - x + 1 = 1 $\Rightarrow -2x = 0$ or x = 0. So, equation is not valid for x < 0**Case II**: 0 < x < 1. For x = 0, equation is 0 + |-1| = 1. and equation is satisfied. For $0 \le x \le 1$, equation is x - (x - 1) = 1. Variable disappear, so, the equation is valid for all values of x in this integral. Case III : x > 1if x = 1 then equation becomes, |1| + |0| = 1 and equation is satisfied. if x > 1 then $x + x - 1 = 1 \Longrightarrow 2x = 2 \Longrightarrow x = 1$ So, equation is not valid for x > 1So, this equation is defined for all values of x in the interval [0, 1]. So there are infinite number of real values of x. (b) Let $x = 8^{17} = (2^3)^{17}$ $\Rightarrow x = 2^{51}$ Taking log on both sides of above equation, we get $\log x = 51 \log 2$

 $=51 \times 0.3010 = 15.381$

 \therefore Number of digits in $8^{17} = 15 + 1 = 16$

25. (d) If
$$\alpha$$
 and β are the roots of the equations
 $x^{2}+x+1=0$
 $\Rightarrow \alpha = \omega$ and $\beta = \omega^{2}$
or, $\alpha = \omega^{2}$ and $\beta = \omega$
 $\therefore \alpha^{19} + \beta^{7} = \omega^{19} + \omega^{14} = \omega + \omega^{2} = -1$
or, $\alpha^{19} + \beta^{7} = \omega^{38} + \omega^{7} = \omega^{2} + \omega = -1$
In either case $\alpha^{19} + \beta^{7} = -1$
and $\alpha^{19} \cdot \beta^{7} = \omega^{19} \cdot \omega^{14} = \omega^{33} = 1$
or $\omega^{38} \cdot \omega^{7} = \omega^{45} = 1$
 \therefore The required equation where roots are α^{19} and β^{7}
is
 $x^{2} - (\alpha^{19} + \beta^{7})x + \alpha^{19}\beta^{7} = 0 \Rightarrow x^{2} + x + 1 = 0$

26. (c) α and β are the roots of the equation $x^2 + 6x + 1 = 0$ $\Rightarrow \alpha + \beta = -6$ and $\alpha\beta = 1$ Now, $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta$ $= (-6)^2 - 4 = 36 - 4 = 32$ $\Rightarrow |\alpha - \beta| = \sqrt{32} = 4\sqrt{2}$

27. (d) Given equation is :

$$r^{1/3} + \frac{1}{r^{1/3}} = 3$$

Cubing both sides, we get

$$\left(r^{1/3} + \frac{1}{r^{1/3}}\right)^3 = 3^3 \quad [(a+b)^3 = a^3 + b^3 + 3ab (a+b)]$$

$$\Rightarrow \quad r + \frac{1}{r} + 3\left(r^{1/3} + \frac{1}{r^{1/3}}\right) = 27$$

$$\Rightarrow \quad r + \frac{1}{r} + 3.3 = 27 \quad \Rightarrow \quad r + \frac{1}{r} + 27 - 9 = 18.$$

28. (d) As given

 \Rightarrow Number of rows = x \Rightarrow Number of seats in each row = x Total number of seats in the hall $= x^2$ Revised number of rows = 2xRevised number in each row = x - 10Thus Revised number of seats = $2x(x-10) = 2x^2 - 20x$ According to question, $2x^2 - 20x = 300 + x^2$ $\Rightarrow x^2 - 20x - 300 = 0$ $\Rightarrow x^2 - 30x + 10x - 300 = 0$ \Rightarrow (x-30)(x+10)=0 $\Rightarrow x=30$ $(:: x \neq -10)$ 29. (a) As given : α and β are the roots of the quadratic equation $\ell x^2 - mx + m = 0$ \therefore So, sum of roots,

$$\alpha + \beta = \frac{m}{\ell}$$
 and product of roots, $\alpha\beta = \frac{m}{\ell}$
 $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} = \frac{\alpha + \beta}{\sqrt{\alpha\beta}} = \frac{m/\ell}{\sqrt{m/\ell}}$

$$\Rightarrow \sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} = \sqrt{\frac{m}{\ell}} = 0 \Rightarrow \sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} - \sqrt{\frac{m}{\ell}} = 0$$
30. (c) As given :
roots of the quadratic equation
 $(k+1) x^2 - 2 (k-1) x + 1 = 0$ are real and equal,
Its discriminant
 $\{-2(k-1)\}^2 - 4 (k+1) = 0$
 $\Rightarrow 4 (k^2 - 2k + 1) - 4 (k+1) = 0$
 $\Rightarrow k^2 - 2k + 1 - k - 1 = 0$
 $\Rightarrow k^2 - 3k = 0 \Rightarrow k = 0, k = 3$
31. (a) For roots of an equation $ax^2 + bx + c = 0$ to be positive
sign of a and c should be like.
32. (c) In the given inequality
 $\therefore 4 < x^2 < 9$
We consider
 $x^2 > 4$ and $x^2 < 9$

$$x^{2} > 4 \text{ and } x^{2} < 9$$

We first consider,
$$x^{2} > 4 \Rightarrow x^{2} - 4 > 0$$

$$\Rightarrow x > -2 \text{ and } x < 2$$

Next; $x^{2} < 9$
$$\Rightarrow x^{2} - 9 < 0 \Rightarrow -3 < x < 3$$

Combining both we get $-3 < x < -2, 2 < x < 3$

We represent this on number line

$$\Rightarrow$$
 -3 < x < -2 and 2 < x < 3

33. (d) As given, α , and β are the roots of $ax^2 + bx + c = 0$, then the roots of $cx^2 + bx + a = 0$ will be reciprocal of α and β , i.e.,

$$\frac{1}{-}$$
 and $\frac{1}{-}$

$$\alpha^{\mu}\beta^{\mu}$$

- 34. (a) As given : x and y are real numbers such that x > y and |x| > |y|, then x can not be negative or zero $\Rightarrow x > 0$.
- 35. (c) The linear constraints for which the shaded region in the given figure is the solution set, are given by : x y ≤ 1, x + 2y ≤ 8, x + y ≥ 1, x, y ≥ 0.

36. (d) Consider first :
$$x^2 - 3x + 2 > 0$$

 $\Rightarrow (x-1)(x-2) > 0$
 $\Rightarrow x < 1 \text{ or } x > 2$...(1)
and $x^2 - 3x - 4 \le 0$
 $\Rightarrow (x-4)(x+1) \le 0$
 $\Rightarrow -1 \le x \le 4$...(2)
Combining (1) and (2)
 $-1 \le x < 1 \text{ or } 2 < x \le 4$
Drawing on number line :

Polynomial, Quadratic Equation & Inequalities

37. (c) Given equation is : $x = 2^{1/3} - 2^{-1/3}$ On cubing both sides, we get $x^3 = (2^{1/3} - 2^{-1/3})^3$ $= 2 - 2^{-1} - 3 \cdot 2^{1/3} \cdot 2^{-1/3} (2^{1/3} - 2^{-1/3})$ $\Rightarrow x^3 = -3x + 2 - \frac{1}{2} \Rightarrow x^3 = -3x + \frac{3}{2}$ $\Rightarrow 2x^3 + 6x = 3$

38. (a) Let $x = \sqrt{5\sqrt{5\sqrt{5.....\infty}}}$ $\Rightarrow x = \sqrt{5x} \Rightarrow x^2 = 5x$ $\Rightarrow x^2 - 5x = 0 \Rightarrow x (x - 5) = 0$ $\Rightarrow x = 0 \text{ or } 5$ 5 is given in the option.

- 39. (b) For the real number p, q, r, x and y p < x < q and p < y < rp < x < q < r
- 40. (a) Let the roots of the equation $x^2 px q = 0$ be

$$\alpha \text{ and } \frac{1}{\alpha}$$

$$\Rightarrow \text{ Product of roots } = \alpha \cdot \frac{1}{\alpha} = -\frac{q}{1}$$
$$\Rightarrow 1 = -q \Rightarrow q = -1$$

41. (a) As given : Roots of the equations $x^2 + kx + 1 = 0$ are α and β . $\therefore \quad \alpha + \beta = -k$ and $\alpha\beta = 1$ Given expression

$$(\alpha + \beta)(\alpha^{-1} + \beta^{-1}) = (\alpha + \beta)\left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$$
$$= (\alpha + \beta)\left(\frac{\alpha + \beta}{\alpha\beta}\right) = \frac{(\alpha + \beta)^2}{\alpha\beta} = \frac{(-k)^2}{1} = k^2$$

- 42. (a) Let α and $(\alpha + 1)$ be the roots of equation $x^2 - bx + c = 0$ $\therefore \alpha + (\alpha + 1) = b$ $\Rightarrow 2\alpha + 1 = b$ and $\alpha (\alpha + 1) = c$ Now, $b^2 - 4c = (2\alpha + 1)^2 - 4[\alpha (\alpha + 1)]$ $= 4\alpha^2 + 1 + 4\alpha - 4\alpha^2 - 4\alpha = 1$
- 43. (d) Since *r* and *s* are the roots of $x^2 + px + q = 0$. Then, r + s = -p and rs = q

Now,
$$\frac{1}{r^2} + \frac{1}{s^2} = \frac{r^2 + s^2}{(rs)^2} = \frac{(r+s)^2 - 2rs}{(rs)^2}$$

$$= \frac{(-p)^2 - 2q}{q^2} = \frac{p^2 - 2q}{q^2}$$
Given, $9 < 4x - 1 \le 19$
 $\Rightarrow 9 < 4x - 1 = 19$

44. (c) Given,
$$9 < 4x - 1 \le 19$$

 $\Rightarrow 9 < 4x - 1$ and $4x - 1 \le 19$
 $\Rightarrow 9 + 1 < 4x$ and $4x \le 19 + 1$
 $\Rightarrow x > \frac{5}{2}$ and $x \le 5$
 $\therefore x \in \{3, 4, 5\}$

45. (b)
$$a = x + \sqrt{x^2 + 1} \implies a - x = \sqrt{x^2 + 1}$$

 $\implies x^2 + 1 = (a - x)^2 \implies x^2 + 1 = a^2 + x^2 - 2 ax$
 $\implies 2 ax = a^2 - 1 \implies 2x = a - \frac{1}{a}$
 $\implies x = \frac{1}{2}(a - a^{-1})$

46. (c) We know that, if a quadratic polynomial with two distinct root has one real root, then

$$b^2 - 4ac > 0$$

Then other root will always real.

47. (b)
$$\sin \alpha$$
 and $\cos \alpha$ are the roots of the equation
 $px^2 + qx + r = 0$

$$\therefore \quad \sin \alpha + \cos \alpha = \frac{-q}{p} \qquad \qquad \dots (i)$$

and
$$\sin \alpha \cos \alpha = \frac{r}{p}$$

From equation (i)

48.

$$(\sin \alpha + \cos \alpha)^2 = \frac{q^2}{p^2}$$
$$\Rightarrow \ \sin^2 \alpha + \cos^2 \alpha + 2\sin \alpha \cos \alpha = \frac{q^2}{p^2}$$
$$\Rightarrow \ 1 + 2 \frac{r}{p^2} = \frac{q^2}{p^2}$$

$$\Rightarrow p^{2} + 2pr = q^{2}$$

$$\Rightarrow p^{2} + 2pr = q^{2}$$

$$\Rightarrow p^{2} - q^{2} + 2pr = 0$$

(d) α and β are the roots of $x^{2} + 4x + 6 = 0$

$$\therefore \alpha + \beta = -4 \text{ and } \alpha\beta = 6$$

Now $\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)$

Now,
$$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$$

= (-4)³ - 3 × 6 (-4) = -64 + 72 = 8

49. (a) Let α and β are the roots of the given equation.

$$\therefore \qquad \alpha + \beta = \frac{-(3p+1)}{3}$$

and
$$\alpha \beta = \frac{-(p+5)}{3}$$

Now,
$$\frac{-(3p+1)}{3} = \frac{-(p+5)}{3}$$
$$\Rightarrow 3p+1=p+5$$
$$\therefore \qquad 2p=4$$
$$\therefore \qquad p=2$$

50. (d) Number of diagonals = $\frac{n(n-3)}{2}$ where n is the number of sides of polygon

$$\therefore \qquad 20 = \frac{n(n-3)}{2}$$

$$\Rightarrow \qquad 40 = n^2 - 3n$$

$$\Rightarrow \qquad n^2 - 3n - 40 = 0$$

$$\Rightarrow \qquad n^2 - 8n + 5n - 40 = 0$$

$$\Rightarrow \qquad (n-8) (n+5) = 0$$

$$\Rightarrow \qquad n-8 = 0, n+5 = 0$$

$$\therefore \text{ since, the number of diagonals, n cannot be negative.}$$

$$\Rightarrow \qquad n=8$$

...(ii)

 $\Rightarrow 2a - 2x = a + x$

 $\Rightarrow a = 3x$

56.

51. (d) Sum and product of roots of A x² - 4x + 1 = 0 will be

$$\alpha + \gamma = \frac{4}{A} \text{ and } \alpha \gamma = \frac{1}{A} \text{ respectively}$$
Sum and product of roots of Bx² - 6x + 1=0 will be

$$\beta + \delta = \frac{6}{B} \text{ and } \beta \delta = \frac{1}{B} \text{ respectively}$$
Since, α , β , γ and δ are in HP.
Then, $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$ and $\frac{1}{\delta}$ will be in AP.

$$\Rightarrow \frac{1}{\beta} - \frac{1}{\alpha} = \frac{1}{\delta}, -\frac{1}{\gamma} \Rightarrow \frac{1}{\beta} - \frac{1}{\delta} = \frac{1}{\alpha}, -\frac{1}{\delta}$$

$$\Rightarrow \frac{\delta - \beta}{\beta \delta} = \frac{\gamma - \alpha}{\alpha \gamma}$$

$$\Rightarrow \frac{\sqrt{(\delta + \beta)^2 - 4\beta \delta}}{\beta \delta} = \frac{\sqrt{(\gamma + \alpha)^2 - 4\alpha \gamma}}{\alpha \gamma}$$

$$\Rightarrow 36 - 4B = 16 - 4A$$

$$\Rightarrow 44 + 4B = 20$$

$$\Rightarrow A + B = 5$$
It is possible only, if
 $A = -3$ and $B = 8$
52. (a) Given, $2^{x} + 3^{y} = 17$
and $2^{x+2} - 3^{y+1} = 5$

$$\Rightarrow 4.2^{x} - 3.3^{y} = 5$$
From equation (i) and (ii), we get
 $2^{x} = 8$ and $3^{y} = 9$

$$\Rightarrow x = 3$$
 and $y = 2$
53. (a) Given $(x + a)$ is a factor of quadratic polynomials
 $x^{2} + px + q$ and $x^{2} + lx + m$
then $a^{2} - ap + q = 0$
and $a^{2} - la + m = 0$
(i) - (ii) $\Rightarrow -ap + q + la - m = 0$
 $\Rightarrow (l - p)a = m - q$

$$\Rightarrow a = \frac{m - q}{l - p} (l \neq p)$$

54. (b) Given eqn is $(b - c)x^{2} + (c - a)x + (a - b) = 0$
 $\Rightarrow (b - c)x - (b - c)x^{2} + (c - a)x + (a - b) = 0$
 $\Rightarrow (b - c)x (x - 1) - (a - b)(x - 1) = 0$
 $\Rightarrow x = \frac{a - b}{l - p}$ and $x = 1$
55. (b) Consider $16(\frac{a - x}{a + x})^{3} = \frac{a + x}{a - x}$
 $\Rightarrow (\frac{a - x}{a + x})^{3} \times (\frac{a - x}{a + x}) = \frac{1}{16}$
 $\Rightarrow (\frac{a - x}{a + x})^{4} = (\frac{1}{2})^{4}$

$$\Rightarrow \frac{a-x}{a+x} = \frac{1}{2}$$

$$\Rightarrow x = \frac{a}{3}$$
(d) Since, α and β be the roots of
 $2x^2 - 2(1 + n^2)x + (1 + n^2 + n^4) = 0$
 $\therefore \alpha + \beta = -\left[\frac{-2(1 + n^2)}{2}\right] = (n^2 + 1)$
and $\alpha\beta = \frac{1 + n^2 + n^4}{2}$
Now, Consider $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$
 $= (n^2 + 1)^2 - (1 + n^2 + n^4)$
 $= n^4 + 1 + 2n^2 - 1 - n^2 - n^4 = n^2$

57. (c) Since, r and s are the roots of
$$Ax^2 + Bx + C = 0$$
, then

$$r+s = -\frac{B}{A} \text{ and } rs = \frac{C}{A}$$

Now, Given roots of $x^2 + px + q = 0$ be r^2 and s^2
 $\therefore r^2 + s^2 = -p$ and $r^2 s^2 = q$
 $\Rightarrow (r+s)^2 - 2rs = -p$
 $\Rightarrow \frac{B^2}{A^2} - \frac{2C}{A} = -p$
 $\Rightarrow \frac{B^2 - 2AC}{A^2} = -p$
 $\Rightarrow p = \frac{2AC - B^2}{A^2}$

58. (a) Let α and β are the roots of $ax^2 + bx + b = 0$

$$\therefore \alpha + \beta = -\frac{b}{a} \text{ and } \alpha\beta = \frac{b}{a}$$
Consider, $\frac{\sqrt{\alpha}}{\sqrt{\beta}} + \frac{\sqrt{\beta}}{\sqrt{\alpha}} + \frac{\sqrt{b}}{\sqrt{a}} = \frac{\alpha + \beta}{\sqrt{\alpha\beta}} + \frac{\sqrt{b}}{\sqrt{a}}$

$$= \frac{-b/a}{\sqrt{b/a}} + \sqrt{\frac{b}{a}} = -\sqrt{\frac{b}{a}} + \sqrt{\frac{b}{a}} \text{ (by rationalizing)}$$

$$= 0$$
59. (c) Let sin α and cos α be the roots of $ax^2 + bx + c = 0$
Now, sin $\alpha + \cos \alpha = \frac{-b}{\alpha}$ and sin $\alpha \cos \alpha = \frac{c}{\alpha}$

Now,
$$\sin \alpha + \cos \alpha = \frac{b}{a}$$
 and $\sin \alpha \cos \alpha = \frac{b}{a}$
Consider $\sin \alpha + \cos \alpha = \frac{-b}{a}$
Squaring both side, $(\sin \alpha + \cos \alpha)^2 = \frac{b^2}{a^2}$
 $\Rightarrow \sin^2 \alpha + \cos^2 \alpha + 2 \sin \alpha \cos \alpha = \frac{b^2}{a^2}$
 $\Rightarrow 1 + \frac{2c}{a} = \frac{b^2}{a^2}$
 $\Rightarrow \frac{a + 2c}{a} = \frac{b^2}{a^2} \Rightarrow a + 2c = \frac{b^2}{a}$
 $\Rightarrow a^2 + 2 ac = b^2 \Rightarrow b^2 - a^2 = 2 ac$

~ / ~

. . .

60. (b) Let
$$x = 2 + 2^{1/3} + 2^{2/3}$$

$$= 2 + 2^{1/3} + (2^{1/3})^2 = 2 + 2^{1/3}(1 + 2^{1/3})$$

$$\Rightarrow x - 2 = 2^{1/3}(1 + 2^{1/3})$$
On cubing both sides, we get
 $x^3 - 8 - 6x^2 + 12x = 2(1 + 2 + 3.2^{1/3} + 3.2^{2/3})$
 $\Rightarrow x^3 - 6x^2 + 6x = 14 + 6.2^{1/3} + 6.2^{2/3} - 6x$
 $= 14 + 6.2^{1/3} + 6.2^{2/3} - 6(2 + 2^{1/3} + 2^{2/3}) = 2$
61. (b) Given, equation is $(x - p)(x - q) = r^2$
 $\Rightarrow x^2 - (p + q)x + pq - r^2 = 0$
Now, $D = \sqrt{(p + q)^2 - 4(pq - r^2)}$
 $= \sqrt{(p - q)^2 + 4r^2} \ge 0$
Hence, roots are always real.
62. (a) Given, $x - 2(x - 1)^{-1} = 1 - 2(x - 1)^{-1}$
 $x - \frac{2}{x - 1} = 1 - \frac{2}{x - 1}$
 $\Rightarrow \frac{x(x - 1) - 2}{x - 1} = \frac{x - 1 - 2}{x - 1}$
 $\Rightarrow x^2 - x - 2 = x - 1 - 2$

$$\Rightarrow x^{2} - x - 2 - x + 3 = 0$$

$$\Rightarrow x^{2} - 2x + 1 = 0$$

$$\Rightarrow (x - 1)^{2} = 0$$

$$\Rightarrow x = 1$$

But x = 1 is not satisfied in the given equation. Hence, no roots exist.

63. (a) Given equation is (x-a)(x-b) + (x-b)(x-c) + (x-c) (x-a) = 0 $\Rightarrow 3x^2 - 2(b+a+c)x + ab + bc + ca = 0$ Now, here A = 3, B = -2 (a+b+c) C = ab + bc + ca $\therefore D = \sqrt{B^2 - 4AC}$ $= \sqrt{(-2(a+b+c))^2 - 4(3)(ab+bc+ca)}$ $= \sqrt{4(a+b+c)^2 - 12(ab+bc+ca)}$

$$= 2\sqrt{a^2 + b^2 + c^2 - ab - bc - ca}$$
$$= 2\sqrt{\frac{1}{2}\{(a-b)^2 - (b-c)^2 + (c-a)^2\}}$$

 ≥ 0

64. (c) Let the two equations be $x^2 + mx + 1 = 0$ and $x^2 + x + m = 0$.

Let given equations have common root α . Therefore ' α ' satisfies the both equations Then, $\alpha^2 + m\alpha + 1 = 0$ and $\alpha^2 + \alpha + m = 0$

$$\Rightarrow \frac{\alpha^2}{m^2 - 1} = \frac{\alpha}{1 - m} = \frac{1}{1 - m}$$

By equating 2nd and 3rd,

 $\frac{\alpha}{1-m} = \frac{1}{1-m} \Longrightarrow \alpha = 1$ Also, by equating 1st and 3rd $\frac{\alpha^2}{m^2 - 1} = \frac{1}{1 - m}$ $\Rightarrow 1 - m = m^2 - 1$ (:: $\alpha = 1$) $\Rightarrow m^2 + m - 2 = 0 \Rightarrow (m + 2)(m - 1) = 0$ $\Rightarrow m = 1 \text{ and } -2$ 65. (a) Given equation is (x-p)(x-6)+1=0 $\Rightarrow x^2 - 6x - px + 6p + 1 = 0$ $\Rightarrow x^2 - (p+6)x + (6p+1) = 0$ Now, $b^2 - 4ac = 0$ a = 1, b = -(p+6), c = 6p+1 $\Rightarrow (p+6)^2 - 4(6p+1) = 0$ $\Rightarrow p^2 + 36 + 12p - 24p - 4 = 0$ $\Rightarrow p^2 - 12p + 32 = 0$ $\Rightarrow (p-4)(p-8) = 0$ $\Rightarrow p = 4, 8$ Hence, p can have 4 or 8. (a) Given quadratic equation is $ax^2 + bx + c = 0$ whose 66.

one root is
$$\frac{1}{2-\sqrt{-2}}$$

Consider $\frac{1}{2-\sqrt{-2}} = \frac{1}{2-\sqrt{2}i} \times \frac{2+\sqrt{2}i}{2+\sqrt{2}i}$
 $= \frac{2+\sqrt{2}i}{4+2} = \frac{2+\sqrt{2}i}{6}$
 \therefore Another root will be $\frac{2-\sqrt{2}i}{6}$
(\because complex roots always occurs in pairs)
Thus, sum of roots $= \frac{2+\sqrt{2}i}{6} + \frac{2-2\sqrt{2}i}{6} = \frac{4}{6}$
and product of roots $= \left(\frac{2+\sqrt{2}i}{6}\right)\left(\frac{2-\sqrt{2}i}{6}\right)$
 $= \frac{4+2}{36} = \frac{1}{6}$
 \therefore Required equation is
 $x^2 - (\text{sum of roots}) x + (\text{product of roots}) = 0$
 $x^2 - \frac{4}{6}x + \frac{1}{6} = 0$
 $\Rightarrow 6x^2 - 4x + 1 = 0$
Thus, the values of *a*, *b*, *c* are 6, -4, 1 respectively

(c) Let α and β be the roots of the equation $x^2 - x + 1 = 0$. 67. $\therefore \alpha + \beta = -(-1) = 1$...(i) $\alpha\beta = 1$ Now, $\alpha - \beta = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$ $=\sqrt{(1)^2-4(1)}=\sqrt{-3}=\sqrt{3}i$...(ii) On solving (i), (ii) we get $\alpha = \frac{1+i\sqrt{3}}{2}$ and $\beta = \frac{1-i\sqrt{3}}{2}$ $\Rightarrow \alpha = \frac{1}{2} + i \cdot \frac{\sqrt{3}}{2} \text{ and } \beta = \frac{1}{2} - i \cdot \frac{\sqrt{3}}{2}$ $\Rightarrow \alpha = \cos{\frac{\pi}{2}} + i \sin{\frac{\pi}{2}}$ and $\beta = \cos{\frac{\pi}{2}} - i \sin{\frac{\pi}{2}}$ (a) $\alpha^4 - \beta^4 = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} - \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$ $=2i\sin\frac{4\pi}{3}$ (By Demoiver's thm) $\Rightarrow \alpha^4 - \beta^4$ is not real. (b) $2(\alpha^5 + \beta^5)$ $=2\left(\cos\frac{5\pi}{3}+i\sin\frac{5\pi}{3}+\cos\frac{5\pi}{3}-i\sin\frac{5\pi}{3}\right)$ $= 2.2 \cos \frac{5\pi}{2} = 4.\frac{1}{2} = 2$ Now, $(\alpha \beta)^5 = 1$ $\Rightarrow 2(\alpha^5 + \beta^5) \neq (\alpha \beta)^5$ (c) $\alpha^6 - \beta^6 = \cos\frac{6\pi}{3} + i \sin\frac{6\pi}{3} - \cos\frac{6\pi}{3} + i \sin\frac{6\pi}{3}$ $=2i \sin 2\pi = 0$ Hence, option (c) is correct. (b) If any equation has $p - \sqrt{q}$ as a root, then another 68. root will be $p + \sqrt{q}$. So, sum of roots $= p - \sqrt{q} + p + \sqrt{q} = 2p$ and product of roots $= (p - \sqrt{q})(p + \sqrt{q}) = p^2 - q$ Now, required equation is x^2 – (sum of roots) x + (product of roots) = 0 $\Rightarrow x^2 - 2px + (p^2 - q) = 0$ (a) The given quadratic equation is 69. $x^2 - 5x + k = 15 \implies x^2 - 5x + k - 15 = 0$ Let α and β be the roots of the equation $x^2 - 5x + k - 15 = 0$ Now, product of roots $= \alpha\beta = k - 15$ But $\alpha\beta = -3 \implies -3 = k - 15$ $\Rightarrow k = 15 - 3 = 12$

м-54

70. (b) Given quadratic equation is
$$x^2 - bx + 1 = 0$$

It has no real roots. It means, equation has imaginary
roots.
Which is possible when $B^2 - 4AC < 0$
Here, $B = -b$, $A = 1$, $C = 1$
 $\Rightarrow b^2 - 4 < 0 \Rightarrow b^2 < 4 \Rightarrow -2 < b < 2$
71. (a) Given quadratic equation is $x^2 - px + q = 0$
 \therefore p and q are the roots of $x^2 - px + q = 0$
 \therefore Sum of roots $= pq = q \Rightarrow p = p = q/q = 1$
 $\Rightarrow q(p-1) = 0 \Rightarrow p = 1, q = 0$
72. (d) Given equations are $x^2 + kx + 64 = 0$...(i)
and $x^2 - 8x + k = 0$...(ii)
Since both the eqns have real roots, discriminant ≥ 0
 $\Rightarrow b^2 \ge 4ac$
from eqⁿ(i), we have
 $k^2 \ge 4(64) \Rightarrow k^2 \ge 256$
 $\Rightarrow k \ge 16$...(A)
and from eqⁿ(ii), we have
 $k = 16$
73. (b) Since, the roots of the equation
 $(a^2 + b^2)x^2 - 2b(a + c)x + (b^2 + c^2) = 0$ are equal.
therefore, discriminant $= 0$
 $\Rightarrow [2b(a + c)]^2 - 4(a^2 + b^2)(b^2 + c^2) = 0$
 $\therefore 4b^2(a + c)^2 = 4(a^2 + b^2)(b^2 + c^2) = 0$
 $\therefore 4b^2(a + c)^2 = 4(a^2 + b^2)(b^2 + c^2) = 0$
 $\Rightarrow (b^2 - ac)^2 = 0 \Rightarrow b^2 = ac$
74. (b) Let α and β are the roots of $x^2 - 2x + 4 = 0$
 \therefore sum of roots $= a + \beta = 2$, product $= \alpha \beta = 4$
Now, $\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha \beta (\alpha + \beta) = 2^3 - 3 \times 4 \times 2$
 $= 8 - 24 - - 16$
75. (a) Given eqⁿ is $(x^2 + 2)^2 + 8x^2 = 6x(x^2 + 2)$
 $\Rightarrow x^4 + 4x^2 + 4 + 8x^2 = 6x^3 + 12x$
 $\Rightarrow x^4 - 6x^3 + 12x^2 - 12x + 4 = 0$
This can be factorised into $(x^2 - 4x + 2)(x^2 - 2x + 2) = 0$
 $\Rightarrow (x^2 + 2)^2 + 8x^2 = 6x(x^2 + 2)$
 $\Rightarrow x^4 + 4x^2 + 4 + 8x^2 = 6x^3 + 12x$
 $\Rightarrow x^4 - 6x^3 + 12x^2 - 12x + 4 = 0$
This can be factorised into $(x^2 - 4x + 2)(x^2 - 2x + 2) = 0$
Consider, $x^2 - 2x + 2 = 0$
 $Roots$ are $\frac{-(-2) \pm \sqrt{(-2)^2 - 4(2)(1)}{2(1)} = \frac{2 \pm \sqrt{4 - 8}}{2}$
 $= \frac{2 \pm \sqrt{-4}}{2} = \frac{2 \pm 2i}{2} = 1 \pm i$
Also, this equation is satisfied by $1 \pm i$. Hence, required

roots are $1 \pm i$.

Polynomial, Quadratic Equation & Inequalities

76. (d) Let
$$\alpha$$
 and β be the roots of the equation $x^2 + x + 1 = 0$ 81.
 $\therefore \alpha + \beta = -1$ and $\alpha \beta = 1$
 $\Rightarrow \alpha = 0$ and $\beta = 0^2$
 $(\because 0^3 = 1, 1 + 0 + 0^2 = 0)$
option a, b, c does not satisfies the eqn $x^2 - x + 1 = 0$
Hence, option (d) is correct.
77. (a) Consider, $x^4 - 25x^2 + 25 = 0$
 $\Rightarrow x^4 - 25x^2 - x^2 + 25 = 0$
 $\Rightarrow (x^2 - 25)(x^2 - 1) = 0$ 82.
 $\Rightarrow (x - 5)(x + 5)(x - 1)(x + 1) = 0$
 $\Rightarrow x = 5, -5, 1, -1$
 \therefore Solution set for given equation is $\{5, -5, -1, 1\}$ 83.
78. (c) Let α and β be the roots of the equation.
 $4x^2 + 3x + 7 = 0$
 \therefore Sum $= \alpha + \beta = -\frac{3}{4}$ and Product $= \alpha\beta = \frac{7}{4}$
Consider, $\alpha^{-2} + \beta^{-2} = \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{(\alpha\beta)^2}$ 84.
 $= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2} = \frac{\frac{9}{16} - \frac{7}{2}}{\frac{149}{16}}$ 85.
79. (c) The given equations are $x^2 + y^2 = 4$...(i)
and $x + y = 2$...(ii)
 $x^2 + (2 - x)^2 = 4$
 $\Rightarrow x^2 + 4 + x^2 - 4x = 4$
 $\Rightarrow 2x^2 + 4x = 4$
 $\Rightarrow 2x^2 = 4x$
 $\Rightarrow x = 2$
When $x = 2$ then $y = 2 - 2 = 0$
Similarly, $y^2 + (2 - y)^2 = 4$
 $\Rightarrow y = 2$ and $x = 0$
These equations are satisfied by only (2, 0) and (0, 2).
80. (d) The given equation is $x^2 - 2xy + p^2 - q^2 + 2qr - r^2 = 0$
Now, discriminant
 $= (-2p)^2 - 4(1)(p^2 - q^2 + 2qr - r^2) = 0$
Now, discriminant
 $= (-2p)^2 - 4(q - r)^2$
which is always greater than zero.
Therefore, the roots of given equation are rational.

(a) The given equation is

$$(2 - \sqrt{3})x^{2} - (7 - 4\sqrt{3})x + (2 + \sqrt{3}) = 0$$

$$\therefore \quad \text{Sum of roots} = \frac{(7 - 4\sqrt{3})}{2 - \sqrt{3}}$$

$$= \frac{(7 - 4\sqrt{3})(2 + \sqrt{3})}{(2 - \sqrt{3})(2 + \sqrt{3})} = \frac{14 + 7\sqrt{3} - 8\sqrt{3} - 12}{4 - 3}$$

$$= 2 - \sqrt{3}$$
(b) Since one root of $ax^{2} + bx + c = 0, a \neq 0$ is positive and another root is negative which is possible only if $a > 0$, $b < 0, c > 0$.
(b) Let the roots of the equation $ax^{2} + bx + c = 0$ be α and 2α .

$$\therefore \quad \text{Sum} = \alpha + 2\alpha = \frac{-b}{a} \text{ and product} = \alpha \cdot 2\alpha = \frac{c}{a}$$
$$\Rightarrow \alpha = \frac{-b}{3a} \text{ and } \alpha^2 = \frac{c}{2a}$$
$$\Rightarrow \left(\frac{-b}{3a}\right)^2 = \frac{c}{2a} \Rightarrow \frac{b^2}{9a^2} = \frac{c}{2a}$$
$$\Rightarrow 2b^2 = 9ac$$
Since and we are not product in integers therefore

44. (c) Since x and y are non-zero positive integers therefore

$$x = 1, 2, 3, \dots, \text{and } y = 1, 2, 3, \dots, \text{Now, given } x + y \le 4$$

 $\Rightarrow (x, y)$ can be
 $(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)$
Required number of ordered pairs = 6
55. (c) Since, 3 is the root of the equation $x^2 - 8x + k = 0$
 $\therefore 3$ satisfies the equation $x^2 - 8x + k = 0$
 $\therefore 9 - 24 + k = 0 \Rightarrow k = 15$
66. (d) Let the roots of the equation $x^2 + kx - b = 0$ be α and β .
 $\therefore \text{ Sum : } \alpha + \beta = -k \text{ and Product : } \alpha\beta = -b$
According to the question, we have
 $\alpha^2 + \beta^2 = 2b$
 $\Rightarrow (\alpha + \beta)^2 - 2\alpha\beta = 2b$
 $\Rightarrow k^2 + 2b = 2b \Rightarrow k = 0$
67. (a) Let the roots of $ax^2 + bx + c = 0, a \ne 0$ be α and $\frac{1}{-}$.

. (a) Let the roots of
$$ax^2 + bx + c = 0$$
, $a \neq 0$ be α and $\frac{1}{\alpha}$

$$\therefore \text{ Product of roots} = \alpha \cdot \frac{1}{\alpha} = \frac{c}{a}$$
$$\Rightarrow c = a$$

3. (d) Since, complex roots occur in pairs therefore other root is
$$2-5i$$
.

(c) Given equation is

$$(x-a)(x-b) = c, c \neq 0$$

$$\Rightarrow x^{2} - (a+b)x + ab - c = 0$$
Let α , β be the roots of this equation.

$$\therefore \alpha + \beta = a + b, \ \alpha\beta = ab - c$$
Consider $(x-\alpha)(x-\beta) + c = 0$

$$\Rightarrow x^{2} - (\alpha + \beta)x + \alpha\beta + c = 0$$
Roots of this equation is

$$x = \frac{(\alpha + \beta) \pm \sqrt{(\alpha + \beta)^{2} - 4(\alpha\beta + c)}}{2}$$

90.

91. (b)

NDA Topicwise Solved Papers - MATHEMATICS

$$= \frac{(a+b) \pm \sqrt{(a+b)^2 - 4(ab - c + c)}}{2}$$

$$= \frac{(a+b) \pm \sqrt{a^2 + b^2 - 2ab}}{2}$$

$$= \frac{(a+b) \pm \sqrt{(a-b)^2}}{2} = \frac{(a+b) \pm (a-b)}{2}$$

$$= \frac{a+b+a-b}{2}, \frac{a+b-a+b}{2} = a, b.$$
Hence, roots of the equation
$$(x-\alpha)(x-\beta) + c = 0 \text{ are } a \text{ and } b.$$
(c) Given equations are $x^2 - px + q = 0$...(1)
and $x^2 - ax + b = 0$...(2)
Root of second equation is
$$x = \frac{a \pm \sqrt{a^2 - 4b}}{2}$$
Since, Roots of second equation are equal discriminant
$$= 0$$

$$\therefore \sqrt{a^2 - 4b} = 0 \implies a^2 = 4b$$
(3)

$$\therefore \sqrt{a^2 - 4b} = 0 \Rightarrow a^2 = 4b \qquad \dots(3)$$
$$\therefore x = \frac{a}{2}$$

Since, Equations (1) and (2) have common roots.

$$\therefore x = \frac{a}{2} \text{ is the root of equation (1) also.}$$

Thus, $x = \frac{a}{2}$ satisfies (1)

$$\Rightarrow \left(\frac{a}{2}\right)^2 - p\left(\frac{a}{2}\right) + q = 0$$

$$\Rightarrow \frac{a^2}{4} = \frac{pa}{2} - q \Rightarrow 2b = pa - 2q \qquad \text{(from (3))}$$

$$\Rightarrow ap = 2(b+q)$$

Given Equation is $x^2 + x + 1 = 0$

$$\Rightarrow x = \frac{-1 \pm \sqrt{3}i}{2}$$

Thus, roots are
$$\omega$$
 and ω^2
 $\therefore \alpha = \omega$ and $\beta = \omega^2$
So, $\alpha^{19} = (\omega)^{19} = (\omega^3)^6$. $\omega = \omega$ ($\because \omega^3 = 1$)
and $\beta^7 = (\omega^2)^7 = \omega^{14} = (\omega^3)^4$. $\omega^2 = \omega^2$
Now, $\alpha^{19} + \beta^7 = \omega + \omega^2 = -1$ ($\because 1 + \omega + \omega^2 = 0$)
and (α^{19}) (β^7) = (ω) (ω^2) = 1
 \therefore Required Quadratic equation whose roots are α^{19}
and β^7 is
 $x^2 + (\alpha^{19} + \beta^7)x + (\alpha^{19})(\beta^7) = 0$
 $\Rightarrow x^2 + (-1)x + 1 = 0$
 $\Rightarrow x^2 - x + 1 = 0$

92. (d) Let
$$y = \sqrt{8+2y}$$

 $\Rightarrow y^2 = 8+2y \Rightarrow y^2 - 2y - 8 = 0$
 $\Rightarrow (y+2)(y-4) = 0$
 $\Rightarrow y = 4, -2$
Hence, required value of given expression is 4.
93. (c) Given equation is
 $\sin \theta = x + \frac{a}{2} + x \in B$ (0)

93.

$$\sin\theta = x + \frac{a}{x}, x \in R - \{0\}$$

$$\Rightarrow x^{2} + a = x \sin \theta$$

$$\Rightarrow x^{2} - x \sin \theta + a = 0$$

Now, discriminant = $\sqrt{\sin^{2} \theta - 4a}$
For x to be real root,
discriminant ≥ 0

$$\Rightarrow \sqrt{\sin^{2} \theta - 4a} \ge 0$$

$$\Rightarrow \sin^{2} \theta - 4a \ge 0 \Rightarrow \sin^{2} \theta \ge 4a$$

$$\Rightarrow \frac{1}{\sin^{2} \theta} \le \frac{1}{4a} \Rightarrow a \le \frac{\sin^{2} \theta}{4}$$

$$\Rightarrow a \le \frac{1}{4} \quad (\because \sin^{2} \theta \text{ lies between 0 and 1})$$

94. (c) Given equation is
 $\tan^{4} x - 2\sec^{2} x + a^{2} = 0$

$$\tan^{4}x - 2\sec^{2}x + a^{2} = 0$$

$$\Rightarrow (\tan^{2}x)^{2} - 2[1 + \tan^{2}x] + a^{2} = 0$$

$$\Rightarrow (\tan^{2}x)^{2} - 2\tan^{2}x + a^{2} - 2 = 0$$

This is the quadratic equation in tan x.
So, roots of this will be real when discriminant ≥ 0
i.e., $b^{2} - 4ac \ge 0$

$$\Rightarrow (-2)^{2} - 4(1)(a^{2} - 2) \ge 0 \Rightarrow 4 - 4a^{2} + 8 \ge 0$$

$$\Rightarrow 12 - 4a^{2} \ge 0 \Rightarrow 4(3 - a^{2}) \ge 0$$

$$\Rightarrow 3 - a^{2} \ge 0$$
 ($\because 4 \ne 0$)

$$\Rightarrow a^{2} \le 3$$

$$\Rightarrow a \le \pm \sqrt{3} \Rightarrow |a| \le \sqrt{3}$$

95. (d) Given equation is

$$x^{2} - 4x - \log_{3} N = 0$$
Since, roots are real

$$\therefore b^{2} - 4ac = 0 \Rightarrow (4)^{2} - 4 (-\log_{3} N) \ge 0$$

$$\Rightarrow 16 \ge -4 \log_{3} N$$

$$\Rightarrow 4 \ge -\log_{3} N$$

$$\Rightarrow 4 \ge \log_{3} N^{-1}$$

$$\Rightarrow N^{-1} \ge 3^{4} \ge 81$$

$$\Rightarrow N \ge \frac{1}{81}$$

Hence, minimum value of N is $\frac{1}{81}$.

Polynomial, Quadratic Equation & Inequalities

96. (c) Given equation is

$$a (b-c)x^{2} + b(c-a)x + c(a-b) = 0$$
Let α be the second root.
So, $(\alpha)(1) = \frac{c(a-b)}{a(b-c)}$
Hence, $\alpha = second root = \frac{c(a-b)}{a(b-c)}$
97. (a) Given equation is $2(y+2)^{2} - 5(y+2) = 12$
Let $y+2=a$
So, quadratic equation can be rewritten as
 $2a^{2} - 5a - 12 = 0$
 $\Rightarrow 2a^{2} - 8a + 3a - 12 = 0$
 $\Rightarrow 2a(a-4) + 3(a-4) = 0$
 $\Rightarrow 2a + 3 = 0$ or $a - 4 = 0$
 $\Rightarrow a = \frac{-3}{2}$ or $y + 2 = 4$
 $\Rightarrow y + 2 = \frac{-3}{2}$ or $y + 2 = 4$
 $\Rightarrow y = \frac{-7}{2}$ or 2 (Required roots)
98. (d) Given quadratic equation is
 $3x^{2} - 5x + q = 0$
Since, roots of this equation are equal therefore
 $b^{2} - 4ac = 0$
 $\Rightarrow (-5)^{2} - 4(3)(q) = 0$
 $\Rightarrow 25 - 12q = 0$
 $\Rightarrow q = \frac{25}{12}$
99. (a) Let α and β be the roots of $ax^{2} + bx + c = 0$
 $\alpha + \beta = -b/a$
 $\alpha\beta = c/a$
Given
 $a - \beta = 1$
Consider $(\alpha + \beta)^{2} - (\alpha - \beta)^{2} = 4\alpha\beta$
 $\frac{b^{2}}{a^{2}} - 1 = \frac{4c}{a}$
 $b^{2} - a^{2} = 4ac$
 $b^{2} = a(a + 4c)$
100. (a) Since 1 is the root of given equation
 \therefore it satisfies the equation.
 \therefore (1)² + (1) - 6 = 0
 $\Rightarrow a - 6 = -1$
101. (a) Given equation is $x^{2} - q(1 + x) - r = 0$
 $\Rightarrow x^{2} - qx + (-q - r) = 0$
Now, $\alpha + \beta = q$

 $\alpha\beta = -q - r$ Consider $(1 + \alpha)(1 + \beta)$ $= 1 + \alpha + \beta + \alpha\beta = 1 + q - q - r = 1 - r.$ 102. (a) Let α , β be roots of equation $ax^2 + bx + c$ $\therefore \alpha + \beta = -b/a, \alpha\beta = c/a$ So, 2α and 2β are roots of equation $x^2 + 36x + 24$ Now, $2\alpha + 2\beta = -36$ $\Rightarrow \alpha + \beta = -18 \Rightarrow -\frac{b}{a} = -18 \Rightarrow b = 18a$ and $(2\alpha)(2\beta)=24$ $\Rightarrow \alpha\beta = 6 \Rightarrow \frac{c}{a} = 6 \Rightarrow c = 6a$ \therefore b: c = 3 : 1 103. (d) b = 18a, c = 6a: $bc = (18a)(6a) = 108 a^2$ 104. (d) Let α , β be the roots of given equation then $\alpha + \beta = -2$ and $\alpha\beta = -143$ Consider $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $=(-2)^2 - 2(-143) = 4 + 286 = 290$ 105. (a) Given equations are $2x + y = 6 \Longrightarrow 2x = 6 - y$...(1) and 3y = 8 + 2(2x) \Rightarrow 3y = 8 + 2(6 - y) (from(1)) \Rightarrow 3y = 8 + 12 - 2y \Rightarrow y = 4 and x = 1 Now, equation given in option (a) is satisfied by x = 1and y = 4106. (c) Let $\alpha = m + n, \beta = m - n$ Now, $\alpha + \beta = m + n + m - n = 2m$ $\alpha \times \beta = (m+n)(m-n) = m^2 - n^2$. Now, Required Quadratic Equation will be, $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ $x^2 - 2mx + m^2 - n^2 = 0$ 107. (c) Since, $\alpha \& \beta$ are the roots of $x^2 + px - q = 0$, then, $\alpha + \beta = -p$(1) and $\alpha \beta = -q$(2) put the value of α from (2) in (1) $-\frac{q}{\beta}\!+\!\beta=\!-p\!\Longrightarrow\!-q\!+\!\beta^2=\!-p\,\beta$ $\Rightarrow \quad \beta^2 = q - p \ \beta \qquad(3) \\ \text{Since } \gamma \ \& \ \delta \text{ are the roots of } x^2 - px + r = 0, \text{ then,} \\ \end{cases}$ $\Rightarrow \beta^2 = q - p \beta$ $\gamma + \delta = p, \gamma \delta = r$ Now, $(\beta + \gamma)(\beta + \delta) = \beta^2 + \beta\delta + \beta\gamma + \gamma\delta$. $=\beta^2 + \beta[\gamma + \delta] + \gamma \delta = q - p\beta + p\beta + r = q - r$ 108. (b) The given equation is, $3x^2 - 5x + p = 0$ We have, a = 3, b = -5, c = p $D = b^2 - 4ac = 25 - 12 p$ For Real and unequal, D > 0 $\therefore 25 - 12 p > 0$ $\Rightarrow 25 > 12 \text{ p} \Rightarrow \text{p} < \frac{25}{12}$

109. (a) Given equation is.

$$4^{x}-6.2^{x}+8=0$$

$$\Rightarrow (2^{x})^{2}-6.2^{x}+8=0$$
Put $2^{x} = y$, we have

$$y^{2}-6y+8=0$$

$$\Rightarrow (y-4) (y-2)=0$$

$$\Rightarrow y=2,4$$
So, $2^{x}=2 \Rightarrow x=1$
and $2^{x}=2^{2} \Rightarrow x=2$
110. (d) Quadratic equation is given by

$$x^{2}-(\text{sum of roots}) x + (\text{product of roots})=0$$

$$\therefore \text{ Required equation is } x^{2}-x(\alpha^{2}+\beta^{2})+(\alpha\beta)^{2}=0$$

$$\Rightarrow x^{2}-x[(\alpha+\beta)^{2}-2\alpha\beta] + (\alpha\beta)^{2}=0$$

$$\Rightarrow x^{2}-x\left(\frac{b^{2}}{a^{2}}-\frac{2c}{a}\right)+\frac{c^{2}}{a^{2}}=0$$

$$\Rightarrow a^{2}x^{2}-x(b^{2}-2ac)+c^{2}=0$$
111. (d) Let roots of equation be 2α and 3α .

$$2\alpha+3\alpha=-\frac{2b}{3a}$$

$$\Rightarrow \alpha=\frac{-2b}{15a}$$
...(i)

$$2\alpha \cdot 3\alpha = \frac{c}{3a} \Rightarrow \alpha^2 = \frac{c}{18a}$$
 ...(ii)

Now, put value of α in equation (ii)

$$\therefore \quad \left(\frac{-2b}{15a}\right)^2 = \frac{c}{18a} \Rightarrow \frac{4b^2}{225a^2} = \frac{c}{18a}$$
$$\Rightarrow \quad 8b^2 = 25ac$$

112. (b) Quadratic equation can be given as $x^2 - (sum of roots) x + (product of roots) = 0$ Hence, Required quadratic equation is $x^2 - 3x + 2 = 0$

113. (a) Consider
$$\alpha^{-1} + \beta^{-1} = \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta}$$

Equation is $x^2 + bx + c = 0$
Now, sum of roots $= \alpha + \beta = -b$
and product of roots $= \alpha \cdot \beta = c$

$$\therefore \quad \frac{\alpha+\beta}{\alpha\beta} = -\frac{b}{c}$$

Hence,
$$\alpha^{-1} + \beta^{-1} = -\frac{b}{c}$$

114. (c) Let width of the rectangle = xso, length = 2x + 5Given, Area of rectangle = 75 \Rightarrow x(2x+5)=75 \Rightarrow 2x²+5x-75=0 $\Rightarrow 2x^2 + 15x - 10x - 75 = 0$ \Rightarrow (x-5)(2x+15)=0 $\implies \quad x=5, \ -\frac{15}{2}$ Since, width can not be negative.

 \therefore length = 2x + 5 = 15 unit.

115. (b)
$$(x+1)^2 - 1 = 0 \Rightarrow x+1 = \pm 1$$

 $\Rightarrow x+1 = 1 \text{ or } x+1 = -1$
 $\Rightarrow x=0 \text{ or } x = -2$
Thus, $x = 0, -2$ two real roots.
116. (d) $7 + 4\sqrt{3} = (\sqrt{4})^2 + (\sqrt{3})^2 + 2\sqrt{4} \times \sqrt{3}$
 $= (\sqrt{4} + \sqrt{3})^2$
 $\sqrt{7+4\sqrt{3}} = 2 + \sqrt{3}$
117. (c) Here, α and β are the roots of the equation
 $x^2 + x + 2 = 0$
 $\alpha + \beta = -1$

$$\begin{aligned} \alpha + \beta &= -1 \\ \alpha \beta &= 2 \end{aligned}$$
$$\frac{\alpha^{10} + \beta^{10}}{\alpha^{-10} + \beta^{-10}} = \frac{\alpha^{10} + \beta^{10}}{\frac{1}{\alpha^{10}} + \frac{1}{\beta^{10}}} \\ &= \frac{(\alpha^{10} + \beta^{10})(\alpha\beta)^{10}}{(\alpha^{10} + \beta^{10})} = (\alpha\beta)^{10} \end{aligned}$$

118. (a) Since b is not a perfect square, therefore other root will
be
$$3a - \sqrt{b}$$

Required quadratic equation is
 $x^2 - [(3a + \sqrt{b}) + (3a - \sqrt{b})]x + (3a + \sqrt{b})(3a - \sqrt{b}) = 0$
 $\Rightarrow x^2 - 6ax + 9a^2 - b = 0$
119. (d) $f(x) = \begin{cases} x^2 + 3x + 2 = 0, \text{ for } x \ge 0 \\ x^2 - 3x + 2 = 0, \text{ for } x < 0 \end{cases}$
for $x \ge 0$
 $x^2 + 3x + 2 = 0$
 $x = \frac{-3 \pm \sqrt{9 - 8}}{2} = \frac{-3 \pm 1}{2}$
 $x = -2, -1$
for $x < 0$
 $x^2 - 3x + 2 = 0$
 $x = \frac{3 \pm \sqrt{9 - 8}}{2} = \frac{3 \pm 1}{2}$
 $x = 2, 1$
Since x as negative, therefore $x \ne 2, 1$
Hence the given equation has no real roots

120. (b) α and β are the roots of the given equation, then

$$\alpha + \beta = -\frac{b}{a} \text{ and } \alpha\beta = \frac{b}{a}$$
$$\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{b}{a}}$$
$$= \frac{\alpha + \beta}{\sqrt{\alpha\beta}} + \sqrt{\alpha\beta}$$
$$= \frac{\alpha + \beta + \alpha\beta}{\sqrt{\alpha\beta}} = \frac{-\frac{b}{a} + \frac{b}{a}}{\sqrt{\frac{b}{a}}} = 0$$

1

1

Polynomial, Quadratic Equation & Inequalities

121. (c) Discriminant,
$$D = (-8)^2 - 4 \times 16 = 0$$

 \therefore Roots are real and equal.
122. (d) $x^2 - 10x + 9 = 0$
 $x(x - 1) - 9(x - 1) = 0$
 $(x - 1)(x - 9) = 0$
 $x = 1, 9$
Difference in roots $= 9 - 1 = 8$
123. (a) $8x - 9y = 20$ or $80x - 90y = 200$...(1)
 $7x - 10y = 9$ or $63x - 90y = 200$...(2)
Subtracting (2) from (1), we get
 $17x = 119$
 $x = 7$
 $8 \times 7 - 9y = 20$
 $9y = 36$
 $y = 4$
 $2x - y = 2 \times 7 - 4 = 10$
124. (d) If root are real
 $b^2 - 4 \times 4 \ge 0$
 $b^2 \ge 16$
 $b \le -4, b \ge 4$
125. (c) Given equation $ax^2 + bx + c = 0$ (where $a \ne 0$)
 α and β are roots of given equation.
 $(a\alpha + b) (a\beta + b) = a^2\alpha\beta + ab\alpha + ab\beta + b^2$
 $= a^2\alpha\beta + ab(\alpha + \beta) + b^2$
From the given quadratic equation
 $\alpha + \beta = \frac{-b}{a}, \alpha\beta = \frac{c}{a}$
 $a^2 \times \frac{c}{a} + ab \times -\frac{b}{a} + b^2 = ac$
126. (c) We have, $2a^2x^2 - 2abx + b^2 = 0$
Discriminent, $D = (-2ab)^2 - 4(2a^2)(b^2)$
 $= 4a^2b^2 - 8a^2b^2 = -4a^2b^2 < 0$
Roots are always complex.
127. (d) Every quadratic equation
 $ax^2 + bx + c = 0$, where $a, b, c \in R, a \ne 0$
has at most two real roots.
128. (a) $\because \alpha + \beta = -\frac{b}{a}$ and $\alpha\beta = \frac{c}{a}$
 $Also, $\alpha + h + \beta + h = -\frac{q}{p}$
 $\Rightarrow \alpha + \beta + 2h = -\frac{q}{p}$
 $\Rightarrow 2h = -\frac{q}{p} + \frac{b}{a}$
 $\left(\because \alpha + \beta = -\frac{b}{a}\right)$$

 $\Rightarrow h = \frac{1}{2} \left[\frac{b}{a} - \frac{q}{p} \right]$

129. (b)
$$(x^2+2)^2+8x^2=6x(x^2+2)$$

Let $x^2+2=y$
 $y^2+8x^2=6xy$
 $y^2-6xy+8x^2=0$
 $y = \frac{6x \pm \sqrt{36x^2 - 32x^2}}{2}$
 $y = \frac{6x \pm 2x}{2} = 3x \pm x$
 $y=4x, 2x$
At $y=4x$,
 $x^2+2=4x$
 $x^2-4x+2=0$
Discriminant, $D=16-8=8>0$
Roots are real.
Sum of roots = -(-4) = 4
At $x=2x$,
 $x^2+2=2x$
 $x^2-2x+2=0$
 $D=4-8=-4<0$
Roots are complex.
Sum of roots = 2
Sum of all roots = 4 + 2 = 6
only statement 2 is correct.
 \therefore Correct option is (b)
130. (a) Let correct equation is $ax^2 + bx + c = 0$
According to first student, equation is:
 $ax^2 + bx + c_1 = 0$ and roots are 8 and 2
 $8+2=\frac{-b}{a} \Rightarrow \frac{b}{a} = -10$
Quadratic equation according to second
 $ax^2 + b_1 x + c = 0$ and roots are -9 and -1
 $(-9) \times (-1) = \frac{c}{a} \Rightarrow \frac{c}{a} = 9$

Putting value in original equation

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$$

 $x^{2} - 10x + 9 = 0.$

130.

131. (c) Here m and n are the roots of equation. (x+p)(x+q)-k=0 $x^{2} + x(p+q) + pq - k = 0$...(i) If m and n are the roots of equation, then (x-m)(x-n)=0 $\therefore x^2 - (m+n)x + mn = 0$...(ii) Now equation (i) should be equal to equation (ii), (m+n) = -(p+q) and mn = pq-kNow, we have to find roots of (x-m)(x-n)+k=0 $x^{2}-(m+n)x+mn+k=0$ $x^{2}+(p+q)x+(pq-k)+k=0$ $x^{2} + (p+q)x + pq = 0$ $x^2 + px + qx + pq = 0$ x(x+p)+q(x+p)=0 \therefore x+q=0 or x+p=0 \therefore x = -q and x = -p \therefore Option (c) is correct.

student

136. (b) $x^2 - px + 4 > 0 \forall real values of x.$

If $b^2 - 4ac \le 0$

132. (c)
$$4p^2 + 4pq - 3q^2 - 36 = 0$$

⇒ $(4p^2 + 4pq + q^2) - 4q^2 - 36 = 0$
 $(2p + q)^2 = 4q^2 + 36$
 $2p + 3q = 18$
 $p = \frac{18 - 3q}{2}$
⇒ $\left[\frac{18 - 3q}{2} \times 2 + q\right]^2 = 4q^2 + 36$
⇒ $(18 - 3q + q)^2$
⇒ $(18 - 2q)^2 = 4q^2 + 36$
⇒ $324 + 4q^2 - 72q = 4q^2 + 36$
 $72q = 324 - 36 = 288$
 $q = \frac{288}{72} = 4$
Putting the value of q in 2p + 3q = 18
 $2p + 3 \times 4 = 18$
 $2p = 18 - 12$
 $p = \frac{6}{2} = 3$
 $(2p + q) = 2 \times 3 + 4 = 10$
∴ Option (c) is correct.
133. (a) $x^2 - 3|x| + 2 = 0$
Case (i) when $x \ge 0$
 $x^2 - 3x + 2 = 0$
 $(x - 1)(x - 2) = 0$
 $x = 1, 2(both roots satisfy the condition $x \ge 0)$
Case (ii) when $x < 0$
 $x^2 + 3x + 2 = 0$
 $(x + 1)(x + 2) = 0$
 $x = -1, -2 (both roots satisfy the condition $x < 0$)
So no. of real roots is 4.
134. (c) $ax^2 + bx + c = 0$
Let the root be α and β .
 $\alpha + \beta = -\frac{b}{a}, \alpha \beta = \frac{c}{a}$
⇒ $\alpha + \beta = (\alpha + \beta)^2 - 2\alpha\beta$
 $\Rightarrow -\frac{b}{a} = (-\frac{b}{a})^2 - \frac{2c}{a}$
135. (a) Let the root be α and β
 $\therefore x^2 - nx + m = 0$
 $\Rightarrow \alpha + \beta = n; \alpha \beta = m$$$

 $\Rightarrow \alpha - \beta = 1$

 \Rightarrow n² = 1 + 4m

 \Rightarrow n²-4m-1=0

 $\Rightarrow (\alpha + \beta)^2 = (\alpha - \beta)^2 + 4\alpha\beta$

< 0)

 $\Rightarrow p^2 - 4(1)(4) \le 0$ $\Rightarrow p^2 \le 16 \Rightarrow |p| \le 4$ $f(x) = \frac{27}{4}(x^{2/3} - x)$ Sol. (137-138): $=\frac{27}{4}((x^2)^{1/3}-x)$ 137. (b) For f(x) = 1 $\frac{27}{4}((x^2)^{1/3} - x) = 1$ $(x^{1/3})^2 - x = \frac{4}{27}$ Put $x^{1/3} = y$ $x = y^3$ $y^2 - y^3 = \frac{4}{27}$ $\Rightarrow y^3 - y^2 + \frac{4}{27} = 0$ $\Rightarrow 27y^3 - 27y^2 + 4 = 0$ This is a cubic equation.

If we put $y = -\frac{1}{3}$ then (3y + 1) = 0 is a factor of cubic equation.

$$3y+1) 27y^{3} - 27y^{2} + 4 (9y^{2} - 12y + 4)$$

$$27y^{3} + 9y^{2}$$

$$-36y^{2} + 4$$

$$-36y^{2} + 12y$$

$$12y + 4$$

$$12y + 4$$

$$(3y+1)(9y^{2} - 12y + 4) = 0$$

$$(3y+1)(3y-2)^{2} = 0$$
Hence $y = -\frac{1}{3}, \frac{2}{3}$

Thus f(x) = 1 has two solutions.

138. (a) Similarly for f(x) = -1 we will get $27y^3 - 27y^2 - 4 = 0$ and after solving it we will find that it has one real solution. $y_0 = 1.1184$,

$$x = (y_0)^3 = (1.1184)^3 = 1.4$$

Polynomial, Quadratic Equation & Inequalities

139. (c) Given quadratic equation,

$$x^{2} + bx + c = 0$$
 and roots are α and β where $\alpha < \beta$.
Hence roots of given quadratic equation are
 $\beta = \frac{-b + \sqrt{b^{2} - 4c}}{2}$
 $\alpha = \frac{-b - \sqrt{b^{2} - 4c}}{2}$ and $|\alpha| = \frac{b + \sqrt{b^{2} - 4c}}{2}$
 $\therefore \beta < -\alpha$ and $\beta < |\alpha|$ both are correct.
140. (b) Sum of roots = $\alpha + \beta = -b$
Multiplication of roots = $\alpha\beta = c$
Hence
 $\alpha + \beta + \alpha\beta = -b + c$ $\alpha^{2}\beta + \beta^{2} = \alpha\beta(\alpha + \beta)$
 $\therefore b > 0 \& c < 0$
 $\therefore -b + c < 0 \& -bc > 0$
141. (b) Given equation is
 $(\ell - m)x^{2} + \ell x + 1 = 0$
Roots are α, β .
 \therefore One root is double the other.
 $\beta = 2\alpha$
Sum of roots = $\alpha + \beta$
 $3\alpha = \frac{-\ell}{\ell - m}$ $\alpha(2\alpha) = \frac{1}{(\ell - m)}$
 $\Rightarrow \alpha^{2} = \frac{\ell^{2}}{9(\ell - m)^{2}}$ $2\alpha^{2} = \frac{1}{\ell - m}$
 $\Rightarrow 2\frac{\ell^{2}}{9(\ell - m)^{2}} = \frac{1}{(\ell - m)}$
 $\Rightarrow 2\ell^{2} = 9(\ell - m) \Rightarrow 2\ell^{2} - 9\ell + 9m = 0$
For ℓ to be real discriminant should be $b^{2} - 4ac \ge 0$
 $81 - 4 \times 2 \times 9m \ge 0$
 $m \le \frac{9}{8}$.
142. (a) Let f(x) = ax^{2} - bx + c
f(2) = 4a - 2b + c < 0 (given)
f(0) = c > 0 (given)
So, we can see that sign of f(x) changes, when x
changes from 0 to 2, so it has a root in the interval
 $(0, 2)$.
143. (d) $x^{2} - 2k + k^{2} - 4 = 0$
 $\Rightarrow (x - k)^{2} - 2^{2} = 0$
 $\Rightarrow x = k + 2, k - 2.$
 $\Rightarrow k < 3 \& k > -1$
 $\Rightarrow -1 < k < 3$

144. (d) Using
$$ax^2 + bx + c = 0$$

 $a = 1, b = -(1 - 2a^2) \& c = (1 - 2a^2)$
For roots to be real,
 $b^2 - 4ac \ge 0$
 $\Rightarrow [-(1 - 2a^2)]^2 - 4(1)(1 - 2a^2) \ge 0$
 $\Rightarrow 4a^4 + 4a^2 - 3 \ge 0$
 $\Rightarrow (2a^2 - 1)(2a^2 + 3) \ge 0$
 $\Rightarrow a^2 \ge \frac{1}{2} \text{ or } a^2 \le -\frac{3}{2}$
145. (a) $\frac{1}{\alpha^2} + \frac{1}{\beta^2} < 1 \Rightarrow \frac{\alpha^2 + \beta^2}{(\alpha\beta)^2} < 1$
 $\Rightarrow \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2} < 1$
 $\alpha + \beta = \frac{-b}{a} = (1 - 2a^2) \& \alpha\beta = \frac{c}{a} = (1 - 2a^2)$
On solving: $\frac{4a^4 - 1}{4a^4 - 4a^2 + 1}$
 $4a^2 < 2 \Rightarrow a^2 < \frac{1}{2}$
146. (c) $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}} < 2 - \frac{1}{1000}$
LHS of given inequality is in G.P.
 $\therefore \frac{1 - \frac{1}{2^{n-1}}}{1 - \frac{1}{2}} < 2 - \frac{1}{1000}$
 $\Rightarrow 2^{-1} < 1000$
Now, $(2)^9 = 512 \& (2)^{10} = 1024$
 $\therefore n - 1 = 9$
 $\Rightarrow n = 10.$
147. (c) $2x^2 + 3x - \alpha = 0$
Its roots are: $-2 \& \beta.$
i.e., $\frac{-3}{2} = \beta - 2 \Rightarrow \beta = 2 - \frac{3}{2} = \frac{1}{2} \Rightarrow \beta = \frac{1}{2}$
 $\frac{\alpha}{2} = 2\beta \Rightarrow \alpha = 4 \times \frac{1}{2} \Rightarrow \alpha = 2$
148. (a) $\beta = \frac{1}{2}$
 $\beta, 2, 2m$ are in GP.
 $\Rightarrow \frac{2}{\beta} = \frac{2m}{2}$
 $\Rightarrow m = 4$
 $\Rightarrow \beta\sqrt{m} = \frac{1}{2} \times \sqrt{4} = 1$

Let the second root be α .

$$\therefore (1)(\alpha) = \frac{p-q}{q-r} \Longrightarrow \alpha = \frac{p-q}{q-r}.$$

155. (b)
$$\alpha, \beta$$
 are roots of the equation $1 + x + x^2 = 0$.
 $1 + x + x^2 = 0 \Longrightarrow x^2 + x + 1 = 0$

Solving for x,
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{l^2 - 4(l)(l)}}{2(l)}$$

$$= \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm \sqrt{3i}}{2}$$

$$\therefore \text{ roots are } \frac{-1 \pm \sqrt{3i}}{2} \text{ and } \frac{-1 - \sqrt{3i}}{2}$$
i.e., $\alpha = \omega, \beta = \omega^2$

$$\begin{bmatrix} 1 & \beta \\ \alpha & \alpha \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ 1 & \beta \end{bmatrix} = \begin{bmatrix} \alpha + \beta & \beta + \beta^2 \\ \alpha^2 + \alpha & \alpha\beta + \alpha\beta \end{bmatrix}$$

$$= \begin{bmatrix} \omega + \omega^2 & \omega^2 + \omega^4 \\ \omega^2 + \omega & \omega^3 + \omega^3 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & \omega^2 + \omega \\ -1 & 2\omega^3 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix}$$
d) All the given three options are correct.

156. (d) All the given three options are correct.
157. (d)
$$|x-3|^2+|x-3|-2=0$$

Let $|x-3|=t$
 $\therefore t^2+t-2=0 \Rightarrow t^2+2t-t-2=0$
 $\Rightarrow t(t+2)-1(t+2)=0$
 $\Rightarrow t(t+2)(t-1)=0$
 $\Rightarrow t=-2 \text{ or } t=1$
Since t is modulus of a number, it cannot be negative.
 $\therefore t=1 \Rightarrow |x-3|=1 \Rightarrow x-3=1 \text{ or } x-3=-1$
 $\Rightarrow x=4 \text{ or } 2$
Sum of roots $= 4+2=6$.
158. (c) $x^2-4x-\log_3 P=0$
We know, roots are real if discriminant is greater than
or equal to 0.
i.e., $b^2-4ac \ge 0 \Rightarrow b^2 \ge 4ac$
In the given equation, $a=1, b=-4, c=-\log_3 P$.
 $\therefore b^2 \ge 4ac \Rightarrow (-4)^2 \ge 4(1) (-\log_3 P)$
 $\Rightarrow 16 \ge -4\log_3 P$
 $\Rightarrow 4 \ge \log_3 \left(\frac{1}{P}\right)$ $\left(\because \sin \theta - \log a = \log \frac{1}{a}\right)$
 $\Rightarrow 3^4 \ge \frac{1}{P}$
 $\Rightarrow 81 \ge \frac{1}{P} \Rightarrow P \ge \frac{1}{81}$.

 \therefore The minimum value of P is $\frac{1}{81}$.

149. (c)
$$|x+y|=2 \Rightarrow x+y=\pm 2$$

 $\Rightarrow x+y+2=0 \text{ and } x+y-2=0$
 $\Rightarrow -2<2a<0 \text{ and } -1
 $\Rightarrow |a|<1$
150. (a) Let a, b be the roots of $x^2+p/x^2+q=0$$

So, $a + b = -p/x^2$, ab = q...(i) Let c, d be the roots of $x^2 + lx + m = 0$ So, c + d = -1, cd = m...(ii) Given that roots of both the equations are in the Same ratio.

So,
$$\frac{a}{b} = \frac{c}{d}$$
 ...(iii)

$$\Rightarrow \frac{b}{a} = \frac{d}{c} \qquad \dots (iv)$$

а

$$(iii) + (iv) \Rightarrow \frac{a}{b} + \frac{b}{a} = \frac{c}{d} + \frac{d}{c}$$
$$\Rightarrow \frac{a^2 + b^2}{ab} = \frac{c^2 + d^2}{cd} \Rightarrow \frac{a^2 + b^2}{ab} + 2 = \frac{c^2 + d^2}{cd} + 2$$
$$\Rightarrow \frac{a^2 + b^2 + 2ab}{ab} = \frac{c^2 + d^2 + 2cd}{cd}$$
$$\Rightarrow \frac{(a+b)^2}{ab} = \frac{(c+d)^2}{cd}$$
$$\Rightarrow \frac{(-P)^2}{q} = \frac{(-1)^2}{m} \qquad (\text{from (i) and (ii)})$$

 $\Rightarrow P^2m = l^2q.$

- 151. (c) $(1+\omega)(1+\omega^2)(1+\omega^3)(1+\omega+\omega^2)$ We know, $(1 + \omega + \omega^2) = 0$. So, $(1 + \omega)(1 + \omega^2)(1 + \omega^3)(0) = 0$.
- 152. (c) Since the graph is not meeting the x axis at all, roots are Complex numbers.
- 153. (b) Given equation, $x^2 + bx + c = 0$ Roots are $\cot \alpha$, $\cot \beta$. Sum of roots = $\cot \alpha + \cot \beta = -b$ Product of roots = $\cot \alpha$. $\cot \beta$ = c

$$\cot(\alpha + \beta) \quad \frac{\cot\alpha \cdot \cot\beta - 1}{\cot\beta + \cot\alpha} = \frac{c - 1}{-b} = \frac{1 - c}{b}$$

154. (b) Given equation, $(q-r)x^2 + (r-p)x + (p-q) = 0$ On observing the equation, it is clear that 1 is root of equation. If x = 1, then q - r + r - p + p - q = 0. \therefore 1 is one root of given equation. Since, the given equation is quadratic equation, we

know that product of roots is
$$\frac{c}{a}$$
.

159. (a) $3x^2 + 2x + 1 = 0$ Sum of the roots $= \alpha + \beta = \frac{-2}{3}$(1) Product of the roots $= \alpha \cdot \beta = \frac{1}{3}$(2) We have to find the equation with the roots $\alpha + \beta^{-1}$ and $\beta + \alpha^{-1}$. Sum of the roots (S) = $\alpha + \beta^{-1} + \beta + \alpha^{-1}$ $= \alpha + \frac{1}{\beta} + \beta + \frac{1}{\alpha}$ $=(\alpha+\beta)+\left(\frac{\alpha+\beta}{\alpha\beta}\right)$ $=\frac{-2}{3}+\left(\frac{-2}{3}\\\frac{1}{2}\\\frac{1}{2}\right)$ (from (1), (2)) $=\frac{-2}{3} - 2 = \frac{-2 - 6}{3} = \frac{-8}{3}.$ Product of the roots (P) = (\alpha + \beta^{-1}) (\beta + \alpha^{-1}) $=\left(\alpha+\frac{1}{\beta}\right)\left(\beta+\frac{1}{\alpha}\right)$ $= \alpha\beta + 1 + 1 + \frac{1}{\alpha\beta} = \alpha\beta + 2 + \frac{1}{\alpha\beta}$ $=\frac{1}{3}+2+\frac{1}{1}$ $=\frac{1}{3}+2+3=\frac{1}{3}+5=\frac{16}{3}.$ So, the required equation is $x^2 - s.x. + P = 0$ $= x^{2} + \frac{8}{3}x + \frac{16}{3} = 0 \Rightarrow 3x^{2} + 8x + 16 = 0$ 160. (c) $\angle R = \frac{\pi}{2}$ 0 R $\therefore \angle P + \angle Q = \frac{\pi}{2}$ $\Rightarrow \frac{\angle P + \angle Q}{2} = \frac{\pi}{4}$(1) $\tan\left(\frac{P}{2} + \frac{Q}{2}\right) = \frac{\tan\frac{P}{2} + \tan\frac{Q}{2}}{1 - \tan\frac{P}{2}\tan\frac{Q}{2}}$(2)

Given, $\tan \frac{P}{2}$ and $\tan \frac{Q}{2}$ are roots of $ax^2 + bx + c = 0$. $\therefore \tan \frac{P}{2} + \tan \frac{Q}{2} = \frac{-b}{a}; \tan \frac{P}{2} \cdot \tan \frac{Q}{2} = \frac{c}{a}.$ $\therefore (2) \Longrightarrow \tan\left(\frac{P}{2} + \frac{Q}{2}\right) = \frac{\frac{-b}{a}}{\frac{1}{1-c}}$ $\Rightarrow \tan \frac{\pi}{4} = \frac{\frac{-b}{a}}{1-\frac{c}{a}}$ (from(1)) $\Rightarrow 1 = \frac{-b}{a-c} \Rightarrow -b = a-c \Rightarrow a+b = c.$ 161. (a) $|1-x|+z^2=5$ $\Rightarrow |\mathbf{x}-1| + \mathbf{x}^2 = 5$ First case: If x < 1, |x - 1| is negative. $\begin{array}{r} \therefore \quad -(x-1) + x^2 = 5 \\ \Rightarrow \quad -x+1+x^2 = 5 \\ \Rightarrow \quad x^2 - x + 1 = 5 \\ \Rightarrow \quad x^2 - x - 4 = 0 \end{array}$ Roots are $\frac{-(-1)\pm\sqrt{(-1)^2-4(1)(-4)}}{2(1)}$ $=\frac{1\pm\sqrt{1+16}}{2}=\frac{1\pm\sqrt{17}}{2}$ Since, x < 1, root cannot be $\frac{1+\sqrt{17}}{2}$. So, the root is $\frac{1-\sqrt{17}}{2}$, which is irrational. Second case: If x > 1, |x - 1| = x - 1 $\begin{array}{rcl} & |x-1|+2^2=5\\ \Rightarrow & x-1+x^2=5\\ \Rightarrow & x^2+x-6=0\\ \Rightarrow & x^2+3x-2x-6=0 \end{array}$ $\Rightarrow x(x-3)-2(x+3)=0$ $\Rightarrow x=2,-3$ Since x > 1, root cannot be -3. So, root is 2 which is rational. Given expression has one irrational root and One *.*.. rational root. 162. (b) $x^2 - 4x + [x] = 0$ Given internal, [0, 2] Case 1 : Let $0 \le x \le 1$ [x] = 0 $\therefore x^2 - 4x + 0 = 0 \Longrightarrow x(x - 4) = 0 \Longrightarrow x = 0, x = 4$ x = 4 can't be taken in $0 \le x < 1$ $\therefore \mathbf{x} = \mathbf{0}$ Case 2 : Let $1 \le x \le 2$ [x] = 1 $\therefore x^2 - 4x + 1 = 0$

roots are
$$\frac{4 \pm \sqrt{16 - 4}}{2} = \frac{4 \pm \sqrt{12}}{2} = 2 \pm \sqrt{3}$$

In internal $1 \le x \le 2$, $2 \pm \sqrt{3}$ are not the roots. Case 3 : Let x = 2[x]=2

:.
$$x^2 - 4x + 2 = 0$$

roots are $\frac{4 \pm \sqrt{16 - 8}}{2} = \frac{4 \pm \sqrt{8}}{2} = 2 \pm \sqrt{2}$

Since, x = 2, roots can't be $2 \pm \sqrt{2}$

- \therefore There is only one solution, x = 0
- 163. (b) A rational expression is nothing more than a fraction in which the numerator and denominator are polynomials. Here are some example of rational expressions are

$$\begin{pmatrix} x+x^2+\frac{1}{x} \end{pmatrix}, (3x^2-5x+ab), \frac{2}{x^2-ax+ab} \\ 164. (d) & \alpha+\beta=-\alpha, \alpha\beta=-\beta \\ \Rightarrow & \alpha\beta+\beta=0 \\ \Rightarrow & (\alpha+1)\beta=0 \\ \Rightarrow & (\alpha+1)\beta=0 \\ \Rightarrow & (\alpha+1)\beta=0 \\ \Rightarrow & (2\alpha+\beta)=0 \\ \Rightarrow & (2\alpha+\beta)=0 \\ \Rightarrow & \beta=2 \\ \therefore -x^2+\alpha x+\beta=-x^2-x+2 \\ \text{Greatest value} = -\frac{1+8}{-4} = \frac{9}{4} \\ 165. (b) \quad \text{Let } f(x) = ax^2+bx+c, a > 0, b^2 < 4ac \\ & (\because f(x) > 0) \\ \text{Now, } g(x) = ax^2+bx+c+2ax+b+2a \\ & =ax^2+(b+2a)x+2a+b+c \\ \text{Now, } (b+2a)^2-4a(2a+b+c) \\ & = b^2+4ab+4a^2-8a^2-4ab-4ac \\ & =b^2-4ac-8a^2 < 0 \\ \Rightarrow g(x) > 0 \end{cases}$$

166. (b)
$$\frac{D_1}{D_2} = (\text{ratio of coefficient of } x)^2 = \frac{b^2}{q^2}$$

167. (d) Given,
$$|x^2 - x - 6| = x + 2$$

 $\therefore x^2 - x - 6 = x + 2$ and $x^2 - x - 6 = -(x + 2)$
 $\Rightarrow x^2 - 2x - 8 = 0$
 $\Rightarrow x^2 - x - 6 = -x - 2$
 $\Rightarrow x^2 - 4x + 2x - 8 = 0$
 $\Rightarrow x^2 = 4$
 $\Rightarrow x (x - 4) + 2 (x - 4) = 0$
 $\Rightarrow x = +2, -2$
 $\Rightarrow x = 4, -2$
 $\therefore x = -2, 2, 4.$

- 168. (b) px²+qx+r=0, (p, q, r are positive) Whenever the coefficients and constant are positive in quadratic equation, its roots are always negative.
 ∴ a < 0, b < 0
- 169. (a) Given, $\tan 19^\circ$ and $\tan 26^\circ$ are roots of $x^2 + px + q = 0$

$$\therefore \tan 19^\circ + \tan 26^\circ = \frac{-p}{1} = -p$$

$$(\tan 19^\circ)(\tan 26^\circ) = \frac{q}{1} = q$$

 $\tan(10^\circ + 26^\circ) = \tan 19^\circ + \tan 26^\circ$

$$\tan(19^\circ + 26^\circ) = \frac{\tan 19^\circ + \tan 26^\circ}{1 - \tan 19^\circ \tan 26^\circ}$$

$$\tan 45^\circ = \frac{-p}{1-q} \implies 1 = \frac{-p}{1-q}$$
$$\implies 1 - q = -p$$
$$\implies q - p = 1$$

170. (a)
$$x^2 + 9|x| + 20 = 0$$

The sum of three positive quantities can never be zero. So, the equation has no solution.

Sequence and Series

It the sum of first 10 terms of an arithmetic progression with 1. first term p and common difference q, is 4 times the sum of the first 5 terms, then what is the ratio p: q?

(a)
$$1:2$$
 (b) $1:4$

is $\frac{1}{(2-3i)}$. Which of the following implications is/are true?

1. The second root of the equation will be
$$\frac{1}{(3-2i)}$$
.

The equation has no real root. 2.

- The equation is $13x^2 4x + 1 = 0$. 3.
- Which of the above is/are correct?
- (a) 1 and 2 only (b) 3 only
- (d) 1, 2 and 3 (c) 2 and 3 only [2006-I] What is the sum of the first 50 terms of the series
 - $(1 \times 3) + (3 \times 5) + (5 \times 7) + \dots$?

(d) 26,900 [2006-1] (c) 26,650

4. If
$$x = 1 \frac{y}{2} \left(\frac{y}{2}\right)^2 \left(\frac{y}{2}\right)^3 + \dots$$
 where $|y| < 2$, what is 1y

equal to ?

2.

3.

(a)
$$\frac{x-1}{x}$$
 (b) $\frac{x-1}{2x}$
(c) $\frac{2x-2}{x}$ (d) $\frac{2x+1}{2x}$ [2006-1]

- 5. What is the product of first 2n + 1 terms of a geometric progression ?
 - (a) The (n + 1)th power of the nth term of the GP
 - (b) The (2n + 1)th power of the nth term of the GP
 - (c) The (2n + 1)th power of the (n + 1)th term of the GP

(d) The nth power of the (n + 1)th terms of the GP

[2006-I] The following question consist of two statements, one 6. labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer.

Assertion (A): 1/8, $\log_{a^2} a \rightarrow$ exponent should be to the base, \log^2 are in GP but not in AP.

Reason: (R): x, y, z are in AP as well as in GP if x = y = z.

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is not the correct explanation A
- (c) A is true but R is false

7.

12.

(d) A is false but R is true

If
$$x + 1$$
, $4x + 1$, and $8x + 1$ are in geometric progression,
then what is the non-trivial value of x?

(a)
$$-1$$
 (b) 1

(c)
$$\frac{1}{8}$$
 (d) $\frac{1}{4}$ [2006-II]

The equation $(a^2 + b^2) x^2 - 2b (a + c) x + (b^2 + c^2) = 0$ has 8. equal roots. Which one of the following is correct about a, b, and c?

- (a) They are in AP
- (b) They are in GP
- (c) They are in HP

If pth term of an AP is q, and its qth term is p, then what is 9. the common difference?

(a)
$$-1$$
 (b) 0
(c) 2 (d) 1 [2006-II]

10. If a, b, c are in geometric progression and a, 2b, 3c are in arithmetic progression, then what is the common ratio r such that 0 < r < 1?

(a)
$$\frac{1}{3}$$
 (b) $\frac{1}{2}$
(c) $\frac{1}{4}$ (d) $\frac{1}{8}$ [2006-II]

For an AP with first term u and common difference v, the 11 pth term is 15 uv more than the qth term. Which one of the following is correct?

(a)
$$p=q+15v$$
 (b) $p=q+15u$
(c) $p=q+14v$ (d) $p=q+14u$ [2006-II]
If a, b and c are three positive numbers in an arithmetic

- progression, then: [2006-II] (a) $ac > b^2$ (b) $b^2 > a + c$
- (c) $ab + bc \leq 2ac$ (d) $ab + bc \ge 2ac$

[2006-II]

13. If $|\mathbf{x}| < \frac{1}{2}$, what is the value of

$$1 + n \left[\frac{x}{1-x}\right] + \left[\frac{n(n+1)}{2!}\right] \left[\frac{x}{1-x}\right]^2 + \dots \infty ?$$
(a) $\left[\frac{1-x}{1-2x}\right]^n$ (b) $(1-x)^n$

- (c) $\left\lfloor \frac{1-2x}{1-x} \right\rfloor^{n}$ (d) $\left(\frac{1}{1-x} \right)$ [2006-II] The sum of the first (2n + 1) terms of an AP is {(n + 1) (2n + 1)}
- 14. The sum of the first (2p + 1) terms of an AP is {(p + 1). (2p + 1)}. Which one of the following inferences can be drawn ?
 - (a) The (p+1)th term of the AP is (2p+1)
 - (b) The (2p+1)th term of the AP is (2p+1)
 - (c) The $(2p+1)^{\text{th}}$ term of the AP is (p+1)
 - (d) The $(p+1)^{\text{th}}$ term of the AP is (p+1) [2006-II]
- 15. a, b, c are in G.P. with $1 \le a \le b \le n$, and $n \ge 1$ is an integer. $\log_a n$, $\log_b n$, $\log_c n$ form a sequence. This sequence is which one of the following ? [2007-I]
 - (a) Harmonic progression (b) Arithmetic progression
 - (c) Geometric progression (d) None of these

16. What is the sum of the series
$$1 - \frac{1}{2} = \frac{1}{4} - \frac{1}{8} = \dots$$
?

(a)
$$\frac{1}{2}$$
 (b) $\frac{3}{4}$

- (c) $\frac{3}{2}$ (d) $\frac{2}{3}$ [2007-I]
- 17. If b_1 , b_2 , b_3 are three consecutive terms of an arithmetic progression with common difference d > 0, then what is the

value of d for which b_3^2 b_2b_3 b_1d 2?

(a)
$$\frac{1}{2}$$
 (b) 0
(c) 1 (d) 2 [2007-1]
If 1 x y z 16 are in geometric progression, then what is the

111, x, y, z, 16 are in geometric progression, then what is the value of
$$x + y + z$$
?

- 19. If the nth term of an arithmetic progression is 3n + 7, then what is the sum of its first 50 terms?
 - (a) 3925 (b) 4100
 - (c) 4175 (d) 8200 [2007-II]
- 20. If, for positive real numbers x, y, z, the numbers x + y, 2y and y + z are in harmonic progression, then which one of the following is correct? [2007-II]
 - (a) x, y, z are in geometric progression
 - (b) x, y, z are in arithmetic progression
 - (c) x, y, z are in harmonic progression
 - (d) None of the above

18

21. What is the sum of the series

$$1 + \frac{1}{8} + \frac{1.3}{8.16} + \frac{1.3.5}{8.16.24} + \dots \infty?$$
(a) $\frac{2}{\sqrt{3}}$ (b) $2\sqrt{3}$
(c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{2\sqrt{3}}$ [2007-II]

22. What is the geometric mean of the ratio of corresponding terms of two series where G_1 and G_2 are geometric means of the two series? [2007-II] (a) $\log G_1 - \log G_2$ (b) $\log G_1 + \log G_2$

(c)
$$\frac{G_1}{G_2}$$
 (d) G_1G_2

- 23. If the points with the coordinates (a, ma), $\{b, (m + 1) b\}$, $\{c, (m + 2) c\}$ are collinear, then which one of the following is correct? [2007-II]
 - (a) a, b, c are in arithmetic progression for all m
 - (b) a, b, c are in geometric progression for all m
 - (c) a, b, c are in harmonic progression for all m
 - (d) a, b, c are in arithmetic progression only for m = 1
- 24. The following question consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer.

Assertion (A):
$$0.3 + 0.03 + 0.003 + \dots = \frac{1}{2}$$

Reason (R) : For each (+)ve integer n, let $a_n = a + nd$, a and

d are real numbers. Then, $a_1 + \dots + a_n = \frac{n}{2} [2a + (n+1)d].$

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is not the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- 25. Which one of the following is correct ? If the positive numbers a, b, c, d are in AP, then bcd, cda, dab, abc
 - (a) are in AP
 - (b) are in GP
 - (c) are in HP
 - (d) are in none of the above progressions [2007-II]

26. What is the value of $9^{1/3}$. $9^{1/19}$. $9^{1/27}$ ∞ ?

(a) 9 (b) 3
(c)
$$9^{1/3}$$
 (d) 1 [2007-III]

- 27. If a, b, c, d are in harmonical progression such that a > d, then which one of the following is correct?
 - (a) a + c = b + d (b) a + c > b + d

(c)
$$ac = bd$$
 (d) $ab = cd$ [2007-II]

28. After paying 30 out of 40 installments of a debt of Rs. 3600, one third of the debt is unpaid. If the installments are forming an arithmetic series, then what is the first instalment?

- (a) Rs 50 (b) Rs 51
- (c) Rs 105 (d) Rs 110 [2008-I]

Sequence and Series

29.	The product of first nine terms of a GP is, in general, equal to
	which one of the following?
	(a) The 9th power of the 4th term
	(b) The 4th power of the 9th term
	(c) The 5th power of the 9th term
	(d) The 9th power of the 5th term [2008-1]
30.	The difference between the nth term and $(n-1)$ th term of a
	sequence is independent of n. Then the sequence follows
	which one of the following?
	(a) AP (b) GP
	(c) HP (d) None of these [2008-1]
31.	Which one of the following is correct?
	If $\frac{1}{1} + \frac{1}{1} = \frac{1}{1} + \frac{1}{1}$, then a, b, c are in
	b-c $b-a$ a c
	$\begin{array}{c} (a) AP \\ (b) HP \\ (c) CP \\ (d) N \\ (d) N \\ (d) N \\ (d) (d$
22	(c) GP (d) None of these $[2008-1]$
32.	What is the 15^{ur} term of the series 3, 7, 13, 21, 31, 43,?
	[2008-11]
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
33	(c) 250 (d) 241 If the <i>n</i> th term of an arithmetic progression is $2n - 1$ then
55.	what is the sum unto <i>n</i> terms? $[2008-II]$
	(a) n^2 (b) $n^2 - 1$
	(c) $n^2 + 1$ (d) $\frac{1}{2}n(n+1)$
	(a) a a (a) a a (b) a (b) (b
34.	If the three observations are $3, -6$ and -6 , then what is their
	harmonic mean? [2008-11]
	(a) 0 (b) ∞
	(c) -1/2 $(d) -3$
25	(c) $-1/2$ (d) -5 Sum of first a natural numbers is given by $n(n+1)$ What
35.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What
35.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, 2^n ?
35.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, 2 ⁿ ? [2008-II]
35.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, $2^{n?}$ [2008-II]
35.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, $2^{n?}$ [2008-II] (a) 2^n (b) $\frac{n}{2^2}$
35.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, $2^{n?}$ [2008-II] (a) 2^n (b) $\frac{n}{2^2}$ (c) $2^{1/2}$ (d) 2^{n-1}
35. 36.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, 2 ^{<i>n</i>} ? [2008-II] (a) 2 ^{<i>n</i>} (b) $\frac{n}{2^2}$ (c) 2 ^{1/2} (d) 2 ^{<i>n</i>-1} If the number of terms of an A.P. is (2 <i>n</i> +1), then what is the
35. 36.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, 2^{n} ? [2008-II] (a) 2^{n} (b) $\frac{n}{2^{2}}$ (c) $2^{1/2}$ (d) 2^{n-1} If the number of terms of an A.P. is $(2n+1)$, then what is the ratio of the sum of the odd terms to the sum of even terms?
35. 36.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, 2^{n} ? [2008-II] (a) 2^n (b) $\frac{n}{2^2}$ (c) $2^{1/2}$ (d) 2^{n-1} If the number of terms of an A.P. is $(2n+1)$, then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II]
35. 36.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, $2^{n?}$. [2008-II] (a) 2^n (b) $\frac{n}{2^2}$. (c) $2^{1/2}$ (d) 2^{n-1} . If the number of terms of an A.P. is $(2n+1)$, then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] <i>n n</i> ²
35. 36.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, $2^{n?}$. [2008-II] (a) 2^n (b) $\frac{n^2}{2^2}$ (c) $2^{1/2}$ (d) 2^{n-1} If the number of terms of an A.P. is $(2n+1)$, then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$
35. 36.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, $2^{n?}$ [2008-II] (a) 2^n (b) $\frac{n}{2^2}$ (c) $2^{1/2}$ (d) 2^{n-1} If the number of terms of an A.P. is $(2n+1)$, then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$
35. 36.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, 2 ⁿ ? [2008-II] (a) 2 ⁿ (b) $\frac{n}{2^2}$ (c) 2 ^{1/2} (d) 2 ⁿ⁻¹ If the number of terms of an A.P. is (2 <i>n</i> + 1), then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$ (c) $\frac{n+1}{n+1}$ (d) $\frac{n+1}{n+1}$
35. 36.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, 2 ⁿ ? [2008-II] (a) 2 ⁿ (b) $\frac{n}{2^2}$ (c) 2 ^{1/2} (d) 2 ⁿ⁻¹ If the number of terms of an A.P. is (2 <i>n</i> + 1), then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$ (c) $\frac{n+1}{n}$ (d) $\frac{n+1}{2n}$
35.36.37.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, $2^{n?}$. [2008-II] (a) 2^n (b) $\frac{n}{2^2}$ (c) $2^{1/2}$ (d) 2^{n-1} If the number of terms of an A.P. is $(2n+1)$, then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$ (c) $\frac{n+1}{n}$ (d) $\frac{n+1}{2n}$ If the sum of 'n' terms of an arithmetic progression is $2^n 2^n$ due to the the sum of the other sectors.
35.36.37.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, 2^{n} ? [2008-II] (a) 2^n (b) $\frac{n}{2^2}$ (c) $2^{1/2}$ (d) 2^{n-1} If the number of terms of an A.P. is $(2n+1)$, then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$ (c) $\frac{n+1}{n}$ (d) $\frac{n+1}{2n}$ If the sum of 'n' terms of an arithmetic progression is $n^2 - 2n$, then what is the n^{th} term? [2008-II]
35. 36. 37.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, $2^{n?}$. [2008-II] (a) 2^n (b) $\frac{n}{2^2}$ (c) $2^{1/2}$ (d) 2^{n-1} If the number of terms of an A.P. is $(2n+1)$, then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$ (c) $\frac{n+1}{n}$ (d) $\frac{n+1}{2n}$ If the sum of 'n' terms of an arithmetic progression is $n^2 - 2n$, then what is the n^{th} term? [2008-II] (a) $3n - n^2$ (b) $2n - 3$
35.36.37.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, $2^{n?}$. [2008-II] (a) 2^n (b) $\frac{n^2}{2^2}$ (c) $2^{1/2}$ (d) 2^{n-1} If the number of terms of an A.P. is $(2n+1)$, then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$ (c) $\frac{n+1}{n}$ (d) $\frac{n+1}{2n}$ If the sum of 'n' terms of an arithmetic progression is $n^2 - 2n$, then what is the n^{th} term? [2008-II] (a) $3n - n^2$ (b) $2n - 3$ (c) $2n + 3$ (d) $2n - 5$
35.36.37.38.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, $2^{n?}$. [2008-II] (a) 2^n (b) $\frac{n}{2^2}$ (c) $2^{1/2}$ (d) 2^{n-1} If the number of terms of an A.P. is $(2n+1)$, then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$ (c) $\frac{n+1}{n}$ (d) $\frac{n+1}{2n}$ If the sum of 'n' terms of an arithmetic progression is $n^2 - 2n$, then what is the n^{th} term? [2008-II] (a) $3n - n^2$ (b) $2n - 3$ (c) $2n + 3$ (d) $2n - 5$ If $a, 2a + 2, 3a + 3$ are in GP, then what is the fourth term of the CD2
35.36.37.38.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, $2^{n?}$. [2008-II] (a) 2^n (b) $\frac{n}{2^2}$ (c) $2^{1/2}$ (d) 2^{n-1} If the number of terms of an A.P. is $(2n+1)$, then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$ (c) $\frac{n+1}{n}$ (d) $\frac{n+1}{2n}$ If the sum of 'n' terms of an arithmetic progression is $n^2 - 2n$, then what is the n^{th} term? [2008-II] (a) $3n - n^2$ (b) $2n - 3$ (c) $2n + 3$ (d) $2n - 5$ If $a, 2a + 2, 3a + 3$ are in GP, then what is the fourth term of the GP? [2008-II]
35.36.37.38.	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, 2 ⁿ ? [2008-II] (a) 2 ⁿ (b) $\frac{n}{2^2}$ (c) 2 ^{1/2} (d) 2 ⁿ⁻¹ If the number of terms of an A.P. is (2 <i>n</i> + 1), then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$ (c) $\frac{n+1}{n}$ (d) $\frac{n+1}{2n}$ If the sum of 'n' terms of an arithmetic progression is $n^2 - 2n$, then what is the n^{th} term? [2008-II] (a) $3n - n^2$ (b) $2n - 3$ (c) $2n + 3$ (d) $2n - 5$ If $a, 2a + 2, 3a + 3$ are in GP, then what is the fourth term of the GP? [2008-II] (a) -13.5 (b) 13.5
35.36.37.38.	(c) $-1/2$ (d) -3 Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, $2^{n?}$ [2008-II] (a) 2^n (b) $\frac{n}{2^2}$ (c) $2^{1/2}$ (d) 2^{n-1} If the number of terms of an A.P. is $(2n + 1)$, then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$ (c) $\frac{n+1}{n}$ (d) $\frac{n+1}{2n}$ If the sum of 'n' terms of an arithmetic progression is $n^2 - 2n$, then what is the n^{th} term? [2008-II] (a) $3n - n^2$ (b) $2n - 3$ (c) $2n + 3$ (d) $2n - 5$ If $a, 2a + 2, 3a + 3$ are in GP, then what is the fourth term of the GP? [2008-II] (a) -13.5 (b) 13.5 (c) -27 (d) 27 What is many to the low of the varies
 35. 36. 37. 38. 39. 	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, 2 ⁿ ? [2008-II] (a) 2 ⁿ (b) $\frac{n}{2^2}$ (c) 2 ^{1/2} (d) 2 ⁿ⁻¹ If the number of terms of an A.P. is (2 <i>n</i> + 1), then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$ (c) $\frac{n+1}{n}$ (d) $\frac{n+1}{2n}$ If the sum of 'n' terms of an arithmetic progression is $n^2 - 2n$, then what is the n^{th} term? [2008-II] (a) $3n - n^2$ (b) $2n - 3$ (c) $2n + 3$ (d) $2n - 5$ If $a, 2a + 2, 3a + 3$ are in GP, then what is the fourth term of the GP? [2008-II] (a) -13.5 (b) 13.5 (c) -27 (d) 27 What is sum to the 100 terms of the series
 35. 36. 37. 38. 39. 	(c) $-1/2$ (d) -3 Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, $2^{n?}$ [2008-II] (a) 2^n (b) $\frac{n}{2^2}$ (c) $2^{1/2}$ (d) 2^{n-1} If the number of terms of an A.P. is $(2n + 1)$, then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$ (c) $\frac{n+1}{n}$ (d) $\frac{n+1}{2n}$ If the sum of 'n' terms of an arithmetic progression is $n^2 - 2n$, then what is the n^{th} term? [2008-II] (a) $3n - n^2$ (b) $2n - 3$ (c) $2n + 3$ (d) $2n - 5$ If $a, 2a + 2, 3a + 3$ are in GP, then what is the fourth term of the GP? [2008-II] (a) -13.5 (b) 13.5 (c) -27 (d) 27 What is sum to the 100 terms of the series 9 + 99 + 999 +? [2008-II]
 35. 36. 37. 38. 39. 	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, $2^{n?}$ [2008-II] (a) 2^n (b) $\frac{n}{2^2}$ (c) $2^{1/2}$ (d) 2^{n-1} If the number of terms of an A.P. is $(2n + 1)$, then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$ (c) $\frac{n+1}{n}$ (d) $\frac{n+1}{2n}$ If the sum of 'n' terms of an arithmetic progression is $n^2 - 2n$, then what is the n^{th} term? [2008-II] (a) $3n - n^2$ (b) $2n - 3$ (c) $2n + 3$ (d) $2n - 5$ If $a, 2a + 2, 3a + 3$ are in GP, then what is the fourth term of the GP? [2008-II] (a) -13.5 (b) 13.5 (c) -27 (d) 27 What is sum to the 100 terms of the series 9 + 99 + 999 +? [2008-II] (a) $\frac{10}{(10^{100} - 1) - 100}$ (b) $\frac{10}{(10^{99} - 1) - 100}$
 35. 36. 37. 38. 39. 	Sum of first <i>n</i> natural numbers is given by $\frac{n(n+1)}{2}$. What is the geometric mean of the series 1, 2, 4, 8,, 2 ^{<i>n</i>} ? [2008-II] (a) 2 ^{<i>n</i>} (b) $\frac{n}{2^2}$ (c) 2 ^{1/2} (d) 2 ^{<i>n</i>-1} If the number of terms of an A.P. is (2 <i>n</i> + 1), then what is the ratio of the sum of the odd terms to the sum of even terms? [2008-II] (a) $\frac{n}{n+1}$ (b) $\frac{n^2}{n+1}$ (c) $\frac{n+1}{n}$ (d) $\frac{n+1}{2n}$ If the sum of ' <i>n</i> ' terms of an arithmetic progression is $n^2 - 2n$, then what is the <i>n</i> th term? [2008-II] (a) $3n - n^2$ (b) $2n - 3$ (c) $2n + 3$ (d) $2n - 5$ If <i>a</i> , $2a + 2$, $3a + 3$ are in GP, then what is the fourth term of the GP? [2008-II] (a) -13.5 (b) 13.5 (c) -27 (d) 27 What is sum to the 100 terms of the series 9 + 99 + 999 +? [2008-II] (a) $\frac{10}{9}(10^{100} - 1) - 100$ (b) $\frac{10}{9}(10^{99} - 1) - 100$

(c)
$$100(100^{10}-1)$$
 (d) $\frac{9}{100}(10^{100}-1)$

40. If the AM and GM of two numbers are 5 and 4 respectively, [2008-II] then what is the HM of those numbers? (a) (b) 5 4 (d) 9 (c) $\overline{2}$ The harmonic mean of two numbers is 21.6.If one of the 41. numbers is 27, then what is the other number? [2009-I] (a) 16.2 (b) 17.3 (c) 18 (d) 20 42. If the sum of the first two terms and the sum of the first four terms of a geometric progression with positive common ratio are 8 and 80 respectively, then what is the 6th term? [2009-I] (a) 88 (b) 243 (c) 486 (d) 1458 If x > 1 and $\log_2 x$, $\log_3 x$, $\log_x 16$ are in GP, then what is x 43. equal to? [2009-I] (a) 9 (b) 8 (c) 4 (d) 2 44. In a geometric progression with first term *a* and common ratio r, what is the arithmetic mean of first five terms? [2009-I] (b) ar^2 (a) a + 2r(c) $a(r^5-1)/(r-1)$ (d) $a(r^5-1)/[5(r-1)]$ 45. If (1+3+5+...+p)+(1+3+5+...+q)=(1+3+5+...+r)[2009-II] where each set of parentheses contains the sum of consecutive odd integers as shown, what is the smallest possible value of (p + q + r) where p > 6? (a) 12 (b) 21 (c) 45 (d) 54 If x^2 , y^2 , z^2 are in AP, then y + z, z + x, x + y are in 46. (b) HP (a) AP [2009-II] (c) GP (d) None of these 47. If x, 2x + 2, 3x + 3 are the first three terms of a GP, then what is its fourth term? [2009-II] (a) -27/2(b) 27/2 (c) -33/2(d) 33/2 Which term of the sequence 20, $19\frac{1}{4}$, $18\frac{1}{2}$, $17\frac{3}{4}$,... is the 48. first negative term? [2009-II] (b) 28th (a) 27th (c) 29th (d) No such term exists In an AP, the m^{th} term 1/n and n^{th} term is 1/m. What is its 49. (*mn*)th term? [2009-II] (a) 1/(mn)(b) *m*/*n* (c) *n/m* (d) 1 The 59th term of an AP is 449 and the 449th term is 59. 50. Which term is equal to 0 (zero)? [2010-I] (b) 502^{nd} term (a) 501^{st} term (c) 508^{th} term (d) 509^{th} term 51. If the AM and HM of two numbers are 27 and 12 respectively, then what is their GM equal to? [2010-I] (a) 12 (b) 18

(c) 24 (d) 27

52. What is the sum of all natural numbers between 200 and 400 61 which are divisible by 7? [2010-I] (a) 6729 (b) 8712 (c) 8729 (d) 9276 53. Let a, b, c be in AP. [2010-I] Consider the following statements: 1. $\frac{1}{ab}$, $\frac{1}{ca}$ and $\frac{1}{bc}$ are in AP. 2. $\frac{1}{\sqrt{b} + \sqrt{c}}, \frac{1}{\sqrt{c} + \sqrt{a}} \text{ and } \frac{1}{\sqrt{a} + \sqrt{b}}$ are in AP. 6 Which of the statements given above is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 54. If p times the pth term of an AP is q times the qth term, then 6 what is the (p+q)th term equal to? [2010-I] (a) p + q(b) *pq* (c) 1 (d) 0 55. The geometric mean of three numbers was computed as 6. It 6 was subsequently found that, in this computation, a number 8 was wrongly read as 12. What is the correct geometric mean? [2010-I] (a) 4 (b) $\sqrt[3]{5}$ (c) $2\sqrt[3]{18}$ (d) None of these 56. The arithmetic mean of two numbers exceeds their geometric mean by 2 and the geometric mean exceeds their harmonic 6 mean by 1.6. What are the two numbers? [2010-II] (a) 16,4 (b) 81,9 (c) 256,16 (d) 625,25 57. The sum of an infinite geometric progression is 6, If the sum of the first two terms is 9/2, then what is the first term? 6 [2010-II] (a) 1 (b) 5/2 (d) 9 or 3 (c) 3 or 3/258. If the AM and GM between two number are in the ratio m: n, 6 then what is the ratio between the two numbers? [2010-II] (a) $\frac{m + \sqrt{m^2 - n^2}}{m - \sqrt{m^2 - n^2}}$ (b) $\frac{m + n}{m - n}$ 68 (c) $\frac{m^2 - n^2}{m^2 + n^2}$ (d) $\frac{m^2 + n^2 - mn}{m^2 + n^2 + mn}$ 59. What is the geometric mean of the data 2, 4, 8, 16, 32? 6 (a) 2 (b) 4 [2011-I] (d) 16 (c) 8 60. If A, B and C are in AP and $b : c = \sqrt{3} : \sqrt{2}$, then what is the value of sin C? [2011-I] 7((a) 1 (b) 7 (d) $\frac{1}{\sqrt{2}}$ (c) $\sqrt{3}$

м-68

1.	In a the s GP?	Sum of next two terms.	what	t is the common	ratio of the [2011-I]
	(a)	$\frac{\sqrt{13}+1}{2}$	(b)	$\frac{\sqrt{13}-1}{2}$	
	(c)	$\frac{\sqrt{13}}{3}$	(d)	$\sqrt{13}$	
2.	Wh	ich term of a series $\frac{1}{4}$,	$-\frac{1}{2}$,	1, is-128?	[2011-I]
	(a) (c)	9th 11th	(b) (d)	10th 12th	
3.	If $\frac{1}{b}$	$\frac{1}{b-a} + \frac{1}{b-c} = \frac{1}{a} + \frac{1}{c}$, th	en a,	<i>b</i> , <i>c</i> are in	[2011-I]
	(a) (c)	AP HP	(b) (d)	GP None of these	
4.	Wha	at is the sum of $\sqrt{3} + -\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}} + \frac{1}{3}$	$\frac{1}{3\sqrt{3}} + \dots ?$	[2011-I]
	(a)	$\frac{\sqrt{3}}{2}$	(b)	$\frac{3\sqrt{3}}{2}$	
	(c)	$\frac{2\sqrt{3}}{3}$	(d)	$\sqrt{3}$	
5.	Whi (a)	ich one of the following $\sin^2 30^\circ \sin^2 45^\circ \sin^2$	g opt	ions is correct?	[2011-I]
	(b)	$\cos^2 30^\circ, \cos^2 45^\circ, \cos^2 45^\circ$	$s^2 60^\circ$	° are in GP	
	(c)	$\cot^2 30^\circ, \cot^2 45^\circ, \cot^2 $	$\frac{2}{60^{\circ}}$	are in GP	
6.	Wh	at is the 10th comm	non t	erm between	the series
	2+0	$6 + 10 + \dots$ and $1 + 6 + 1$	1+	?	[2011-II]
	(a)	180	(b)	186	
	(c)	196	(d)	206	
7.	Ifth	e 10th term of a GP is 9	and 4	th term is 4, the	n what is its
	/th 1	term?		14	[2011-11]
	(a)	0 27/1 <i>4</i>	(0) (d)	14 56/15	
8	If h	27714	(u)	$(2^{x} + 3)$	are three
0.	cons	secutive terms of an AP.	then	which one of th	e following
	is co	orrect?			[2011-II]
	(a)	x = 0	(b)	x = 1	L]
	(c)	$x = \log_2 5$	(d)	$x = \log_5 2$	
9.	Ifn!,	$3 \times (n!)$ and $(n+1)!$ are	e in G	P, then the value	of n will be [2011-II]
	(a)	3	(b)	4	
'n	(C) If ~	ð hada forsin AD th	(a)	1U	thich one of
U.	the f	<i>b</i> , <i>c</i> , <i>a</i> , <i>e</i> , <i>j</i> are in AP, the ollowing?	:n (<i>e</i> -	-c) is equal to w	/IIICH ONE OF [2011-II]
	(a)	2(c-a)	(b)	2(d-c)	- 1
	(c)	2(f-d)	(d)	(d-c)	
1.	Wha	t is the geometric mean	of 10), 40 and 60 (app	pox)?
	(a)	10	(b)	28	[2011-II]
	(c)	29.6	(d)	70	

72.	Ifth	e arithmetic and geomet	ricme	eans of two numb	ers are 10,	DIF
	8 re	spectively, then one nur	nber	exceeds the oth	er number	that
	by				[2011-II]	The
	(a)	8	(b)	10		resp
	(c)	12	(d)	16		82.
73.	If tl	ne sequence $\{S_n\}$ is a	a geo	metric progres	ssion and	
	$S_2 S$	$I_{11} = S_p S_8$, then what is	the v	value of p?	[2012 - I]	02
	(a)	1	(b)	3		83.
	(c)	5	(d)	cannot be deter	rmined	
74.	If 1/	4, 1/x, 1/10 are in HP, th	en wl	hat is the value of	fx?	01
	(a)	5	(b)	6	[2012 - I]	04.
	(c)	7	(d)	8		
75.	If p,	q, r are in AP as well	as G	P., then which	one of the	
	follo	owing is correct?			[2012 - I]	85
	(a)	$\mathbf{p}=\mathbf{q}\neq\mathbf{r}$	(b)	$p\neq q\neq r$		05.
	(c)	$p \neq q = r$	(d)	$\mathbf{p} = \mathbf{q} = \mathbf{r}$		
76.	The	geometric mean and har	moni	c mean of two no	n negative	
	obse	ervations are 10 and 8	respe	ectively. Then w	hat is the	
	aritł	nmetic mean of the obse	rvati	ons equal to?	[2012-1]	
	(a)	4	(b)	9	. ,	
	(c)	12,5	(d)	2		86.
77.	Wha	at is the nth term of the s	equer	nce 1, 5, 9, 13, 17	7,?	
	(a)	2n - 1	(b)	2n + 1	[2012-I]	
	(c)	4n - 3	(d)	None of the at	bove	07
78.	Wha	at does the series				8/.
		1				
	1	$-\frac{1}{2}$, 2, 1		-9	[2012 1]	
	1+3	$3 - 2 + 3 + \frac{3}{3\sqrt{3}} + \dots$ repr	esent	S?	[2012-1]	88.
	(a)	AP	(b)	GP		
	(c)	HP	(d)	None of the ab	ove series	
	. /			1 1 1		
79.	Wha	at is the sum of the serie	es 1-	$\frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots e$	qual to?	80
				2 4 8		69.
		1		3	[2012 1]	
	(a)	$\overline{2}$	(b)	$\overline{2}$	[2012-1]	
						90.
	(c)	2	(d)	2		
	(0)	2	(u)	3		
80.	Con	sider the following state	ement	ts:	[2012-II]	91.
	1.	The sum of cubes of fin	st 20	natural numbers	s is 44400.	

The sum of edges of hist 20 natural numbers is 44400.
 The sum of squares of first 20 natural numbers is 2870.
 Which of the above statements is/are correct ?

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2
- 81. What is the sum of first eight terms of the series

$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots ?$$
 [2012-II]

- (a) $\frac{89}{128}$ (b) $\frac{57}{384}$
- (c) $\frac{85}{128}$ (d) None of the above

DIR	ECT	IONS (Qs. 82-83) : For	the	next two (02)	Questions
that	follov	W:			
The	sum o	f first 10 terms and 20 ter	rms c	of an AP are 12	20 and 440
respe	ective	ly.			
82.	What	t is its first term?			[2012-II]
	(a)	2	(b)	3	
	(c)	4	(d)	5	
83.	What	is the common difference	e?		[2012-II]
	(a)	1	(b)	2	
	(c)	3	(d)	4	
84.	What	t is the number of diago	nals	which can be	drawn by
	joinir	ng the angular points of a	ı poly	ygon of 100 si	des?
	(a)	4850	(b)	4950	[2012-II]
	(c)	5000	(d)	10000	
85.	The a	ingles of a triangle are in	AP a	nd the least ar	gle is 30°.
	What	t is the greatest angle (in	radia	ın)?	[2012-II]
		π		π	
	(a)	$\overline{2}$	(b)	$\overline{3}$	
		2		5	
	(c)	$\frac{\pi}{-}$	(d)	π	
06	(-) 1171 -	4	6.4	1.0	4 0
86.	What	is the geometric mean o	f the	sequence 1, 2	, 4, 8,,
	2"?	on/2		2(n+1)/2	[2012-11]
	(a)	$2^{1/2}$ 2(n+1) 1	(b)	$2^{(n+1)/2}$	
07	(C)	$2^{(n+1)} - 1$	(d)	$2^{(n-1)}$	
87.	II the	numbers $n = 3$, $4n = 2$, $3n = 3$	+ I ai	re in AP, what	
	01 n!	1	(I -)	2	[2013-1]
	(a)	1	(D)	2	
88	(C) The h	5 Parmonic mean H of two n	(u)	4 ercic/and the	arithmetic
00.	mear	Δ and geometric me	an (G satisfy the	equation
	$2\Delta +$	$G^2 = 27$ The two number	rs are		[2013_1]
	$\frac{2\pi}{a}$	6 3	(h)	95	[2013-1]
	(a)	12.7	(0)	3.1	
89	If the	nositive integers a b c	d are	in AP then th	e numbers
07.	ahc a	abd acd bcd are in	a ui e		[2013-11]
	(a)	HP	(b)	AP	[2010 11]
	(\mathbf{c})	GP	(d)	None of the	above
90.	What	is 0.9 + 0.09 + 0.009 +	. eau	al to?	[2013-11]
<i>y</i> 0.	(a)	1	(b)	1 01	[=010 11]
	(c)	1.001	(d)	1.1	
91.	The s	sum of the first five term	s and	the sum of th	ne first ten
	terms	s of an AP are same. Whi	ch oi	ne of the follow	wing is the
	corre	ct statement ?			[2013-11]
	(a)	The first term must be ne	egati	ve	. ,
	(b)	The common difference	must	t be negative	
	(c)	Either the first term or the	com	mon difference	is negative
	. /	but not both			e
	(d)	Both the first term and th	ne con	mmon differer	nce are
		negative			
92.	What	is the seventh term of the	e seq	uence 0, 3, 8,	15, 24,?
			1		[2013-II]
	(a)	63	(b)	48	
	(c)	35	(d)	33	

93. The sum of an infinite GP is x and the common ratio r is such

that |r| < 1. If the first term of the *GP* is 2, then which one of the following is correct? [2014-I]

(a)
$$-1 < x < 1$$

(b) $-\infty < x < 1$
(c) $1 < x < \infty$
(d) None of these

94. The sum of the series formed by the sequence 3, $\sqrt{3}$, 1..... upto infinity is : [2014-I]

(a)
$$\frac{3\sqrt{3}(\sqrt{3} \ 1)}{2}$$
 (b) $\frac{3\sqrt{3}(\sqrt{3} \ -1)}{2}$
(c) $\frac{3(\sqrt{3} \ 1)}{2}$ (d) $\frac{3(\sqrt{3} \ -1)}{2}$

DIRECTIONS (Qs. 95-96) : For the next two (02) items that follow :

Let S _n	denote	the sum	of the n	terms of an	AP and 3S _n	$=S_{2n}$.
						[2014-II]

95.	What is $S_{3n} = S_n$ equal to ?		
	(a) $4:1^{-1}$	(b)	6:1
	(c) 8:1	(d)	10:1
96.	What is $S_{3n} = S_{2n}$ equal to ?		
	(a) $2:1^{2n}$	(b)	3:1
	(c) 4:1	(d)	5:1

DIRECTIONS (Qs. 97-99) : For the next three (03) items that follow :

Let $f(x) = ax^2 + bx + c$ such that f(1) = f(-1) and a, b, c are in Arithmetic Progression. [2014-II]

97. What is the value of b?

- (a) –1
- (b) 0
- (c) 1
- (d) Cannot be determined deu to insufficient data
- 98. f'(a), f'(b), f'(c) are
 - (a) A.P.
 - (b) GP.
 - (c) H.P.
 - (d) Arithmetico-geometric progression
- 99. f"(a), f" (b), f"(c) are (a) in A.P. only

only (b) in G.P. only

(c) in both A.P. and G.P. (d) neither in A.P. nor in G.P. 100. What is the sum of the series 0.5 + 0.55 + 0.555 + ... to *n* terms? [2015-I]

(a)
$$\frac{5}{9} \left[n - \frac{2}{9} \left(1 - \frac{1}{10^n} \right) \right]$$
 (b) $\frac{1}{9} \left[5 - \frac{2}{9} \left(1 - \frac{1}{10^n} \right) \right]$
(c) $\frac{1}{9} \left[n - \frac{5}{9} \left(1 - \frac{1}{10^n} \right) \right]$ (d) $\frac{5}{9} \left[n - \frac{1}{9} \left(1 - \frac{1}{10^n} \right) \right]$

101. The value of the infinite product
$$6^{\frac{1}{2}} \times 6^{\frac{1}{2}} \times 6^{\frac{3}{8}} \times 6^{\frac{1}{4}} \times ...$$
 is [2015-II]

- 102. The *n*th term of an AP. is $\frac{3 \text{ n}}{4}$, then the sum of first 105 terms is [2015-II] (a) 270 (b) 735
 - (c) 1409 (d) 1470
- 103. If p, q, r are in one geometric progression and a, b, c are in another geometric progression, then ap, bq, cr are in [2015-II]

(a) Arithmetic progression (b) Geometric progression

(c) Harmonic progression (d) None of the above

104.	Wha	t is tł	ne sum	of n te	erms of	the s	eries		
	$\sqrt{2}$	$\sqrt{8}$	$\sqrt{18}$	$\sqrt{32}$?				[2015-II]
	(a)	$\frac{n(n)}{\sqrt{n}}$	$\frac{(-1)}{2}$			(b)	$\sqrt{2n}(n$	1)	
	(c)	$\frac{n(n)}{\sqrt{n}}$	$\frac{1}{2}$			(d)	$\frac{n(n-1)}{2}$		

DIRECTIONS (Qs. 105-106) : For the next two (2) items that follow

Given that
$$a_n = \int_0^{\pi} \frac{\sin^2 \{(n+1)x\}}{\sin 2x} dx$$
105. Consider the following statements: [2016-1]1. The sequence $\{a_{2n}\}$ is in AP with common difference zero.2. The sequence $\{a_{2n+1}\}$ is in AP with common difference zero.Which of the above statements is/are correct?(a) 1 only (b) 2 only(c) Both 1 and 2 (d) Neither 1 nor 2106. What is $a_{n-1} - a_{n-4}$ equal to ?(a) -1 (b) 0(c) 1 (d) 2DIRECTIONS (Qs. 107-108) : For the next two (2) items that follow.Given that $\log_x y$, $\log_z x$, $\log_y z$ are in GP, $xyz = 64$ and x^3 , y^3 , z^3 are in A.P.[2016-1]107. Which one of the following is correct ?x, y and z are(a) in AP only (b) in GP only(c) in both AP and GP(d) neither in AP nor in GP108. Which one of the following is correct?xy, yz and zx are(a) in AP only(b) in GP only(c) in both AP and GP(d) neither in AP nor in GP109. If m is the geometric mean of [2016-1]

$$\left(\frac{y}{z}\right)^{\log(yz)}, \left(\frac{z}{x}\right)^{\log(zx)} \text{ and } \left(\frac{x}{y}\right)^{\log(xy)}$$

then what is the value of m?

- (a) 1 (b) 3 (c) 6 (d) 9
- 110. How many geometric progressions is/are possible containing 27, 8 and 12 as three of its/their terms? [2016-II]
 (a) One
 (b) Two
 (c) Four
 (d) Infinitely many

DIRECTIONS (Qs. 111-113) : *Consider the following for the next three (03) items that follow.*

Let a, x, y, z, b be in AP, where x + y + z = 15. Let a, p, q, r, b be

in HP, where
$$p^{-1} + q^{-1} + r^{-1} = \frac{5}{3}$$
 [2016-II]

- 111. What is the value of ab?
 - (a) 10 (b) 9
 - (c) 8 (d) 6

Sequence and Series

112. What is the value of xyz?		
(a) 120	(b) 105	
(c) 90	(d) Cannot be determine	d
113. What is the value of pqr?		
(a) 35/243	(b) 81/35	
(c) 243/35	(d) Cannot be determine	d
DIRECTIONS (Qs. 114-115) : <i>C</i>	onsider the following for	the
next two (02) items that follow	0 00	
The sixth term of an AP is 2 and its	common difference is grea	ater
than 1.	[2016-	-11]
114. What is the common difference	e of the AP so that the prod	uct
of the first, fourth and fifth te	rms is greatest? [2016-	-11]
(a) 8/5	(b) 9/5	-
(c) 2	(d) 11/5	
115. What is the first term of the	AP so that the product of	the
first, fourth and fifth terms is	greatest? [2016-	-11]
(a) -4	(b) -6	-
(c) -8	(d) -10	
DIRECTIONS (Qs. 116-117) : <i>C</i>	onsider the following for	the
next two (02) items that follow.	<i>, , , , , , , , , ,</i>	
The interior angles of a polygon of	n sides are in AP. The smal	lest
angle is 120° and the common differe	nce is 5°. [2016	Ш
116. How many possible values ca	n n have?	1
(a) One	(b) Two	
(c) Three	(d) Infinitely many	
117. What is the largest interior an	gle of the polygon?	
(a) 160° only	(b) 195° only	
(c) Either 160° or 195°	(d) Nither 160 nor 195°	
$\ell n \left(\frac{y}{2} \right) = \ell n \left(\frac{x}{2} \right)$		
118. If x (z) . $y^{(n(XZ)^2}$. $z^{(y)} = y^{4\ell}$	^{ny} for any $x > 1$, $y > 1$ and $z > 1$	>1,
then which are of the following	r_{2} is correct? [2016]	m
(a) (a) (b) (b)	ig is correct? [2010-	·IIJ
(a) $\ell \Pi Y IS INCOMOLEUX, \ell \Pi$ (b) $\ell \Pi Y IS INCOMOLEUX (n)$	\mathbf{X} , $\ell \mathbf{\Pi} \mathbf{X}$ and $\ell \mathbf{\Pi} \mathbf{Z}$	
(b) ℓ in y is the AM of ℓ in x, ℓ in	\mathbf{X} , $\ell \mathbf{\Pi} \mathbf{X}$ and $\ell \mathbf{\Pi} \mathbf{Z}$	
(c) ℓ if y is the HW of ℓ if x, ℓ if (d) ℓ is the AM of ℓ in In x	in z and in z	
(d) ℓ if y is the AM of ℓ if, if x	$, \ell \Pi Z a \Pi U \ell \Pi Z$	11
119. What is the sum of the series $0.2 \pm 0.22 \pm 0.222 \pm 0.0222 \pm 0.000$	s [2017-	·IJ
$0.3 \pm 0.33 \pm 0.333 \pm \dots$ <i>n</i> term	S?	
$1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$1 \begin{bmatrix} 2(1, 1) \end{bmatrix}$	
(a) $\frac{1}{3} \left \frac{n - \frac{1}{9}}{1 - \frac{1}{10^n}} \right $	(b) $\frac{1}{3} \left \frac{n - \frac{1}{9}}{1 - \frac{1}{10^n}} \right $	
$1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	
(c) $\frac{1}{2} \left n - \frac{1}{2} \right \left 1 - \frac{1}{2} \right $	(d) $\frac{1}{2} \left n - \frac{1}{2} \right 1 + \frac{1}{2} \left 1 + \frac{1}{2} \right $	
$3 \begin{bmatrix} 3 \\ 10^n \end{bmatrix}$	$(a) 3 \begin{bmatrix} 9 \\ 10^n \end{bmatrix}$	
120. If the sum of m terms of an A	P is n and the sum of n ter	ms
is m, then the sum of $(m + n)$	terms is [2017	'-1]
(a) mn	(b) $m + n$	L
(c) $2(m+n)$	(d) $-(m+n)$	
	(\cdot, \cdot)	

121. The sum of the roots of the equation $x^2 + bx + c = 0$ (where b and c are non-zero) is equal to the sum of the reciprocals

of their squares. Then $\frac{1}{c}$, b, $\frac{c}{b}$ are in [2017-I] (a) AP (b) GP (c) HP

- (d) None of the above 122. The sum of the roots of the equation $ax^2 + x + c = 0$ (where a and c are non-zero) is equal to the sum of the reciprocals of their squares. Then a, ca^2 , c^2 are in [2017-1] (a) AP (b) GP
 - (d) None of the above (c) HP

123.	The	e fifth term of an AP of n t	erms	, whose sum is	s n ² – 2n, is <i>[2017-I]</i>
	(a)	5	(b)	7	
	(c)	8	(d)	15	
124.	The	sum of all the two-digit	odd n	numbers is	[2017-I]
	(a)	2475	(b)	2530	
	(c)	4905	(d)	5049	
125.	The	sum of the first n terms of	the s	eries $\frac{1}{2} + \frac{3}{4} + \frac{3}{4}$	$\frac{7}{8} + \frac{15}{16} + \dots$
	is e	qual to			[2017-]]
	(a)	$2^{n} - n - 1$	(b)	$1 - 2^{-n}$	[-•-•-]
	(c)	$2^{-n} + n - 1$	(d)	$2^{n} - 1$	
126.	Let: and the	x, y, z be positive real num $\tan^{-1} x$, $\tan^{-1} y$ and $\tan^{-1} y$ following is correct?	nbers z are	such that x, y, in AP. Then w	z are in GP hich one of
	(a)	x = y = z	(b)	xz=1	[2017]
	(c)	$x \neq y$ and $y = z$	(d)	$x = y$ and $y \neq z$	ÉZ
127.	If S first	$S_n = nP + \frac{n(n-1)Q}{2}$, when t n terms of an AP, then the	ere S _r ne cor	denotes the nmon differen	sum of the
	()	D + O	a >	20 + 20	[2017-11]
	(a)	P+Q	(b)	2P+3Q	
	(C)	2Q	(a)	Q	
			$\frac{1}{2}$	$\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$	
128.	The	e value of the product	$6^2 \times 6^2$	$6^4 \times 6^8 \times 6^{16}$	\times up to
	infi	nite terms is			[2017-II]
	(a)	6	(b)	36	
	(c)	216	(d)	512	
129.	Ap	erson is to count 4500 nc	otes. L	Let a_n denote t	the number
	of n	otes he counts in the nth	n min	ute. If $a_1 = a_2$	$a_2 = a_3 = \dots$
	$=a_1$	$a_{10} = 150$, and a_{10}, a_{11}, a_{12} ,	ar	e in AP with the	ne common
	ann	erence -2 , then the time	laker		
	(a)	24 minutes	(h)	34 minutes	[2017-11]

(d) 135 minutes

(d) $x = \frac{1-y}{y}$

(b) 0

(d) $\log_{e} 3$

[2017-II]

[2017-II]

[2017-II]

(c) 125 minutes (d) 155 minutes 130. If $y = x + x^2 + x^3 + \dots$ up to infinite terms where x < 1, then

131. The value of $\frac{1}{\log_3 e} = \frac{1}{\log_3 e^2} = \frac{1}{\log_3 e^4} = \dots$ up to infinite

132. If x_1 and x_2 are positive quantities, then the condition for

geometric mean to be greater than 1 is

the difference between the arithmetic mean and the

which one of the following is correct?

(a) $x = \frac{y}{1+y}$ (b) $x = \frac{y}{1-y}$

(c) 125 minutes

terms is (a) $\log_e 9$

(c) 1

(c) $x = \frac{1+y}{y}$

(a) $x_1 + x_2 > 2\sqrt{x_1x_2}$

(b) $\sqrt{x_1} + \sqrt{x_2} > \sqrt{2}$

(c) $|\sqrt{x_1} + \sqrt{x_2}| > \sqrt{2}$

(d) $x_1 + x_2 < 2(\sqrt{x_1x_2} + 1)$

м-71

- 133. If the ratio of AM to GM of two positive numbers a and b is 5:3, then a : b is equal to [2018-I] (a) 3:5 (b) 2:9
 - (c) 9:1 (d) 5:3
- 134. If $x = 1 y + y^2 y^3 + ...$ up to infinite terms, where |y| < 1, then which one of the following is correct? [2018-1]

(a)
$$x \frac{1}{1 y}$$
 (b) $x \frac{y}{1 - y}$
(c) $x \frac{y}{1 y}$ (d) $x \frac{y}{1 - y}$

- 135. What is the sum of all two-digit numbers which when divided by 3 leave 2 as the remainder? [2018-I] (a) 1565 (b) 1585
 - (c) 1635 (d) 1655
- 136. The third term of a GP is 3. What is the product of the first five terms? [2018-1]
 - (a) 216
 - 226 (b)
 - (c) 243
 - Cannot be determined due to insufficient data (d)
- 137. If x, $\frac{3}{2}$, z are in AP; x, 3, z are in GP; then which one of the following will be in HP? [2018-I]
 - (a) x, 6, z (b) x,4,z (d) x, 1, z(c) x, 2, z
- 138. If an infinite GP has the first term x and the sum 5, then which of the following is correct? [2018-II] (b) -10 < x < 0(a) x < -10

(c)
$$0 < x < 10$$
 (d) $x > 10$

139. The sum of the series $3 - 1 + \frac{1}{3} - \frac{1}{9}$ is equal to [2018-II]

(a)	$\frac{20}{9}$	(b)	$\frac{9}{20}$
(c)	$\frac{9}{4}$	(d)	$\frac{4}{9}$

- 140. Let T_r be the rth term of an AP for r = 1, 2, 3, ... If for some distinct positive integers m and n we have $T_m = 1/n$ and T = 1/m, then what is T_{mn} equal to? [2018-II] $T_n = 1/m$, then what is T_{mn} equal to? (b) $m^{-1} + nn^{-1}$ (a) $(mn)^{-1}$ (c) 1 (d) 0
- 141. If the second term of a GP is 2 and the sum of its infinite term is 8, then the GP is [2018-II]

(a)
$$8, 2, \frac{1}{2}, \frac{1}{8}, \dots$$
 (b) $10, 2, \frac{2}{5}, \frac{2}{25}, \dots$
(c) $4, 2, 1, \frac{1}{2}, \frac{1}{2^2}, \dots$ (d) $6, 3, \frac{3}{2}, \frac{3}{4}, \dots$

142. If a, b, c are in AP or GP HP, then
$$\frac{a-b}{b-c}$$
 is equal to [2018-II]

(a)
$$\frac{b}{a}$$
 or 1 or $\frac{b}{c}$ (b) $\frac{c}{a}$ or $\frac{c}{b}$ or 1

(c)
$$1 \text{ or } \frac{a}{b} \text{ or } \frac{a}{c}$$
 (d) $1 \text{ or } \frac{a}{b} \text{ or } \frac{c}{a}$

143. If sin β is the harmonic mean of sin α and cos α , and sin θ is the arithmetic mean of sin α and cos α , then which of the following is/are correct? [2018-II]

1.
$$\sqrt{2}\sin\left(\alpha + \frac{\pi}{4}\right)\sin\beta = \sin 2\alpha$$

2. $\sqrt{2}\sin\theta = \cos\left(\alpha - \frac{\pi}{4}\right)$

Select the correct answer using the code given below: (a) 1 only (b) 2 only

- (c) Both 1 and 2 (d) Neither 1 nor 2
- 144. If $x_i > 0$, $y_i > 0$ (i = 1, 2, 3, n) are the values of two variable X and Y with geometric mean P and Q respectively, then the

geometric mean of
$$\frac{X}{Y}$$
 is [2018-II]

(a)
$$\frac{P}{Q}$$
 (b) antilog $\left(\frac{P}{Q}\right)$

(c) $n(\log P - \log Q)$ (d) $n(\log P + \log Q)$

- 145. What is the nth term of the sequence 25, -125, 625, -3125, ...? [2019-I]
 - (a) $(-5)^{2n-1}$ (b) $(-1)^{2n} 5^{n+1}$ (c) $(-1)^{2n-1} 5^{n+1}$ (d) $(-1)^{n-1} 5^{n+1}$
- 146. The numbers 1, 5 and 25 can be three terms (not necessarily consecutive) of [2019-I]
 - (a) only one AP
 - (b) more than one but ûnite numbers of APs
 - (c) inûnite number of APs
 - (d) ûnite number of GPs
- 147. The sum of $(p + q)^{\text{th}}$ and $(p q)^{\text{th}}$ terms of an AP is equal to [2019-I]
 - (b) (2q)th term (a) $(2p)^{\text{th}}$ term

(d) Twice the q^{th} term (c) Twice the pth term

- 148. What is the Fourth term of an AP of n terms whose sum is n (n+1)?[2019-1] (a) 6 (b) 8
 - (c) 12 (d) 20

Sequence and Series

	ANSWER KEY																		
1	(a)	16	(d)	31	(b)	46	(a)	61	(b)	76	(c)	91	(c)	106	(b)	121	(c)	136	(c)
2	(c)	17	(c)	32	(d)	47	(a)	62	(b)	77	(c)	92	(b)	107	(c)	122	(a)	137	(a)
3	(a)	18	(c)	33	(a)	48	(b)	63	(c)	78	(d)	93	(c)	108	(c)	123	(b)	138	(c)
4	(c)	19	(c)	34	(b)	49	(d)	64	(b)	79	(d)	94	(a)	109	(a)	124	(a)	139	(c)
5	(c)	20	(a)	35	(b)	50	(c)	65	(d)	80	(b)	95	(b)	110	(d)	125	(c)	140	(c)
6	(a)	21	(a)	36	(c)	51	(b)	66	(b)	81	(c)	96	(a)	111	(b)	126	(a)	141	(c)
7	(c)	22	(c)	37	(b)	52	(c)	67	(a)	82	(b)	97	(b)	112	(b)	127	(d)	142	(c)
8	(b)	23	(c)	38	(a)	53	(c)	68	(c)	83	(b)	98	(a)	113	(c)	128	(a)	143	(c)
9	(a)	24	(b)	39	(a)	54	(d)	69	(c)	84	(a)	99	(c)	114	(a)	129	(b)	144	(b)
10	(a)	25	(c)	40	(b)	55	(c)	70	(b)	85	(a)	100	(d)	115	(b)	130	(a)	145	(d)
11	(b)	26	(b)	41	(c)	56	(a)	71	(b)	86	(a)	101	(b)	116	(a)	131	(a)	146	(c)
12	(d)	27	(b)	42	(c)	57	(d)	72	(c)	87	(a)	102	(d)	117	(a)	132	(c)	147	(c)
13	(a)	28	(b)	43	(a)	58	(a)	73	(c)	88	(a)	103	(b)	118	(b)	133	(c)	148	(b)
14	(d)	29	(d)	44	(d)	59	(c)	74	(c)	89	(a)	104	(c)	119	(a)	134	(a)		
15	(a)	30	(a)	45	(b)	60	(d)	75	(d)	90	(a)	105	(c)	120	(d)	135	(c)		

HINTS & SOLUTIONS

4.

1. (a) Since first term = p and common difference = q.

Sum of first 10 terms = $\frac{10}{2} [2p + (10 - 1)q]$ and Sum of first 5 terms = $\frac{5}{2} [2p + (5 - 1)q]$ According to question,

$$\frac{10}{2} [2p+9q] = 4 \times \frac{5}{2} [2p+4q]$$

$$\Rightarrow 2p+9q = 4p+8q$$

$$\Rightarrow 2p = q$$

$$\Rightarrow p: q = 1:2$$

2. (c) If one root is $\frac{1}{2-3i}$ i.e, $\frac{2+3i}{4+9} = \frac{2}{13} + \frac{3}{13}i$, then another

root will be $\frac{2}{13} - \frac{3i}{13}$ i.e, $\frac{1}{2+3i}$. [Since complex roots are conjugate]

So, statement(1) is not correct. Since, quadratic equation has two roots thus this equation has only imaginary roots. Statement (2) is correct.

$$x^2 - (Sum of roots) x + (Product of roots) = 0$$

Sum of roots =
$$\frac{1}{2-3i} + \frac{1}{2+3i} = \frac{4}{13}$$

Product of roots =
$$\frac{1}{2-3i} \times \frac{1}{2+3i} = \frac{1}{13}$$

$$\Rightarrow x^{2} - \frac{4}{13}x + \frac{1}{13} = 0 \Rightarrow 13x^{2} - 4x + 1 = 0$$

 \Rightarrow So, statement 3 is correct. Thus, (2) and (3) statements are correct. 3. (a) The given series is $(1 \times 3) + (3 \times 5) + (5 \times 7) + \dots$ Its general term is given by $T = (2n-1)(2n+1) = 4n^2 - 1$

$$I_{n} = (2n - 1)(2n + 1) = 4n^{2} -$$

Sum of series = $4\Sigma n^{2} - \Sigma 1$
 $4n(n - 1)(2n - 1)$

$$S_{n} = \frac{4n(n-1)(2n-1)}{6} - n$$

$$S_{n} = n \left[\frac{2(2n^{2} + 3n + 1)}{3} - 1 \right]$$

$$S_{n} = n \left[\frac{4n^{2} + 6n + 2 - 3}{3} \right]$$

$$S_{n} = \left[\frac{n(4n^{2} + 6n - 1)}{3} \right]$$

For sum of first 50 terms of the series, n = 50,

$$S_{50} = \frac{50[4(50)^2 + 6(50) - 1]}{3}$$

= $\frac{50 \times (10000 + 300 - 1)}{3} = \frac{50 \times 10299}{3} = 171650$
(c) $x = 1 + \frac{y}{2} + \left(\frac{y}{2}\right)^2 + \left(\frac{y}{2}\right)^3 + \dots$

Here,
$$\frac{y}{2} < 1$$
 and this a GP. with first term = 1 and common

ratio =
$$\frac{y}{2}$$
 so,
 $\Rightarrow x = \frac{1}{1 - \frac{y}{2}} \Rightarrow x = \frac{2}{2 - y}$
 $\Rightarrow 2x - xy = 2 \Rightarrow y = \frac{2x - 2}{x}$

м-73

м-74 5. The GP is a, ar, ar^2 ,..... ar^{2n} (c) So, $P = a \cdot ar \cdot ar^2 \cdot ar^3 \dots ar^{2n}$ $= a^{2n+1} r^{1+2+\dots+2n}$ $= a^{(2n+1)}r^{\frac{2n(2n+1)}{2}} = a^{2n+1}r^{n(2n+1)} = (ar^n)^{(2n+1)}$ = (2n + 1)th power of the (n + 1)th term of G.P. (a) If x, y, z are in GP then x $\cdot z = y^2$ 6. Here $x = \frac{1}{8}$, $z = \log_a a^2$, $y = (\log_a^2 a)$ 11. $\frac{1}{8} \times \log_a a^2 = \frac{1}{8} \cdot 2 = \frac{1}{4}$ and $(\log_{a^2} a)^2 = (\frac{1}{2})^2 = \frac{1}{4}$ Hence, $\frac{1}{8}$, $\log_{a^2} a$, $\log_a a^2$ are in GP. Thus, both A and R are individually true and R is correct 12. explanation of A. (c) If (x+1), (4x+1) and (8x+1) are in GP. 7. then $(4x+1)^2 = (x+1)(8x+1)$ $\Rightarrow 16x^2 + 8x + 1 = 8x^2 + x + 8x + 1$ $\Rightarrow 8x^2 - x = 0 \Rightarrow x(8x - 1) = 0$ = \Rightarrow x = 0, $\frac{1}{8}$, [$\frac{1}{8}$ is non-trivial value] 8. (b) The given equation $(a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0$ has equal roots, so, discriminant = 0Hence, $\{2b(a+c)\}^2 - 4(a^2+b^2)(b^2+c^2) = 0$ $\Rightarrow 4b^2(a^2+c^2+2ca)-4(a^2b^2+a^2c^2+b^4+b^2c^2)$ = 0expansion of $\begin{bmatrix} 1 - \frac{x}{x} \end{bmatrix}^{-n}$ $\Rightarrow b^{2}a^{2} + b^{2}c^{2} + 2b^{2}ca - a^{2}b^{2} - a^{2}c^{2} - b^{4} - b^{2}c^{2} = 0$ $\Rightarrow 2b^2ca = b^4 + a^2c^2$ $\Rightarrow b^4 - 2b^2ca + a^2c^2 = 0$ $\Rightarrow (b^2)^2 - 2(b^2)(ac) + (ac)^2 = 0$ $\Rightarrow (b^2 - ac)^2 = 0$ 14. \Rightarrow b² = ac \Rightarrow a, b, c are in GP. 9. (a) Let first term and common difference of an AP are a and d respectively. Its P^{th} term = a + (p-1)d = q...(i) and q^{th} term = a + (q - 1) d = p...(ii) Solving Eqs. (i) and (ii), we find a = p + q - 1, d = -110. (a) Given that a, b, c, are in GP. Let r be common ratio of GP. So, a = a, b = ar and $c = ar^2$...(i) 15. Also, given that a, 2b, 3c are in AP. $\Rightarrow 2b = \frac{a+3c}{2}$

NDA Topicwise Solved Papers - MATHEMATICS

 $\Rightarrow 4b = a + 3c$ From Eq. (1) $4ar = a + 3ar^2$ $\Rightarrow 3ar^2 - 4ar + a = 0$ $\Rightarrow 3r^2 - 4r + 1 = 0$ \Rightarrow 3r²-3r-r+1=0 \Rightarrow 3r(r-1)-1(r-1)=0 \Rightarrow (r-1)(3r-1)=0 \Rightarrow r = 1 or r = $\frac{1}{3}$, r = $\frac{1}{3}$ is in the choice. (b) Since, first term and common difference of an AP are u and v respectively. p^{th} term, Tp = u + (p-1)v...(i) and q^{th} term, $T_q = u + (q-1)v$...(ii) According to condition given in question, $\Rightarrow T_p = T_q + 15uv$ $\Rightarrow T_p - T_q = 15uv$ $\Rightarrow u + (p-1)v - u - (q-1)v = 15uv$ \Rightarrow v(p-1-q+1) = 15 uv \Rightarrow v(p-q) = 15uv \Rightarrow p-q=15u \Rightarrow p=q+15u (d) Since, a, b, c, are in AP $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in HP. Since, $AM \ge HM$

$$\Rightarrow b \ge \frac{2ac}{a+c}$$

[since AM= b and HM= $\frac{2ac}{a+c}$] $\Rightarrow ab + bc \geq 2ac$

13. (a) Given that $1 + n \left[\frac{x}{1-x} \right] + \frac{n(n+1)}{2!} \left[\frac{x}{1-x} \right]^2 + ...\infty$ is

So, it is
$$= \left[1 - \frac{x}{1 - x}\right]^{-n} = \left[\frac{1 - x - x}{1 - x}\right]^{-n} = \left[\frac{1 - x}{1 - 2x}\right]^{n}$$

(d) Let the first term and common difference of an AP be a and d respectively. Then, as given

$$(p+1)(2p+1) = \left(\frac{2p+1}{2}\right) \{2a + (2p+1-1)d\}$$

$$\Rightarrow (p+1) = \frac{1}{2} \{2a+2pd\}$$

$$\Rightarrow (p+1) = a + pd$$

$$\Rightarrow p+1 = a + [(p+1)-1]d = t_{p+1}$$

Hence, the inference is : the $(p+1)$ th term of the AP is
 $(p+1)$.
(a) If a, b, c are in G.P. then,
 $b^2 = ac \Rightarrow b = (ac)^{1/2}$ (1)

Taking \log_n on both the sides of eq. (1).

$$log_{n}b = \frac{1}{2} (log_{n}(ac)) = \frac{log_{n} a - log_{n} c}{2}$$

or, $\frac{log_{n} a + log_{n} c}{2} = log_{n} b$
So, $log_{n} a$, $log_{n} b$ and $log_{n} c$ are in AP.
Hence, $\frac{1}{log_{n} a}, \frac{1}{log_{n} b}, \frac{1}{log_{n} c}$ are in H.P.
 $log_{a} n = \frac{1}{log_{n} a}$
 $log_{b} n = \frac{1}{log_{n} b}$
 $log_{c} n = \frac{1}{log_{n} c}$

i.e. $\log_a n$, $\log_b n$, and $\log_c n$ are in HP.

16. (d)
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots$$
 can be written as

$$1 + \left(-\frac{1}{2}\right) + \left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right)^3 + \dots$$

[:: This is a GP with first term = 1 and common ratio

$$=-\frac{1}{2}$$
]

So, sum of the series

$$=\frac{1}{1-\left(-\frac{1}{2}\right)}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}$$

17. (c) b_1, b_2, b_3 are in AP with common difference d, so $b_2 = b_1 + d$ and $b_3 = b_1 + 2d$

As given,
$$b_3^2 = b_2b_3 + b_1d + 2$$

$$\Rightarrow (b_1 + 2d)^2 = (b_1 + d) (b_1 + 2d) + b_1d + 2$$

$$\Rightarrow b_1^2 + 4d^2 + 4b_1d = b_1^2 + 2b_1d + b_1d + 2d^2 + b_1d + 2$$

$$\Rightarrow 2d^2 = 2$$

$$\Rightarrow d^2 = 1$$

$$\Rightarrow d = \pm 1$$
i.e. $d = 1 \text{ or } -1$
Since, $d > 0$, -1 is discarded and $d = 1$
As given 1, x, y, z 16 are in geometric progression.
Let common ratio be r,
 $x = 1$, $r = r$
 $y = 1$, $r^2 = r^2$

18. (c)

 $n = -\frac{1}{2}$ On putting this value in Eq. (i)

 \Rightarrow

$$\Rightarrow \left(-\frac{1}{2}\right) x \quad \frac{1}{8}$$
$$\Rightarrow \quad x = -\frac{1}{4}.$$
But S $(1 \quad x)^n \quad \left(1 - \frac{1}{4}\right)^{-1/2}$
$$\left(\frac{3}{4}\right)^{-1/2} \quad \frac{2}{\sqrt{3}}.$$

22. (c) Let series be a, G_1 , b and a', G_2 , b' so, $G_1 = \sqrt{ab}$ and $G_2 = \sqrt{a'b'}$

Series formed by ratio of the corresponding terms are : c = c

$$\frac{a}{a'}, \frac{G_1}{G_2}, \frac{b}{b'}.$$

Geometric means of this series = $\sqrt{\frac{a}{a}}, \frac{b}{b}$

$$= \sqrt{\frac{ab}{a'b'}} = \frac{\sqrt{ab}}{\sqrt{a'b'}} = \frac{G_1}{G_2}$$

So, geometric mean of the ratio of corresponding term of two series where G_1 and G_2 are geometric means of

two series is
$$\frac{G_1}{G_2}$$
.

23. (c) As given :

Points A (a,ma), B [b, (m+1)b]and C[c,(m+2)c] are collinear.

- $\Rightarrow a\{(m+1)b-(m+2)c\}+b\{(m+2)c-ma\} + c\{ma-(m+1)b\}=0$ $\Rightarrow mab+ab-mac-2ac+mbc+2bc-mab+mac - mbc-bc=0$
- $\Rightarrow ab 2ac + 2bc bc = 0$
- $\Rightarrow ab + bc = 2ac$

Dividing both the sides by abc, we get

$$\frac{1}{c} + \frac{1}{a} = \frac{2}{b}$$
$$\Rightarrow \quad \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \text{ are in A.P}$$

 \Rightarrow a, b, c, are in Harmonic progression for all m.

24. (b) (A) :
$$0.3 + 0.03 + 0.003 + ... = \frac{1}{3}$$

Let $S = 0.3 + 0.03 + 0.003 + \dots$ This is geometric series with

first term, a = 0.3 and common ration, $r = \frac{1}{10}$.

So,
$$S = \frac{a}{1-r} = \frac{0.3}{1-\frac{1}{10}} = \frac{0.3 \times 10}{9}$$

 $= \frac{3}{9} = \frac{1}{3}$. So, (A) is true.
(R) : As given : $a_n = a + nd$
 $\Rightarrow a_1 + a_2 + ... + a_n$
 $= a + d + a + 2d + ... + a + nd$
 $= na + (1+2+...+n)d$
 $= na + \frac{n(n+1)d}{2} = \frac{n}{2}[2a + (n+1)d]$

So, (R) is also true Hence, both (A) and (R) are true. but R is not the correct explanation of (A) (c) As given : a, b, c, d are in AP

25.

$$\Rightarrow \quad \frac{1}{a}, \frac{1}{b}, \frac{1}{c}, \frac{1}{d} \text{ are in HP}$$

Multiplying by abcd throughout

$$\Rightarrow \frac{abcd}{a}, \frac{abcd}{b}, \frac{abcd}{c}, \frac{abcd}{d}, \text{ are in HP}$$

 \Rightarrow bcd, acd, abd, abc are in HP.

26. (b) The given expression $9^{1/3}$, $9^{1/9} 9^{1/27} \dots \infty$ Can be written as :

$$9^{\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\dots\infty} = 9^{\frac{\frac{1}{3}}{1-\frac{1}{3}}} = 9^{\frac{1}{3}/\frac{2}{3}} = 9^{1/2} = 3$$

27. (b) Since, a > d and a, b, c, d are in HP. $\Rightarrow a > b > c > d$.

$$b = \frac{2 a c}{a + c} \Longrightarrow b^2 d = \frac{2 a b c d}{a + c}$$

and
$$c = \frac{2bd}{b+d} \Rightarrow c^2a = \frac{2abcd}{b+d}$$

$$\frac{c^2 a}{b^2 d} = \frac{a+c}{b+d}$$
$$\Rightarrow \quad \frac{a+c}{b+d} = \left(\frac{a}{b}\right) \cdot \left(\frac{c}{d}\right) \cdot \left(\frac{c}{b}\right) > 1$$

$$\Rightarrow a+c>b+d$$

(b) Let first instalement be Rs. x and difference of consecutive instalments be Rs. d.

$$\Rightarrow \frac{30}{2} [2x + 29d] = \frac{3600 \times 2}{3}$$

(:. 1/3rd amount is unpaid, 2/3rd amount is paid)

$$\Rightarrow 2x + 29d = \frac{2400}{15}$$

 \Rightarrow

29.

$$2x + 29d = 160$$
 ... (1)

Since total amount was 3600 and it was to be paid in 40 installment.

$$\Rightarrow \frac{40}{2} [2x + 39d] = 3600$$

$$\Rightarrow 2x + 39d = 180 \qquad ...(2)$$

On solving eqs. (1) and (2), we get
 $x = 51$ and $d = 2$
First instalment = Rs. 51

(d) Let a be the first term and r, the common ratio First nine terms of a GP are a, ar, $ar^2, \dots ar^8$.

:.
$$P = a.ar. ar^2 ... ar^8 = a^9 .r^{1+2+...+8}$$

$$= a^{9} \cdot r^{\frac{8.9}{2}} = a^{9} r^{36} = (ar^{4})^{9} = (T_{5})^{9}$$

= 9th power of the 5th term

Sequence and Series

30. (a) If the sequence is in AP with first term, a and common difference, d. $\Rightarrow T_n = a + (n - 1) d$ Also $T_{n-1} = a + (n - 2) d$ So, the sequence is in AP for which difference between the nth term and (n-1)th term is independent of n. 31. (b) As given : $\frac{1}{b-c} + \frac{1}{b-a} = \frac{1}{a} + \frac{1}{c}$ $\Rightarrow \frac{1}{b-c} - \frac{1}{a} + \frac{1}{b-a} - \frac{1}{c} = 0$ $\Rightarrow \frac{a-b+c}{a(b-c)} + \frac{c-b+a}{c(b-a)} = 0$ $\Rightarrow (a-b+c)\left\{\frac{1}{a(b-c)} + \frac{1}{c(b-a)}\right\} = 0$ $\Rightarrow \frac{cb - ac + ab - ac}{ac(b - c)(b - a)} = 0$ \Rightarrow cb ab 2ac Dividing both sides by abc $\Rightarrow \frac{1}{a} + \frac{1}{c} = \frac{2}{b} \Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \text{ are in AP.} \Rightarrow a, b, c \text{ are in HP.}$ 32. (d) Let $S = 3 + 7 + 13 + 21 + 31 + \dots + a_n$ $-S = _ 3 \pm 7 \pm 13 \pm 21 \pm 31 \pm ... \pm a_{n-1} \pm a_n$ $0 = 3 + 4 + 6 + 8 + 10 + 12 + \dots - a_n$ $\Rightarrow a_n = 3 + [4 + 6 + 8 + 10 + 12 + ... (n-1)]$ $=3+\frac{(n-1)}{2}[8+\{(n-1)-1\}\times 2]$ $=3+\frac{(n-1)}{2}[8+2n-4]$ $=3+\frac{(n-1)}{2}(2n+4)$ = 3 + (n-1)(n+2) $∴ 15th term = a_{15} = 3 + (15-1)(15+2)$ = 3 + 14 × 17 = 24133. (a) Given $a_n = 2n - 1$ $\therefore S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n (2n-1)$

$$\overline{k=1} \qquad \overline{k=1}$$
$$= 2\sum_{k=1}^{n} n - n = 2 \cdot \frac{n(n-1)}{2} - n \quad n^2 \quad n - n \quad n^2$$

34. (b) Harmonic mean of three number x1, x2, x3 is

$$\frac{3}{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}}$$

:. H. M = $\frac{3}{\frac{1}{3} + \left(\frac{-1}{6}\right) + \left(\frac{-1}{6}\right)} = \frac{3}{\frac{1}{3} - \frac{1}{3}} = \frac{3}{0} = \infty$

(b) Geometric mean =
$$n \sqrt[1]{1.2.4.8...2^n}$$

(:: there are $(n + 1)$ multiples from 2° to 2^n)
= $n \sqrt[1]{2^0.2^{1}.2^2.2^3...2^n}$
= $n \sqrt[1]{2^{1+2+3+...+n}} = n \sqrt[1]{\frac{n(n-1)}{2}}$
= $\left[\frac{n(n-1)}{2}\right]^{\frac{1}{n-1}} \frac{n}{2^2}$
(c) Let the AP is
a, a + d, a + 2d,, a + (2n - 1) d, a + 2nd
Series of even terms.
a + d, a + 3d,, a + (2n - 1)d, has n terms
Sum of even number = $\frac{n}{2}[(a + d) + \{a + (2n - 1)d\}]$

$$=\frac{n}{2}[2a+2nd]=n[a+nd]$$

Series of odd terms

35.

36.

 $a, a + 2d, a + 4d, \dots, a + 2 nd, has (n + 1) terms.$

Sum of odd numbers = $\frac{n+1}{2}[a+(a+2nd)]$

$$= \frac{n+1}{2}(2a+2nd)$$

= (n+1)(a+nd)

So, the required ratio = $\frac{n+1}{n}$

37. (b) Given,

$$S_{n} = n^{2} - 2n$$

$$\therefore a_{n} = S_{n} - S_{n-1}$$

$$= n^{2} - 2n - [(n-1)^{2} - 2(n-1)]$$

$$= n^{2} - 2n - [n^{2} + 1 - 2n - 2n + 2] = 2n - 3$$
38. (a) Since, a, 2a + 2 and 3a + 3 are in GP

$$\therefore (2a+2)^{2} = a (3a+3)$$

$$\Rightarrow 4a^{2} + 4 + 8a = 3a^{2} + 3a \Rightarrow a^{2} + 5a + 4 = 0$$

$$\Rightarrow a (a+4) + 1(a+4) = 0 \Rightarrow (a+4) (a+1) = 0$$

$$\Rightarrow a + 4 = 0 \text{ or } a + 1 = 0$$

$$\Rightarrow a = -4 \text{ or } - 1$$

Let the fourth term be x.

$$\therefore \frac{a}{2a+2} = \frac{3a+3}{x}$$

$$\Rightarrow x = \frac{(3a+3)(2a+2)}{a}$$
When $a = -4$,
 $x = -13.5$
and $a = -1$, $x = 0$
So, the fourth term is -13.5

NDA Topicwise Solved Papers - MATHEMATICS N. Let the Geometric progression be a gr $ar^2 ar^3 ar^4$

44.

- (a) Let $S = 9 + 99 + 999 + \dots$ 39. $=(10^{1}-1)+(10^{2}-1)+(10^{3}-1)+...$ $=(10+10^2+10^3+...)-(1+1+1+...100$ times) $=\frac{10(10^{100}-1)}{10-1}-100 \quad (::10, 10^2, 10^3 \dots :: \text{ is GP. with}$ a = 10, r = 10, S₁₀₀ = $\frac{a(r^{100} - 1)}{r - 1}$) $=\frac{10}{9}(10^{100}-1)-100$
- (b) We know, $HM = \frac{(GM)^2}{AM}$ 40.

$$\therefore$$
 HM = $\frac{16}{5}$

41. (c) Harmonic mean = 21.6 and a = 27We know that,

Harmonic mean
$$= \frac{2ab}{a \ b} \Rightarrow 21.6 \quad \frac{2 \times 27 \times b}{27 \ b}$$

 $\Rightarrow 583.2 = 54b - 21.6b$
 $\Rightarrow b \quad \frac{583.2}{32.4} \quad 18$

42. (c) Let the Geometric progression be a, ar, ar^2 , ar^3 , ... with common ratio r and first term 'a'. According to the question, we have $a + ar = 8 \implies a(1 + r) = 8$...(i) and $a + ar + ar^2 + ar^3 = 80$ \Rightarrow a(1+r)+ar²(1+r)=80 $\Rightarrow a(1+r)(1+r^2) = 80$

$$\Rightarrow a(1+1)(1+1^{2}) = 80 \qquad (from (i))$$

$$\Rightarrow 1 r^{2} \frac{80}{8} 10$$

$$\Rightarrow r^{2} = 10 - 1 = 9$$

$$\Rightarrow r = 3 \qquad (\because r > 0)$$
From eq. (i), $a(1+3) = 8$

$$\Rightarrow a = 2$$

Now,
$$6^{\text{th}}$$
 term = $ar^5 = 2(3)^5 = 2 \times 243 = 486$
43. (a) $\log_2 x$, $\log_3 x$, $\log_x 16$ are in G.P.

$$\therefore \frac{\log_3 x}{\log_2 x} = \frac{\log_x 16}{\log_3 x}$$

$$\Rightarrow (\log_3 x)^2 = \log_2 x \cdot \log x 16$$

$$\Rightarrow 2 \times \log_3 x = \log_2 x \cdot \log x 2^4$$

$$\Rightarrow 2 \times \log_3 x = 4 \times \log_2 x \cdot \log_x 2$$

$$\Rightarrow \log_3 x = 2(\log_2 x \times \log_x 2)$$

$$\Rightarrow \log_3 x = 2\left[\frac{\log_2 x}{\log_2 x}\right] \qquad \left(\because \log_b a = \frac{1}{\log_a b}\right)$$

$$\Rightarrow \log_3 x = 2 \Rightarrow x = 3^2 = 9$$

44. (d) Let the Geometric progression be a, ar, ar², ar³, ar⁴,...
First five terms of a geometric progression are a, ar, ar²,
ar³, ar⁴.

$$\therefore \text{ Mean } \frac{a \ ar \ ar^2 \ ar^3 \ ar^4}{5}$$

$$\frac{a(r^5-1)}{5(r-1)} \left(\because \text{ Sum of G.P} \ \frac{a(r^n-1)}{r-1} \right)$$
45. (b) Since nth term of A.P = a + (n-1)d

$$\therefore p = 1 + (n-1)2$$
(\because First term = a = 1 and common difference = d = 2)

$$\Rightarrow n \ \frac{p-1}{2}$$

$$\therefore (1+3+5+.....+p) + (1+3+5+....+q) = (1+3+5+....+r)$$

p 1

$$\Rightarrow \frac{\frac{p-1}{2}}{2} \left[2 \times 1 \left(\frac{p+1}{2} - 1 \right) 2 \right]$$

$$(q \ 1)$$

$$+\frac{\left(\frac{1}{2}\right)}{2}\left[2\times 1+\left(\frac{q+1}{2}-1\right)2\right]$$
$$=\frac{r+1}{4}\left[2\times 1+\left(\frac{r+1}{2}-1\right)2\right]$$
$$\Rightarrow \frac{p-1}{4}2+(p-1) \quad \frac{q-1}{4}2 \quad (q-1)$$

$$\frac{r}{4} \begin{bmatrix} 2 & r-1 \end{bmatrix}$$

$$\Rightarrow (p \ 1)^2 \ (q \ 1)^2 \ (r \ 1)^2$$
This is the possible only when $p = 7$, $q = 5$, $r = 6$

This is the possible only when
$$p = 7$$
, $q = 5$, $r = 9$
 $\therefore p + q + r = 7 + 5 + 9 = 21$

46. (a) Let
$$x^2, y^2, z^2$$
 are in A.P
 $\Rightarrow y^2 - x^2 = z^2 - y^2$
 $2y^2 = x^2 + z^2$
(a) Suppose $y + z = z + y$ and $y + z$

(a) Suppose y + z, z + x and x + y are in A-P $\therefore (z+x)-(y+z)=(x+y)-(z+x)$ 2(z+x)=(y+z)+(x+y) $\Rightarrow 2z+2x=2y+z+x \Rightarrow z+x=2y$ \Rightarrow x, y and z are in AP. Which is true

(b) Let
$$y + z$$
, $z + x$, $x + y$ are in HP.

$$\therefore z \quad x \quad \frac{2(y \quad z)(x \quad y)}{y \quad z \quad x \quad y}$$

$$\Rightarrow z \quad x \quad \frac{2(y \quad z)(x \quad y)}{2y \quad z \quad x}$$

$$\Rightarrow 2yz + z^2 + zx + 2xy + xz + x^2$$

$$= 2yx + 2y^2 + 2zx + 2yz$$

$$\Rightarrow z^2 + x^2 = 2y^2$$

$$\Rightarrow x^2, y^2 \text{ and } z^2 \text{ are in AP. Which is true.}$$
Hence, $y + z, z + x$ and $x + y$ are in A.P.

47. (a) Since, x, 2x + 2, 3x + 3 are the terms of G.P
therefore
$$\frac{2x+2}{x} = \frac{3x+3}{2x+2}$$

 $\Rightarrow (2x+2)^2 = x(3x+3) \Rightarrow 4x^2 + 4 + 8x = 3x^2 + 3x$
 $\Rightarrow x^2 + 5x + 4 = 0$
 $\Rightarrow x(x+4) + 1(x+4) = 0$
 $\Rightarrow x = -1, -4$
Now, first term $a = x$
Second term, $ar = 2(x+1) \Rightarrow r = \frac{2(x+1)}{x}$
 \therefore Fourth term $= ar^3 = x \left(\frac{2(x+1)}{x}\right)^3$
Put $x = -4$, we get
Fourth term $= -4 \left(\frac{2(-4+1)}{-4}\right)^3 = -4x \left(\frac{3}{2}\right)^3 = -\frac{27}{2}$
48. (b) Given sequence is $20, 19\frac{1}{4}, 18\frac{1}{2}, 17\frac{3}{4}, \dots$
Which can be rewritten as $20, \frac{77}{4}, \frac{37}{2}, \frac{71}{4}, \dots$
This is an AP series.
Here, first term $a = 20$ and common difference $d = -\frac{3}{4}$
 n^{th} term $= a + (n-1) d = 20 + (n-1) \left(-\frac{3}{4}\right)$
 $= \frac{83}{4} - \frac{3}{4}n < 0 \Rightarrow 83 < 3n$
 $\Rightarrow n > \frac{83}{3} = 27.66$
So, n should be 28.
Hence, 28th term is first negative term.
Let 'a' be the first term and 'd' be the common difference
of an A.P
Now, Given mth term $= \frac{1}{n}$
and nth term $= \frac{1}{m}$
 $\Rightarrow a + (m-1) d = \frac{1}{m}$ and
 $a + (n-1) d = \frac{1}{m}$

 \Rightarrow (m-n) d = $\frac{m-n}{mn}$ $\Rightarrow d = \frac{1}{mn}$ Now, $(mn)^{th}$ term = a + (mn - 1)d $= a + (mn-1)\frac{1}{mn} = a + 1 - \frac{1}{mn}$ Now, $a = \frac{1}{m} - (n-1)d$ $=\frac{1}{m}-(n-1)\frac{1}{mn}$ $=\frac{1}{m}-\frac{n}{mn}+\frac{1}{mn}$ $=\frac{1}{mn}$:. (mn)th term = $\frac{1}{mn} + 1 - \frac{1}{mn} = 1$ (c) Let a and d be the first term and common difference of an AP respectively \therefore a + 58 d = 449 and a + 448 d = 59 On solving Eqs. (i) and (ii), we get a = 507 and d = -1 n^{th} term of AP is a + (n-1) d. Let us assume that nth term will be zero. $\therefore a + (n-1)d = 0$ $\Rightarrow 0 = 507 + (n-1)(-1)$ $\Rightarrow 507 = n - 1 \Rightarrow n = 508$ Hence, 508th term will be zero. 51. (b) Given AM = 27 and HM = 12and we know that $(GM)^2 = (AM) (HM) = 27 \times 12$ \Rightarrow GM = $\sqrt{27 \times 12}$ = $\sqrt{3 \times 3 \times 3 \times 3 \times 2 \times 2}$ \Rightarrow GM = 3 × 3 × 2 = 18 52. (c) The numbers between 200 and 400 which are divisible by 7, are 203, 210, 217,, 399 This is an A.P with first term = a = 203 and common difference = d = 7Now, let number of terms be n. Therefore from the nth term of A.P = a + (n - 1) d we have 399 = 203 + (n-1)7 $\Rightarrow \frac{196}{7} = (n-1) \Rightarrow n = 29$ Required sum $=\frac{n}{2}[a+\ell]$ where $\ell = \text{last term}$

 $(m-1-n+1) d = \frac{1}{n} - \frac{1}{m}$

50.

Thus, required sum = $\frac{29}{2} [203 + 399]$ $=\frac{29\times602}{2}=8729$

$$\Rightarrow x_1 \times x_2 = \frac{216}{12} = 18$$
 ...(i)

Also, given that actual number is 8.

56.

$$\therefore \quad \text{Actual G.M.} = \sqrt[3]{x_1 \cdot x_2 \cdot 8} = \sqrt[3]{18 \times 8} \quad (\text{from (i)})$$

$$= \sqrt[3]{18 \times 2 \times 2 \times 2} = 2.\sqrt[3]{18}$$
(a) Let A, G and H be the arithmetic mean, geometric mean
and Harmonic mean of two numbers a and b
respectively.
According to the Question
G=H+1.6
and A=H+1.6+2=H+3.6
We have AH = G²
(H+3.6) H= (H+1.6)²
 \Rightarrow H²+3.6H = H²+2.56+3.2 H
 \Rightarrow H = $\frac{2.56}{0.4} = 6.4$
 \therefore A=6.4+3.6=10
and G=6.4+1.6=8
Now, A = $\frac{a+b}{2} \Rightarrow a+b=2A$
 \Rightarrow a+b=20 ...(i)
and ab=G²=64 ...(ii)
We know that, (a - b)² = (a + b)² - 4ab
= 400 - 256 = 144
 \Rightarrow a-b=12 ...(ii)
On solving Eqs. (i) and (iii), we get
a = 16 and b=4

57. (d) Let 'a' be the first term and 'ar' be the second term of GP with common ratio 'r'.

Given:
$$S_{\infty} = 6$$
 and $a + ar = \frac{9}{2} \Rightarrow \frac{a}{1-r} = 6$
 $\Rightarrow a = 6 (1-r)$...(i)
and $a + ar = \frac{9}{2}$
 $\Rightarrow 6 (1-r) + 6r (1-r) = \frac{9}{2}$ [from (i)]
 $\Rightarrow 12 - 12r + 12r - 12r^2 = 9$
 $\Rightarrow r^2 = \frac{3}{12} = \frac{1}{4} \Rightarrow r = \frac{1}{2} \text{ or } \frac{-1}{2} \Rightarrow a = 3 \text{ or } 9$
58. (a) Let 'a' and 'b' two numbers.

A.M =
$$\frac{a - b}{2}$$
 and G.M = \sqrt{ab}
According to the question,
A:G=m:n
 $\Rightarrow \frac{a - b}{2\sqrt{ab}} = \frac{m}{n} \Rightarrow \frac{a - b^{-2}}{4ab} = \frac{m^2}{n^2} \qquad ...(i)$
and $\frac{a + b^{-2} - 4ab}{1 + 1} = \frac{m^2 - n^2}{n^2}$

n²

4ab

53. (c) Let
$$\frac{1}{ab}, \frac{1}{ca}, \frac{1}{bc}$$
 are in AP.

$$\Rightarrow \frac{1}{ca} - \frac{1}{ab} = \frac{1}{bc} - \frac{1}{ca}$$

$$\Rightarrow \frac{1}{a} \left(\frac{1}{c} - \frac{1}{b}\right) = \frac{1}{c} \left(\frac{1}{b} - \frac{1}{a}\right)$$

$$\Rightarrow \frac{b-c}{abc} = \frac{a-b}{abc}$$

$$\Rightarrow b-c = a-b \Rightarrow 2b = a+c$$

$$\Rightarrow a, b, c are in AP. Which is true
Now, $\frac{1}{\sqrt{b} + \sqrt{c}}, \frac{1}{\sqrt{c} + \sqrt{a}}, \frac{1}{\sqrt{a} + \sqrt{b}}$ are in A.P.

$$\therefore \frac{2}{\sqrt{c} + \sqrt{a}} = \frac{1}{\sqrt{b} + \sqrt{c}} + \frac{1}{\sqrt{a} + \sqrt{b}}$$

$$\Rightarrow 2\sqrt{b} \sqrt{c} \sqrt{a} \sqrt{a}$$

$$\int \sqrt{c} \sqrt{a} \sqrt{a} 2\sqrt{b} \sqrt{c}$$

$$\Rightarrow 2\left(\sqrt{ab} + b + \sqrt{ac} + \sqrt{bc}\right) = \sqrt{ac} + 2\sqrt{bc} + c + a$$

$$+ 2\sqrt{ab} + \sqrt{ac}$$

$$\Rightarrow 2\sqrt{ac} 2\sqrt{bc} 2\sqrt{ac} 2\sqrt{bc}$$

$$2\sqrt{ac} 2\sqrt{bc} \sqrt{c} \sqrt{a} \sqrt{a}$$

$$\Rightarrow 2b = a + c$$

$$\Rightarrow a, b, c are in A.P. Which is true.
Hence, both the statements are correct.
54. (d) Let a and db the first term and common difference of
an AP respectively
pth term = a + (p-1)d
and qth term = a + (p-1)d
According to question.
$$p\left[a + (p-1)d\right] = q\left[a + (q-1)d\right]$$

$$\Rightarrow pa + (p^2 - p)d = qa + (q^2 - q)d$$

$$\Rightarrow (p-q)a = (q^2 - p^2 + p - q)d$$

$$\Rightarrow (p-q)a = (p-q)(-p-q+1)d$$

$$\Rightarrow a = -(p+q-1)d$$
Now, $(p+q)^{th}$ term = a + (p+q-1)d

$$= -(p+q-1)d + (p+q-1)d = 0$$
55. (c) We know geometric mean of 3 numbers x_1, x_2, x_3 is
 $\sqrt[3]{x_1 \cdot x_2 \cdot x_3}$
Given if observations are x_1, x_1 12 GM is 6$$$$

Given, if observations are $x_1, x_2, 12, G.M.$ is 6 $\Rightarrow \sqrt[3]{x_1 \cdot x_2 \cdot 12} = 16$ $\Rightarrow x_1 \times x_2 \times 12 = 6^3 = 216$

$$\Rightarrow \frac{a-b^2}{4ab} \frac{m^2-n^2}{n^2} \qquad ...(ii)$$

Since, on dividing Equation (i) and (ii), we get

$$\frac{a b^2}{a - b^2} = \frac{m^2}{m^2 - n^2} \Rightarrow \frac{a b}{a - b} \quad \frac{m}{\sqrt{m^2 - n^2}}$$
$$\Rightarrow \quad \frac{a b a - b}{a + b - a - b} \quad \frac{m + \sqrt{m^2 - n^2}}{m - \sqrt{m^2 - n^2}}$$

(Using componendo dividendo rule)

$$\Rightarrow \frac{2a}{2b} \quad \frac{a}{b} \quad \frac{m + \sqrt{m^2 - n^2}}{m - \sqrt{m^2 - n^2}}$$

- 59. (c) Required geometric mean = $\sqrt[5]{2.4.8.16.32}$ $=(32^3)^{1/5}=(2^{15})^{1/5}=2^3=8$
- (d) Let a d, a and a + d be three numbers which are in 60. A.P. since A, B and C are in A.P.

$$\therefore$$
 A = a - d, B = a, C = a + d

- \Rightarrow a-d+a+a+d=180°
- (:: A, B and C are angles of a triangle)

$$\Rightarrow a = 60^{\circ}$$

$$\Rightarrow A = 60^{\circ} - d, B = 60^{\circ}, C = 60^{\circ} + d$$

Now by sine rule,

$$\frac{b}{c} \quad \frac{\sin B}{\sin C} \Rightarrow \frac{\sqrt{3}}{\sqrt{2}} \quad \frac{\sin 60}{\sin C}$$

$$\Rightarrow \sin C = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{\sqrt{3}} \quad \frac{1}{\sqrt{2}}$$

61. (b) Let a, ar and ar^2 be three positive terms of G.P. According to question,

$$a = \frac{1}{3}(ar + ar^{2})$$

$$\Rightarrow 3 = r + r^{2}$$

$$\Rightarrow r^{2} + r - 3 = 0$$

$$\Rightarrow r = \frac{-1}{2} \frac{\sqrt{14 \times 3}}{2}$$

$$\Rightarrow r = \frac{-1 \pm \sqrt{13}}{2} = \frac{\sqrt{13} - 1}{2}, -\left(\frac{1 - \sqrt{13}}{2}\right)$$

Since, r can not be negative.

$$\therefore \quad r = \frac{\sqrt{13} - 1}{2}$$

$$\frac{1}{4}, \frac{-1}{2}, 1, \dots$$
Let $a = \frac{1}{4}$ and $r = -\frac{1}{2} \times \frac{4}{1} = -2$
 \therefore General term $= T_n = ar^{n-1}$
 $\Rightarrow -128 = \frac{1}{4}(-2)^{n-1}$
 $\Rightarrow -512 = (-2)^{n-1}$
 $\Rightarrow (-2)^9 = (-2)^{n-1}$
 $\Rightarrow 9 = n - 1 \Rightarrow n = 10$
O Suppose a b and c are in HP.

63. (c) Suppose a, b and c are

$$\therefore \quad b \quad \frac{2ac}{a \quad c}$$

Now, consider

64.

$$\frac{1}{b-a} \quad \frac{1}{b-c} \quad \frac{1}{\frac{2ac}{a \ c} - a} \quad \frac{1}{\frac{2ac}{a \ c} - c}$$
$$= \frac{a}{a(c-a)} \quad \frac{a}{c(a-c)} = \left(\frac{a}{c-a}\right) \left(\frac{1}{a} - \frac{1}{c}\right)$$
$$= \frac{a+c}{c-a} \times \frac{c-a}{ca} = \frac{a}{ca} \frac{c}{a} \quad \frac{1}{a} \quad \frac{1}{c}$$
Thus, our supposition is correct.
Hence, a, b and c are in HP.
(b) Given series is

$$\sqrt{3} \quad \frac{1}{\sqrt{3}} \quad \frac{1}{3\sqrt{3}} \quad \dots$$

Since, $\left(\frac{1}{\sqrt{3}}\right)^2 = \sqrt{3} \times \frac{1}{3\sqrt{3}}$
$$\Rightarrow \quad \text{Given series is a G.P.}$$
$$\therefore \quad \text{Sum upto} \quad \infty \quad \frac{a}{1-r}$$

where $a = \sqrt{3}$ = first term and $r = \frac{1}{3}$ = common ratio

$$S_{\infty} \quad \frac{\sqrt{3}}{1-\frac{1}{3}} \quad \frac{3\sqrt{3}}{2}$$

65. (d) Three numbers a, b and c will be in G.P. if $b^2 = ac$. Only option (d) i.e. $\tan^2 30^\circ$, $\tan^2 45^\circ$ and $\tan^2 60^\circ$ are in GP.

$$\therefore \quad \tan^2 30^\circ = \frac{1}{3}$$
$$\tan^2 45^\circ = 1$$

...

- and $\tan^2 60^\circ = 3$
- $\tan^2 30^\circ$, $\tan^2 45^\circ$ and $\tan^2 60^\circ$ are in G.P. *.*.

- 66. (b) Given two series are 2+6+10+14+18+22+26+30+----and 1+6+11+16+21+26+31+-----So, series which are made to be common terms of both series is 6, 26,-----This is an A. P where a = 6, d = 20 $\therefore a_{10} = a + (n-1) d$ $=6+(10-1)20=6+9\times 20$ = 180 + 6 = 18667. (a) General term of $G.P = ar^{n-1}$.
 - Given : $a_{10} = 9$ and $a_4 = 4$ \Rightarrow ar⁹ = 9 and ar³ = 4 On dividing we get

$$\frac{ar^9}{ar^3} = \frac{9}{4} \Longrightarrow r^6 = \frac{9}{4}$$

$$ar^3 = 4 \Longrightarrow (ar^3)^2 = 16$$

$$\Rightarrow a^2 r^6 = 16$$

$$\Rightarrow a^2 \times \frac{9}{4} = 16 \Rightarrow a^2 = \frac{64}{9} \Rightarrow a = \frac{8}{3}$$
Thus, $a_7 = ar^6 = \frac{8}{3} \times \frac{9}{4} = 6$

68. (c) Let
$$\log_{10} 2$$
, $\log_{10} (2^x - 1)$ and $\log_{10} (2^x + 3)$ are
in A.P
 $\therefore 2\log_{10} 2^x - 1 = \log_{10} 2 \quad \log_{10} 2^x \quad 3$
 $\Rightarrow \log_{10} (2^x - 1)^2 = \log_{10} 2 (2^x + 3)$
 $\Rightarrow 2^{2x} + 1 - 2^{x+1} = 2 \cdot 2^x + 6$
 $\Rightarrow a^2 + 1 - 2a \quad 2a \quad 6 \text{ where } a = 2^x.$

$$\Rightarrow a^{2} - 4a - 5 = 0$$

$$\Rightarrow a = 5 \text{ or } a = -1 \qquad 2^{x} = 5 \Rightarrow x \log_{2} = \log 5$$

$$\Rightarrow x = \frac{\log 5}{\log 2} \Rightarrow x \quad \log_{2} 5$$

69. (c) Let n!, 3(n!) and (n + 1)! are in G. P. Then, $[3(n!)]^2 = (n!)(n+1)!$ $\Rightarrow 9 \times n! \times n! \quad n! \quad n \quad 1 \quad n!$

$$\Rightarrow 9 \times n! \times n! \quad n! \quad n \quad n \quad n$$

$$\Rightarrow$$
 9 = (n + 1) \Rightarrow n = 8

70. (b) Given,
a, b, c, d, e, f are in A.P

$$\therefore 2d = e + c$$
 ...(1)
Consider $e - c = 2d - c - c$ (from 1)
 $= 2d - 2c = 2 (d - c)$
71. (b) G M= (10 × 40 × 60)^{1/3} = 28.84 ~ 28

71. (b) G.M= $(10 \times 40 \times 60)^{1/3} = 28.84 \simeq 28$

72. (c) Let a and b be two numbers such that

73.

74.

75.

76.

A.M. =
$$\frac{a+b}{2} = 10$$

 $\Rightarrow a+b=20$...(1)
and GM. = $\sqrt{ab} = 8 \Rightarrow ab = 64$...(2)
From (1) and (2), we have
 $a^2 - 20a + 64 = 0 \Rightarrow (a-4) (a-16) = 0$
 $\Rightarrow a = 4, 16$
Thus, when $a = 4, b = 16$ and when $a = 16, b = 4$
Hence, one number exceeds the other number by 12.
(c) Given $S_2S_{11} = S_pS_8$
 $\Rightarrow (ar) (ar^{10}) = ar^{p-1} (ar^7)$
where 'a' is the first term and 'r' is the common ratio of
GP
 $\Rightarrow r^{11} = r^{7+p-1} \Rightarrow r^{11} = r^{6+p}$
 $\Rightarrow 11 = 6+p \Rightarrow p=5$
(c) Since $\frac{1}{4}, \frac{1}{x}, \frac{1}{10}$ are in H.P.
 $\therefore 4, x, 10$ are in AP.
 $\Rightarrow 2x = 4+10 \Rightarrow x = \frac{14}{2} = 7$
(d) Since p, q, r are in A.P.
 $\therefore 2q = p + r$...(1)
Since p, q, r are in GP.
 $q^2 = pr \Rightarrow q = \sqrt{pr}$
 $\therefore 2\sqrt{pr} = p + r$
 $(\sqrt{p})^2 + (\sqrt{r})^2 - 2\sqrt{p}\sqrt{r} = 0$
 $\Rightarrow (\sqrt{p} - \sqrt{r})^2 = 0$
 $\Rightarrow \sqrt{p} = \sqrt{r}$
 $\Rightarrow p = r$...(2)
 $2q = 2p$
 $\Rightarrow q = p$...(3)
from (2) and (3)
 $p = q = r$
(c) Let 'a' and 'b' be two non-negative numbers.
GM. $= \sqrt{ab} = 10$
 $\Rightarrow ab = 100$
and H.M. $= \frac{2ab}{a+b} = 8$
 $\Rightarrow \frac{200}{a+b} = 8$
 $\Rightarrow a + b = 25$
Consider $(a-b)^2 = (a+b)^2 - 4ab = 625 - 400 = 225$
 $\Rightarrow a - b = 15$
and $a + b = 25$
 $\Rightarrow 2a = 40 \Rightarrow a = 20$ and $b = 5$
 $A.M. = \frac{20+5}{2} = 12.5$
77. (c) Given sequence is
1,5,9,13,17,...
Which is an A.P.
Here a = 1, d = 4
∴ nth term = a_n = a + (n - 1)d = 1 + (n - 1)4
= 1 + 4n - 4 = 4n - 3.
78. (d) Given series is
$$1 + \frac{1}{\sqrt{3}} + \frac{3}{3} + \frac{1}{3\sqrt{3}} + \frac{1}$$

$$S_{8} = \frac{1 \left[1 - \left(\frac{-1}{2} \right)^{8} \right]}{1 + \frac{1}{2}} \qquad \left[\text{For G} \cdot P \cdot S_{n} \quad \frac{a \ 1 - r^{n}}{1 - r} \right]$$
$$\frac{\frac{1}{1} - \frac{1}{256}}{\frac{3}{2}} \quad \frac{85}{128}$$

82. (b)
$$S_{10} = \frac{10}{2} [2a + 9d]$$

 $120 = 5 (2a + 9d)$
 $2a + 9d = 24$...(i)
 $S_{20} = \frac{20}{2} [2a + 19d]$
 $440 = 10 [2a + 19d]$
 $2a + 19d = 44$...(ii)
Solving (i) & (ii), we get
 $\boxed{a = 3}$
83. (b) put $a = 3$ in (i)
 $6 + 9 d = 24$
 $9d = 18 \Rightarrow \boxed{d = 2}$
84. (a) We have,
 $n = 100$
Number of diagonals $= \frac{n^2 - 3n}{2}$
 $= \frac{100^2 - 300}{2} = \frac{9700}{2} = 4850$
85. (a) We have,
 $a = 30^\circ, n = 3,$
 $S_3 = 180^\circ$
 $S_3 = \frac{3}{2} [2 \times 30^\circ + (3 - 1)d]$
 $180 = \frac{3}{2} [60 + 2d]$
 $180 = 3 [30 + d]$
 $30 + d = 60$
 $\boxed{d = 30}$

Now, largest angle = $a + 2d = 30 + 60 = 90^\circ = \frac{\pi}{2}$

86.

87.

(a) Geometric mean =
$$n \sqrt[1]{1.2.4.8...2^n}$$

(:: there are $(n + 1)$ multiples from 2° to 2ⁿ)
= $n + \sqrt[1]{2^0.2^1.2^2.2^3...2^n}$
= $n + \sqrt[1]{2^{1+2+3+...+n}} = n \sqrt[1]{\frac{n(n-1)}{2}}$
= $\left[\frac{n(n-1)}{2}\right]^{\frac{1}{n-1}} \frac{n}{2^2}$
(a) :: $(n-3), 4n-2, 5n+1$ are in A.P.
 $\Rightarrow (4n-2) - (n-3) = (5n+1) - (4n-2)$
 $\Rightarrow 3n+1 = n+3$
 $\Rightarrow n = 1$

88. (a) Let the two numbers be a, b. Given, H. M. = 4 $\Rightarrow \frac{2ab}{a+b} = 4 \Rightarrow ab = 2(a+b)$ Also, given $2A + G^2 = 27$ $\Rightarrow 2\left(\frac{a+b}{2}\right) + ab = 27$ \Rightarrow a+b+ab=27 \Rightarrow a+b+2(a+b)=27 \Rightarrow 3a+3b=27 $\Rightarrow a+b=9$ From (i), ab = 2(9) = 18Solving (ii), (iii) we get a = 3, b = 6 or a = 6, b = 389. (a) Given, a, b, c, d are in A.P. $\Rightarrow \frac{1}{a}, \frac{1}{b}, \frac{1}{c}, \frac{1}{d}$ are in H.P. $\Rightarrow \frac{1}{d}, \frac{1}{c}, \frac{1}{b}, \frac{1}{a}$ are also in H.P. Now, multiply each term by abcd. abcd abcd abcd abcd \overline{d} , \overline{c} , \overline{b} , \overline{a} abc, abd, acd, bcd, are in H.P. (a) $S = 0.9 + 0.09 + 0.009 + \dots$ 90. =9(0.1+0.01+0.001+...) $=9\left[\frac{0.1}{1-0.1}\right]=9\times\frac{0.1}{0.9}=1$ 91. (c) $S_5 = S_{10}$ $\Rightarrow \frac{5}{2}[2a \quad 4d] = \frac{10}{2}[2a \quad 9d]$ \Rightarrow 5a + 10d = 10a + 45d \Rightarrow a = -7d or d = $\frac{-1}{7}$ a We see, If d is positive, then first term should be negative and common difference should be positive. If d is negative, then first term should be position and common difference should be negative. (b) 0+3=3, 3+5=8, 8+7=15, 15+9=24, 24+11=35, 15+10,92. 35 + 13 = 48Sequence is 0, 3, 8, 15, 24, 35, 48 93. (c) GP = x $\frac{a}{r} = x$ (where, a = lst term and r = common ratio)

$$\begin{array}{l} \Rightarrow \frac{2}{1-r} = x \qquad \dots(i) \ (\because \text{ Given } a = 2 \text{ and } |r| < 1) \\ \Rightarrow -1 < r < 1 \Rightarrow 1 > -r > -1 \\ \Rightarrow 1 + 1 > 1 - r > 1 - 1 \\ \Rightarrow 0 < 1 - r < 2 \\ \Rightarrow \frac{1}{1-r} \quad \frac{1}{2}, \frac{2}{1-r} \quad 1 \\ \text{from equation } (i) x > 1 \\ \text{Hence, } 1 < x < \infty. \end{array}$$

94. (a)
$$3,\sqrt{3},1,\frac{1}{\sqrt{3}}$$
 ,...., ∞

...(i)

(from(i))

...(ii)

...(iii)

96.

97.

98.

This is a Geometric Progression with a = 3, $r = \frac{1}{\sqrt{3}}$

$$S_{\infty} = \frac{a}{1-r} = \frac{3}{1-\frac{1}{\sqrt{3}}}$$
$$= \frac{3\sqrt{3}}{\sqrt{3}-1} \times \frac{\sqrt{3}}{\sqrt{3}-1} = \frac{3\sqrt{3}(\sqrt{3}-1)}{2}$$

95. (b) Given, $S_n = Sum \text{ of first n terms of an AP.}$

$$S_{n} = \frac{h}{2} [2a + (n-1)d] \text{ or } S_{2n} = \frac{2n}{2} [2a + (2n-1)d]$$
Similarly, $S_{3n} = \frac{3n}{2} [3a + (3n-1)d]$
According to direction, $3S_{n} = 2S_{2n}$
Putting the value of S_{n} and S_{2n} in above equation.
 $3\left(\frac{n}{2}\right) [2a + (n-1)d] = 2\left(\frac{n}{2}\right) [2a + (2n-1)d]$
 $6a + 3(n-1)d = 4a + 2(n-1)d$
 $2a = d(n+1)$
 $\therefore S_{n} = \frac{n}{2} [d(n+1) + d(n-1)]$
 $= \frac{n}{2} [dn + d + dn - d]$
 $= \frac{n}{2} (2 dn) = n^{2}d$
Now, $S_{2n} = n [d(n+1) + (2n-1)d] = 3n^{2}d$
 $S_{3n} = \frac{3n}{2} [d(n+1+3n-1)] = 6n^{2}d$
Hence, $\frac{S_{3n}}{S_{n}} = \frac{6n^{2}d}{n^{2}d} = \frac{6}{1} = 6:1$
(a) From explanation $\frac{S_{3n}}{S_{2n}} = \frac{6n^{2}d}{3n^{2}d} = \frac{2}{1} = 2:1$
(b) $f(x) = ax^{2} + bx + c$
 $\therefore f(1) = a + b + c$
 $and f(-1) = a - b + c$
 $\therefore f(1) = f(-1)$
 $\Rightarrow a + b + c = a - b + c \Rightarrow b = 0$
(a) We have $f'(x) = 2ax$
 $\therefore f'(a) = 2a^{2}, f'(b) = 2ab = 0$
 $and f'(c) = 2ac$ ($\because b = 0$)
 $\therefore f'(a) = 2a^{2}$
 $f'(b) = 0$
 $and f'(c) = -2a^{2}$ ($\because 2b = a + c \Rightarrow c = -a$)
Hence $f'(a), f'(b)$ and $f'(c)$ are in AP.

Sequence and Series

9. (c)
$$f''(x) = 2a$$

 $\therefore f''(a) = f''(b) = f''(c)$
Hence, $f''(a), f''(b)$ and $f''(c)$ are in both AP and GP.
100. (d) Given $0.5 + 0.55 + 0.555 +$ ton
 $= 5 [0.1 + 0.11 + 0.111 + to n terms]$
 $= \frac{5}{9} \left[9 + 0.99 + 0.999 + to n terms \right]$
 $= \frac{5}{9} \left[\left[9 + \frac{99}{100} + \frac{999}{1000} + to n terms \right] \right]$
 $= \frac{5}{9} \left[\left[(1 - \frac{1}{10}) + (1 - \frac{1}{100}) + (1 - \frac{1}{1000}) + + (1 - \frac{1}{10^n}) \right] \right]$
 $= \frac{5}{9} \left[\left[(1 - \frac{1}{10}) + (1 - \frac{1}{10^2}) + (1 - \frac{1}{10^3}) + + (1 - \frac{1}{10^n}) \right] \right]$
 $= \frac{5}{9} \left[n - \left(\frac{1}{10} + \frac{1}{10^2} + + \frac{1}{10^n} \right) \right]$
 $= \frac{5}{9} \left[n - \frac{1}{10} \left(\frac{1 - (\frac{1}{10})^n}{(1 - \frac{1}{10})} \right) \right]$
 $= \frac{5}{9} \left[n - \frac{1}{9} \left(1 - \frac{1}{10^n} \right) \right]$
101. (b) $X = 6^{\frac{1}{2}} \times 6^{\frac{1}{2}} \times 6^{\frac{3}{8}} \times 6^{\frac{4}{16}} \times \infty$.
 $\frac{6^{\frac{1}{2}}}{\frac{2}{4} + \frac{3}{8}} + \frac{4}{16} + \infty$.
 $\frac{1}{2} S = -\frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \infty$.
 $\frac{1}{2} S = -\frac{1}{4} + \frac{2}{8} + \frac{3}{16} + \infty$.
 $\frac{2}{1} \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \infty$.
 $\frac{2}{1} \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \infty$.
 $\frac{2}{1} \frac{1}{2} - \frac{1}{10} \frac{1}{10} = \frac{1}{10} \frac{1}{10} \frac{3}{10} = \frac{1}{10}$.

S = 2 : $x = 6^2 = 36$.

102. (d)
$$T_n = \frac{3+n}{4}$$

 $S_n = \sum_{n=0}^{\infty} T_n = \sum \left(\frac{3}{4} + \frac{n}{4}\right)$
 $= \frac{3}{4}n + \frac{1}{4} \times \frac{n(n+1)}{2} = \frac{7}{8}n + \frac{n^2}{8}$
 $S_{105} = \frac{7}{8} \times 105 + \frac{(105)^2}{8} = 1470$
103. (b) Let the common ratio be K_1 for p, q and r.
 $\therefore q = K_1 p$
& $r = (K_1)^2 p$
Let the common ratio be K_2 for a, b and c
 $\therefore b = K_2 a$
& $c = (K_2)^2 a$
 $\therefore bq = (K_1 K_2) ap$
& $Cr = (K_1 K_2)^2 ap$
So ap , bq , cr are in G.P.
104. (c) $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} +$
 $= \sqrt{2} + 2\sqrt{2} + 3\sqrt{2} + 4\sqrt{2} +$
 $\therefore S_n \sqrt{2} 1 2 3 4 n terms$
 $= \sqrt{2} \frac{n(n+1)}{2} = \frac{n(n+1)}{\sqrt{2}}$
105. (c) $a_n = \int_0^{\pi} \frac{\sin^2 \{(n+1)x\}}{\sin 2x} dx$

Since it is a definite integral will have a definite value. The sequence $\{a_{2n}\}$ is in AP with common difference. Statement (1) is correct. The sequence $\{a_{2n+1}\}$ is also in AP with common

The sequence $\{a_{2n+1}\}$ is also in AP with common difference.

Statement (2) is correct.

- 106. (b) \therefore given sequence a_n also AP with no difference. Thus $a_{n-1} - a_{n-4} = 0$
- 107. (c) Given $\log_x y$, $\log_z x$, $\log_y z$ are in G.P.

$$\therefore (\log_z x)^2 = (\log_x y)(\log_y z)$$

$$\left(\frac{\log x}{\log z}\right)^2 = \left(\frac{\log y}{\log x}\right) \left(\frac{\log z}{\log y}\right) = \frac{\log z}{\log x}$$

$$\Rightarrow \left(\frac{\log x}{\log z}\right)^3 = 1$$

$$\Rightarrow \log x = \log z \Rightarrow x = z$$

$$\therefore xyz = 64$$

$$y = \frac{64}{x^2}$$
Also given x^3, y^3 and z^3 are in A.P.

$$\therefore y^{3} = \frac{x^{3} + z^{3}}{2} = \frac{x^{3} + x^{3}}{2}$$

$$y^{3} = x^{3} \Rightarrow y = x$$

$$\Rightarrow x = y = z$$

$$x. y. z = 64$$

$$x = y = z = 4$$

Thus x, y, z are in A.P. and G.P. both.

108. (c) Similarly *xy*, *yz*, *zx* are also in A.P. and G.P. both.

109. (a) Three terms are

$$G_1 \quad \left(\frac{y}{z}\right)^{\log yz} G_2 \quad \left(\frac{z}{x}\right)^{\log zx} G_3 \quad \left(\frac{x}{y}\right)^{\log xy}$$

Geometric mean of three terms is

$$m = \sqrt[3]{G_1 G_2 G_3}$$
 ...(1)

$$\therefore G_1 G_2 G_3 = \left(\frac{y}{z}\right)^{\log yz} \cdot \left(\frac{z}{x}\right)^{\log zx} \cdot \left(\frac{x}{y}\right)^{\log xy}$$

$$= \frac{y^{\log y} \cdot y^{\log z}}{z^{\log y} \cdot z^{\log z}} \times \frac{z^{\log z} \cdot z^{\log x}}{x^{\log z} \cdot x^{\log x}} \times \frac{x^{\log x} \cdot x^{\log y}}{y^{\log x} \cdot y^{\log y}}$$

$$= \left(\frac{y}{x}\right)^{\log z} \cdot \left(\frac{z}{y}\right)^{\log x} \cdot \left(\frac{x}{z}\right)^{\log y}$$

Taking log both sides

$$\log G_1 G_2 G_3 = \log \left[\left(\frac{y}{x} \right)^{\log z} \right] + \log \left[\left(\frac{z}{y} \right)^{\log x} \right] + \log \left[\left(\frac{x}{z} \right)^{\log y} \right]$$

 $= \log z \log y - \log z \log x + \log x \log z$

 $-\log x \log y + \log y \log x - \log y \log z$

$$\log G_1 G_2 G_3 = 0$$

$$G_1 G_2 G_3 = e^0 = 1$$

Hence $m = \sqrt[3]{G_1 G_2 G_3} = (1)^{\frac{1}{3}}$

$$m = 1$$

110. (d) Let 'a' be the first term & 'x' be the common ratio.
Also, suppose 27, 8 & 12 be the pth, qth & rth term of the GP.

$$\therefore ax^{p-1} = 27 ax^{q-1} = 8 \& ax^{r-1} = 12 Now, 27 × 82 = 123 \Rightarrow ax^{p-1}x (ax^{q-1})^2 = (ax^{r-1})^3 \Rightarrow x^{p-1} \cdot x^{2q-2} = x^{2r-3} \Rightarrow p-1+2q-2 = 3r-3 \Rightarrow p+2q-3r = 0 ...(1) There are infinitely many solutions for the eq. (1).$$

111. (b)
$$S_n = \frac{n}{2}(a \ l)$$

$$\Rightarrow a + x + y + z + b = \frac{5}{2}(a \ b)$$

$$a + b + 15 = \frac{5}{2}(a \ b)$$

$$\Rightarrow a + b = 10 \qquad \dots(1)$$

$$\& \frac{1}{a} \ \frac{1}{p} \ \frac{1}{q} \ \frac{1}{r} \ \frac{1}{b} \ \frac{5}{2}\left(\frac{1}{a} \ \frac{1}{b}\right)$$

$$\Rightarrow \frac{1}{a} \ \frac{1}{b} \ \frac{5}{3} \ \frac{5}{2}\left(\frac{1}{a} \ \frac{1}{b}\right)$$

$$\Rightarrow \frac{3(a \ b)}{ab} \ \frac{10}{3}. \qquad \dots(2)$$

$$\Rightarrow \frac{3 \times 10}{ab} \ \frac{10}{3}.$$

$$\Rightarrow ab = 9$$
112. (b) On solving eq (1) & (2), we get
(i) $a = 1 \& b = 9 \Rightarrow a + 4d = 9 \Rightarrow d = 2$

(i)
$$a = 9 \& b = 1 \implies a + 4d = 1 \implies d = -2.$$

(ii) $a = 9 \& b = 1 \implies a + 4d = 1 \implies d = -2.$
For $a = 1 \& d = 2,$
 $x = 3, y = 5 \& z = 7$
For $a = 9 \& d = -2,$
 $x = 7, y = 5 \& z = 3$

$$\Rightarrow xyz = 7 \times 5 \times 3 = 105$$

$$\Rightarrow \frac{1}{1 \ 4d} \ 9 \Rightarrow d = -\frac{2}{9}.$$
$$\frac{1}{p} = 1 - \frac{2}{9} \ \frac{7}{9} \Rightarrow p \ \frac{9}{7}$$
$$\frac{1}{q} = \frac{7}{9} - \frac{2}{9} \ \frac{5}{9} \Rightarrow q \ \frac{9}{5}$$
$$\& \frac{1}{r} = \frac{5}{9} - \frac{2}{9} \ \frac{3}{9} \Rightarrow r \ \frac{9}{3}$$
$$\Rightarrow p \times q \times r = \frac{243}{35}$$

114. (a) Let first term = a & common difference = x

$$\therefore \quad a+5x=2 \Rightarrow a=2-5x.$$
Let $P = T_1 \times T_4 \times T_5$

$$\Rightarrow \quad P = a (a+3x) (a+4x)$$

$$\Rightarrow \quad P = (2-5x) (2-5x+3x) (2-5x+4x)$$

$$\Rightarrow \quad P = -10x^3 + 34x^2 - 32x + 8.$$

$$\frac{dp}{dx} = 0 \Rightarrow 15x^2 - 34x + 16 = 0$$

$$\Rightarrow (5x-8) (3x-2) = 0$$

 $\Rightarrow x = \frac{8}{5}, \left[\because x \quad \frac{2}{3} \quad 1 \right]$

Sequence and Series
115. (b) Since, a=2-5x
⇒ a=2-5
$$\left(\frac{8}{5}\right)$$

⇒ a = -6
116. (a) Here, a = 120° and d=5.
Sum of angles of polygon = (n-2) 180°
 $\Rightarrow \frac{n}{2}[2a + (n-1)d] = (n-2)180$
 $\Rightarrow \frac{n}{2}[2x+120 + (n-1)5] = (n-2)180$
 $\Rightarrow n^2 - 25n + 144 = 0$
 $\Rightarrow (n-9)(n-16) = 0$
 $\therefore n = 9, 16$
For $n = 9, 7_9 = 120 + (9-1)5 = 160$
For $n = 16, T_{16} = 120 + (16-1)5 = 195$ [not possible]
117. (a) For $n = 9$
Largest angle = $T_9 = 120 + (9-1)5 = 160$
For $n = 16$
Largest angle = $T_9 = 120 + (9-1)5 = 160$
For $n = 16$
Largest angle = $T_{16} = 120 + (16-1)5 = 195$
(Not possible).
118. (b) $x^{\ln}\left(\frac{y}{z}\right)$, $y^{\ln xz}$, $z^{\ln}\left(\frac{x}{y}\right)$ $y^{4\ln y}$
 $\Rightarrow \ln\left[x^{\ln}\left(\frac{y}{z}\right)\right] \ln\left[y^{\ln(xz)^2}\right] \ln\left[z^{\ln}\left(\frac{x}{y}\right)\right] \ln\left[y^{4\ln y}\right]$
 $\Rightarrow \left[\ln\left(\frac{y}{z}\right)\ln x\right] + [2\ln(xz)\ln y] + \left[\ln\left(\frac{x}{y}\right)\ln z\right] = 4[\ln y]^2$
 $\Rightarrow \ln x [\ln y - \ln z] + 2\ln y [\ln x + \ln z]$
 $+\ln z [\ln x - \ln y] = 4[\ln y]^2$
 $\Rightarrow 3\ln x + \ln z = 4\ln y$
 \therefore Iny is the AM of Inx, $\ln x, \ln x, \ln x, \ln x$.
119. (a) $0.3 + 0.33 + 0.333 + \dots$ n terms
 $= \frac{3}{10} + \frac{33}{100} + \frac{333}{1000} + \dots$.
 $= 3\left(\frac{1}{10} + \frac{11}{100} + \frac{111}{1000} + \dots$)
 $= \frac{3}{9}\left(\frac{9}{10} + \frac{99}{100} + \frac{999}{1000} + \dots$)
 $= \frac{1}{3}\left[\left(1 - \frac{1}{10}\right) + \left(1 - \frac{1}{100}\right) + \left(1 - \frac{1}{1000}\right) + \dots$.]

$$= \frac{1}{3} \left[n - \frac{1}{10} \left(1 - \frac{1}{10^n} \right) \right]$$

$$= \frac{1}{3} \left[n - \frac{10^n - 1}{9(10^n)} \right] = \frac{1}{3} \left[n - \frac{1}{9} \left(1 - \frac{1}{10^n} \right) \right]$$

$$= \frac{1}{3} \left[n - \frac{10^n - 1}{9(10^n)} \right] = \frac{1}{3} \left[n - \frac{1}{9} \left(1 - \frac{1}{10^n} \right) \right]$$
120. (d) Given, $S_m = n$ and $S_p = m$
This is direct formula
 $S_{m^+ n} = -(m + n)$
121. (c) Let α, β be the roots of $x^2 + bx + c = 0$
Given, $\alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{\beta^2}$
 $\alpha + \beta = -b; \alpha, \beta = c$
 $\therefore \alpha + \beta = \frac{1}{\alpha^2} + \frac{\beta^2}{\beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha^2\beta^2}$
 $\Rightarrow -bc^2 = \frac{b^2 - 2c}{\alpha^2}$
 $\Rightarrow -bc^2 = \frac{b^2 - 2c}{\beta^2} = 2c \Rightarrow 2c = b^2 + bc^2$
 $\Rightarrow -bc^2 = \frac{b^2 - 2c}{\beta} = \frac{b}{c} + c$
We know, if a, b, c are in A.P. $2b = a + c$.
Similarly, we got $\frac{2}{b} = \frac{b}{c} + c$, which means $\frac{b}{c}, \frac{1}{b}, c$ are in A.P.
122. (a) Let α, β be roots of $ax^2 + x + c = 0$.
Given, $\alpha + \beta$
 $= \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2\beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2}$
 $\Rightarrow \frac{-1}{a} = \frac{\left(-\frac{1}{a}\right)^2 - 2\left(\frac{c}{a}\right)}{\left(\frac{c}{a}\right)^2}$
 $\Rightarrow \frac{-1}{a} = \frac{\frac{1 - 2ac}{\alpha^2}}{\frac{c^2}{a^2}}$
 $\Rightarrow -1 = \frac{1 - 2ac}{c^2} \Rightarrow -c^2 = a - 2a^2c$
 $\Rightarrow 2a^2c = a + c^2$
So, $a, a^2c, c^2 are in A.P.$

$$S_{2} = (2)P + \frac{2(2-1)Q}{2} = 2P + \frac{2Q}{2} = 2P + Q.$$

$$\therefore T_{1} = P; T_{2} = 2P + Q - P = P + Q.$$

$$\therefore Common difference (d) = T_{2} - T_{1}$$

$$= P + Q - P = Q.$$
128. (a) $6^{\frac{1}{2}} \times 6^{\frac{1}{4}} \times 6^{\frac{1}{8}} \times 6^{\frac{1}{16}} \times ...$ upto infinite terms.
 $\frac{1}{6^{\frac{1}{2}}} \frac{1}{4} \frac{1}{8} \frac{1}{16} \dots^{\infty} \frac{6}{6^{\frac{1}{12}}} \frac{1}{6^{\frac{1}{2}}} \frac{1}{6^{\frac{1}{2}}}} \frac{1}{6^{\frac{1}{2}}} \frac{1}{6^{\frac{1}{2}}} \frac{1}{6^{\frac{1}{2}}} \frac{1}{6^{\frac{1}{2}}} \frac{1}{6^{\frac{1}{2}}} \frac{1}{6^{\frac{1}{2}}} \frac{1}{6^{\frac{1}{2}}} \frac{1}{6^{\frac{1}{2}}} \frac{1}{6^{\frac{1}{2}}} \frac{1}{6^$

123. (b) Given,
$$S_n = n^2 - 2n$$
.
We know, $T_n = S_n - S_{n-1}$
So, $T_5 = S_5 - S_4$.
 $S_5 = 5^2 - 2$ (5) = 25 - 10 = 15
 $S_4 = 4^2 - 2$ (4) = 16 - 8 = 8
So, $T_5 = 15 - 8 = 7$.
124. (a) Sum of odd numbers are from 11 - 99.
Number of odd numbers from 1 to 99 = 50
Sum of odd numbers from 1 to 99 = 50² = 2500
Number of odd numbers from 1 to 99 = 50² = 2500
Number of odd numbers from 1 to 9 = 5² = 25
So, Sum of all two digit odd numbers
 $= 2500 - 25 = 2475$.
125. (c) $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$

$$2 \quad 4 \quad 8 \quad 16$$

$$= \left(1 - \frac{1}{2}\right) + \left(1 - \frac{1}{4}\right) + \left(1 - \frac{1}{8}\right) + \left(1 - \frac{1}{16}\right) + \dots$$

$$= \left(1 + 1 + 1 + \dots n\right) - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots\right)$$

$$= n - \left(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \dots\right)$$

$$= n - \frac{\frac{1}{2}\left(1 - \frac{1}{2^n}\right)}{1 - \frac{1}{2}} \qquad \left(\because G.P. \ a = \frac{1}{2}, r = \frac{1}{2}\right)$$

$$= n - \frac{\frac{1}{2}\left(1 - \frac{1}{2^n}\right)}{\frac{1}{2}}$$

$$= n - 1 + 2^{-n}$$

$$= 2^{-n} + n - 1$$

126. (a) $2 \tan^{-1} y = \tan^{-1} x + \tan^{-1} z$ ($\therefore \tan^{-1} x, \tan^{-1} y, \tan^{-1} z \operatorname{are in A.P}$) and x, y, z are in GP $\therefore y^2 = xz$...(i)

$$\Rightarrow \frac{2y}{1-y^2} = \frac{x+z}{1-xz}$$
$$\Rightarrow \frac{2y}{1-y^2} = \frac{x+z}{1-y^2}$$
(from (i))

 $\Rightarrow 2y=x+z$ x, y, z are in A.P. Given x, y, z are also in G.P So, x=y=z

127. (d)
$$S_n = np + \frac{n(n-1)Q}{2}$$

We know, $T_1 = S_1$ and $T_2 = S_2 - S_1$
Common difference $(d) = T_2 - T_1$
 $\therefore S_1 = (1)P + \frac{1(1-1)Q}{2} = P + 0 = P$

$$\log_{e} 3 \left(\frac{1}{1 - \frac{1}{2}} \right) \left(\because 1, \frac{1}{2}, \frac{1}{4}, \dots \text{ is G.P. with a } 1, r = \frac{1}{2} \right)$$

$$= \log_{e} 3(2) = 2\log_{e} 3 = \log_{e} 3^{2} = \log_{e} 9.$$
132. (c) Arithmetic mean of $x_{1}, x_{2} = \frac{x_{1} - x_{2}}{2}$
Geometric mean of $x_{1}, x_{2} = \sqrt{x_{1}x_{2}}$
Given, $\frac{x_{1} + x_{2}}{2} - \sqrt{x_{1}x_{2}} > 1$

$$\Rightarrow \frac{x_{1} + x_{2}}{2} > \sqrt{x_{1}x_{2}} + 1$$

$$\Rightarrow x_{1} - x_{2} - 2\sqrt{x_{1}x_{2}} = 2$$

$$\Rightarrow \sqrt{x_{1}} - \sqrt{x_{2}} - 2\sqrt{x_{1}}\sqrt{x_{2}} = 2$$

$$\Rightarrow \sqrt{x_{1}} - \sqrt{x_{2}} - 2\sqrt{x_{1}}\sqrt{x_{2}} = 2$$

$$\Rightarrow (\sqrt{x_{1}} - \sqrt{x_{2}})^{2} > 2$$

$$\Rightarrow (\sqrt{x_{1}} - \sqrt{x_{2}})^{2} > 2$$

$$\Rightarrow (\sqrt{x_{1}} - \sqrt{x_{2}}) - \sqrt{2}$$
Correct option (c).
133. (c) A.M of two numbers $a, b = \frac{a - b}{2}$
Given, $\frac{A.M}{G.M} = \frac{5}{3}$

$$\Rightarrow \frac{a}{\sqrt{ab}} = \frac{10}{3}$$

$$\Rightarrow \frac{a^{2} - b^{2} - 2ab}{ab} = \frac{100}{9}$$
(Squaring on both sides)
$$\Rightarrow 9a^{2} + 9b^{2} + 18ab = 100ab$$

$$\Rightarrow 9a^{2} - 82ab + 9b^{2} = 0$$

$$\Rightarrow 9a^{2} - 81ab - ab + 9b^{2} = 0$$

$$\Rightarrow 9a(a - 9b) - b(a - 9b) = 0$$

$$\Rightarrow b = 9a_{1} = 9b$$

$$\Rightarrow \frac{a}{a} = \frac{1}{9}; \frac{a}{b} = \frac{9}{1}$$

134. (a) $x = 1 - y + y^2 - y^3 + \dots$ up to infinite terms. We can see that the given series is geometric progression, with a = 1 and r = -y

$$S_{\infty} \frac{a}{1-r} = \frac{1}{1--y} = \frac{1}{1-y}$$
$$\therefore x = \frac{1}{1-y}.$$

1 y \cdot 135. (c) The numbers which divided by 3, leaving remainder 2 will be of the form 3x + 2Given, 3x + 2 is 2-digit number So, x can be from 3 to 32

Sum of numbers
$$\sum_{x=3}^{32} 3x = 2$$

= 3(3+4+5+....+32)+(2+2+...)(1)
3, 4, 5....32 is an A. P with a = 3, d = 1, T_n = 32
 \therefore T_n = a + (n - 1) 1
32 = 3 + (n - 1) 1
 \Rightarrow n - 1 = 29 \Rightarrow n = 30 terms
 \therefore (1) \Rightarrow 3(3+4+5+....+32)+(2+2+....30 times)
 $3\left(\frac{30}{2}, 3, 32\right) = 2 \times 30 \quad \left(\because S_n = \frac{n}{2}(a+\ell)\right)$
 $\frac{90}{2}, 35 = 60$
= (45 × 35)+60
= 1575+60=1635
136. (c) Given, 3rd term of G.P.= 3
Let 'a' be the first term and 'r' be the common ratio.
 \therefore ar²=3
We know, T₁ = a, T₂ = ar, T₃ = ar², T₄ = ar³, T₅ = ar⁴
T₁, T₂, T₃, T₄, T₅ = (a) (ar) (ar²) (ar³) (ar⁴)
= a⁵r¹⁰
= (ar²)⁵
= 3⁵
= 243
137. (a) x, $\frac{3}{2}$, z are in A.P
If a, b, c are in A.P 2b = a + c
 $\therefore 2\left(\frac{3}{2}\right) \times z$
 $\Rightarrow 3 = x + z$ (1)
x, 3, zare in GP.
If a, b, c are in GP. b² = ac
 $\therefore 3^{2} = xz$
 $\Rightarrow 9 = xz$ (2)
If x, 6, z are in H.P. $\frac{2}{6}, \frac{1}{x}, \frac{1}{z}, \frac{1}{x}, \frac{1}{x$

S

м-90 Sum of an infinite G.P. with first term *x* and common 138. (c) 143 ratio r(<1) is $s = \frac{x}{1-r}$ From question s = 5then, $5 = \frac{x}{1-r}$ $1 - r = \frac{x}{5}$ $r = 1 - \frac{x}{5}$ For, $-1 < 1 - \frac{x}{5} < 1$ $-2 < -\frac{x}{5} < 0$ 0 < x < 10139. (c) The series is $\frac{3}{3^0} - \frac{3}{3^1} + \frac{3}{3^2} - \frac{3}{3^3} + \dots \infty$ 144 This is a G.P. with first term a = 3and common ratio $r = -\frac{1}{3}$:. Sum S = $\frac{3}{1 - \left(-\frac{1}{2}\right)} = \frac{3 \times 3}{3 + 1} = \boxed{\frac{9}{4}}$ 145. 140. (c) $T_n = \frac{1}{m}, T_m = \frac{1}{n}$ $\Rightarrow 1^{\text{st}} \text{ term} = \text{c.d.} = \frac{1}{mn}$ \Rightarrow T_{mn} = $\frac{1}{mn} + \frac{mn-1}{mn} = 1$ 146. 141. (c) Let the first term and common ratio of the G.P. is a and r respectively. Then, ar = 2, $\frac{a}{1-r} = 8$ $\Rightarrow \quad \frac{ar}{r-r^2} = 8 \qquad \Rightarrow \quad 2 = 8r - 8r^2$ $\Rightarrow 4r^2 - 4r + 1 = 0 \qquad \Rightarrow r = \frac{1}{2}$ 147. \therefore G.P. is 4, 2, 1, $\frac{1}{2}$, 142. (c) From question, $a, b, c \in A.P. \Rightarrow a - b = b - c \Rightarrow \frac{a - b}{b - c} = 1$ $a, b, c \in G.P. \Rightarrow \frac{a}{b} = \frac{b}{c} = \frac{a-b}{b-c}$ 148. $a, b, c \in \text{H.P.} \Rightarrow b = \frac{2ac}{a+c} \Rightarrow ab+bc = 2ac$ $\Rightarrow ab - ac = ac - bc$ $\Rightarrow \frac{a-b}{b-c} = \frac{a}{c}$

NDA Topicwise Solved Papers - MATHEMATICS
(c) From question,

$$\sin \alpha$$
, $\sin \beta$ and $\cos \alpha$ are in H.P.
then, $\sin \beta = \frac{2\sin \alpha \cos \alpha}{\sin \alpha + \cos \alpha}$
and $\sin \alpha$, $\sin \theta$ and $\cos \alpha$ are in A.P.
then, $2\sin \theta = \sin \alpha + \cos \alpha$
Statement 1: $\sqrt{2} \sin \left(\alpha + \frac{\pi}{4}\right) \cdot \sin \beta$
 $= (\sin \alpha + \cos \alpha) \cdot \frac{2\sin \alpha \cos \alpha}{\sin \alpha + \cos \alpha}$
 $= 2\sin \alpha \cos \alpha = \sin 2\alpha$
Statement 2: $\cos \left(\alpha - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}(\sin \alpha + \cos \alpha)$
 $= \frac{2\sin \theta}{\sqrt{2}} = \sqrt{2} \sin \theta$
(b) $(x_1 \cdot x_2 \dots \cdot x_n)^{1/n} = P$
 $(y_1 \cdot y_2 \dots \cdot y_n)^{1/n} = Q$
 $\left(\frac{x_1 \cdot x_2 \dots \cdot x_n}{y_1 \cdot y_2 \dots \cdot y_n}\right)^{1/n} = \frac{(x_1 \cdot x_2 \dots \cdot x_n)^{1/n}}{(y_1 \cdot y_2 \dots \cdot y_n)^{1/n}} = \frac{P}{Q}$
(d) Given series 25, -125, 625, -3125 is geometric progression.
 $a = t_1 = 25, t_2 = -125$
 $r = \frac{t_2}{t_1} = \frac{-125}{25} = -5$
 $n^{th} term (t_p) = ar^{n-1} = (25) (-5)^{n-1}$
 $= (5)^2 (-1)^{n-1} (5)^{n-1} = (-1)^{n-1} (5)^{2+n-1}$
 $= (-1)^{n-1} 5^{n+1}$
(c) Given, numbers 1, 5, 25
Let $p^{th} term = 1 \Rightarrow a + (p-1) d = 1 \dots (1)$
Let $q^{th} term = 25 \Rightarrow a + (r-1) d = 25 \dots (3)$
(3), (2) $\Rightarrow r - q = 25 - 5 = 20$
(2), (1) $\Rightarrow q - p = 5 - 1 = 4$
 $\frac{r-q}{q-p} = \frac{20}{4} = 5$ which is an integer.
So, the given series forms an AP.
Infinite AP's are possible.
(c) Let the first term of AP = a
Let the common difference of AP = a (p + q - 1) d (p - q)^{th} term = T_{p-q} = a + (p + q - 1) d (p - q) - 1) d = 2a + ((p + q) - 1) d = 2T_p
(b) Given, sum of n terms (S_n) = n(n + 1)
We know, $T_n = S_n - S_{n-1}$
 $= to (n + 1)^{N}$ if $the merce (S_n = 1 + 1)^{N}$

= [n (n+1)] - [(n-1) (n-1+1)]= n(n+1) - (n-1)n= n(n+1-n+1)=2n \therefore Fourth term, $T_4 = 2(4) = 8$

Complex Numbers

[2006-II]

- If z_1, z_2 are any two complex numbers such that $|z_1 + z_2| =$ 1. $|z_1| + |z_2|$, which one of the following is correct?
 - (a) $z_1 = \alpha z_2$ with $\alpha \in \mathbb{R}$ (b) $z_1 \ge 0$ or $z_2 \ge 0$ (c) $z_1 = \alpha z_2$ with $\alpha > 0$ (d) $|z_1| = |z_2|$ [2006-I]
- If α , β are real, what is $\left| \frac{\alpha + i\beta}{\beta + i\alpha} \right|$ equal to ? 2.
 - (a) 0
 - (c) 1 (d) 2 [2006-I]

(b) $\frac{1}{2}$

If z = 1 + i, then what is the inverse of z^2 ? 3. (a) 2i (b) i

(c)
$$\frac{i}{2}$$
 (d) $-\frac{i}{2}$ [2006-I]

4. The following question consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer.

Assertion (A): If $Z_1 = 3 + \sqrt{-4}$, and $Z_2 = 3 + \sqrt{-25}$, $Z_1/$ Z_2 is a complex number.

Reason (R) : If Z_1 , Z_2 are complex numbers, then Z_1/Z_2 is always a complex number.

- (a) Both A and R are individually true, and R is the correct explanation of A.
- (b) Both A and R are individually true but R is not the correct explanation of A.
- (c) A is true but **R** is false.
- (d) A is false but R is true. [2006-11]
- 5. Let $z = i^3(1 + i)$ be a complex number. What is its argument?

(a)
$$\pi$$
 (b) $\frac{\pi}{4}$
(c) $-\frac{\pi}{4}$ (d) $\frac{5\pi}{4}$ [2006-II]

Let z_1 and z_2 be two non-zero complex numbers such that 6.

 $|z_1| = |z_2| = \left|\frac{1}{z_1} + \frac{1}{z_2}\right| = 2$ What is the value of $|z_1 + z_2|$? (b) 4 (a) 8 (c) 2 (d) 1 [2006-II] Let z be a non-zero complex number. Then, what is z^{-1} (multiplicative inverse of z) equal to?

(a)
$$\frac{\overline{z}}{|z|^2}$$
 (b) $\frac{z}{|z|^2}$
(c) $\frac{\overline{z}}{|z|}$ (d) $\frac{|z|}{z}$

 $|\mathbf{z}|$ What is one of the values of \sqrt{i} $\sqrt{-i}$?

(a)
$$\sqrt{2}$$
 (b) 0

(c)
$$\frac{1}{\sqrt{2}}$$
 (d) $\frac{1-i}{\sqrt{2}}$ [2007-1]

9. What is the value of

7.

8.

$$\begin{bmatrix} -1 & i\sqrt{3} \\ \sqrt{3} \\ 2 \end{bmatrix}^{10} \begin{bmatrix} -1 - i\sqrt{3} \\ 2 \end{bmatrix}^{10}$$
(a) 1 (b) -1
(c) 2 (d) 0 [2007-I]

- If ω denotes the cube root of unity, then what is the real root 10. of the equation $x^3 - 27 = 0$?
 - (a) 3ω (b) $3\omega^2$
 - (d) $3\omega^3$ (c) -3ω [2007-I]
- Let O be the origin and point A be represented by z. If OA is 11. rotated through an angle $\pi/2$ in the anticlockwise direction keeping the length of OA same, then what represents the new point?

(a)
$$-iz$$
 (b) $|z|i$
(c) iz (d) z [2007-I]

If $1, \omega, \omega^2$ are the three cube roots of unity, then what 12.

is
$$\frac{(a\omega^6 + b\omega^4 + c\omega^2)}{(b + c\omega^{10} + a\omega^8)}$$
 equal to?

(a)
$$\frac{a}{b}$$
 (b) b

c)
$$\omega$$
 (d) ω^2 [2007-II]

What is the square root of the complex number -5 + 12i? 13.

(a)
$$2-3i$$
 (b) $2+3i$
(c) $-2+3i$ (d) $\sqrt{-5} + \sqrt{12i}$ [2007-II]

14	If $\alpha = \frac{1 + i\sqrt{3}}{3}$ then what is the value of $1 + \alpha^8 + \alpha^{16} + \alpha^{16}$	23.	Match List I with List II and select the correct ans the code given below the lists	wer using [2008-11]
1 1.	$\frac{1}{2}$, then what is the value of $1 \times \alpha \times \alpha$		List I List II	
	$\alpha^{24} + \alpha^{32}?$		A A cube root of unity $1 -2(1+i)$	
	(a) 0 (b) 1		B. A square root of -1 2. $2i$	
	(c) ω (d) $-\omega^2$ [2007-II]		C. Cube of $1 - i$ 3. $-i$	
15.	A straight line is passing through the points represented by		D. Square of $1 + i$ 4. $-\frac{1}{-1}(1 + i\sqrt{3})$	
			2()	
	the complex numbers $a + ib$ and $\frac{-a + ib}{-a + ib}$, where $(a, b) \neq a$			
	(0,0).		Code:	
	Which one of the following is correct?		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(a) It passes through the origin		(a) $\frac{1}{1}$ $\frac{1}{3}$ $\frac{2}{4}$	
	(b) It is parallel to the x-axis		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(c) It is parallel to the y-axis (d) It passes through (0, b) [2008 I]		(d) 2 3 1 4	
16	(d) It passes through $(0, 0)$ [2000-1] Which one of the following is correct? If z and w are complex	•		
10.	numbers and \overline{w} denotes the conjugate of w then $ z + w $	24.	What is $\sqrt{3}$ i / 1 $\sqrt{3}i$ equal to ?	[2009-1]
	= z - w holds only if [2008-I]		(a) $1+i$ (b) $1-i$	
	(a) $z=0$ or $w=0$ (b) $z=0$ and $w=0$		(c) $\sqrt{3}(1-i)/2$ (d) $(\sqrt{3}-i)/2$	
	(c) $z \cdot \overline{w}$ is purely real (d) $z \cdot \overline{w}$ is purely imaginary	25	If $2x = 3 + 5i$ then what is the value of $2x^3 + 2x^2$.	-7x + 72?
		-0.		[2009-1]
17.	What is the square root of $\frac{1}{2} - i\frac{\sqrt{3}}{2}$?		(a) 4 (b) -4	
	2 2		(c) 8 (d) -8	
	$\begin{pmatrix} \sqrt{3} & i \end{pmatrix}$ $(\sqrt{3} & i \end{pmatrix}$	26	Assortion (A): $\left(-1+\sqrt{-3}\right)^{23} + \left(-1-\sqrt{-3}\right)^{23} - \frac{1}{\sqrt{-3}}$	_1
	(a) $\pm \left(\frac{1}{2} + \frac{1}{2}\right)$ (b) $\pm \left(\frac{1}{2} - \frac{1}{2}\right)$	20.	Assertion (A): $\left(\frac{2}{2}\right) + \left(\frac{2}{2}\right) = 1$	-1
			Reason (R) : $\omega^2 = -1$	[2009-I]
	(c) $\pm \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)$ (d) $\pm \left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$ [2008-J]		(a) Both A and R are true and R is the correct ex	planation
			of A	
18.	Let C be the set of complex number and z_1, z_2 are in C.		(b) Both A and R are true but R is not the correct ex	kplanation
	1. $\operatorname{agr}(z_1) = \operatorname{agr}(z_2) \Longrightarrow z_1 = z_2$		$\begin{array}{c} \text{OI A} \\ \text{(a)} \text{A is true but P is false} \end{array}$	
	2. $ z_1 - z_2 \rightarrow z_1 - z_2$ Which of the statements given above is/are correct?		(c) A is the but R is the (d) A is false but R is true	
	[2008-1]	27	If α is a complex number such that $\alpha^2 + \alpha + 1 = 0$	then what
	(a) 1 only (b) 2 only		is α^{31} equal to?	[2009-11]
	(c) Both 1 and 2 (d) Neither 1 nor 2		(a) α (b) α^2	L]
19.	What is arg (bi) where $b > 0$?		(c) 0 (d) 1	
	π		1 2i	
	(a) 0 (b) $\frac{1}{2}$	28.	What is the modulus of $\frac{1}{1} \frac{2i}{(1-i)^2}$ equal to?	[2009-II]
	3π		1 - (1 - i)	
	(c) π (d) $\frac{5\pi}{2}$		(a) 5 (b) 4 (d) 1	
20	If ω is a complex non-real cube root of unity then ω satisfies		(c) 3 (d) 1	
_0.	which one of the following equations? [2008-I]	29	What is the value of $-\sqrt{-1}^{4n} = i^{41} = i^{-257} = i^{9}$)
	(a) $x^2 - x + 1 = 0$ (b) $x^2 + x + 1 = 0$	<i>2</i>).		,
	(c) $x^2+x-1=0$ (d) $x^2-x-1=0$		where $n \in N$?	[2009-II]
21.	For a positive integer <i>n</i> , what is the value of i^{4n+1} ?		(a) 0 (b) 1	
	[2008-11]	20	(c) i (d) $-i$	
	(a) 1 (b) -1	30.	If ω is the cube root of unity, then what is the con	njugate of
22	(c) i (d) $-i$ If ω is a complex cube root of unity then what is the value		$2\omega^2 + 3i$ (a) $2\omega - 3i$ (b) $3\omega + 2i$	[2009-11]
	1 1		(c) $2\omega + 3i$ (d) $3\omega - 2i$	
	of $1 - \frac{1}{(1-2)} - \frac{1}{(1-2)}?$ [2008-II]	31.	If z is a complex number such that $z + z^{-1} = 1$ the	en what is
	$(1+\omega)$ $(1+\omega^2)$		the value of $z^{99} + z^{-99}$?	[2009-11]
	(a) 1 (b) 0		(a) 1 (b) -1	
	(c) ω (d) ω^2		(c) 2 (d) -2	

32.	What is the value of $\left(\frac{i+\sqrt{3}}{-i+\sqrt{3}}\right)^{200} + \left(\frac{i-\sqrt{3}}{i+\sqrt{3}}\right)^{100}$	$\Big)^{200}$ +1?	42.	If $z = 1 + \cos \frac{\pi}{5} + i \sin \frac{\pi}{5}$, then what is $ z $ equal to?
	(a) -1 (b) 0 (c) 1 (d) 2	[2010-I]		(a) $2\cos\frac{\pi}{5}$ (b) $2\sin\frac{\pi}{5}$ [2011-I]
33.	If ω is a complex cube root of unity and $x = \omega^2$ what is the value of $x^2 + 4x + 7$? (a) -2 (b) -1	$-\omega - 2$, then [2010-I]		(c) $2\cos\frac{\pi}{10}$ (d) $2\sin\frac{\pi}{10}$
34.	(c) 0 (d) 1 If $x^2 + y^2 = 1$, then what is $\frac{1 + x + iy}{1 + x - iy}$ equal to 2	? <i>[2010-I]</i>	43.	What is modulus of $\frac{1}{1+3i} - \frac{1}{1-3i}$? [2011-1]
	(a) $x - iy$ (b) $x + iy$ (c) $2x$ (d) $-2iy$			(a) $\frac{3}{5}$ (b) $\frac{9}{25}$
35.	What is the modulus of $\left \frac{1+2i}{1-(1-i)^2} \right $?	[2010-1]	44.	(c) $\frac{3}{25}$ (d) $\frac{5}{3}$ If ω is the imaginary cube root of unity, then what is
	(a) 1 (b) $\sqrt{5}$ (c) $\sqrt{3}$ (d) 5			$\begin{array}{ll} (2 - \omega + 2\omega^2)^{27} \text{ equal to?} & [2011-1] \\ (a) & 3^{27} \omega & (b) & -3^{27} \omega^2 \\ (c) & 3^{27} & (d) & -3^{27} \end{array}$
36.	What is the least positive integer n for which	$\left(\frac{1+i}{1-i}\right)^n = 1?$	45.	What is the value of $(1 + i)^5 + (1 - i)^5$ where $i = \sqrt{-1}$? [2011-II]
	(a) 16 (b) 12 (c) 8 (d) 4	[2010-I]	46	(a) -8 (b) 8 (c) $8i$ (d) $-8i$ What are the square roots of $-2i$? [2011-11]
37.	What is the conjugate of $\left(\frac{1+2i}{2+i}\right)^2$?	[2010-II]	10.	$ (i = \sqrt{-1}) $
	(a) $\frac{7}{25} + i\frac{24}{25}$ (b) $-\frac{7}{25} - i\frac{24}{25}$	24 25		(a) $\pm (1+i)$ (b) $\pm (1-i)$ (c) $\pm i$ (d) ± 1
	(c) $-\frac{7}{25} + i\frac{24}{25}$ (d) $\frac{7}{25} - i\frac{24}{25}$	$\frac{4}{5}$	47.	If $z = 1 + i \tan \alpha$ where $\pi < \alpha < \frac{3\pi}{2}$, then what is $ z $ equal to?
38.	What is $\left(\frac{\sqrt{3}+i}{\sqrt{3}-i}\right)^6$ equal to ?	[2010-II]		$[2011-II]$ (a) sec α (b) $- \sec \alpha$ (c) $\sec^2 \alpha$ (d) $- \sec^2 \alpha$
39.	(a) -1 (b) 0 (c) 1 (d) 2 If ω is a complex cube root of unity, then what i	$s \omega^{10} + \omega^{-10}$	48.	The smallest positive integral value of <i>n</i> for which $\left(\frac{1-i}{1+i}\right)^n$ is
	equal to ? (a) 2 (b) -1 (c) -2 (d) 1	[2010-II]		purely imaginary with positive imaginary part is [2011-II] (a) 1 (b) 3
40.	What is the value of $(-1 + i\sqrt{3})^{48}$?	[2010-II]	49.	(a) 1 (b) 5 (c) 4 (d) 5 If α and β are the complex cube roots of unity, then what is
41.	(a) 1 (b) 2 (c) 2^{24} (d) 2^{48} . What is the value of			the value of $(1 + \alpha)(1 + \beta)(1 + \alpha^2)(1 + \beta^2)?$ [2011-11] (a) -1 (b) 0 (c) 1 (d) 4
	$1+i^2+i^4+i^6+\ldots+i^{100}$, where $i=\sqrt{-1}$?	[2 010 III	50.	If p, q, r are positive integers and ω is the cube root of unity and $f(x) = x^{3p} + x^{3q+1} + x^{3r+2}$, then what is $f(\omega)$ equal to?
	(a) 0 (b) 1 (c) -1 (d) None of t	hese		(a) ω (b) $-\omega^2$ (c) $-\omega$ (d) 0

51. If $z = \frac{1+2i}{2-i} - \frac{2-i}{1+2i}$, then what is the value of $z^2 + z\overline{z}$? [2011-II] $(i = \sqrt{-1})$ (a) 0 (b) -1 (c) 1 (d) 8 52. What is the argument of $(1 - \sin\theta) + i \cos\theta$? [2011-II] $(i = \sqrt{-1})$ (a) $\frac{\pi}{2} - \frac{\theta}{2}$ (b) $\frac{\pi}{2} + \frac{\theta}{2}$ (d) $\frac{\pi}{4} + \frac{\theta}{2}$ (c) $\frac{\pi}{4} - \frac{\theta}{2}$ 53. If A + iB = $\frac{4+2i}{1-2i}$ where i = $\sqrt{-1}$ then what is the value of A? (a) -8(b) 0 [2012-I] (d) 8 (c) 4 54. If z = -z, then which one of the following is correct? (a) real part of z is zero. [2012-1] (b) The imaginary part of z is zero. The real part of z is equal to imaginary (c) The sum of real and imaginary parts of z is z. (d) 55. Consider the following statements : [2012-II] $(\omega^{10}+1)^7+\omega=0$ 1. $(\omega^{105}+1)^{10} = p^{10}$ for some prime number p 2. where $\omega \neq 1$ is a cube root of unity. Which of the above statements is/are correct? 1 only (a) (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 The value of the sum $\sum_{n=1}^{13} (i^n + i^{n+1})$ where $i = \sqrt{-1}$ is: 56. (b) -i *[2012-II]* (d) i-1 (a) (c) 0 57. What is the modulus of $\frac{\sqrt{2} + i}{\sqrt{2} - i}$ where $i = \sqrt{-1}$? [2012-II] (b) 1/2 (a) (d) None of the above (c) 6 58. What is $\sqrt{-i}$ where $i = \sqrt{-1}$ equal to? [2013-I] (b) $\pm \frac{1+i}{\sqrt{2}}$ (a) $\pm \frac{l-1}{\sqrt{2}}$ (c) $\pm \frac{1-i}{2}$ (d) $\pm \frac{1+i}{2}$ 59. What is the argument of the complex number (-1 - i) where $i = \sqrt{-1}$? [2013-1] (b) $-\frac{5\pi}{4}$ (a) $\frac{5\pi}{4}$

(d) None of the above (c)

NDA Topicwise Solved Papers - MATHEMATICS

60. What is one of the square roots of 3 + 4i, where $i = \sqrt{-1}$? [2013-II]

(a)
$$2+i$$
 (b) $2-i$
(c) $-2+i$ (d) $-3-i$

- 61. If P and Q are two complex numbers, then the modulus of the quotient of *P* and *Q* is : [2014-I] Greater than the quotient of their moduli (a) (b)Less than the quotient of their moduli (c) Less than or equal to the quotient of their moduli (d) Equal to the quotient of their moduli 62. Let z = x + iy Where x, y are real variables $i = \sqrt{-1}$. If |2z-1| = |z-2|, then the point z describes : [2014-I] (b) An ellipse (a) A circle (c) A hyperbola (d) A parabola 63. If $|z + \overline{z}| = |z - \overline{z}|$, then the locus of z is: [2014-I] (a) A pair of straight lines (b) A line (c) A set of four straight lines (d) A circle 64. What is the argument of the complex number
 - $\frac{(1+i)(2+i)}{2}$ where $i = \sqrt{-1}$? [2014-I]

π

(a) 0 (b)
$$\frac{\pi}{4}$$

(c) $-\frac{\pi}{4}$ (d) $\frac{\pi}{2}$

65. Let z be a complex number such that |z| = 4 and arg $z = \frac{5\pi}{6}$. Where $i = \sqrt{-1}$. What is *z* equal to ? [2014-II]

(a)
$$2\sqrt{3} + 2i$$
 (b) $2\sqrt{3} - 2i$
(c) $-2\sqrt{3} + 2i$ (d) $-\sqrt{3} + i$

66. What is $\frac{(1+i)^{4n+5}}{(1-i)^{4n+3}}$ equal to, where *n* is a natural number

and
$$i = \sqrt{-1}$$
? [2014-II]
(a) 2 (b) 2i
(c) -2 (d) i

57. If
$$z = \frac{-2(1+2i)}{3+i}$$
 where $i = \sqrt{-1}$, then argument $\theta(-\pi < \theta \le \pi)$ of z is [2015-I]

(a)
$$\frac{3\pi}{4}$$
 (b) $\frac{\pi}{4}$
(c) $\frac{5\pi}{6}$ (d) $-\frac{3\pi}{4}$

68. If 1, ω , ω^2 are the cube roots of unity, then the value of $(1+\omega)(1+\omega^2)(1+\omega^4)(1+\omega^8)$ is [2015-I] (a) −1 (b) 0 (c) 1 (d) 2

69. What is the square root of *i*, where
$$i = \sqrt{-1}$$
? [2015-I]
(a) $\frac{1+i}{2}$ (b) $\frac{1-i}{2}$
 $1+i$

(d) None of these $\sqrt{2}$

[2015-I]

- 70. $(x^3 1)$ can be factorised as [2015-1] (a) $(x-1)(x-\omega)(x+\omega^2)$
 - (b) $(x-1)(x-\omega)(x-\omega^2)$
 - (c) $(x-1)(x+\omega)(x+\omega^2)$

(d)
$$(x-1)(x+\omega)(x-\omega^2)$$

where ω is one of the cube roots of unity.

71. What is

(c)

$$\left[\frac{\sin\frac{\pi}{6} + i\left(1 - \cos\frac{\pi}{6}\right)}{\sin\frac{\pi}{6} - i\left(1 - \cos\frac{\pi}{6}\right)}\right]^3$$

where $i = \sqrt{-1}$, equal to?

- (a) 1 (b) -1
- (d) -*i* (c) *i*
- 72. What is the real part of $(\sin x + i \cos x)^3$ where $i = \sqrt{-1}$? [2015-I]
 - (a) $-\cos 3x$ (b) $-\sin 3x$
 - (c) $\sin 3x$ (d) $\cos 3x$
- 73. If z_1 and z_2 are complex numbers with $|z_1| = |z_2|$, then which of the following is/are correct? [2015-II] $z_1 = z_2$ 1.
 - 2. Real part of z_1 = Real part of z_2
 - 3. Imaginary part of z_1 = Imaginary part of z_2 ,
 - Select the correct answer using the code given below :
 - (b) 2 only (a) 1 only
 - (c) 3 only (d) None
- 74. If the point $z_1 = 1 + i$ where $i = \sqrt{-1}$ is the reflection of a point $z_2 = x + iy$ in the line $i\overline{z} - iz = 5$, then the point z_2 is
 - [2015-II] (a) 1+4i(b) 4+i
 - (c) 1-i(d) -1-i
- 75. $z\overline{z} + (3-i)z$ (3 i) \overline{z} 1 = 0 represents a circle with [2015-II]
 - (a) centre (-3, -1) and radius 3
 - centre (-3, 1) and radius 3 (b)
 - centre (-3, -1) and radius 4 (c) centre (-3, 1) and radius 4 (d)
- 76. Suppose ω is a cube root of unity with $\omega \neq 1$. Suppose P and Q are the points on the complex plane defined by ω and ω^2 . If O is the origin, then what is the angle between OP and OQ? [2016-I] (a) 60° (c) 120° (b) 90° (d) 150°

77. If $z = x + iy = \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right)^{-25}$, where $i = \sqrt{-1}$, then what is

the fundamental amplitude of $\frac{z-\sqrt{2}}{z-i\sqrt{2}}$? [2016-I]

 $\frac{\pi}{2}$ (b) (a) π π (d) (c) 3

DIRECTIONS (Qs. 78-79) : For the next two (2) items

tna	t Jollow.		
Let	z_1, z_2 and z_3 be non-zero comple	ex numbers satisfy	ing $z^2 = i\overline{z}$,
whe	$re i = \sqrt{-1}$		[2016-1]
78.	What is $z_1 + z_2 + z_3$ equal to?	•	
	(a) i	(b) —i	
	(c) 0	(d) 1	
79.	Consider the following statem	nents:	
	1. $z_1 z_2 z_3$ is purely imaginar	ry.	
	2. $z_1 z_2 + z_2 z_3 + z_3 z_1$ is pure	ely real.	
	which of the above statemen $(a) = 1$ only	(b) 2 only	
	(c) Both 1 and 2	(d) Neither 1 no	or 2
DII	$\frac{(0)}{\text{RECTIONS}} (0s, 80-81) \cdot \lambda$	For the next two	n <u>2</u> n (2) items
tha	t follow:	or the next two	(2) iiems
Let	z be a complex number satisfyi	ng	[2016-1]
200			[20101]
	$\left \frac{z-4}{2}\right = 1$ and $\left \frac{z}{2}\right = \frac{5}{2}$		
20	$ z-8 \qquad z-2 \qquad 2$ What is $ z $ accual to 2		
0 0.	(a) 6	(b) 12	
	(c) 18	(d) 36	
		(u) 50	
81.	What is $\left \frac{z-6}{z+6}\right $ equal to?		
	(a) 3	(b) 2	
	(c) 1	(d) 0	
82.	Suppose ω_1 and ω_2 are two	distinct cube roo	ots of unity
	different from 1. Then what is	$(\omega_1 - \omega_2)^2$ equal	to? [2016-I]
	(a) 3	(b) 1	
	(c) -1	(d) -3	
83.	What is $\omega^{100} + \omega^{200} + \omega^{300}$ e	qual to, where ω	is the cube
	root of unity?		[2016-II]
	(a) 1	(b) 3ω	
	(c) $3 \omega^2$	(d) 0	
84.	If $\operatorname{Re}\left(\frac{z-1}{z+1}\right) = 0$, where $z = x$	+ iy is a complex n	umber, then
	which one of the following is	correct?	[2016-11]
	(a) $z=1+i$	(b) $ z = 2$	
	(c) $z = 1$ i	(d) $ z = 1$	
	(0) Z = 1 = 1		
85.	If $z = \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)^{107} + \left(\frac{\sqrt{3}}{2}\right)^{107}$	$\left(-\frac{i}{2}\right)^{107}$, then w	hat is the
	imaginary part of z equal to?		[2016-II]
	(a) 0	(b) $\frac{1}{2}$	

м-9	6		
86.	What is the number of distinct solutions of the equation $z^2 + z = 0$ (where z is a complex number)? [2016-II]		(a
	(a) One (b) Two (c) Three (d) Fixe		
	(c) Three (d) Five		(0
87.	What is $\sqrt{\frac{1+\omega^2}{1+\omega^2}}$ equal to, where ω is the cube root of unity?	97.	L
	[2016-II]		If
	(a) 1 (b) ω		R
	(c) ω^2 (d) $i\omega$, where $i = \sqrt{-1}$		(a
88.	The value of $i^{2n} + i^{2n+1} + i^{2n+2} + i^{2n+3}$, where <i>i</i>	90	(С Т
	$=\sqrt{-1}$, is [2017-I]	90.	11
	$(a) 0 \qquad (b) 1$		(a
	(a) 0 (b) 1 (c) i (d) $-i$		(c
89.	The value of [2017-I]	99.	If
	$(1, \frac{1}{2})^n$ $(1, \frac{1}{2})^n$		
	$\left(\frac{-1+1\sqrt{3}}{2}\right) + \left(\frac{-1-1\sqrt{3}}{2}\right)$		W
			(0
	where n is not a multiple of 3 and $i = \sqrt{-1}$, is		(a (c
	(a) 1 (b) -1		(•
00	(c) i (d) $-i$ The modulus and principal argument of the complex number	100.	W
90.			i
	$\frac{1-2i}{2}$ are respectively [2017-1]		(a
	$1 - 1 - i^{2}$		(c
	(a) $1,0$ (b) $1,1$ (l) $2,1$	101.	T
91	(c) 2,0 (d) 2,1 If $ z+5 < 3$ then the maximum value of $ z+1 $ is [2017-1]		
<i>J</i> 1.	(a) 0 (b) 4		
	(c) 6 (d) 10		(a
92.	The number of roots of the equation $z^2 = 2\overline{z}$ is [2017-I]		
	$ \begin{array}{c} (a) 2 \\ (b) 3 \\ (c) 4 \\ (d) \text{zero} \end{array} $,
			(C
93.	If A = $\begin{vmatrix} 41 - 6 & 101 \\ 14i & 6 + 4i \end{vmatrix}$ and $k = \frac{1}{2i!}$ where $i = \sqrt{-1}$, then	102.	W
	$\begin{bmatrix} 141 & 0+41 \end{bmatrix} \qquad 21$		1
			2
	(a) $\begin{vmatrix} 2+31 & 5 \\ -7 & -2 & -2 \end{vmatrix}$ (b) $\begin{vmatrix} 2-31 & 5 \\ -7 & -2 & -2 \end{vmatrix}$		n
	$\begin{bmatrix} 7 & 2-31 \end{bmatrix} \qquad \begin{bmatrix} 7 & 2+31 \end{bmatrix}$		(a)
	$\begin{bmatrix} 2-3i & 7 \end{bmatrix}$ $\begin{bmatrix} 2+3i & 5 \end{bmatrix}$		(c)
	(c) $\begin{bmatrix} 5 & 2+3i \end{bmatrix}$ (d) $\begin{bmatrix} 7 & 2+3i \end{bmatrix}$		
	$(1, \cdot)^n$	103.	W
94.	The smallest positive integer <i>n</i> for which $\left(\frac{1-i}{1-i}\right) = 1$, is		
	(1-i)		i =
	(a) 1 (b) 4		(a)
	(a) = 1 (b) = 4 (c) 8 (d) 16		(c)
95.	Geometrically Re $(z^2 - i) = 2$, where $i = \sqrt{-1}$ and Re is the	104.	W
	real part, represents. [2017-II]		roo
	(a) circle (b) ellipse		(a)
	(c) rectangular hyperbola (d) parabola		(b)
96.	What is the principal argument of $(-1 - i)$, where $i = \sqrt{-1}$?		(c)

(a) $\frac{\pi}{4}$	(b) $-\frac{\pi}{4}$
(c) $-\frac{3\pi}{4}$	(d) $\frac{3\pi}{4}$
Let α and β be real number	s and z be a complex number.
If $z^2 + \alpha z + \beta = 0$ has two	o distinct non-real roots with
Re(z) = 1, then it is necessar	ry that [2018-I]
(a) $\beta \in (-1, 0)$	(b) $ \beta = 1$
(c) $\beta \in (1,\infty)$	(d) $\beta \in (0, 1)$
The number of non-zero int	egral solutions of the equation
$ 1 - 2i ^{x} = 5^{x}$ is	[2018-I]
(a) Zero (No solution)	(b) One
(c) Two	(d) Three
If α and β are different comp	plex numbers with $ \alpha = 1$, then
what is $\left \frac{\alpha - \beta}{1 - \alpha \beta} \right $ equal to?	[2018-1]
(a) $ \beta $	(b) 2
(c) 1	(d) 0

- What is $i^{1000} + i^{1001} + i^{1002} + i^{1003}$ equal to (where $=\sqrt{-1}$)? [2018-I] ı) O (b) i :) —i (d) 1
- The modulus-amplitude form of $\sqrt{3}$ i, where $i = \sqrt{-1}$ is [2018-I]

(a)
$$2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
 (b) $2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$
(c) $4\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ (d) $4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$
What is the value of the sum [2018-1]

What is the value of the sum

$$\sum_{n=2}^{11} i^{n} i^{n-1} \text{, where } i = \sqrt{-1} ?$$

$$i \qquad (b) 2i$$

$$-2i \qquad (d) 1+i$$

Vhat is the value of $\left(\frac{-1+i\sqrt{3}}{2}\right)^{3n}$ $\left(\frac{-1-i\sqrt{3}}{2}\right)^{3n}$ where

i =
$$\sqrt{-1}$$
? [2018-II]
(a) 3 (b) 2
(c) 1 (d) 0

- hich one of the following is correct in respect of the cube ots of unity? [2018-II]
 - They are collinear
 -) They lie on a circle of radius $\sqrt{3}$
 - They form an equilateral triangle
 - (d) None of the above

[2018-I]

Complex Numbers

(a) Null set

y respectively ?

105. If $A = \{x \in Z : x^2 - 1 = 0\}$ and $B = \{x \in Z : x^2 + x + 1 = 0\}$, where Z is set of complex numbers, then what is $A \cap B$ equal to ? [2019-1]

(c) $\left\{\frac{-1+\sqrt{3}i}{4}, \frac{-1-\sqrt{3}i}{4}\right\}$ (d) $\left\{\frac{1+\sqrt{3}i}{2}, \frac{1-\sqrt{3}i}{2}\right\}$

106. If $\begin{bmatrix} y & 1 & i \\ 0 & 2i & -i \end{bmatrix} = 6 + 11i$, then what are the values of x and

(b) $\left\{\frac{-1+\sqrt{3}i}{2}, \frac{-1-\sqrt{3}i}{2}\right\}$

(a)
$$-1, \omega$$

(b) $1, \omega^2$
(c) $-1, \omega^2$
(d) ω, ω^2

DIRECTIONS (Qs. 108-109): *Consider the following for the next 02 (two) items:*

A co	mplex number is given by z	$=\frac{1+2i}{1-(1-i)^2}$	
108.	What is the modulus of z ? (a) 4	(b) 2	[2019-I]
	(c) 1	(d) $\frac{1}{2}$	
109.	What is the principal argum	nent of z?	[2019-I]
	(a) 0	(b) $\frac{\pi}{4}$	
	(c) $\frac{\pi}{2}$	(d) π	

(a) -3,4 (b) 3,4(c) 3,-4 (d) -3,-4107. The common roots of the equations $z^3 + 2z^2 + 2z + 1 = 0$ and $z^{2017} + z^{2018} + 1 = 0$ are [2010]

								AN	SWI	ER K	EY								
1	(a)	12	(c)	23	(c)	34	(b)	45	(a)	56	(d)	67	(d)	78	(c)	89	(b)	100	(a)
2	(c)	13	(b)	24	(d)	35	(a)	46	(b)	57	(c)	68	(c)	79	(c)	90	(a)	101	(b)
3	(d)	14	(d)	25	(a)	36	(d)	47	(b)	58	(a)	69	(c)	80	(a)	91	(c)	102	(c)
4	(a)	15	(a)	26	(c)	37	(d)	48	(b)	59	(a)	70	(b)	81	(d)	92	(c)	103	(b)
5	(c)	16	(a)	27	(a)	38	(c)	49	(c)	60	(a)	71	(c)	82	(d)	93	(a)	104	(c)
6	(a)	17	(a)	28	(d)	39	(b)	50	(d)	61	(d)	72	(b)	83	(d)	94	(b)	105	(b)
7	(a)	18	(d)	29	(c)	40	(d)	51	(a)	62	(a)	73	(d)	84	(d)	95	(c)	106	(a)
8	(a)	19	(b)	30	(a)	41	(b)	52	(d)	63	(a)	74	(a)	85	(a)	96	(c)	107	(b)
9	(b)	20	(b)	31	(d)	42	(c)	53	(b)	64	(d)	75	(a)	86	(c)	97	(c)	108	(c)
10	(d)	21	(c)	32	(b)	43	(a)	54	(a)	65	(d)	76	(c)	87	(b)	98	(a)	109	(a)
11	(c)	22	(b)	33	(c)	44	(d)	55	(b)	66	(a)	77	(a)	88	(a)	99	(c)		

[2019-1]

HINTS & SOLUTIONS

1. (a) Let $z_1 = r_1(\cos \theta + i \sin \theta)$ where = Argument of z_1 or $\theta = Arg(z_1)$ $|z_1| = r_1$ and $z_2 = r_2(\cos \phi + i \sin \phi)$ where $\phi = Arg(z_2)$ $|z_2| = r_2$ $z_1 + z_2 = r_1(\cos \theta + i \sin \theta) + r_2(\cos \phi + i \sin \phi)$ $= (r_1 \cos \theta + r_2 \cos \phi) + i (r_1 \sin \theta + r_2 \sin \phi)$ $|z_1 + z_2| = \sqrt{(r_1 \cos \theta + r_2 \cos \phi)^2 + (r_1 \sin \theta + r_2 \sin \phi)^2}$ $= \sqrt{r_1^2 \cos^2 \theta + r_2^2 \cos^2 \phi + 2r_1r_2 \cos \theta \cos \phi}$ $+r_1^2 \sin^2 \theta + r_2^2 \sin^2 \phi + 2r_1r_2 \sin \theta \sin \phi$ $= \sqrt{r_1^2 + r_2^2 + 2r_1r_2(\cos \theta \cos \phi + \sin \theta \sin \phi)}$ As given : $|z_1 + z_2| = |z_1| + |z_2|$ So, $\sqrt{r_1^2 + r_2^2 + 2r_1r_2 \cos(\theta - \phi)} = r_1 + r_2$ Squaring both the sides $r_1^2 + r_2^2 + 2r_1r_2 \cos(\theta - \phi) = (r_1 + r_2)^2$ $= r_1^2 + r_2^2 + 2r_1r_2$ or, $2r_1 r_2 \cos(\theta - \phi) = 2r_1 r_2$ or, $\cos(\theta - \phi) = 1$ $\theta - \phi = 0 \implies \theta = \phi$ Arg $(z_1) = Arg (z_2)$ so, $z_1 = \alpha z_2$ where $\alpha \in R$

2. (c) Let $z_1 = \alpha + i\beta$ and $z_2 = \beta + i\alpha$

Since,
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$

$$\therefore \left| \frac{\alpha + i\beta}{\beta + i\alpha} \right| \quad \frac{|\alpha + i\beta|}{|\beta + i\alpha|} = \frac{\sqrt{\alpha^2 + \beta^2}}{\sqrt{\alpha^2 + \beta^2}} = 1$$

3. (d) Given that
$$z = 1 + i$$

 $\Rightarrow z^2 = (1 + i)^2 = 1 + i^2 + 2i = 1 - 1 + 2i = 2i$
Inverse of $z^2 = \frac{1}{2i} = -\frac{i^2}{2i}$ [Since $i^2 = -1; -i^2 = 1$]
 $= -\frac{i}{2}$

4. (a)
$$\frac{z_1}{z_2} = \frac{3+4i}{3+5i} = \frac{(3+4i)(3-5i)}{3^2-5^2} = \frac{9-3i+20}{9-25} = \frac{29-3i}{-16}$$

which is complex number. Both A and R are individually true and R is correct explanation of A.

5. (c) The complex number is
$$z = i^3(1+i) = -i(1+i)$$

= $-i - i^2$
 $\Rightarrow z = 1 - i$

This gives,
$$\arg(z) = \tan^{-1}\left(\frac{-1}{1}\right) = \tan^{-1}(-1) = -\frac{\pi}{4}$$

10.

11.

(a) As given $|z_1| = |z_2| = \left| \frac{1}{z_1} + \frac{1}{z_2} \right| = 2$ 6. $\begin{vmatrix} 1 & 1 \end{vmatrix} - 2 \rightarrow \frac{z_2 + z_1}{z_2 + z_1} = 2$

$$\begin{vmatrix} \overline{z_1} + \overline{z_2} \end{vmatrix} = 2 \implies \overline{z_1 z_2} = 2$$
$$\implies \frac{|z_1 - z_2|}{|z_1||z_2|} = 2$$
$$\implies |z_1 + z_2| = 2 |z_1||z_2|$$
$$\implies |z_1 + z_2| = 2.2.2$$

$$\Rightarrow |z_1 + z_2| = 8$$

(a) Let z be a non-zero complex number, such that 7. z = x + iy where $x, y \in R$

Then
$$z^{-1} = \frac{1}{x + iy}$$

So, $z^{-1} = \frac{x - iy}{(x + iy)(x - iy)} = \frac{x - iy}{x^2 + y^2} = \frac{\overline{z}}{|z|^2}$
8. (a) $\sqrt{i} = \sqrt{\frac{2i}{2}} = \sqrt{\frac{1 + 2i - 1}{2}}$
 $= \sqrt{\frac{1 - 2i - i^2}{2}} - \sqrt{\frac{(1 - i)^2}{2}} = \frac{1 + i}{\sqrt{2}}$
 $\sqrt{-i} = \sqrt{-\frac{2i}{2}}$
 $= \sqrt{\frac{1 - 2i - 1}{2}} = \sqrt{\frac{1 - 2i - i^2}{2}} = \sqrt{\frac{(1 - i)^2}{2}} = \frac{(1 - i)}{\sqrt{2}}$
So, value of $\sqrt{i} + \sqrt{-i}$
 $= \frac{(1 + i) + (1 - i)}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$
9. (b) We know that $\frac{-1 + i\sqrt{3}}{2} = \omega$,
 $z = \sqrt{-\frac{1 - i\sqrt{3}}{2}} = \frac{2}{\sqrt{2}}$

so,
$$\frac{-1-i\sqrt{3}}{2} = \omega^2$$

$$\therefore \quad \left[\frac{-1+i\sqrt{3}}{2}\right]^{10} + \left[\frac{-1-i\sqrt{3}}{2}\right]^{10}$$

 $= \omega^{10} + \omega^{20} = \omega^{3 \times 3} + 1 + \omega^{3 \times 6} + 2$ $= \omega^3 \,\omega^3 \,\omega + \omega^3 \,\omega^6 \,\omega^2 = \omega + \omega^2$ (since $\omega^3 = 1$) and $\omega + \omega^2 = -1$ $(1+\omega+\omega^2=0)$ (d) The given equation is $x^3 - 27 = 0$ \Rightarrow x³-3³=0 \Rightarrow x=3, 3 ω , 3 ω ² Thus, real root of given equation is $3\omega^3$, since $\omega^3 = 1$ (c) Let $z = \cos \theta + i \sin \theta$ Now, on rotating through an angle $\frac{\pi}{2}$, z becomes $Z = \cos\left(\frac{\pi}{2} + \theta\right) + i\sin\left(\frac{\pi}{2} + \theta\right)$ $= -\sin\theta + i\cos\theta = i^2\sin\theta + i\cos\theta$ $=i(\cos\theta + i\sin\theta) = iz$ 12. (c) 1, ω and ω^2 are the three cube roots of unity. $\Rightarrow 1 + \omega + \omega^2 = 0$ and $\omega^3 = 1$. The given expression $\frac{a\omega^6+b\omega^4+c\omega^2}{b+c\omega^{10}+a\omega^8} \quad \frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2}$ $[\omega^6 = 1, \omega^4 = \omega]$ $\frac{\omega(a+b\omega+c\omega^2)}{\omega(b+c\omega+a\omega^2)}$ [Multiplying N^r and D^r by ω .] $\omega(a + b\omega + c\omega^2)$ $\omega(a + b\omega + c\omega^2)$

$$\frac{\omega(a + b\omega + c\omega^{2})}{(a\omega^{3} + b\omega + c\omega^{2})} = \omega$$
13. (b) Let $\sqrt{-5}$ 12i x iy
 $\Rightarrow (x + iy)^{2} = -5 + 12i$
 $\Rightarrow x^{2} - y^{2} + i2xy = -5 + 12i$
 $\Rightarrow x^{2} - y^{2} = -5$ and $2xy = 12 \Rightarrow xy = 6$

$$(x^{2} - y^{2})^{2} + 4x^{2}y^{2} = (x^{2} + y^{2})^{2}$$

$$\Rightarrow (-5)^{2} + 4 \times (6)^{2} = (x^{2} + y^{2})^{2}$$

$$\Rightarrow (x^{2} + y^{2})^{2} = 25 + 144 = 169$$

$$\Rightarrow x^{2} + y^{2} = 13 \text{ and } x^{2} - y^{2} = -5$$
Adding both $2x^{2} = \pm 13 - 5 = 8 \text{ or } -18$

$$\Rightarrow x^{2} = 4 \text{ (-ve discarded)}$$

$$\Rightarrow x = 2 \text{ and } y^{2} = 13 - 4 = 9 \text{ or } -13$$
Discard $y^{2} = -13, y^{2} = 9$

$$\Rightarrow y = 3$$

$$\Rightarrow x + iy = (2 + 3i)$$

$$\Rightarrow \sqrt{-5} 12i (2 3i)$$
14. (d) $\frac{-1}{2} i\sqrt{3}$ and $\frac{-1 - i\sqrt{3}}{2}$

d)
$$\frac{1}{2}$$
 and $\frac{1}{2}$

are complex cube roots of unity ω and ω^2

$$\alpha \quad \frac{1 \quad i\sqrt{3}}{2} \quad -\omega^{2}$$

$$\therefore \quad 1 + \alpha^{8} + \alpha^{16} + \alpha^{24} + \alpha^{32}$$

$$= 1 + \omega^{16} + \omega^{32} + \omega^{48} + \omega^{64}$$

$$= 1 + \omega + \omega^{2} + 1 + \omega = 0 + 1 + \omega = -\omega^{2}$$

15. (a) Complex numbers are : (a+ib) and $\frac{1}{-a+ib}$

Second number is rationalized as,

$$\frac{-a-ib}{(-a+ib)(-a-ib)} = \frac{-a-ib}{a^2+b^2}$$

These two complex numbers represent two points,

(a, b) and
$$\left(\frac{-a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$$

Eq. of line passing through these point is

$$(y-b) = \frac{-\frac{b}{a^2+b^2} - b}{-\frac{-a}{a^2+b^2} - a} (x-a)$$
$$\Rightarrow y-b = \frac{b}{a} (x-a) \Rightarrow ay-ab = bx-ab$$
$$\Rightarrow y = \frac{b}{a} x$$

So, line passes through the origin.

(a) Given that, $|z + w| = |z - w| \Rightarrow$ either z or, w is zero. 16.

17. (a) Let
$$\sqrt{\frac{1}{2} - \frac{i\sqrt{3}}{2}} = x - iy$$

Squaring both the sides,

_

$$\Rightarrow \frac{1}{2} - \frac{i\sqrt{3}}{2} = (x - iy)^2 \Rightarrow \frac{1}{2} - \frac{i\sqrt{3}}{2} = x^2 - y^2 - 2ixy$$

Comparing real and imaginary parts, we get

$$x^2 - y^2 = \frac{1}{2} \qquad ...(1)$$

and
$$2xy = \frac{\sqrt{3}}{2}$$
 ...(2)

and
$$(x^2 + y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2 = \frac{1}{4} + \frac{3}{4} = 1$$

 $\Rightarrow x^2 + y^2 = 1$ (3)

On solving eqs. (1) and (3) we get

$$x^{2} = \frac{3}{4} \text{ and } y^{2} = \frac{1}{4}$$
$$\Rightarrow x = \pm \frac{\sqrt{3}}{2}, y = \pm \frac{1}{2}$$
$$\therefore \sqrt{\frac{1}{2} - \frac{i\sqrt{3}}{2}} = \pm \left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right)$$

18. (d) Both statements are not correct.

19. (b)
$$\arg(bi) \tan^{-1}\left(\frac{b}{0}\right) = \tan^{-1}(\infty) = \frac{\pi}{2}(\because b > 0)$$

(b) If ω is cube root of unity then $\omega^2 + \omega + 1 = 0$ 20. So, ω satisfies the equaion $x^2 + x + 1 = 0$

21. (c)
$$i^{4n+1} = (i^4)^n \times i = (1)^n \times i = 1 \times i = i$$

22. (b) $1 - \frac{1}{(1+\omega)} - \frac{1}{(1+\omega^2)} = 1 - \frac{1}{-\omega^2} - \frac{1}{-\omega}$

$$=\frac{\omega^2+1+\omega}{\omega^2}=\frac{0}{\omega^2}=0$$

(c) A cube root of unity
$$-\frac{1}{2}(1+i\sqrt{3})$$

A square root of -1 $-i$
Cube of $1-i$ $-2(1+i)$
Square of $1+i$ $2i$

24. (d)
$$\frac{\sqrt{3}+i}{1+\sqrt{3}i} = \frac{(\sqrt{3}+i)(1-\sqrt{3}i)}{(1+\sqrt{3}i)(1-\sqrt{3}i)}$$

= $\frac{\sqrt{3}-3i+i+\sqrt{3}}{1+3} = \frac{2\sqrt{3}-2i}{4} = \frac{(\sqrt{3}-i)}{2}$

25. (a) Given
$$2x = 3 + 5i$$

23.

$$\Rightarrow x = \frac{3+5i}{2}$$

Consider
$$x^3 = \frac{27 + 125i^3 + 225i^2 + 135i}{8}$$

$$=\frac{27-125i-225+135i}{8} \qquad \left(\begin{array}{c} \because i^2 = -1 \\ i^3 = -i \end{array} \right)$$

$$=\frac{-198+10i}{8} = \frac{-99+5i}{4}$$

and
$$x^2 = \frac{9 + 25i^2 + 30i}{4}$$

$$=\frac{9-25+30i}{4}=\frac{-8+15i}{2}$$

Now, Consider $2x^3 + 2x^2 - 7x + 72$

$$= \left(\frac{-99+5i}{2}\right) + (-8+15i) - \frac{7(3+5i)}{2} + 72i$$
$$= -\frac{99}{2} + \frac{5i}{2} - 8 + 15i - \frac{21}{2} - \frac{35}{2}i + 72i$$
$$= \left(-\frac{99}{2} - 8 - \frac{21}{2} + 72\right) + \left(\frac{5}{2} + 15 - \frac{35}{2}\right)i$$
$$= \frac{-99 - 16 - 21 + 144}{2} = \frac{8}{2} = 4i$$

EBD 7346

26. (c) (A) Consider
$$\left[\frac{-1+\sqrt{-3}}{2}\right]^{29} \left[\frac{-1-\sqrt{-3}}{2}\right]^{29}$$

 $\left[\frac{-1+\sqrt{3i}}{2}\right]^{29} \left[\frac{-1-\sqrt{3i}}{2}\right]^{29}$
 $= (\omega)^{29} + (\omega^2)^{29} = \omega^{27} \cdot \omega^2 + (\omega^3)^{19} \cdot \omega$
 $= (\omega)^{39} + (\omega^2)^{29} = \omega^{27} \cdot \omega^2 + (\omega^3)^{19} \cdot \omega$
 $= (\omega)^{39} + (\omega)^{31} + (\omega)^{31} = (\omega)^{31} = (\omega)^{31}$
 $= \omega^2 + \omega = -1$
(R) $\omega^2 + -1$
A is true but R is false.
27. (a) Since, α is a complex root therefore
 $\alpha^2 + \alpha + 1 = 0 \Rightarrow \alpha = \omega \text{ or } \omega^2$
 $\cos (\because \omega^3 = 1)$
 $= \alpha$
(d) Let $z = \frac{1+2i}{1-(1-i)^2}$
 $\Rightarrow |z| = \frac{|1+2i|}{|1-(1-i)^2|} = \frac{|1+2i|}{|1-1-i^2+2i|} = \frac{|1+2i|}{|1+2i|} = 1$
29. (c) Consider $(-\sqrt{-1})^{4n+3} + (i^{41} + i^{-257})^9$
 $(-i)^{4n-3} \left[i \frac{1}{(i^3)^{85}} \cdot \frac{1}{i^2}\right]^9$ $(-i)^{4n-3} \left(i \frac{1}{i}\right)^9$
 $= -(-1)^{4n+3} (i)^{4n} (i)^3 + (i-i)^9 = -(1)(-i) + 0 = i$
30. (a) Let $z = 2\omega^2 + 3i$
Since, ω is the cube root of unity
 $\therefore \omega = \frac{-1+\sqrt{3}i}{2}$ and $\omega^2 = \frac{-1-\sqrt{3}i}{2}$
 $\therefore z = 2\omega^2 + 3i$
 $z = 2\left[\frac{-1-\sqrt{3}i}{2}\right] + 3i$
 $= -1-\sqrt{3}i + 3i = -1 + (3-\sqrt{3})i$
 $\overline{z} = -1-(3-\sqrt{3})i = -1 + \sqrt{3}i - 3i = 2\left(\frac{-1+\sqrt{3}i}{2}\right) - 3i$
 $= 2\omega - 3i$
31. (d) Given, $z + z^{-1} = 1 \Rightarrow z + \frac{1}{z} = 1$
 $\Rightarrow z^2 - z + 1 = 0 \Rightarrow z = -\omega$ and $-\omega^2$
when $z = -\omega$
 $\therefore z^{99} + z^{-99} = (-\omega)^{99} + (-\omega)^{-99} = -1 - 1 = -2$
when $z = -\omega^2$

(b) Consider,

$$\frac{i+\sqrt{3}}{-i+\sqrt{3}} = \frac{\left(i+\sqrt{3}\right)^2}{\left(\sqrt{3}-i\right)\left(\sqrt{3}+i\right)} \text{ (By Rationalizing)}$$

$$= \frac{i^2+3+2\sqrt{3}i}{3+1} \left(\text{using}(a-b)(a+b) = a^2 - b^2\right)$$

$$= \frac{-1+3+2\sqrt{3}i}{4} = \frac{1+\sqrt{3}i}{2}$$

$$= \frac{-(-1-\sqrt{3}i)}{2} = -\omega^2 \qquad (\because i^2 = -1)$$
and consider
$$i = \sqrt{3} = \left(i-\sqrt{3}\right)^2$$

$$\frac{i - \sqrt{3}}{i + \sqrt{3}} = \frac{(i - \sqrt{3})}{i^2 - (\sqrt{3})^2} \text{ (By Rationalizing)}$$

$$= \frac{i^2 + 3 - 2i\sqrt{3}}{-4} = \frac{2 - 2i\sqrt{3}}{-4} (\because i^2 = -1)$$

$$= \frac{-1 + i\sqrt{3}}{2} = \omega$$

$$\therefore \quad \left(\frac{i + \sqrt{3}}{-i + \sqrt{3}}\right)^{200} + \left(\frac{i - \sqrt{3}}{i + \sqrt{3}}\right)^{200} + 1$$

$$= \left(-\omega^2\right)^{200} + \omega^{200} + 1$$

$$= \omega^{400} + \omega^{200} + 1 = \omega^{3 \times 133 + 1} + \omega^{3 \times 66 + 2} + 1$$

$$= \left(\omega^3\right)^{133} \omega + \left(\omega^3\right)^{66} \omega^2 + 1$$

$$= \omega + \omega^2 + 1 \qquad \left(\because \omega^3 = 1\right)$$

$$= 0$$

33. (c) Given
$$x = \omega^2 - \omega - 2$$

32.

•

 $\Rightarrow x + 2 = \omega^2 - \omega$ On squaring both sides, we get

$$(x+2)^{2} = (\omega^{2} - \omega)^{2}$$

$$\Rightarrow x^{2} + 4x + 4 = \omega^{4} + \omega^{2} - 2 \omega^{3}$$

Add 3 on both side

$$\Rightarrow x^{2} + 4x + 4 + 3 = \omega + \omega^{2} - 2 + 3 (\because \omega^{3} = 1)$$

$$\Rightarrow x^{2} + 4x + 7 = 1 + \omega + \omega^{2}$$

$$\Rightarrow x^2 + 4x + 7 = 0 \left(\because 1 + \omega + \omega^2 = 0 \right)$$

34. (b) Consider $\frac{1+x+iy}{1+x-iy} = \frac{(1+x+iy)(1+x+iy)}{(1+x-iy)(1+x+iy)}$ (By Rationalizing) $=\frac{(1+x)^{2}+iy(1+x)+iy(1+x)-y^{2}}{1+x^{2}+2x+x^{2}}\left(\because i^{2}=-1\right)$ $=\frac{1+x^{2}+2x-y^{2}+2iy(1+x)}{2(1+x)}\left(\because x^{2}+y^{2}=1\right)$ $=\frac{1-y^2+2x+x^2+2iy(1+x)}{2(1+x)}$ $=\frac{2x^2+2x+2iy(1+x)}{2(1+x)} = x+iy \qquad (::1-y^2=x^2) \qquad 40$ 35. (a) Consider $\frac{1+2i}{1-(1-i)^2} = \frac{1+2i}{1-(1-1-2i)} = \frac{1+2i}{1+2i} = 1$ $\therefore \left| \frac{1 \quad 2i}{1 - 1 - i^2} \right| \quad 1$ 36. (d) Consider $\frac{1+i}{1-i} = \frac{(1+i)(1+i)}{(1-i)(1+i)} = \frac{(1+i)^2}{1-i^2} = \frac{(1+i)^2}{1+1}$ $=\frac{1+i^2+2i}{2}=\frac{2i}{2}=i$ $\therefore \left(\frac{1-i}{1-i}\right)^n i^n$ Now, $i^n = 1$ is possible for n = 4. 37. (d) Consider $\left(\frac{1+2i}{2+i}\right)^2 = \left(\frac{(1+2i)(2-i)}{(2+i)(2-i)}\right)^2$ $= \left(\frac{2+4i-i-2i^{2}}{4-i^{2}}\right)^{2} \quad \left(\frac{4-3i}{5}\right)^{2}$ $=\frac{1}{25}(16 \quad 9i^2 \quad 24i) \quad \frac{7}{25} \quad \frac{24i}{25}$ \therefore Conjugate of $\left(\frac{1+2i}{2+i}\right)^2 = \frac{7}{25} - \frac{24}{25}i$ (:: conjugate of a+ib = a-ib) 38. (c) Consider $\left(\frac{\sqrt{3}+i}{\sqrt{3}-i}\right) = \frac{\sqrt{3}}{\sqrt{3}-i} = \frac{\sqrt{3}}{\sqrt{3}-i}$

$$=\frac{\sqrt{3} i^{2}}{\sqrt{3}^{2}-i^{2}}=\frac{3+i^{2}+2\sqrt{3}i}{3-i^{2}}$$

$$= \frac{2+2\sqrt{3}i}{4} = \frac{1+\sqrt{3}i}{2} = -\omega^{2} \qquad (\because i^{2} = -1)$$
Now, $\left(\frac{\sqrt{3}+i}{\sqrt{3}-i}\right)^{6} = (-\omega^{2})^{6} = \omega^{12} = 1(\because \omega^{3} = 1)$
39. (b) Consider $\omega^{10} + \omega^{-10} = \omega^{10} + \frac{1}{\omega^{10}}$
 $= (\omega^{3})^{3} \cdot \omega - \frac{1}{\omega^{3}} = \omega + \frac{1}{\omega} = -1$
40. (d) We know, $\omega = \frac{1+i\sqrt{3}}{2}$ and
 $\omega^{2} = \frac{1-i\sqrt{3}}{2} \Rightarrow 1-i\sqrt{3} = 2\omega^{2}$
Consider $(-1+i\sqrt{3})^{48} = \left[-(1-i\sqrt{3})\right]^{48}$
 $= (1-i\sqrt{3})^{48}$
41. (b) Consider $1+i^{2}+i^{4}+i^{6}+\ldots+i^{100}$
 $= 1+\left[i^{2}+i^{4}+i^{6}+\ldots+i^{100}\right]$
 $= 1+\left[i^{2}+i^{4}+i^{6}+\ldots+i^{100}\right]$
 $= 1+\left[(-1)+(1)-1+\ldots+1\right]$
 $= 1-1+1-1+\ldots+1=1$
42. (c) $|z| = \sqrt{1^{2} \cos^{2}\frac{\pi}{5} - 2\cos\frac{\pi}{5} - \sin^{2}\frac{\pi}{5}}$
 $= \sqrt{1^{2} - 1-2\cos\frac{\pi}{5}} = \sqrt{2\left(1-\cos\frac{\pi}{5}\right)}$
 $= \sqrt{2\left(1+2\cos^{2}\frac{\pi}{10}-1\right)} = \sqrt{2\left(2\cos^{2}\frac{\pi}{10}\right)}$
 $= 2\cos\frac{\pi}{10}$
43. (a) Let $z = \frac{1}{1+3i} - \frac{1}{1-3i}$
 $= \frac{(1-3i)-(1+3i)}{(1+3i)(1-3i)} - \frac{-6i}{(1)^{2}-(3i)^{2}} = -\frac{6i}{10} = -\frac{3}{5}i$
 $\therefore |z| = \sqrt{(0)^{2} + \left(-\frac{3}{5}\right)^{2}} - \sqrt{\frac{9}{25}} - \frac{3}{5}$
44. (d) Consider,
 $(2-\omega+2)^{22/27} = (2(1+\omega^{2})-\omega)^{2/7}$

(2)
$$(2 - \omega + 2\omega^2)^{27} = [2(1 + \omega^2) - \omega]^{27}$$

= $(-2\omega - \omega)^{27}$ [$\because 1 + \omega + \omega^2 = 0$]
= $(-3\omega)^{27} = -3^{27} \cdot \omega^{27}$
= $(-3)^{27} \cdot (\omega^3)^9 = (-3)^{27}$

45. (a)
$$(1+i)^5 = {}^5C_0(1)^{5-0}i^0 + {}^5C_1(1)^{5-1}(i)^1 + {}^5C_2(1)^{5-2}(i)^2$$

 $+ {}^5C_3(1)^{5-3}(i)^3 + {}^5C_4(1)^{5-4}(i)^4 + {}^5C_5(1)^{5-5}(i)^5$
 $= 1 + 5i + 10i^2 + 10i^3 + 5i^4 + i^5$ (1)
 $(1-i)^5 = {}^5C_0i^0 - {}^5C_1i + {}^5C_2i^2 - {}^5C_3i^3 + {}^5C_4i^4 - {}^5C_5i^5$
 $= 1 - 5i + 10i^2 - 10i^3 + 5i^4 - i^5$ (2)
 By adding (1) and (2), we get
 $(1+i)^5 + (1-i)^5 = 1 + 5i + 10i^2 + 10i^3 + 5i^4 + i^5 + 1 - 5i + 10i^2 - 10i^3 + 5i^4 - i^5.$
 $= 2 + 20i^2 + 10i^4 = 2 - 20 + 10 = -8$

46.

(b) Let Z = x + iy = -2iLet square root of z be a + ib.

Then
$$\sqrt{x + iy} = a + ib$$

 $\Rightarrow x + iy = (a + ib)^2 = (a^2 - b^2) + (2ab)i$

$$\Rightarrow -2i = \left(a^2 - b^2\right) + i\left(2ab\right)$$

Equating real and imaginary part, we get $a^2 - b^2 = 0$ and $2ab = -2 \implies ab = -2$ $\Rightarrow ab = -1$ Since, ab < 0 therefore

$$\begin{split} \sqrt{x \quad iy} & \left[\sqrt{\frac{\sqrt{x^2 \quad y^2 \quad x}}{2}} - i\sqrt{\frac{\sqrt{x^2 \quad y^2 - x}}{2}}\right] \\ &= \pm \left[\sqrt{\frac{\sqrt{4} + 0}{2}} - i\sqrt{\frac{\sqrt{4} - 0}{2}}\right] \\ &= \pm \left[\sqrt{\frac{2}{2}} - i\sqrt{\frac{2}{2}}\right] = \pm [1 - i] \end{split}$$

47. (b) Given : $z = 1 + i \tan \alpha$, $\pi < \alpha < \frac{3\pi}{2}$

$$|z| \sqrt{1^2 + \tan \alpha^2} \sqrt{\sec^2 \alpha}$$
$$|z| = \sec \alpha.$$

Since,
$$\pi < \alpha < \frac{3\pi}{2}$$

 $\therefore \text{ Sec } \alpha \text{ lies in III}^{rd} \text{ quadrant}$ In 3rd quadrant, sec α is negative.

48. (b)
$$\left(\frac{1-i}{1+i}\right)^n = \left[\frac{(1-i)^2}{(1+i)(1-i)}\right]^n$$

 $\left[\frac{1+i^2-2i}{1-i^2}\right]^n \quad \left(\frac{-2i}{2}\right)^n \quad -i^n$
For $n=3$

$$(-i)^n = (-i)^3 = -i \times -i \times -i = -i^3 = -(-i) = i$$

Which is purely imaginary with positive imaginary part. Hence, n = 3.

(c) Since,
$$\alpha$$
 and β are the complex cube roots of unity
therefore $1 + \alpha + \alpha^2 = 0 = 1 + \beta + \beta^2$
and $\alpha^3 = 1 = \beta^3$.
Consider $(1 + \alpha)(1 + \beta)(1 + \alpha^2)(1 + \beta^2)$
 $= (1 + \alpha)(1 + \alpha^2)(1 + \beta)(1 + \beta^2)$
 $= (1 + \alpha^2 + \alpha + \alpha^3)(1 + \beta^2 + \beta + \beta^3)$
 $= (0 + \alpha^3)(0 + \beta^3)$
 $= (\alpha^3)(\beta^3) = (1)(1) = 1$
(d) Since ω is a cube root of unity
 $\therefore \omega^3 = 1$ and $1 + \omega + \omega^2 = 0$

$$\therefore \omega^{2} = 1 \text{ and } 1 + \omega + \omega^{2} = 0$$
Let $f(x) = (x^{3})p + (x^{3})q \cdot x + (x^{3})^{r} \cdot x^{2}$
Now, put $x = \omega$

$$f(\omega) = (\omega^{3})^{p} + (\omega^{3})^{q} \cdot \omega + (\omega^{3})^{r} \cdot \omega^{2}$$

$$= 1^{p} + 1^{q} \cdot \omega + 1^{r} \cdot \omega^{2} = 1 + \omega + \omega^{2} = 0$$

(a)
$$z = \frac{1+2i}{2-i} - \frac{2-i}{1+2i}$$

 $z = \frac{(1+2i)^2 - (2-i)^2}{(2-i)(1+2i)} = \frac{1+4i^2 + 4i - 4 - i^2 + 4i}{2+4i - i - 2i^2}$
 $= \frac{-3 - 4 + 8i + 1}{4+3i} = \frac{-6 + 8i}{4+3i} = \frac{(-6 + 8i)(4-3i)}{16+9}$

$$\frac{-24+18i+32i-24i^2}{25} = \frac{50i}{25} = 2i$$

Consider,

=

49.

50.

51.

$$z^{2} + z\overline{z} = (2i)^{2} + (2i)(-2i) = 4i^{2} - 4i^{2} = 0$$

52. (d) Given complex number is

$$(1 - \sin\theta) + i \cos\theta \equiv a + ib$$

10.

Argument =
$$\tan \theta = \frac{b}{a}$$

$$\Rightarrow \tan \theta = \frac{\cos \theta}{1 - \sin \theta}$$

$$= \frac{\cos^2 \frac{\theta}{2} - \sin^2 \frac{\theta}{2}}{\sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2} - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}}$$

$$= \frac{\left(\cos \frac{\theta}{2} - \sin \frac{\theta}{2}\right) \left(\cos \frac{\theta}{2} + \sin \frac{\theta}{2}\right)}{\left(\sin \frac{\theta}{2} - \cos \frac{\theta}{2}\right)^2}$$

$$= \frac{\cos \frac{\theta}{2} + \sin \frac{\theta}{2}}{\cos \frac{\theta}{2} - \sin \frac{\theta}{2}} = \frac{1 + \tan \frac{\theta}{2}}{1 - \tan \frac{\theta}{2}} = \frac{\tan \frac{\pi}{4} + \tan \frac{\theta}{2}}{1 - \tan \frac{\pi}{4} \tan \frac{\theta}{2}}$$

$$\tan \theta = \tan \left(\frac{\pi}{4} + \frac{\theta}{2}\right)$$

$$\pi = \theta$$

Hence, argument = $\frac{\pi}{4} + \frac{\sigma}{2}$

54.

55.

53. (b)
$$A + iB = \frac{4 + 2i}{1 - 2i} \times \frac{1 + 2i}{1 + 2i} (By Rationalizing)$$
$$= \frac{4 + 2i + 8i - 4}{(1)^2 - (2i)^2} = \frac{0 + 10i}{5} = 2i = 0 + 2i$$
$$\Rightarrow A = 0, B = 2$$

54. (a) Let $z = x + y$ then $\overline{z} = x - iy$
Now $z = -\overline{z}$
$$\Rightarrow (x + iy) = -(x - iy) \Rightarrow x + iy = -x + iy$$
$$\Rightarrow 2x = 0 \Rightarrow Re(z) = 0$$

55. (b) Statement - 1
 $(\omega^{10} + 1)^7 + \omega = 0$
L.H.S = $\begin{bmatrix} \omega^3 \ ^3 \omega \ 1 \end{bmatrix}^7 \omega$
$$\Rightarrow (\omega + 1)^7 + \omega = (\omega^3)^4 \ .\omega^2 + \omega = -\omega^2 + \omega \neq 0$$
Hence, LHS \neq RHS
Statement - 2

L.H.S =
$$(\omega^{105} + 1)^{10} = \left[(\omega^3)^{35} + 1 \right]^{10} = 2^{10}$$

where 2 is a prime number. Hence, statement -2 is correct.

56. (d)
$$\sum_{n=1}^{13} [i^{n} + i^{n+1}] = \sum_{n=1}^{13} i^{n} [1+i]$$
$$= (1+i) [i + i^{2} + i^{3} \dots i^{13}] = \frac{1}{1-i} i [1-i^{13}]$$
$$= \frac{(-1+i)(1-i^{13})}{(1-i)} = \frac{-1+i^{13} + i - i^{14}}{(1-i)}$$
$$= \frac{-1}{(1-i)} (\frac{i^{2}}{(1-i)})^{6} \frac{i}{(1-i)} = \frac{2i + 2i^{2}}{1-i^{2}} = (i-1)$$
57. (c) Let $z = \frac{\sqrt{2} + i}{\sqrt{2} - i} = \frac{\sqrt{2} + i}{\sqrt{2} - i} \times \frac{\sqrt{2} + i}{\sqrt{2} + i}$
$$= \frac{(\sqrt{2} + i)^{2}}{(\sqrt{2})^{2} - (i)^{2}} = \frac{2\sqrt{2} i}{3}$$
$$\Rightarrow z \quad \frac{2\sqrt{2}}{3} i \quad \frac{1}{3}$$
Now, $|z| = \sqrt{(\frac{2\sqrt{2}}{3})^{2} + (\frac{1}{3})^{2}} = 1$
58. (a) Consider $\sqrt{-i} = \sqrt{e^{-i\pi/2}} = \pm e^{-i\pi/4} = \pm (\frac{1-i}{\sqrt{2}})^{2}$

59. (a) Let z = -1 - i

Since Real part of z < 0 and Imaginary part of z < 0therefore argument lies in IIIrd quadrant

arg (z) =
$$\pi$$
 + tan⁻¹ $\left|\frac{-1}{-1}\right| = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$
60. (a) 3 + 4i = 2² + i² + 2 × 2 × i = (2 + i)²

$$\sqrt{3} \quad 4i = 2 + i$$

61. (d) The two complex numbers are P = x + iy and $Q = \alpha + i\beta$

Quotient
$$= \frac{P}{Q} = \frac{x + iy}{\alpha + i\beta}, \quad \left|\frac{P}{Q}\right| = \left|\frac{x + iy}{\alpha + i\beta}\right|$$

$$\frac{\sqrt{x^2 y^2}}{\sqrt{\alpha^2 + \beta^2}} \quad \sqrt{\frac{x^2 y^2}{\alpha^2 + \beta^2}} \quad \frac{|Z_1|}{|Z_2|} \quad \left|\frac{Z_1}{Z_2}\right|$$

Hence, the quotient of their modulus is equal to the quotient of their moduli.

62. (a)
$$|2z-1| = |z-2|$$
$$|2(x+iy)-1| = |x+iy-2|$$
$$|(2x-1)+2yi| = |(x-2)+iy|$$
$$\overline{\sqrt{(2x-1)^2 \quad y^2}} = \sqrt{(x-2)^2 \quad y^2}$$
Squaring both sides
$$4x^2 + 1 - 4x + 4y^2 = x^2 + 4 - 4x + y^2$$
$$\Rightarrow 3x^2 + 3y^2 = 3$$
$$\Rightarrow x^2 + y^2 = 1$$
It is the equation of a circle.
 \therefore The point z describes a circle.

63. (a) Let
$$z = x + iy$$
, $\overline{z} = x - iy$
 $|z + \overline{z}| = |z - \overline{z}|$

$$|(x + iy) + (x - iy)| = |(x + iy) - (x - iy)|$$

 $|2x| = |2y|$
 $x = \pm y$

64. (d)
$$\frac{(1 \quad i)(2 \quad i)}{3-i} = \frac{1 \quad 3i}{3-i}$$
$$= \frac{1 \quad 3i}{3-i} \times \frac{3 \quad i}{3 \quad i} = \frac{10i}{10} = i \text{ or } 0 + i$$
argument, $\theta = \tan^{-1}\left(\frac{1}{0}\right) = \tan^{-1}\left(\tan\frac{\pi}{2}\right) = \frac{\pi}{2}$
65. (d) Let $z = K(\cos\theta + i \sin\theta)$
$$|z| = \sqrt{K^2(\cos^2\theta + \sin^2\theta)} = 4$$
$$\therefore K = 4$$
Again Arg(z) = $\frac{5\pi}{6}$ So, $\theta = \frac{5\pi}{6}$

Now, $z = 4\left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right)$ = $4\left(\frac{-\sqrt{3}}{2} + i\frac{(1)}{2}\right) = -2\sqrt{3} + 2i$

66. (a) Given
$$\frac{(1-i)^{4n-3}}{(1-i)^{4n-3}} = \left(\frac{1-i}{1-i}\right)^{4n-3} \cdot (1-i)^2$$

$$= \left[\frac{(1+i)(1+i)}{(1-i)(1+i)}\right]^{4n+3} \cdot (1+i^2+2i)$$

$$= \left[\frac{1-i^2-2i}{1-1}\right]^{4n-3} \cdot 2i = (i)^{4n+3} \cdot 2i = 2(i)^{4n+4}$$

$$= 2. (i^{4(n+1)}) = 2$$
67. (d) $z = \frac{-2(1+2i)}{3+i}$

$$= \frac{-2-4i}{3+i} = \frac{-2-4i}{3+i} \times \frac{3-i}{3-i}$$

$$= \frac{-6+2i-12i+4i^2}{10}$$

$$= \frac{-6-10i-4}{10} = \frac{-10-10i}{10} = -1-i$$

$$z = -1-i = r (\cos \theta + i \sin \theta)$$
On comparing real and imaginary part on both sides, we get
 $r \cos \theta = -1$...(i)
 $r \sin \theta = -1$...(i)
 $r \sin \theta = -1$...(ii)
 $r \sin \theta = -1$...(ii)
 $r \sin \theta = \frac{\pi}{4}$

$$\therefore \quad \theta = \frac{\pi}{4}$$

$$\therefore \quad \theta = \frac{\pi}{4}$$

$$\therefore \quad Option (b) is correct.$$
68. (c) Here cube root of unity is $1, \omega, \omega^2$
Now as we know that $1 + \omega + \omega^2 = 0$ and $\omega^3 = 1$
 $\omega^8 = (\omega^3)^2 \cdot \omega^2 = \omega^2$
 $\omega^4 = (\omega^3) \cdot \omega = \omega$
Now, $(1 + \omega) (1 + \omega^2) (1 + \omega^4) (1 + \omega^8)$
 $= (-\omega^2)(-\omega) (1 + \omega) (1 + \omega^2)$

$$=\omega^3 (1+\omega^2+\omega+\omega^3)$$

$$=\omega^{3}(\omega^{3})=(1)(1)=1$$

 \therefore Option (c) is correct.

(c) Let
$$\sqrt{i} = x + iy$$

 $i = (x + iy)^{2}$
 $x^{2} - y^{2} + 2xyi = 0 + i$
 $x^{2} - y^{2} = 0; 2xy = 1$
Now, $(x^{2} + y^{2})^{2} = (x^{2} - y^{2})^{2} + 4x^{2} y^{2}$
 $(x^{2} + y^{2})^{2} = 0 + 1$
 $x^{2} + y^{2} = 1$
 $x^{2} - y^{2} = 0$... (i)
 $x^{2} + y^{2} = 1$... (ii)
 $2x^{2} = 1$
 $x^{2} = \frac{1}{2} \Rightarrow x = \pm \frac{1}{\sqrt{2}}$
 $y^{2} = \frac{1}{2} \Rightarrow y = \pm \frac{1}{\sqrt{2}}$

$$\therefore \sqrt{i} = \pm \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)$$
$$= \frac{1}{\sqrt{2}} (1+i) \text{ or } \frac{-1}{\sqrt{2}} (1+i).$$

69.

70.

(b) As we know that cube root of unity is 1,
$$\omega$$
 and ω^2
 $\therefore x^3 - 1 = (x - 1) (x - \omega) (x - \omega^2)$
 \therefore Option (b) is correct.

71. (c)
$$\left[\frac{\sin\frac{\pi}{6} + i\left(1 - \cos\frac{\pi}{6}\right)}{\sin\frac{\pi}{6} - i\left(1 - \cos\frac{\pi}{6}\right)}\right]^3$$

$$= \left[\frac{2\sin\frac{\pi}{12}\cos\frac{\pi}{12} + i\left(2\sin^2\frac{\pi}{12}\right)}{2\sin\frac{\pi}{12}\cos\frac{\pi}{12} - i\left(2\sin^2\frac{\pi}{12}\right)}\right]^3$$

$$= \left[\frac{\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}}{\cos\frac{\pi}{12} - i\sin\frac{\pi}{12}}\right]^3 = \left(\frac{i\frac{\pi}{12}}{e^{-i\frac{\pi}{12}}}\right)^3$$
$$= \left(e^{i\frac{\pi}{6}}\right)^3 = e^{i\times3\times\frac{\pi}{6}} = e^{i\frac{\pi}{2}} = \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} = i$$

 \therefore Option (c) is correct.

Complex Numbers

72. (b)
$$(\sin x + i \cos x)^3$$

 $= \sin^3 x + (i)^3 \cos^3 x + 3i (\sin x) (\cos x) (\sin x + i \cos x)$
 $= \sin^3 x - i \cos^3 x + 3i \sin^2 x \cos x - 3 \sin x \cos^2 x$
 $= \sin^3 x - 3 \sin x \cos^2 x - i \cos x (\cos^2 x + \sin^2 x)$
 $= \sin x (\sin^2 x - 3 \cos^2 x) - i \cos x (\cos^2 x + 3 \sin^2 x)$
Real part of $(\sin x + i \cos x)^3$
 $= \sin x (\sin^2 x - 3 \cos^2 x)$
 $= \sin x [\sin^2 x - 3 (1 - \sin^2 x)]$
 $= \sin x [4 \sin^2 x - 3]$
 $= 4 \sin^3 x - 3\sin x$
 $= -(3 \sin x - 4 \sin^3 x) = -\sin 3x$
 \therefore Option (b) is correct.
73. (d) Let $Z_1 = a_1 + ib_1$
 $Z_2 = a_2 + ib_2$
 $|Z_1| = |Z_2|$

 $\sqrt{(a_1)^2 + (b_1)^2} = \sqrt{(a_2)^2 + (b_2)^2}$ It is true for many values of $a_1, a_2 \& b_1, b_2$. So a_1 must

not equal to a_2 , and b_1 must not equal to b_2 .

74. (a) Let z = a + bi

P and *Q* are points on complex plane. Angle between *OP* and *OQ* is

$$\theta = \tan^{-1} \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

$$m_1 \text{ for line } OP, \qquad m_2 \text{ for line } OQ$$

$$m_1 = \frac{\sqrt{3}}{2} - 0 \qquad m_2 = \frac{-\sqrt{3}}{2} - 0$$

$$\implies m_1 = -\sqrt{3} \qquad \implies m_2 = \sqrt{3}$$

$$\theta = \tan^{-1} \left[\frac{-\sqrt{3} - \sqrt{3}}{1 + (-\sqrt{3})(\sqrt{3})} \right]$$

$$= \tan^{-1} \left[\frac{-2\sqrt{3}}{-2} \right] = \pi - \tan^{-1} \sqrt{3} = \pi - \tan^{-1} \tan \frac{\pi}{3}$$

$$\theta = \pi - \frac{\pi}{3}$$

$$\boxed{\theta = 120^\circ}$$
77. (a) $z = x + iy$

$$= \left(\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}} \right)^{-25}$$

 $= \left[\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right]^{-25}$

$$(\cos n - i \sin n)^{n} = \cos n\pi - i \sin n\pi$$

$$\left[\cos(-\theta) = \cos \theta \\ \sin(-\theta) = -\sin \theta \right]$$

$$z = \left[\cos \left(\frac{25\pi}{4} \right) + i \sin \left(\frac{25\pi}{4} \right) \right]$$

$$= \left[\cos \left(6\pi - \frac{\pi}{4} \right) - i \sin \left(6\pi - \frac{\pi}{4} \right) \right]$$

$$= \cos \frac{\pi}{4} + i \sin \frac{\pi}{4}$$

$$= \frac{1+i}{\sqrt{2}}$$

$$\frac{z - \sqrt{2}}{z - i\sqrt{2}} - \frac{(1+i-2)\sqrt{2}}{\sqrt{2}(1+i-2i)}$$

$$= \frac{-1+i}{1-i} = -1$$

$$\text{Amplitude} = \tan^{-1} \frac{b}{a} = \tan^{-1} \left(\frac{0}{-1} \right) = \tan^{-1} 0$$

$$= \tan^{-1} (\tan \pi) = \pi$$

$$\text{Hence fundamental amplitude of } \left(\frac{z - \sqrt{2}}{z - i\sqrt{2}} \right) \text{ is } \pi.$$

$$(c) \quad \text{Given } z^2 - i\overline{z}$$

$$\text{Let us suppose that } z = x + iy$$

$$\Rightarrow (x + iy)^2 = i(x - iy)$$

$$\Rightarrow x^2 - y^2 + 2xyi = ix + y$$

$$\text{Comparing real and imaginary part of both sides }$$

$$x^2 - y^2 = y \text{ and } 2xy = x.$$

$$\text{Taking } 2xy = x$$

$$(2y - 1)x = 0$$

$$\Rightarrow x = 0 \text{ and } y = \frac{1}{2}$$

$$\text{ if } x = 0$$

$$\therefore y + y^2 = 0$$

$$(\because x^2 - y^2 = y)$$

$$y = 0 \text{ and } -1$$

$$x = 0$$

$$y = 0 \text{ and } -1$$

$$\text{If } y = \frac{1}{2}$$

 $\Rightarrow x = \pm \frac{\sqrt{3}}{2}$ Since given numbers are non zero complex numbers.

So, $z_1 = 0 + (-1)i = -i$ $z_2 = \frac{\sqrt{3}}{2} + \frac{1}{2}i$ $z_3 = \frac{-\sqrt{3}}{2} + \frac{1}{2}i$ $z_1 \quad z_2 \quad z_3 \quad (-i) \quad \left(\frac{\sqrt{3}}{2} \quad \frac{1}{2}i\right) \quad \left(-\frac{\sqrt{3}}{2} \quad \frac{1}{2}i\right) \quad 0$ Hence $z_1 + z_2 + z_3 = 0$ 79. (c) $z_1 z_2 z_3 = (-i) \left(\frac{\sqrt{3} + i}{2} \right) \left(\frac{-\sqrt{3} + i}{2} \right)$ $=\frac{-i}{4}(i^2-(\sqrt{3})^2)$ $=\frac{-i}{4}(-3-1)=i$ Hence $z_1 z_2 z_3$ is purely imaginary. $z_1 z_2 = -i \left(\frac{\sqrt{3} + i}{2} \right) = \frac{-\sqrt{3}i + 1}{2}$ $z_2 z_3 = \frac{(\sqrt{3} + i)(-\sqrt{3} + i)}{4}$ $=\left(\frac{-3-\sqrt{3}i+\sqrt{3}i+i^2}{4}\right)=-1$ $z_3 z_1 = \frac{(-\sqrt{3}+i)(-i)}{2} = \frac{+\sqrt{3}i+1}{2}$ $z_1 z_2 + z_2 z_3 + z_3 z_1 = \left(\frac{-\sqrt{3}i+1}{2}\right) + (-1) + \left(\frac{\sqrt{3}i+1}{2}\right)$ $=\left(\frac{-\sqrt{3}i+1+\sqrt{3}i+1}{2}\right)-1$ $= 0 \in R$

> Hence $z_1z_2 + z_2z_3 + z_3z_1 = 0$ is purely real. Hence both statements are correct.

80. (a)
$$\left|\frac{z-4}{z-8}\right| = 1$$
 and $\left|\frac{z}{z-2}\right| = \frac{3}{2}$

$$\Rightarrow |z-4| = |z-8|$$
Let $z = x + iy$
 $|x+iy-4| = |x+iy-8|$
Squaring both sides, we get
 $[(x-4)^2 + y^2] = [(x-8)^2 + y^2]$
 $(x-4)^2 = (x-8)^2$

$$\Rightarrow x^2 + 16 - 8x = x^2 + 64 - 16x$$

$$\Rightarrow 8x = 48 \Rightarrow x = 6$$

78.

 $x^2 - \frac{1}{4} = \frac{1}{2}$

 $\Rightarrow x^2 = \frac{3}{4}$

when
$$\left|\frac{z}{z-2}\right| = \frac{3}{2}$$

 $\Rightarrow 2 |z| = 3 |z-2|$
Squaring both sides, we get
 $4(x^2 + y^2) = 9[(x-2)^2 + y^2]$
 $\Rightarrow 4x^2 + 4y^2 = 9x^2 + 36 - 36x + 9y^2$
 $\Rightarrow 5x^2 + 5y^2 - 36x + 36 = 0$
as we know $x = 6$
 $5(6)^2 + 5y^2 - 36 \times 6 + 36 = 0$
 $\Rightarrow 5y^2 = 0 \Rightarrow y = 0$
Hence $x = 6$ and $y = 0$.
 $\Rightarrow z = 6$
 $|z| = 6$
81. (d) $\left|\frac{z-6}{z+6}\right| = \left|\frac{6-6}{6+6}\right| = 0$

85.

86.

82. (d) Cube root of unity are 1,
$$-\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$$

 ω_1 and ω_2 are two distinct cube roots of unity different from 1.

$$\omega_{1} = -\frac{1}{2} \quad \frac{\sqrt{3}}{2}i, \ \omega_{2} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$
$$(\omega_{1} - \omega_{2})^{2} = \left(-\frac{1}{2} \quad \frac{\sqrt{3}}{2}i \quad \frac{1}{2} \quad \frac{\sqrt{3}}{2}i\right)^{2}$$
$$= (\sqrt{3}i)^{2} = 3i^{2}$$
$$(\omega_{1} - \omega_{2})^{2} = -3$$

83. (d) $\omega^{100} + \omega^{200} + \omega^{300} = (\omega^{99} \cdot \omega) + (\omega^{100})^2 + (\omega^3)^{100}$ = $(\omega^{99} \cdot \omega) + (\omega^{99} \cdot \omega)^2 + (\omega^3)^{100}$

$$: \omega^{3} \quad 1 \qquad \omega^{99} = (\omega^{3})^{33} \quad 1^{33} \quad 1 \Rightarrow \omega^{100} + \omega^{200} + \omega^{300} \quad (1 \ \omega) \quad (1 \ \omega)^{2} \quad 1^{100} = \omega + \omega^{2} \quad 1 \quad 1 \quad \omega + \omega^{2} \quad 0$$

$$= \omega + \omega^{-1} - 1 - 1 - \omega + \omega^{-1}$$
84. (d)
$$\frac{z-1}{z+1} = \frac{x+iy-1}{x+iy+1}$$

$$\Rightarrow \operatorname{Re}\left(\frac{z-1}{z+1}\right) = \frac{x^{2}+y^{2}-1+2iy}{x^{2}+y^{2}+2x+1} = 0$$

$$\Rightarrow \operatorname{Re}\left(\frac{z-1}{z+1}\right) = \frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+2x+1} = 0$$

$$\Rightarrow x^{2} + y^{2} - 1 - 0$$

$$\Rightarrow x^{2} - y^{2} - 1$$
Also, $z\overline{z} = x^{2} + y^{2} = 1$
and $z\overline{z} - |z|^{2}$

$$\Rightarrow |z|^{2} - 1$$

$$\Rightarrow |z| = 1$$

(a)
$$z \left[\frac{\sqrt{3}}{2} \frac{i}{2}\right]^{107} \left[\frac{\sqrt{3}}{2} - \frac{i}{2}\right]^{107}$$

 $\therefore \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \& \sin \frac{\pi}{6} = \frac{1}{2}$
 $\Rightarrow z = \left[\cos \frac{\pi}{6} + i\sin \frac{\pi}{6}\right]^{107} + \left[\cos \frac{\pi}{6} - i\sin \frac{\pi}{6}\right]^{107}$
Also, $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
 $\Rightarrow z \cos \frac{107\pi}{6} i \sin \frac{107\pi}{6} \cos \frac{107\pi}{6} - i \sin \frac{107\pi}{6}$.
 $\Rightarrow \operatorname{Im}(z)=0.$
(c) Let $z = x + iy$
 $z^2 + |z| = 0$
 $\Rightarrow x^2 - y^2 + 2ixy + \sqrt{x^2 + y^2} = 0$
 $\Rightarrow x^2 - y^2 + \sqrt{x^2 + y^2} = 0$...(1)
and $2xy = 0 \Rightarrow xy = 0 \Rightarrow x = 0 \text{ or } y = 0$
Now : For $y = 0$ in eq. (1) we get :
 $x^2 + \sqrt{x^2} = 0$
 $\Rightarrow x^2 - x = 0 \Rightarrow x(x-1) = 0$
 $\Rightarrow x = 0$ ($\because x \le 0$)
 $\therefore |z = 0|$
For $x = 0$ in eq. (1) we get,
 $-y^2 + \sqrt{y^2} = 0$
 $-y^2 + |y| = 0$
If $y > 0$, then
 $-y^2 + \sqrt{y^2} = 0$
 $\Rightarrow y = 0, y = 1$ ($\because y > 0$)
 $\therefore |z = i|$
If $y < 0$, then
 $-y^2 + |y| = 0$
 $\Rightarrow y = 0, y = -1$
 $\Rightarrow y = -1$ ($\because y < 0$)
 $\therefore |z = -i|$

 \therefore There are only 3 distinct solutions.

87. (b)
$$X \sqrt{\frac{1+\omega^2}{1+\omega}}$$
 (:: $1+\omega+\omega^2 = 0$ and ω^3 1)
 $\Rightarrow X \sqrt{\frac{-\omega}{-\omega^2}} \sqrt{\frac{1}{\omega}} \sqrt{\frac{\omega^3}{\omega}} \sqrt{\omega^2} = \omega$
88. (a) $i^{2n} + i^{2n} + i^{1} + i^{2n} + i^{2n} + i^{2n} + i^{3}$
 $= i^{2n} + i^{2n} \cdot i + i^{2n} \cdot i^{2} + i^{2n} \cdot i^{3}$
 $= i^{2n} (1+i+i^2+i^3) [since, i^2 = -1, i^3 = i^2 \cdot i = -i]$
 $= i^{2n} (0)$
 $= 0$

89. (b)
$$\left(\frac{-1+i\sqrt{3}}{2}\right)^n + \left(\frac{-1-i\sqrt{3}}{2}\right)^n$$

we know that cube roots of a unit use 1, ω , ω^2

$$\omega = \frac{-1 + i\sqrt{3}}{2}, \omega^2 = \frac{-1 - i\sqrt{3}}{2}$$

So, $\left(\frac{-1 + i\sqrt{3}}{2}\right)^n \left(\frac{-1 - i\sqrt{3}}{2}\right)^n \omega^n + \omega^{2n}$

Given, n is not multiple of 3. So, n = 1, 2, 4, 5... In any case, $\omega^n + \omega^{2n} = \omega + \omega^2 = -1$

90. (a) We know, if
$$Z = x + iy$$
, $|z| = \sqrt{x^2 + y^2}$

Given,
$$\frac{1+2i}{1-(1-i)^2} = \frac{1+2i}{1-(1-2i+i^2)} = \frac{1+2i}{1+2i} = 1$$

Since, it is purely real number, modulus = 1 and principal argument = 0

91. (c) $|z+4| \le 3$ |z+1|=|z+4+(-3)|We know, $|z_1+z_2| \le |z_1|+|z_2|$ So, $|z+4+(-3)| \le |z+4|+|-3|$ $\le |3|+|-3|$ ≤ 6

So, maximum value = 6.

92. (c)
$$z^2 = 2\overline{z}$$

Let $z = x + iy \Rightarrow z^2 = (x + iy)^2 = x^2 - y^2 + 2xyi$
 $\therefore z^2 = 2\overline{z} \Rightarrow x^2 - y^2 + 2xyi = 2(x - iy)$
 $\Rightarrow x^2 - y^2 = 2x; 2xy = -2y \Rightarrow 2(x + 1)y = 0.$
 $x = -1$ and $y = 0$
 $\Rightarrow (-1)^2 - y^2 = 2(-1)$
 $\Rightarrow 1 - y^2 = -2$
 $\Rightarrow y^2 = 3 \Rightarrow y = \sqrt{3}$
 \therefore Roots are $-1 \sqrt{3}$ i and $-1 - \sqrt{3}$ i.
and for $y = 0, x^2 - 0 = 2x$
 $x(x - 2) = 0$
 $x = 0$ and 2.
Hence, roots are 0, 2

93. (a)
$$A = \begin{bmatrix} 4i - 6 & 10i \\ 14i & 6 + 4i \end{bmatrix} \text{ and } K = \frac{1}{2i}$$
$$K = \frac{1}{2i} = \frac{i}{2i(i)} = \frac{i}{2i^2} = \frac{-i}{2}.$$
$$\therefore KA = \frac{-i}{2} \begin{bmatrix} 4i - 6 & 10i \\ 14i & 6 + 4i \end{bmatrix}$$
$$= \begin{bmatrix} (4i - 6) \left(\frac{-i}{2}\right) & 10i \left(\frac{-i}{2}\right) \\ 14i \left(\frac{-i}{2}\right) & (6 + 4i) \left(\frac{-i}{2}\right) \end{bmatrix}$$
$$\begin{bmatrix} -2i^2 + 3i & -5i^2 \\ -7i^2 & -3i - 2i^2 \end{bmatrix} \begin{bmatrix} 2 & 3i & 5 \\ 7 & 2 - 3i \end{bmatrix}$$

94. (b)
$$\left(\frac{1+i}{1-i}\right)^n = 1$$

4

We know, $i^2 = -1$ and $i^4 = 1$. Now, rationalise the denominator.

$$\left(\frac{(1+i)(1+i)}{(1-i)(1+i)}\right)^n = \left(\frac{1+2i+i^2}{1-i^2}\right)^n = \left(\frac{1+2i-i}{1-(-1)}\right)^n = \left(\frac{2i}{2}\right)^n = -i^n$$

The smallest positive integer for which $i^n = 1$ is 4

95. (c) Re
$$(z^2-i)=2$$

Let $z = x + iy$
Now, $z^2 = (x + iy)^2 = x^2 + 2ixy - y^2$
 $z^2 - i = x^2 + 2ixy - y^2 - i$
 $= x^2 - y^2 + i(2xy - 1)$
But, Re $(z^2 - i) = 2$
i.e., $x^2 - y^2 = 2$, which represents rectangular hyperbola.
96. (c) $z = x + iy = (-1 - i)$
 $\therefore x = -1, y = -1$
This lies in 3^{rd} Quadrant.
 $\therefore arg(z) = \theta - \pi$
 $= tan^{-1} \left(\frac{y}{x}\right) - \pi$
 $= tan^{-1} \left(\frac{-1}{-1}\right) - \pi$
 $= tan^{-1} (1) - \pi$
 $= \frac{\pi}{4} - \pi$
 -3π

Complex Numbers

97. (c) Let z = x + iy $\therefore z^2 + \alpha z + \beta = (x + iy)^2 + \alpha (x + iy) + \beta$ $= x^2 - y^2 + 2ixy + \alpha x + i\alpha y + \beta$ Given, $z^2 + \alpha z + \beta = 0$ $\therefore x^2 - y^2 + 2ixy + \alpha x + i\alpha y + \beta = 0$ \Rightarrow x²-y²+ α x+ β +i(2xy+ α y)=0+i.0 Comparing real and imaginary parts, we get $x^2 - y^2 + \alpha x + \beta = 0;$(1) $y(2x+\alpha)=0$(2) $(2) \Rightarrow 2x + \alpha = 0$ (∵ y≠0) $\Rightarrow 2(1) + \alpha = 0$ (:: Given $\operatorname{Re}(z) = 1$) $\Rightarrow \alpha = -2$ Now, (1) $\Rightarrow x^2 - y^2 + \alpha x + \beta = 0$ $\Rightarrow (1)^2 - y^2 + (-2)(1) + \beta = 0$ $\Rightarrow 1 - y^2 - 2 + \beta = 0$ $\Rightarrow -1 - y^2 + \beta = 0$ $\Rightarrow \beta = 1 + y^2$ Since, $y \in R$ and $y \neq 0$, β is always greater than 1. So, $\beta \in (1, \infty)$ 98. (a) $|1-2i|^x = 5^x$ $\Rightarrow \left(\begin{array}{ccc} 1 & 2 + -2 & 2 & \frac{1}{2} \end{array}\right)^{x} \quad 5^{x} \quad \because \quad |x \quad iy| \quad \sqrt{x^{2} \quad y^{2}}$ \Rightarrow $(5)^{\frac{x}{2}} = 5^{x}$ $\Rightarrow \frac{x}{2} = x \Rightarrow x = 2x$ $\Rightarrow x = 0.$ There is no non zero integral solution. 99. (c) We know, it $|\alpha| = 1$ $\Rightarrow |\alpha|^2 = 1$ $\Rightarrow \alpha.\overline{\alpha} \quad 1 \qquad \dots (1)$ $\therefore \left| \frac{\alpha - \beta}{1 - \alpha \overline{\beta}} \right| \quad \left| \frac{\alpha - \beta}{\alpha . \overline{\alpha} - \alpha \overline{\beta}} \right| \quad (\text{from}(1))$ $\frac{\alpha - \beta}{\alpha \ \overline{\alpha} - \overline{\beta}}$ $\frac{|\alpha - \beta|}{|\alpha| |\alpha - \beta|}$ \therefore sin ce $|\overline{z}| |z|$ $\frac{1}{|\alpha|} \quad \frac{1}{1} \quad 1$ 100. (a) $i^{1000} + i^{1001} + i^{1002} + i^{1003}$ $= i^{1000} (1 + i + i^2 + i^3) \qquad i = \sqrt{-1}$ $\Rightarrow i^2 = -1$

$$\omega = \frac{-1 \sqrt{3}i}{2} \text{ and}$$

$$\omega^2 = \frac{-1 - \sqrt{3}i}{2}$$

$$\omega^3 = \left(\frac{-1 + \sqrt{3}i}{2}\right) \left(\frac{-1 - \sqrt{3}i}{2}\right)$$

$$= \frac{(-1)^2 - (\sqrt{3}i)^2}{4} = \frac{4}{4} = 1$$

$$\therefore \qquad \omega^3 = 1$$
Now, $(\omega)^{3n} + (\omega^2)^{3n}$

$$= 1 + 1 = 2$$

$$i^{11} \quad i^{11} \quad i^{12}$$

$$i^{2} \quad i^{3} \quad i^{4} \quad i^{5} \quad i^{6} \quad i^{7} \quad i^{8} \quad i^{9} \quad i^{10} \quad i^{11}$$

$$i^{3} \quad i^{4} \quad i^{5} \quad i^{6} \quad i^{7} \quad i^{8} \quad i^{9} \quad i^{10} \quad i^{11} \quad i^{12}$$

$$= (i^{2} + i^{3} + 0) + (i^{3} + i^{4} + 0)$$

$$= i^{2} + i^{3} + i^{3} + i^{4}$$

$$= i^{2} + 2i^{3} + i^{4}$$

$$= -1 + 2(-i) + 1$$

$$= -2i$$

$$\therefore \text{ modulus-amplitude is } 2\left(\cos\frac{\pi}{6} \quad i\sin\frac{\pi}{6}\right).$$
(c)
$$\sum_{n=2}^{11} i^{n} \quad i^{n-1}$$
We know, $i + i^{2} + i^{3} + i^{4} = i - 1 - i + 1 = 0.$
Also, $i^{3} + i^{4} + i^{5} + i^{6} = 0$
The sum of 4 consecutive powers of i is always 0
$$\therefore \sum_{n=2}^{11} i^{n} \quad i^{n-1} \quad i^{2} \quad i^{3} \quad i^{3} \quad i^{4} \quad i^{4} \quad i^{5} \quad i^{5}$$

$$i^{6} \quad i^{6} \quad i^{7} \quad i^{7} \quad i^{8} \quad i^{8} \quad i^{9} \quad i^{9} \quad i^{10} \quad i^{10}$$

$$r \sqrt{x^2 y^2}$$
 and $\theta \tan^{-1}\left(\frac{y}{x}\right)$

101. (b) Let x iy $\sqrt{3}$ i

r $\sqrt{\sqrt{3}}$

102.

Comparing real and imaginary parts,
$$x = \sqrt{3}$$
, $y = 1$
modulus-amplitude of $x + iy$ is $r(\cos\theta + \sin\theta)$, where
 $r = \sqrt{x^2 - y^2}$ and $\theta = \tan^{-1}\left(\frac{y}{x}\right)$
 $r = \sqrt{\sqrt{3}^2 - 1^2} = \sqrt{4} - 2$
 $\theta = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$

Solving the equations,

$$2 \not x + 3y = 6$$

$$-2 \not x + 4y = 22$$

$$7y = 28 \Rightarrow y = 4$$

$$2x + 3y = 6 \Rightarrow 2x + 12 = 6$$

$$\Rightarrow 2x = -6 \Rightarrow x = -3$$

$$\therefore x = -3, y = 4$$
107. (b) Given equation, $z^3 + 2z^2 + 2z + 1 = 0$

$$\Rightarrow z^3 - z^2 + z + z^2 - z + 1 + 2z^2 + 2z = 0$$

$$\Rightarrow (z + 1) (z^2 - z + 1) + 2z (z + 1) = 0$$

$$\Rightarrow (z + 1) (z^2 - z + 1) + 2z (z + 1) = 0$$

$$\Rightarrow (z + 1) (z^2 - z + 1) = 0$$

$$\Rightarrow (z + 1) (z^2 + z + 1) = 0$$

$$\Rightarrow z = -1, \omega, \omega^2.$$

$$z^{2017} + z^{2018} + 1 = \omega + \omega^2 + 1 = 0$$

$$\therefore \text{ Common roots are } \omega, \omega^2.$$
108. (c) $z = \frac{1 + 2i}{1 - (1 - i)^2} = \frac{1 + 2i}{1 - (1 - 1 - 2i)}$

$$= \frac{1 + 2i}{1 + 2i} = 1$$

$$\therefore |z| = 1$$
109. (a) $z = \frac{1 + 2i}{1 - (1 - i)^2} = 1 = 1 + 0.i$

$$\therefore \text{ Principal argument of } z = \tan \theta$$

$$= \frac{0}{1} = 0$$

$$\therefore \theta = 0^{\circ}$$

104. (c) Δ is equilateral.

105. (b) Given, $A = \{x \in z : x^3 - 1 = 0\}$ $B = \{x \in z : x^2 + x + 1 = 0\}$ The roots of $x^3 - 1 = 0$ are 1, ω , ω^2 The roots of $x^2 + x + 1 = 0$ are ω , ω^2 $\therefore A \cap B = \{1, \omega, \omega^2\} \cap \{\omega, \omega^2\} = \{\omega, \omega^2\}$ $\left(-1 + \sqrt{3}i, -1 - \sqrt{3}i\right)$

$$=\left\{\frac{-1+\sqrt{3}1}{2}, \frac{-1-\sqrt{3}1}{2}\right\}$$

106. (a)

$$\begin{bmatrix} x & -3i & 1 \\ y & 1 & i \\ 0 & 2i & -i \end{bmatrix} = 6 + 11i$$

$$\Rightarrow x[-i - (2i) (i)] - y[(-3i) (-i) - (2i) (1)] + 0 = 6 + 11i$$

$$\Rightarrow x (-i + 2) - y (-3 - 2i) = 6 + 11i$$

$$\Rightarrow -xi + 2x + 3y + 2yi = 6 + 11i$$

$$\Rightarrow (2x + 3y) + (-x + 2y)i = 6 + 11i$$

$$\therefore 2x + 3y = 6 \text{ and } -x + 2y = 11$$

Binomial Theorem, Mathematical Induction

1.	What is the coefficient of x^3 in $\frac{(3-2x)}{(1+3x)^3}$? [200	06-I]	(a) $\frac{20x}{19}$
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	10	(c) 19x
2.	What are the last two digits of the number 9^{200} ? [200 (a) 19 (b) 21 (c) 41 (d) 01	6- <i>II</i>] ^{12.}	${}^{8}C_{0} - {}^{8}C_{1}$
3.	For any positive integer n, if $4^n - 3n$ is divided by 9, what is the remainder ? [2006-III]	then	(a) 0 (c) 2
	(a) 8 (b) 6 (c) 4 (d) 1	13.	What is th
4.	What is the coefficient of x^3 in the expansion (1, 2-1, 2-2, 4-3) (20)	07 11	(1+r+2r)
	$(1-2x+3x^2-4x^3+\infty)$? [200 (a) $(101)/(51)^2$ (b) 5^{-5}	0/-I <u>]</u>	$\begin{pmatrix} 1 + \lambda + 2\lambda \end{pmatrix}$
	(a) $(10!)/(5!)^2$ (b) 5^2 (c) 5^5 (d) $10!/(6!)(4!)$		(a) 1/3
	(c) $5^{-10!}(0!)(4!)$		(b) 17/54
	$\left(x \sqrt{y} \right)^{3}$	$)^{12}$	(c) 1/4
5.	What is the middle term in the expansion of $\frac{\pi\sqrt{3}}{3} - \frac{5}{\sqrt{\sqrt{3}}}$?	(d) No su
		14.	What is the $(1+2)+2$
	(a) $C(12, 7) x^3 y^{-3}$ (b) $C(12, 6) x^{-3} y^3$		(1+2x+3) (a) $1/4$
	(c) $C(12, 7) x^{-3} y^{3}$ (d) $C(12, 6) x^{3} y^{-3}$ [200	07-I]	(a) $1/4$
6.	If x^4 occurs in the rth term in the expansion of	15.	Consider tl
	$(1)^{15}$		I. The c
	$\left(x^{4} + \frac{1}{2}\right)$, then what is the value of r? (200)	7-II]	
	$\begin{pmatrix} x^3 \end{pmatrix}$	1	(1+x)
	(a) 4 (b) 8 (c) 9 (d) 10		II. The co
7.	After simplification, what is the number of terms in	n the	(1 + x)
	expansion of $[(3x + y)^5]^4 - [(3x-y)^4]^5$? [200	07-II]	the ex
0	(a) 4 (b) 5 (c) 10 (d) 11 $x^{2} + x^{2} + x^$	0.17	Which of t
8.	What is the coefficient of $x^3 y^2 \ln (2x + 3y^2)^3$? [2004]	8-1]	(a) I only (c) Both I
0	(a) 240 (b) 360 (c) 20 (d) 1080 What is the approximate value of $(1, 02)^8$ 2	16.	What is the
9.	(a) 1171 (b) 1175		expansion
	$ \begin{array}{c} (a) & 1.1/1 \\ (b) & 1.1/3 \\ (c) & 1.177 \\ (d) & 1.170 \\ (c) & 1.$	0.0 11	(a) –256
	(c) 1.177 (d) 1.179 [200	Jo-1j	(c) 100
10.	What is the last digit of $3^{3^{4n}}$ +1, where n is a natural num	nber? 17.	What is t
	[200	08-I]	(3)
	(a) 2 (b) 7		$3x - \frac{x^2}{6}$
11	(c) 8 (d) None of these	. , .	(6)
11.	If t_r is the rth term in the expansion of $(1+x)^{1/3}$, then we	nat is	(189
	$\frac{t_{20}}{t_{20}} = 1 \pm 2$	00.17	(a) $\frac{1}{8}$
	the ratio t_{19} equal to ? [200	U8-I]	21

(a)
$$\frac{20x}{19}$$
 (b) $83x$
(c) $19x$ (d) $\frac{83x}{19}$
2. What is the value of [2008-II]
 ${}^{8}C_{0} - {}^{8}C_{1} + {}^{8}C_{2} - {}^{8}C_{3} + {}^{8}C_{4} - {}^{8}C_{5} + {}^{8}C_{6} - {}^{8}C_{7} + {}^{8}C_{8}$
(a) 0 (b) 1
(c) 2 (d) 2⁸
5. What is the term independent of x in the expansion of
 $(1+x+2x^{3})\left(\frac{3x^{2}}{2}-\frac{1}{3x}\right)^{9}$? [2009-I]
(a) 1/3
(b) 17/54
(c) 1/4
(d) No such term exists in the expansion
4. What is the coefficient of x^{4} in the expansion of
 $(1+2x+3x^{2}+4x^{3}+...)^{1/2}$? [2009-II]
(a) 1/4 (b) 1/16
(c) 1 (d) 1/128
5. Consider the following statements
I. The coefficient of the middle term of $\left(x+\frac{1}{x}\right)^{8}$.
II. The coefficient of the middle term of $\left(x+\frac{1}{x}\right)^{8}$.
II. The coefficient of the middle term of $\left(1+x\right)^{8}$ is less than the coefficient of the fifth term in
the expansion of $(1+x)^{7}$.
Which of the above statements is/ are correct? [2009-II]
(a) I only (b) II only
(c) Both I and II (d) Neither I nor II
5. What is the sum of the coefficients of all the terms in the
expansion of $(45x-49)^{4}$? [2010-II]
(a) -256 (b) -100
(c) 100 (d) 256
5. What is the coefficient of x^{17} in the expansion of
 $\left(\frac{3x-\frac{x^{3}}{2}\right)^{9}$? [2010-II]

(a)
$$\frac{189}{8}$$
 (b) $\frac{567}{2}$

(c)
$$\frac{21}{16}$$
 (d) None of these

- 18. What is the number of terms in the expansion of $(a+b+c)^n$, $n \in N$? [2010-II] (b) *n*+2 (a) n+1 $\frac{(n+1)(n+2)}{n+2}$ (d) (c) n(n+1)19. What is the sum of all the coefficients in the expansion of $(1+x)^n$? [2010-II]
 - (a) 2^n
 - (c) 2^{n-1} (d) 2(n-1)
- What is the coefficient of x^4 in the expansion of $\left(\frac{1-x}{1+x}\right)^2$? 20.
 - (a) -16 [2010-II] (b) 16 (c) 8 (d) -8

(b) $2^n - 1$

- What is the middle term in the expansion of $\left(1-\frac{x}{2}\right)^{\circ}$? 21.
 - (a) $\frac{35x^4}{8}$ (b) $\frac{17x^3}{8}$ [2011-I] (c) $\frac{35x^5}{8}$ (d) None of these
- What is the ratio of coefficient of x^{15} to the term independent 22.
 - of x in $\left(x^2 + \frac{2}{x}\right)^{15}$? [2011-II] (a) 1/64 (b) 1/32 (d) 1/4 (c) 1/16
- 23. For all $n \in N$, $2^{4n} 15n 1$ is divisible by [2011-II] (a) 125 (b) 225 (c) 450
- (d) None of the above In the expansion of $[1 + x]^n$, what is the sum of even binomial 24. coefficients? [2012-I] (b) 2^{n-1} (a) 2ⁿ (c) 2^{n+1}
- (d) None of the above 25. The value of the term independent of x in the expansion of

$$\begin{pmatrix} x^2 - \frac{1}{x} \end{pmatrix}^9 \text{ is:}$$
(a) 9 (b) 18
(c) 48 (d) 84
(c) 48 (d) 84

- 26. What is the sum of the coefficients in the expansion of $(1+x)^n$? [2013-I] (a) 2^n (b) $2^n - 1$ (c) $2^{n}+1$ (d) n+1What is $\sum_{r=0}^{n} C(n,r)$ equal to ? 27. [2013-II] (a) $2^n - 1$ (b) *n* (c) *nl* (d) 2^n
- If C(28, 2r) = C(28, 2r-4), then what is r equal to? 28. [2013-II] (a) 7 (b) 8
 - (c) 12 (d) 16
- 29. Let *n* be a positive integer and $(1+x)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ What is $a_0 + a_1 + a_2 + \dots + a_n$ equal to ? [2013-II]

NDA Topicwise Solved Papers - MATHEMATICS

(a) 1 (b) 2ⁿ (c) 2^{n-1} (d) 2^{n+1} 30 How many terms are there in the expansion of $(1+2x+x^2)^{10}$? [2013-II] (b) 20 (a) 11 (c) 21 (d) 30

DIRECTIONS (Os. 31-33): For the next three (03) items that follow

In th	ne exp	oansi	on of $\left(x^2\right)$	$\left(-\frac{1}{x^2}\right)^n$	when	ren is a posi	itive integer, the
sum	ofth	e coe	fficients	of x ⁵ and	l x ¹⁰ i	s 0.	[2014-I]
31.	Wh	at is	n equal t	o ?			
	(a)	5	(b)		10		
	(c)	15	(d)		No	ne of these	
32.	Wh	at is	the value	of the in	ndepe	ndent term	?
	(a)	500	5		(b)	7200	
	(c)	-50	05		(d)	-7200	
33.	Wh terr	at is ns?	the sum	n of the	coeff	ficients of	the two middle
	(a)	0	(b)		1		
	(c)	-1	(d)		No	ne of these	
DIR	ECT	ION	S (Qs. 3)	4-36) : <i>1</i>	For th	e next three	e (03) items that
folle	<i>w</i>						
Give	en tha	tC(n	(r): C(n, r)	(+1) = 1	2 and	C(n, r+1):	C(n, r+2) = 2:3.
			· / (/	,		())	[2014-I]
21	Wh	at is	n aqual t	0.2			

34. What is *n* equal to ? (a) 11 (b) 12 (c) 13 (d) 14 35. What is *r* equal to ? (a) 2 (b) 3 (d) 5 (c) 4 36 What is P(n, r): C(n, r) equal to ? (d) 720 (c) 120 (a) 6 (b) 24 What is $\left(\frac{\sqrt{3}}{\sqrt{3}-i}\right)^6$ equal to, where $i = \sqrt{-1}$? [2014-I] 37. (b) 1/6 (a) 1(c) 6

Consider the expansion
$$\left(x^2 \quad \frac{1}{x}\right)^{15}$$
. [2014-II]

- 38. What is the independent term in the given expansion? (a) 2103 (b) 3003
 - (d) None of these (c) 4503
- What is the ratio of coefficient of x^{15} to the term independent 39 of x in the given expansion?
 - (b) 1/2 (a) 1
 - (c) 2/3 (d) 3/4
- 40 Consider the following statements :
 - There are 15 terms in the given expansion. 1.
 - The coefficient of x^{12} is equal to that of x^3 . 2
 - Which of the above statements is/are correct?
 - (a) 1 only (b) 2 only
 - (c) Both 1 and 2 (d) Neither 1 nor 2
- 41. Consider the following statements :
 - The term containing x^2 does not exist in the given 1. expansion.
 - The sum of the coefficients of all the terms in the given 2 expansion is 2^{15} .

Binomial Theorem, Mathematical Induction

	Whi	ch of the above statem	ents	is/are correct ?									
	(a)	1 only	(b)	2 only									
	(c)	Both 1 and 2	(d)	Neither 1 nor 2									
42.	What is the sum of the coefficients of the middle terms in												
	the g	given expansion?											
	(a)	C(15,9)	(b)	C (16, 9)									
	(c)	C (16, 8)	(d)	None of these									
		1											
43.	Wha	at is $\sum_{r=0}^{n+r} C_n$ equal t	0?	[2015-1]									
	(a)	$n + 2C_1$	(b)	$n+2C_n$									
	(c)	$n + 3C_n^{1}$	(d)	$^{n+2}C_{n+1}^{n}$									
44.	In tl	the expansion of $\left(\sqrt{x}\right)$	$\frac{1}{3x^2}$	$\left(\frac{1}{2}\right)^{10}$ the value of constant									
	term	(independent of x) is		[2015-II]									
	(a)	5	(b)	8									
	(c)	45	(d)	90									
DIR	ECT	IONS (Qs. 45-47): Fo	or the	e next three (03) items that									
follo	w												
Cons	sider	the expansion of $(1 + x)$	$)^{2n+1}$										
45.	If th	e coefficients of xr and	\mathbf{x}^{r+1}	are equal in the expansion,									
	then	r is equal to		[2015-II]									
	(a)	n	(b)	$\frac{2n-1}{2}$									
	(c)	$\frac{2n}{2}$	(d)	n+1									
46.	The the e	average of the coeffici expansion is	ents	of the two middle terms in									

(a) ${}^{2n+1}C_{n+2}$ (b) ${}^{2n+l}C_n$

(d) ${}^{2n}C_{n+1}^{n}$ (c) ${}^{2n+1}C_{n-1}^{n+2}$ (d) ${}^{2n}C_{n+1}^{n}$ The sum of the coefficients of all the terms in the expansion

- 47 is
 - (a) 2^{2n-1} (b) 4^{n-1} (c) 2×4^n (d) None of the above
- The coefficient of x^{99} in the expansion of (x-1)(x-2)(x-3)..... 48. (x - 100) is [2015-II] (a) 5050 (b) 5000
 - (c) -5050 (d) -5000
- 49. What is ${}^{47}C_4 + {}^{51}C_3 + \sum_{j=2}^{5} {}^{52-j}C_3$ equal to? [2016-II]

(a)
$${}^{52}C_4$$
 (b) ${}^{51}C_4$
(c) ${}^{53}C_4$ (d) ${}^{52}C_4$

The value of $[C(7, 0) + C(7, 1)] + [C(7, 1) + C(7, 2)] + \dots +$ 50. [2017-I] [C(7, 6) + C(7, 7)] is (a) 254 (b) 255 (d) 257 (c) 256

51. The expansion of $(x - y)^n$, $n \ge 5$ is done in the descending powers of x. If the sum of the fifth and sixth terms is zero,

then
$$\frac{x}{y}$$
 is equal to [2017-I]

(a)
$$\frac{n-5}{6}$$
 (b) $\frac{n-4}{5}$

(c)
$$\frac{5}{n-4}$$
 (d) $\frac{6}{n-5}$

The number of terms in the expansion of $(x + a)^{100}$ + 52. $(x-a)^{100}$ after simplification is [2017-II] (b) 101 (c) 51 (d) 50 (a) 202 In the expansion of $(1 + x)^{50}$, the sum of the coefficients of 53. [2017-II] odd powers of x is (a) 2^{26} (b) 2⁴⁹ (c) 2^{50} (d) 2^{51} 54. If $1.3 + 2.3^2 + 3.3^3 + \dots + n.3^n = \frac{(2n-1)3^a + b}{3}$ then a and b are respectively [2017-II] (b) n, 3 (a) n, 2 (d) n+1, 3(c) n+1, 255. If $\left|z - \frac{4}{z}\right| = 2$, then the maximum value of |z| is equal to [2017-II] (a) $1+\sqrt{3}$ (b) $1+\sqrt{5}$ (c) $1-\sqrt{5}$ (d) $\sqrt{5} - 1$ 56. If $n \in N$, then $121^n - 25^n + 1900^n - (-4)^n$ is divisible by which one of the following? [2018-I] (a) 1904 (b) 2000 (c) 2002 (d) 2006 57. In the expansion of $(1 + x)^{43}$, if the coefficients of $(2r + 1)^{th}$ and (r + 2)th terms are equal, then what is the value of $r(r \neq 1)?$ [2018-1] (b) 14 (a) 5 (c) 21 (d) 22 58. If the coefficients of a^m and a^n in the expansion of $(1 + a)^{m+n}$ are α and β , then which one of the following is correct? [2018-I] (b) $\alpha = \beta$ (a) $\alpha = 2\beta$ (c) $2\alpha = \beta$ (d) $\alpha = (m+n)\beta$ What is the number of non-zero terms in the expansion of 59. 1 $2\sqrt{3} x^{11}$ $1-2\sqrt{3} x^{11}$ (after simplification)? [2018-1] (c) 6 (a) 4 (b) 5 (d) 11 What is C(n, r) + 2C(n, r-1) + C(n, r-2) equal to? 60. [2018-1] (b) C(n-1, r+1)(a) C(n+1, r)(c) C(n, r+1)(d) C(n+2, r)61. What is the coefficient of the middle term in the binomial expansion of $(2+3x)^4$? [2018-II] (a) 6 (b) 12 (c) 108 (d) 216 62. Let the coefficient of the middle term of the binomial expansion of $(1 + x)^{2n}$ be α and those of two middle terms of the binomial expansion of $(1 + x)^{2n-1}$ be β and γ . Which one of the following relations is correct? [2018-II] (a) $\alpha > \beta + \gamma$ (b) $\alpha < \beta + \gamma$ (c) $\alpha = \beta + \gamma$ (d) $\alpha = \beta \gamma$ If C(20, n+2) = C(20, n-2), then what is n equal to ? 63. [2019-I] (b) 10 (a) 8 (c) 12 (d) 16

- 64. What is the number of terms in the expansion of $[(2x 3y)^2]$ $(2x+3y)^2$? [2019-I] (c) 8 (d) 16 (a) 4 (b) 5 In the expansion of $(1 + ax)^n$, the ûrst three terms are 65.
- respectively 1, 12x and $64x^2$. What is n equal to? [2019-I] (d) 12 (a) 6 (b) 9 (c) 10

								AN	SWI	ER K	EY								
1	(d)	8	(c)	15	(a)	22	(b)	29	(b)	36	(b)	43	(a,d)	50	(a)	57	(b)	64	(b)
2	(d)	9	(a)	16	(d)	23	(b)	30	(c)	37	(a)	44	(a)	51	(b)	58	(b)	65	(b)
3	(d)	10	(d)	17	(a)	24	(b)	31	(c)	38	(b)	45	(a)	52	(c)	59	(c)		
4	(a)	11	(d)	18	(d)	25	(d)	32	(c)	39	(a)	46	(b)	53	(b)	60	(d)		
5	(d)	12	(a)	19	(a)	26	(a)	33	(a)	40	(b)	47	(c)	55	(d)	61	(d)		
6	(c)	13	(b)	20	(b)	27	(d)	34	(d)	41	(c)	48	(c)	55	(b)	62	(c)		
7	(c)	14	(c)	21	(a)	28	(b)	35	(c)	42	(c)	49	(a)	56	(b)	63	(b)		

HINTS & SOLUTIONS

1. (d)
$$\frac{(3-2x)}{(1+3x)^3} = (3-2x)(1+3x)^{-3}$$

$$= (3-2x)(1-9x+\frac{(-3)(-4)}{2!}.9x^2)$$

$$+\frac{(-3)(-4)(-5)}{3!}.27x^3+....)$$

[Expanding(1+3x)⁻³] =(3-2x)(1-9x+54x²-270x³+.....) ∴ Coefficient of x³ = -270 × 3 - 2 × 54 =-810-108 = -918

2. (d) Using binomial theorem $9^{200} = (1+8)^{200}$

=
$$1 + 8.200 + \frac{200 \times 199}{2!} \times 8^2 + ...$$

= $1 + 1600 + 1273600 + ...$
From above, it is clear that the last two digits of the number 9^{200} are 01.

3. (d) Using binomial theorem. $4^n - 3n = (1+3)^n - 3n$

$$= 1 + n \cdot 3 + \frac{n(n-1)}{2!} 3^2 + \dots - 3n$$
$$= 1 + \frac{n(n-1)}{2!} \cdot 3^2 + \frac{n(n-1)(n-2)}{3!} \cdot 3^3 + \dots$$
$$\Rightarrow \quad 4^n - 3n = 9 \left\{ \frac{n(n-1)}{2!} + \dots \right\} + 1$$

Thus, when $4^n - 3n$ is divided by 9, the remainder is 1. (a) $1-2x+3x^2-4x^3+...$

4.

$$= (1 + x)^{-2}, \text{ so, } (1 - 2x + 3x^2 - 4x^3 + \dots \infty)^{-5}$$

= $((1 + x)^{-2})^{-5} = (1 + x)^{10} \Rightarrow T_{r+1} = {}^{10}C_r x^r$

Putting r = 5, coefficient of $x^5 = {}^{10}C_5 = \frac{10!}{5!5!} = \frac{10!}{(5!)^2}$

5. (d) In the expansion of
$$\left(\frac{x\sqrt{y}}{3} - \frac{3}{y\sqrt{x}}\right)^{12}$$
, then middle term

is
$$\frac{12}{2} + 1 = 7^{\text{th}} \text{ term.} (r+1)_{\text{th}} \text{ term,}$$

 $T_{r+1} = {}^{12}C_r \left[\frac{x\sqrt{y}}{3}\right]^{12-r} \cdot \left(-\frac{3}{y\sqrt{x}}\right)^{12}$

$$\therefore \quad T_7 = T_{6+1} = {}^{12}C_6 \left(\frac{x\sqrt{y}}{3}\right)^6 \left(-\frac{3}{y\sqrt{x}}\right)^6$$
$$= {}^{12}C_6 \frac{x^6 y^3}{y^6 x^3} = {}^{12}C_6 x^3 y^{-3} = C(12, 6)x^3 y^{-3}$$

(c) In the expansion of $\left(x^4 \quad \frac{1}{x^3}\right)^{15}$, let T_r is the n_{th}

term

6.

7.

(c)

$$T_{r} = 15_{C_{r-1}} (x^{4})^{15-r} \left(\frac{1}{x^{3}}\right)^{r-1}$$

= $15_{C_{r-1}} x^{64-4r-3r} = 15_{C_{r-1}} x^{67-7r}$
 x^{4} occurs in this term
 $\Rightarrow 4=67-7r$
 $\Rightarrow 7r=63$
 $\Rightarrow r=9.$
Given expression is .

First and second expansion will have 21 terms each but odd terms in second expansion be Ist, 3rd, 5th.....21st will be equal and opposite to those of first expansion.

Thus, the number of terms in the expansion of above expression is 10.

Binomial Theorem, Mathematical Induction

8. (c)
$$T_r = {}^{n}C_{r-1} (2x)^{r-1} (3y^2)^{n-r+1}$$

 $T_4 = {}^{=}{}^{5}C_3 (2x)^3 (3y^2)^2$
 $= \frac{5!}{3!2!} 2^3 x^3 \cdot 9y^4 = \frac{5.4}{2.1} \times 8 \times 9 \times x^3 y^4 = 720 x^3 y^4$
 \therefore Coefficient of $x^3y^4 = 720$
9. (a) $(1.02)^8 = (1+0.02)^8$
 $(1+x)^n = 1+nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 +$
 $n = 8, x = 0.02$
 $(1+0.02)^8$
 $= 1+8 \times 0.02 + \frac{8 \times 7}{2!} \cdot (0.02)^2 + \frac{8.7.6}{3!} (.02)^3$
Neglecting higher terms
 $= 1+0.16+28 \times 0.0004 + 56 \times 0.000008$
 $\simeq 1+0.16+0.0112 = 1.171$
10. (d) In 3ⁿ, last digit is 3, ifn = 1, 9 ifn = 2, 7 ifn = 3 and 1 if
 $n = 4$ and it is repeated after than
Given expression is $3^{3^{4n}} + 1$
Let $x = 3^{3^{4n}} + 1 = 3^{81n} + 1$
 $\Rightarrow x = 3^{80n} \cdot 3^n + 1$
Last digit of x will be decided by 3^n since 3^{80n} has
power multiple of 4.
Ifn = 1 last digit is $3^2 + 1 = 9 + 1 = 10$
So, last digit is $2^2 + 1 = 9 + 1 = 10$
So, last digit is $2^3 + 1 = 27 + 1 = 28$
last digit is 8 .
Ifn = 4 last digit is $3^4 + 1 = 81 + 1 = 82$
last digit is 2.
So, there is no definite value of last digit.
11. (d) We find r_n term :
 t_r is ther th term in the expansion of $(1 + x)^{101}$.
 $t_r = {}^{101}C_{r-1} \cdot (x)^{(r-1)}$
 $\therefore {}\frac{t_{20}}{t_{19}} = {}^{101}C_{18} \cdot {x_1^{19}} = {}^{101}C_{19} x = {}^{1011}$

12. (a)
$$(1-x)^n = {}^nC_0 - {}^nC_1(x) + {}^nC_2x^2 - {}^nC_3x^3 + ... + (-1)^n {}^nC_n$$

Put
$$x = 1$$
 and $n = 8$
 $\therefore (1-1)^8 = {^8C_0} - {^8C_1} + {^8C_2} - {^8C_3} + \dots + {^8C_8}$
 $\Rightarrow ({^8C_0} - {^8C_1} + {^8C_2} - {^8C_3} + \dots + {^8C_8}) = 0$

$$(1 \quad x \quad 2x^3) \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$$

$$(1 \quad x \quad 2x^3) \left[\left(\frac{3}{2}x^2\right)^9 - {}^9C_1 \left(\frac{3}{2}x^2\right)^8 \cdot \frac{1}{3x} \dots \right]$$

$$+{}^{9}C_{6}\left(\frac{3}{2}x^{2}\right)^{3}\left(\frac{1}{3x}\right)^{6}-{}^{9}C_{7}\left(\frac{3}{2}x^{2}\right)^{2}\left(\frac{1}{3x}\right)^{7}\dots\dots$$

In the second bracket we have to search out terms of x° and $\frac{1}{x^3}$ which when multiplied with the terms 1 and $2x^3$ in the first bracket will give a term independent of x. The term containing $\frac{1}{x}$ will not occur in the 2nd bracket.

\therefore Term independent of x

$$=1 - \left[{}^{9}C_{6} \frac{3^{3}}{2^{3}} \cdot \frac{1}{3^{6}} \right] - 2x^{3} \left[{}^{9}C_{7} \frac{3^{2}}{2^{2}} \cdot \frac{1}{3^{7}} \cdot \frac{1}{x^{3}} \right]$$
$$= \left[\frac{9.8.7}{1.2.3} \cdot \frac{1}{8.27} \right] - 2 \left[\frac{9.8}{1.2} \cdot \frac{1}{4.243} \right]$$
$$= \frac{7}{18} - \frac{2}{27} \cdot \frac{17}{54}$$

14. (c) Consider
$$(1 + 2x + 3x^2 + 4x^3 + ...)^{1/2} = (1 - x^{-2})^{1/2}$$

As we know that
 $(1 - x)^{-2} = 1 + 2x + 3x^2 + 4x^3 +$
 $\Rightarrow (1 - x)^{-1} = 1 + x + x^2 + x^3 + x^4 + ...$
 \therefore Required coefficient of x^4 is 1.

15. (a) **Statement I :** Given expansion is
$$(1 + x)^8$$

Since, $n = 8$ is even

$$\left(\frac{n}{2}+1\right)$$
 th term is the middle term.

ie-
$$\left(\frac{8}{4}+1\right)^{\text{th}} = 5^{\text{th}} \text{ term} = \text{middle term}$$

Now, 5th term = ${}^{8}C_{4}x^{4}1^{4}$ ${}^{8}C_{4}x^{4}$

Coeff of 5th term (middle term) =
$${}^{8}C_{4}$$
.

Now, consider the expansion $\left(x + \frac{1}{x}\right)^8$ It's middle term = 5th term

it sindule term – 5 term

and 5th term =
$${}^{8}C_{4}x^{4}\left(\frac{1}{x}\right)^{4} = {}^{8}C_{4}$$

Hence, statement I is correct.

Statement-II : Coeff. of middle term in $(x+1)^8$ is

$${}^{8}C_{4} = \frac{8!}{4!4!} = 70$$

Coeff of 5th term in $(1+x)^7 = {^7C_4} = \frac{7!}{4!3!} = 35$

Hence, statement II is incorrect.

16. (d) Given expansion is $(45x-49)^4$. To find the sum of the coefficients of all the terms in the expansion, we have to put x = 1 in the expansion. Thus, required sum of coefficients = $(45-49)^4$ = $(-4)^4 = 256$

17. (a) Given expansion is

$$\left(3x - \frac{x^3}{6}\right)^9$$
 where $a = 3x$, $b = \frac{-x^3}{6}$, $n = 9$

Now, General Term = $T_{r+1} = {}^{n}C_{r}(a)^{n-r}$. b^{r}

$$= {}^{9}C_{r} (3x)^{9-r} \left(\frac{-x^{3}}{6}\right)^{r} = {}^{9}C_{r} \cdot 3^{9-r} x^{9-r} \cdot \frac{(-1)^{r} x^{3r}}{6^{r}}$$
$$= {}^{9}C_{r} \cdot 3^{9-r} (-1)^{r} \frac{x^{9+2r}}{6^{r}}$$

We can get coeff of x^{17} when

$$9+2r=17$$

$$\Rightarrow 2r=17-9$$

$$\Rightarrow r=\frac{8}{2}=4$$

Hence, required coefficient

$$= {}^{9}C_{4}\frac{3^{5}}{6^{4}} = \frac{126 \times 3}{16} = \frac{189}{8}$$

18. (d) Required number of terms in $(a+b+c)^n$

$$= {}^{n+2} C_2 \frac{(n+2)!}{2!n!} = \frac{(n+1)(n+2)}{2}$$

19. (a) Given expansion is $(1+x)^n$. Put x = 1, we get Required sum = $(1+1)^n = 2^n$

20. (b) Consider
$$\left(\frac{1-x}{1+x}\right)^2 = (1-x)^2(1+x)^{-2}$$

= $(1-2x+x^2)(1+x)^{-2}$
= $(1-2x+x^2)(1-2x+3x^2-4x^3+5x^4-...)$
 \therefore Coefficient of x^4 in $\left(\frac{1-x}{1+x}\right)^2 = 5+8+3 = 16$

21. (a) Since n = 8 is even number therefore middle term

$$= \left(\frac{n}{2} + 1\right)^{\text{th}} \text{ term} = (4+1) = 5^{\text{th}} \text{ term}$$
Hence, $T_5 = {}^8C_4(1)^4 \left(-\frac{x}{2}\right)^4$

$$= \frac{8!}{4!4!} \times \frac{x^4}{16} = \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1} \cdot \frac{x^4}{16} = \frac{70x^4}{16} = \frac{35x^4}{8}$$
Given expansion is $\left(x^2 + \frac{2}{x}\right)^{15}$
 $T_{r+1} = {}^{15}C_r(x^2)^{15-r} \left(\frac{2}{x}\right)^r$
 $= {}^{15}C_r x^{30-2r} 2^r x^{-r} = {}^{15}C_r \cdot x^{30-3r} \cdot 2^r$
Now, Above term will be independent of x
 $30 - 3r = 0 \Rightarrow r = 10$
 \therefore Term independent of $x = {}^{15}C_{10}2^{10}$
Now, coeff of x^{15}
When $30 - 3r = 15 \Rightarrow r = 5$
 \therefore Required coeff = {}^{15}C_52^5

(b)

22.

Thus, Required Ratio = $\frac{{}^{15}C_5.2^5}{{}^{15}C_{10}.2^{10}}$

$$=\frac{\frac{15!}{5!(10!)}}{\frac{15!}{10!5!}\times 2^5}=\frac{1}{2^5}=\frac{1}{32}$$

when

23. (b) Let $P(n): 2^{4n} - 15n - 1$ Put n = 2 $P(2) = 2^8 - 30 - 1 = 225$ which is divisible by 225. Let us assume,

P(n) is true for n = k is P (k) : 2^{4k} –15k–1 is divisible by 225.

$$\Rightarrow 2^{4k} - 15k - 1 = 225 \lambda, \lambda \in R, k \in N \qquad \dots (i)$$

To prove for $n = k + 1$

Consider

$$2^{4k+4} - 15k - 15 - 1 = 2^{4k} \cdot 2^4 - 15k - 16$$

= 2⁴ [225 \lambda + 1 + 15k] - 15k - 16 (from (i))
= 2⁴ \cdot 225 \lambda \cdot 2⁴ + 15.2⁴ \cdot k - 15k - 16
= 24 \cdot 225 \lambda + 225 k
= 225[2⁴ \lambda + k]
= 225 r where
r = 2⁴ \lambda + k is a constant

Hence, $2^{4n} - 15n - 1$ is divisible by 225.

Binomial Theorem, Mathematical Induction

24.	(b)	Sum of all binomial coefficients $=(1+1)^n=2^n$
		\therefore Sum of even binomial coefficient $=\frac{2^n}{2}=2^{n-1}$
25.	(d)	$\left(x^2 - \frac{1}{x}\right)^9$
		$t_{r+1} = {}^{9}C_r \left(x^2\right)^{9-r} \left(\frac{-1}{x}\right)^r$
		${}^{9}C_{r}x^{18-2r} \cdot (-1)^{r} \cdot x^{-r}$
		$= {}^{9}C_{r} x^{18-3r} - 1^{r}(1)$
		Term will be independent of x when $18-3r=0$
		r=6 Put r = 6 in [1]
		Put 1 = 0, m[1]
		$t_7 = {}^9C_6(-1)^6 = \frac{1}{6!3!} = 84$
26.	(a)	Given expansion is $(1 + x)^n$. Put $x = 1$, we get
27.	(d)	Sum of coefficient = 2 ⁿ . We know that, $(1 + x)^n = {^nC_0} + {^nC_1} + {^nC_2}^{x^2} + \dots + {^nC_n}^{x^n}$ For x = 1, $(1 + 1)^n = {^nC_0} + {^nC_1} + {^nC_2} + \dots + {^nC_n}$
		$\therefore \sum_{r=0}^{n} c(n,r) = 2^{n}$
28.	(b)	C (28, 2r) = C (28, 2r - 4) ${}^{28}C_{2r} = {}^{28}C_{2r-4}$ ⇒ 2r + 2r - 4 = 28 ⇒ 4r = 32
20	(b)	$\Rightarrow r = 8$ $(1 + x)^{n} = {}^{n}C + $
29.	(0)	Putting $x = 1$ $2^{n} = {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$
		$\Rightarrow a_0 + a_1 + \dots + a_n = 2^n$ [here ${}^{n}C_0 = a_0, {}^{n}C_1 = a_1, \dots, {}^{n}C_n a_n$]
30.	(c)	$(1+2x+x^2)^{10} = [(x+1)^2]^{10} = (x+1)^{20}$ Number of terms in the expansion of $(x+1)^{20}$ = 20+1=21
Sol.	(31-	$33\left(x^3 - \frac{1}{x^2}\right)^n$
		General term, $T_{r+1} = {}^{n}C_{r} (x^{3})^{n-r} \cdot \left(-\frac{1}{x^{2}}\right)^{r}$
		$= {}^{n}C_{r}.x^{(3n-3r)}.(-1)^{r}.x^{-2r}$
		$= {}^{n}C_{r}.(-1)^{r}.x^{(3n-5r)}$ (i)

For the coefficient x⁵ Put 3n - 5r = 55r = 3n - 5 \therefore r = $\frac{3n}{5} - 1$ $\therefore \text{ Coefficient of } \mathbf{x}^5 = {}^{\mathbf{n}} \mathbf{C}_{\left(\frac{3n}{5}-1\right)} (-1)^{\left(\frac{3n}{5}-1\right)}$ For the coefficient of x^{10} Put 3n - 5r = 105r = 3n - 10 $\therefore r = \frac{3n}{5} - 2$ $\therefore \text{ Coefficient of } x^{10} = {}^{n}C_{\left(\frac{3n}{5}-2\right)}(-1)^{\left(\frac{3n}{5}-2\right)}$ The sum of the coefficient of x^5 and $x^{10} = 0$ $\Rightarrow {}^{n}C_{\left(\frac{3n}{5}-1\right)}(-1)^{\left(\frac{3n}{5}-1\right)} + {}^{n}C_{\left(\frac{3n}{5}-2\right)}(-1)^{\left(\frac{3n}{5}-2\right)} = 0$ \Rightarrow $(-1)^{\frac{3n}{5}} \left[{}^{n}C_{\left(\frac{3n}{5}-1\right)} \cdot (-1)^{-1} + {}^{n}C_{\left(\frac{3n}{5}-2\right)} \cdot (-1)^{(-2)} \right] = 0$ $\Rightarrow -{}^{n}C_{\left(\frac{3n}{5}-1\right)} + {}^{n}C_{\left(\frac{3n}{5}-2\right)} = 0$...(ii) 31. (c) From equation (ii) ${}^{n}C_{\left(\frac{3n}{5}-2\right)}$ ${}^{n}C_{\left(\frac{3n}{5}-1\right)}$

 $\Rightarrow \frac{n}{5} = 3$ 32. (c) For the independent term, put 3n - 5r = 0[from eq. (i)] \Rightarrow 5r = 3n = 3 × 15 $5r = 3 \times 3 \times 5$ r = 9Putting the value of r in eq. (i), we get $T_{9+1} = {}^{15}C_9. (-1)^9 \cdot x^{(3 \times 15 - 5 \times 9)}$ $\Rightarrow T_{10} = -{}^{15}C_9. x^0 = -{}^{15}C_9$ $\Rightarrow T_{10} = -{}^{15}C_6 \qquad \left[\because {}^{n}C_r & {}^{n}C_{n-r} \right]$

 \therefore n = 15

 $\left[\because {}^{n}C_{x} = {}^{n}C_{y} \Longrightarrow n = x + y \right]$

 \Rightarrow n = $\left(\frac{3n}{5} - 2\right) + \left(\frac{3n}{5} - 1\right)$

 \Rightarrow n = $\frac{6n}{5}$ - 3 $\Rightarrow \frac{6n}{5}$ - n = 3

$$= \frac{-15!}{6!9!} \qquad \qquad \left[\because {}^{n}C_{r} = \frac{n!}{r!(n-r)!} \right]$$
$$= -5005$$

33. (a)
$$n = 15$$

Total term in the expansion of $\left(x^3 - \frac{1}{x^2}\right)^{15}$ is 16. \therefore middle term = 8th term and 9th term $T_8 = T_{(7+1)} = {}^{15}C_7 \cdot (-1)^7 \cdot x^{(3 \times 15 - 5 \times 7)}$ = $-{}^{15}C_7 \cdot x^{10}$ (from eq. (i $\begin{array}{c} T_{9} = T_{(8+1)} = {}^{15}C_{8} \cdot (-1)^{8} \cdot x^{(3 \times 15 - 5 \times 8)} \\ = {}^{-15}C_{8} \cdot x^{5} \qquad \text{(from eq. (ii))} \end{array}$

The sum of the coefficients of the two middle terms

$$= -{}^{15}C_7 + {}^{15}C_8 = -{}^{15}C_7 + {}^{15}C_7 \cdot \left[\because {}^{n}C_r = {}^{n}C_{n-r} \right]$$
$$= 0$$

$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{1}{2}$$

$$\frac{|\mathbf{n}|\mathbf{r}+1|\mathbf{n}-\mathbf{r}-1|}{|\mathbf{r}|\mathbf{n}-\mathbf{r}|\mathbf{n}|} = \frac{1}{2}$$

$$\frac{\mathbf{r}}{{}^{n}\mathbf{r}} \frac{1}{{}^{n}\mathbf{r}} \frac{1}{2} \Rightarrow 3\mathbf{r}-\mathbf{n}+2=0 \quad ...(\mathbf{i})$$

$$\frac{{}^{n}C_{r-1}}{{}^{n}C_{r-2}} = \frac{2}{3}$$

$$\frac{|\mathbf{n}|\mathbf{r}+2|\mathbf{n}-\mathbf{r}-2|}{|\mathbf{r}+1||\mathbf{n}-\mathbf{r}-1||\mathbf{n}|} = \frac{2}{3}$$

$$\frac{\mathbf{r}}{{}^{n}\mathbf{r}-\mathbf{r}-1} \quad \frac{2}{3} \Rightarrow 5\mathbf{r}-2\mathbf{n}+8=0 \qquad ...(\mathbf{i})$$
Solving equations (i) and (ii), we get $\mathbf{n}=14, \mathbf{r}=4$

34.

36. (b)
$$P(n, r): C(n, r) = |r| = 24$$

37. (a)
$$\left(\frac{\sqrt{3} \ i}{\sqrt{3} \ -i}\right) = \frac{\sqrt{3} \ i}{\sqrt{3} \ -i} \times \frac{\sqrt{3} \ i}{\sqrt{3} \ i}$$

$$= \frac{3 + i^2 + 2\sqrt{3}i}{3 - i^2} = \frac{3 - 1 + 2\sqrt{3}i}{3 + 1}$$
$$= \frac{2(1 \ \sqrt{3}i)}{4} \ \frac{1}{2} \ i\frac{\sqrt{3}}{2}$$
$$= \left(\cos\frac{\pi}{3} \ i\sin\frac{\pi}{3}\right) \ e^{i\frac{\pi}{3}}$$

$$\therefore \left(\frac{\sqrt{3} \ i}{\sqrt{3} - i}\right)^{6} = (e^{i\frac{\pi}{3}})^{6} = e^{i2\pi} \cos 2\pi + i \sin 2\pi$$
$$= 1 + 0.i = 1$$
38. (b) $\left(x^{2} \ \frac{1}{x}\right)^{15}$
$$T_{r+1} = {}^{15}C_{r}(x^{2})^{15-r}\left(\frac{1}{x}\right)^{r}$$
$$= {}^{15}C_{r}x^{30-2r-r} = {}^{15}C_{r}x^{30-3r}$$

For independent term, $30-3r=0 \Rightarrow r=10$ Put r = 10, we get

$$\Gamma_{10+1} = {}^{15}C_{10} = \frac{15!}{10!5!}$$

$$=\frac{15\times14\times13\times12\times11\times10!}{10!\times1\times2\times3\times4\times5}=3003$$

(a) For coefficient of x^{15} , 39. 30 - 3r = 15 \Rightarrow r=5 \therefore the coefficient of x¹⁵ is ¹⁵C₅. and coefficient of independent of x is 30 - 3r = 0 \Rightarrow r=10 So, coefficient of independent of x is ${}^{15}C_{10}$. :. Required ratio = $\frac{{}^{15}C_5}{{}^{15}C_{10}} = \frac{{}^{15}C_5}{{}^{15}C_5} = 1$

$$:: {}^{n}C_{r} {}^{n}C_{n-r}$$

We know that, $(a + b)^n$ have total (n + 1) number 40. (b) 1. ofterms

So,
$$\left(x^2 \quad \frac{1}{x}\right)^{15}$$
 have 16 terms.

Hence, Statement 1 is false.

For coefficient of x¹² 2. $30-3r = 12 \Rightarrow r = 6 \Rightarrow {}^{15}C_6$ and for coefficient of x^3 , $30-3r=3 \Rightarrow r=9 \Rightarrow {}^{15}C_9$ ${}^{15}C_6 = {}^{15}C_9$ Hence, statement 2 is correct.

41. (c) 1. For coefficient of x^2 ,

$$30-3r=2 \Longrightarrow r=\frac{28}{3}, r \notin N$$

So, x^2 does not exist in the expansion Hence, Statement 1 is correct.
2. Now,

$$\begin{pmatrix} x^2 & \frac{1}{4} \end{pmatrix}^{15} = {}^{15}C_0 (x^2)^{15} + {}^{15}C_1 (x^2)^{14} \left(\frac{1}{x}\right) + \dots + {}^{15}C_{15} \left(\frac{1}{x}\right)^{15}$$

Put x = 1 both sides, we get $(1+1)^{15} = {}^{15}C_0 + {}^{15}C_1 + \dots + {}^{15}C_{15}$ $\Rightarrow 2^{15} = {}^{15}C_0 + {}^{15}C_1 + \dots + {}^{15}C_{15}$ Hence, Statement 2 is correct

42. (c) Given
$$\left(x^2 - \frac{1}{x}\right)^{15}$$

2

Since, n is odd. So, it has two muure terms $\therefore T_8 + T_9 = {}^{15}C_7 + {}^{15}C_8 = {}^{16}C_8$ $(\because {}^nC_{r-1} + {}^nC_r = {}^{n+1}C_r)$

43. (a, d)
$$\sum_{r=0}^{1} {}^{n+r}C_n = {}^{n}C_n + {}^{n+1}C_n$$
$$= 1 + \frac{(n+1)!}{(n+1-n)! n!} = 1 + \frac{(n+1)(n!)}{n!}$$
$$= 1 + n + 1 = n + 2$$
$${}^{n+2}C_{n+1} = \frac{(n+2)!}{(n+2-n-1)! (n+1)!}$$
$$= \frac{(n+2) (n+1)!}{(n+1)!} = n + 2$$

OR

$$\sum_{r=0}^{1} {}^{n+r}C_n = {}^{n}C_n + {}^{n+1}C_n$$

= 1 + (n + 1) = n + 2
Now,

$$^{n+2}C_1 = \frac{(n+2)!}{1!(n+2-1)!} = \frac{(n+2)(n+1)!}{(n+1)!} = (n+2)$$

 \therefore Option (a and d) is correct. 44. (a) Let r^{th} term is independent of x. $T_n = {}^nC_n x^r y^{n-r}$

$$= {}^{10}C_r \sqrt{x} {}^r \left(\frac{1}{3x^2}\right)^{10-r}$$
$$= {}^{10}C_r \left(\frac{1}{3}\right)^{10-r} \cdot \sqrt{x} {}^r \left(\frac{1}{x^2}\right)^{10-r}$$
Equating the coefficient of x to zer

ero. $\Rightarrow x^{r/2} \cdot x^{-2(10-r)} = x^0$

$$\Rightarrow \frac{r}{2} - 20 + 2r = 0$$

$$\Rightarrow \frac{5}{2}r = 20 \Rightarrow r = 8$$
Coefficient = ${}^{10}C_r \left(\frac{1}{3}\right)^{10-r}$

$$= {}^{10}C_8 \left(\frac{1}{3}\right)^{10-8} = \frac{10 \times 9}{2} \times \frac{1}{9} = 5$$
(a) $(1+x)^{2n+1} = {}^{(2n+1)}C_0x^0 + {}^{(2n+1)}C_1x^1$
 $+ \dots + {}^{(2n+1)}C_{2n+1}(x)^{2n+1}$
Coefficient of $x^r = {}^{(2n+1)}Cr$
Coefficient of $x^{r+1} = {}^{(2n+1)}Cr + 1$
 $({}^{(2n+1)}C_r = {}^{(2n+1)}Cr + 1$
 $\Rightarrow \frac{(2n+1)!}{r!(2n+1-r)!} = \frac{(2n+1)!}{(r+1)!(2n-r)!}$
 $\Rightarrow \frac{2n-r!}{2n+1-r} \frac{r!}{2n-r-r!} = \frac{r!}{r-1}r!$
(b) Total no. of terms in the expansion is $2n+2$

45.

46. 2. The middle two terms will be n^{th} , $(n + 1)^{th}$ term. So.

Average =
$$\frac{(2n+1)C_n + (2n+1)C_{n+1}}{2}$$
$$= \left[\frac{(2n+1)!}{n!(n+1)!} + \frac{(2n+1)!}{(n+1)!n!}\right]/2$$
$$= \frac{(2n+1)!}{n!(n+1)!} = {}^{(2n+1)}C_n$$

47. (c) Sum of all coefficient

$$= {}^{2n} {}^{1}C_{0} {}^{2n} {}^{1}C_{1} {}^{2n-1}C_{2n-1}$$
$$= (1+1)^{2n+1} = 2^{(2n+1)} = 2 \cdot 2^{2n} = 2 \cdot 4^{n}$$

48. (c) Coefficient of x^1 in $[(x-1)(x-2) \text{ or } (x^2-3x+2)]$ = -3 = -1 - 2 = -(1 + 2)Coefficient of x^2 in [(x-1)(x-2)(x-3) or (x^3-6x^2+5x-6)] =-6 = -[1 + 2 + 3].Coefficient of x^{3} in [(x-1)(x-2)(x-3)(x-4) or $(x^4 - 10x^3 - 29x^2 - 11x + 24)$] = -10 = -[1 + 2 + 3 + 4]:. Coefficient of x^{99} in [(x-1)(x-2)...(x-100)] $= -[1+2+3+\dots+100] = \frac{-100(100 \quad 1)}{2} = -5050.$ 49. (a) ${}^{47}C_4$ ${}^{51}C_3$ ${}^{50}C_3$ ${}^{49}C_3$ ${}^{48}C_3$ ${}^{47}C_3$ $\underbrace{\overset{47}{-}C_3 \quad \overset{47}{-}C_4}^{47} C_4 \quad \overset{48}{-}C_3 \quad \overset{49}{-}C_3 \quad \overset{50}{-}C_3 \quad \overset{51}{-}C_3$

м-120

NDA Topicwise Solved Papers - MATHEMATICS

55. (d) $1.3 + 2.3^2 + 3.3^3 + \dots + n.3^n = \frac{2n-1 \ 3^a \ b}{4}$

$$\frac{4^{8}C_{4} - 4^{8}C_{3}}{(^{n}C_{r} + ^{n}C_{r+1} = ^{n+1}C_{r+1})}$$

$$\frac{4^{9}C_{4} - 4^{9}C_{3} - 5^{0}C_{3} - 5^{1}C_{3}}{(^{n}C_{r} + ^{n}C_{r+1} = ^{n+1}C_{r+1})}$$

$$\frac{4^{9}C_{4} - 4^{9}C_{3} - 5^{0}C_{3} - 5^{1}C_{3}}{5^{1}C_{4} - 5^{1}C_{3}}$$

$$\frac{5^{2}C_{4}}{5^{2}C_{4}}$$
50. (a) $(7c_{0} + 7c_{1}) + (7c_{1} + 7c_{2}) + \dots + (7c_{6} + 7c_{7})$
We know, $n_{cr} + n_{cr-1} = ^{n+1}C_{r}$

$$= 8c_{1} + 8c_{2} + \dots + 8c_{7}$$

$$8c_{0} - 8c_{1} - 8c_{2} - \dots - 8c_{7} - 8c_{8} - 8c_{0} - 8c_{8}$$

$$= 2^{8} - (1+1)$$

$$\begin{bmatrix} \text{Since, } n_{c0} + n_{c1} + n_{c2} + \dots + n_{cn} = 2^{n} \end{bmatrix}$$

$$= 256 - 2$$

$$= 254$$
51. (b) $(X - Y)^{n}, n \ge 5$
General term, $T_{r+1} = n_{cr} x^{n-r} (-y)^{r}$.
 $T_{5} + T_{6} = 0$

$$\Rightarrow \left[n_{c4} x^{n-4} (-y)^{4} \right] + \left[n_{c5} x^{n-5} (-y)^{5} \right] = 0$$

$$\Rightarrow n_{c4} x^{n-4} y^{4} - n_{c5} x^{n-5} y^{5}$$

$$\Rightarrow \frac{x^{n-4-n+5}}{y} = \frac{n_{c5}}{n_{c4}} \Rightarrow \frac{y}{y} - \frac{yf}{5! n-5!} \times \frac{4! n-4!}{y!}$$

$$= \frac{f! (n-4) (p-5)!}{5 \times f! (p-5)!} = \frac{n-4}{5}$$
52. (c) $(x + a)^{100} + (x - a)^{100}$
Simple logic is we get $^{n}c_{0}, ^{n}c_{2}, ^{n}c_{4} \dots ^{n}C_{100}$ in this expansion.
The number of terms from $^{n}c_{0}$ to $^{n}c_{100}$ are 51
53. (b) Sum of odd terms of expansion $(a + b)^{n}$ is $\frac{1}{2} \cdot 2^{50}$.

$$= 2^{-1} \cdot 2^{50} = 2^{49}$$
.

Let us put
$$3 = x$$
.
L.H.S: $S = x + 2x^2 + 3x^3 + ... + n \cdot x^n$ (1)
 $xs = x^2 + 2x^3 + 3x^4 + ... + n \cdot x^{n+1}$ (2)
 $(1) - (2) \Rightarrow S - xS = (x + 2x^2 + 3x^3 + ... + n \cdot x^n) - (x^2 + 2x^3 + 3x^4 + ... + n \cdot x^{n+1})$
 $\Rightarrow S(1-x) = x + x^2 + x^3 + ... + x^n - nx^{n+1}$
 $\Rightarrow S(1-x) = \frac{x(1-x^n)}{1-x} - nx^{n+1}$
 $= \frac{x(1-x^n)}{1-x} - \frac$

 $\Rightarrow 2r + r + 1 = 43$ \Rightarrow 3r + 1 = 43 \Rightarrow 3r + 42 \Rightarrow r = 14 58. (b) $(1+a)^{m+n}$ $\alpha = \text{coefficient of } a^m = {}^m {}^n C_m$ $\beta = \text{coefficient of } a^n = {}^m {}^n C_n$ We know, ${}^{n}C_{r} = {}^{n}C_{n-r}$ $\therefore\beta \ ^{m\ n}C_n \ ^{m\ n}C_{m+n-n} \ ^{m\ n}C_m \ \alpha$ $\therefore \alpha = \beta$ 59. (c) We know, in the expansion of $(x + y)^n + (x - y)^n$, of n = even, then number of non zero terms is $\frac{n}{2} + 1$ n = odd, then number of non zero terms in $\frac{n-1}{2}$. Here, n = 11 which is odd. \therefore number of non zero terms $\frac{11}{2}$ 6. 60. (d) C(n,r) + 2C(n,r-1) + C(n,r-2) ${}^{n}C_{r}$ 2 ${}^{n}C_{r-1}$ ${}^{n}C_{r-2}$ ${}^{n}C_{r} \quad {}^{n}C_{r-1} \quad {}^{n}C_{r-1} \quad {}^{n}C_{r-2}$ $: {}^{n}C_{r} {}^{n}C_{r-1} {}^{n-1}C_{r}$ $^{n-1}C_r ^{n-1}C_{r-1}$ $^{n}C_{r}$ =C(n+2,r)61. (d) Middle term in the expansion of $(x + y)^n$

$$=\left(\frac{n-1}{2}\right)^{\text{th}}$$
 term, if *n* is odd

$$= \left(\frac{n}{2} \quad 1\right)^{n} \text{ term, if } n \text{ is even}$$
Here $n = 4$

$$\therefore \text{ Middle term is } \left(\frac{4}{2} \quad 1\right)^{n} = 3^{rd} \text{ term}$$

$$4c_{2} \times 2^{2} \times 3^{2} = 6 \times 4 \times 9$$

$$= 216$$
62. (c) $\alpha = {}^{2n}C_{n}$
 $\beta = {}^{2n-1}C_{n-1}$
 $\beta + \gamma = {}^{2n-1}C_{n} + {}^{2n-1}C_{n-1} = {}^{2n}C_{n} = \alpha$
63. (b) Given, C (20, n + 2) = C (20, n - 2)
 $\Rightarrow {}^{20}C_{n+2} = {}^{20}C_{n-2}$
 $\Rightarrow 20 = n + 2 + n - 2$ $(\because {}^{n}c_{r} = {}^{n}c_{s} \Rightarrow n = r + s)$
 $\Rightarrow 20 = 2n$
 $\Rightarrow n = 10$
64. (b) $[(2x - 3y)^{2}(2x + 3y)^{2}]^{2}$
 $= [(4x^{2} - 9y^{2})^{2}]^{2} = (4x^{2} - 9y^{2})^{4}$
 $\therefore \text{ Number of terms = 4 + 1 = 5}$
65. (b) The first three terms in expansion of (1 + ax)^{n} are
 ${}^{n}C_{0}, {}^{n}C_{1}ax, {}^{n}C_{2}a^{2}x^{2}$
Given, ${}^{n}C_{0} = 1; {}^{n}C_{1}ax = 12x; {}^{n}C_{2}a^{2}x^{2} = 64x^{2}$
 $\Rightarrow nax = 12x; \frac{n(n-1)}{2}a^{2} = 64$
 $\Rightarrow na = 12 \Rightarrow a = \frac{12}{n}$
 $\therefore \frac{n(n-1)}{2}a^{2} = 64 \Rightarrow \frac{n(n-1)}{2} \times \frac{144}{n^{2}} = 64$
 $\Rightarrow \frac{n-1}{n} = \frac{64 \times 2}{144} = \frac{8}{9}$
 $\therefore n = 9$

EBD 7346

Permutation and Combination

7.

8.

9

10.

11.

12.

[2006-I]

- 1. How many 3-digit numbers, each less than 600, can be formed from {1, 2, 3, 4, 7, 9} if repetition of digits is allowed? (b) 180 (a) 216
 - (c) 144 (d) 120
- There are four chairs with two chairs in each row. In how 2. many ways can four persons be seated on the chairs, so that no chair remains unoccupied?
 - (a) 6 (b) 12
 - (c) 24 (d) 48 [2006-I]
- 3. In how many ways can the letters of the word CORPORATION be arranged so that vowels always occupy even places ?
 - (a) 120 (b) 2700
 - (c) 720 (d) 7200 [2006-I]
- If all permutations of the letters of the word 'LAGAN' are 4. arranged as in dictionary, then what is the rank of 'NAAGL'? (b) 49th word
 - (a) 48th word
- (c) 50th word (d) 51st word [2006-I] 5. If a secretary and a joint secretary are to be selected from a committee of 11 members, then in how many ways can they
 - be selected ? (a) 110 (b) 55 (c) 22 (d) 11 [2006-1]

DIRECTIONS (Qs. 6 to 7): The following questions consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answers.

- Both A and R are individually true, and R is the correct (a) explanation of A.
- Both A and R are individually true but R is not the correct (b) explanation of A.
- A is true but **R** is false. (c)
- (d) A is false but **R** is true. [2006-II]
- Assertion (A): The number of triangles that can be formed 6. by joining the mid-points of any three adjacent faces of a cube is 20.

Reason (R): If there are n points on a plane and none of them are collinear, then the number of triangles that can be formed is C(n, 3).

Assertion (A): The number of selections of 20 distinct things							
taken 8 at a time is same as that taken 12 at a time.							
Reason (R): $C(n, r) = C(n, s)$, if $n = r + s$							
If the letters of the word BAZAR are arranged in dictionary							
order, then what is the 50th word? [2006-II]							
(a) ZAABR (b) ZBAAR							
(c) ZBRAA (d) ZAARB							
In how many ways can 7 persons stand in the form of a							
ring? [2006-II]							
(a) $P(7,2)$ (b) 7!							
(c) 61 (d) $\frac{7!}{2}$							
(d) 2							
In how many ways can be letters of the word 'CABLE' be							
arranged so that the vowels should always occupy odd							
positions? [2007-I]							
(a) 12 (b) 18							
(c) 24 (d) 36							
What is $(n+2)!+(n+1)(n-1)!$ equal to 2 [2007 II]							
(n+1)(n-1)! equal to ? [2007-11]							
(a) 1							
(b) Always an odd integer							
(c) A perfect square							
(d) None of the above							
A meeting is to be addressed by 5 speakers A, B, C, D, E. In							
how many ways can the speakers be ordered, if B must not							
precede A (immediately or otherwise)? [2007-II]							

- (a) 120 (b) 24
- 60 (d) $5^4 \times 4$ (c)
- 13. On a railway route there are 20 stations. What is the number of different tickets required in order that it may be possible to travel from every station to every other station?

[2007-II]

- (a) 40 (b) 380 (c) 400 420 (d)
- What is the number of five-digit numbers formed with 0, 1, 14. 2, 3, 4 without any repetition of digits? [2008-1]
 - (a) 24 (b) 48
 - (c) 96 (d) 120

Permutation and Combination

15.	A group consists of 5 men and 5 w different five-person committees (5–k) women is 100, what is the val	27.	What is the number of ways of arranging the letters of th word 'BANANA' so that no two N's appear together? [2010-1					
	(a) 2 only (b) 3	only		(a) 40	(b)	60		
	(c) 2 or 3 (d) 4			(c) 80	(d)	100		
16.	If 7 points out of 12 are in the same straight line, then what is the number of triangles formed ? [2008-I]		28.	What is the number of three-digit odd numbers formed by using the digits 1, 2, 3, 4, 5, 6 if repetition of digits is allowed?				
	(a) 84 (b) I (c) 185 (d) 20	75 01					[2010-I]	
17	$ \begin{array}{c} (c) & 183 \\ \text{In how more even on 2 holds of} \end{array} $	UI . Hindi and 2 haalsa an		(a) 60	(b)	108		
17.	In now many ways can 3 books on	shalf so that not all the		(c) 120	(d)	216		
	Hindi books are together?		29.	A team of 8 players	is to be ch	osen from a g	roup of 12	
	$\frac{11111111000KS are together?}{(b) 24}$	[2000-11]		players. Out of the e	ght player	rs one is to be	elected as	
	$ \begin{array}{c} (a) & 144 \\ (b) & 576 \\ (c) & 576 \\ (d) & 77 \\ $	20		captain and another	vice-captain	n. In how man	y ways can	
10	$\begin{array}{c} (c) & 5/6 \\ \end{array} \qquad \qquad$	20		this be done?		120.00	[2010-1]	
18.	How many words, with or without	MACHINE' as that the		(a) $27/20$	(b)	13860		
	by using an the fetters of the word	machine, so that the	•	(c) 6930	(d)	495	1.0 .1	
	vowers occurs only the odd position (1) 1440 (2) 77	0115? [2008-11]	30.	What is the number of	of words the	at can be form	ed from the	
	(a) 1440 (b) /2	20		letters of the word 'U	INIVERSA	L', the vowels	remaining	
	(c) 640 (d) 5	/6		always together?		1.4.40	[2010-11]	
19.	From 7 men and 4 women a commi	ittee of 6 is to be formed		(a) /20	(b)	1440		
	such that the committee contains at	least two women. What	21	(c) 17280	(d)	21540	(0)	
	is the nubmer of ways to do this?	[2008-11]	31.	What is the number of	f signals th	at can be sent t	by 6 flags of	
	(a) 210 (b) 3'	71		different colours takin	ig one or m	ore at a time?	[2010-11]	
	(c) 462 (d) 53	544		(a) 21 (a) 720	(d)	63 1056		
20.	If $P(32, 6) = kC(32, 6)$, then what is	s the value of k? [2009-1]	22	(c) $/20$	(a) a aammitt	1950	f? man and	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 20	32.	2 women be formed fr	om 7 men a	and 5 women?	[2010-II]	
21.	What is the smallest natural number	<i>n</i> such that <i>n</i> ! is divisible		(a) 45	(b)	350		
	by 990?	[2009-1]		(c) 700	(d)	4200		
	(a) 9 (b) 1	1	33.	What is the total	number	of combina	tion of <i>n</i>	
	(c) 33 (d) 9	9		different things taken	1, 2, 3,,	n at a time?	[2011-I]	
22.	What is the value of r, if $P(5, r) = P(5, r)$	P(6, <i>r</i> −1)? [2009-1]		(a) 2^{n+1}	(b)	2^{2n+1}		
	(a) 9 (b) 5			(c) 2^{n-1}	(d)	$2^{n} - 1$		
	(c) 4 (d) 2		34.	5 books are to be chose	sen from a	lot of 10 books	. If <i>m</i> is the	
23.	What is the number of words forme	ed from the letters of the		number of ways of cho	vice when o	ne specified boo	ok is always	
	word 'JOKE' so that the vowels an	d consonants alternate?		included and n is the	e number o	of ways of cho	ice when a	
		[2009-1]		specified book is alw	ays exclude	ed, then which	one of the	
	(a) 4 (b) 8			following is correct?			[2011-I]	
	(c) 12 (d) N	Jone of these		(a) $m > n$	(b)	m = n		
24.	If $C(n, 12) = C(n, 8)$, then what is t	the value of $C(22, n)$?		(c) $m = n - 1$	(d)	m = n - 2		
		[2009-11]	35.	In how many ways 6	girls can be	seated in two	chairs?	
	(a) 131 (b) 2	31					[2011-I]	
	(c) 256 (d) 29	92		(a) 10	(b)	15		
25.	In a football championship 153 mat	ches were played. Every		(c) 24	(d)	30		
	team played one match with each teams participated in the champion	other team. How many ship? [2009-II]	36.	What is the value of $= 3:4?$	f n, if P(1	(5, n-1) : P((16, n-2) [2011-1]	
	(a) 21 (b) 18	8		(a) 10	(b)	12		
	(c) 17 (d) 15	5		(c) 14	(d)	15		
26.	How many times does the digit 3 a	ppear while writing the	37.	Using the digits 1, 2, 3,	4 and 5 onl	y once, how ma	ny numbers	
	integers from 1 to 1000?	[2009-II]		greater than 41000 ca	n be formed	1?	[2011-I]	
	(a) 269 (b) 30	08		(a) 41	(b)	48		
	(c) 300 (d) N	Jone of these		(c) 50	(d)	55		

EBD 7346

м-12	4		NDA Topicwise Solved Papers - MATHEMATICS
38.	A, B, C, D and E are coplanar points and three of them lie in		(a) 354 (b) 348
	a straight line. What is the maximum number of triangles		(c) 288 (d) None of these
	that can be drawn with these points as their vertices?	50.	Let $A = \{x, y, z\}$ and $B = \{p, q, r, s\}$. What is the number of
	[2011-I]		distinct relations from B to A? [2015-I]
	(a) 5 (b) 9		(a) 4096 (b) 4094
	(c) 10 (d) 12	51	(c) 128 (d) 120 If different words are formed with all the letters of the word
39.	There are 4 candidates for the post of a lecturer in	51.	'AGAIN' and are arranged alphabetically among themselves as
	Mathematics and one is to be selected by votes of 5 men.		in a dictionary the word at the 50th place will be [2015-II]
	What is the number of ways in which the votes can be		(a) NAAGI (b) NAAIG
	given? [2011-II]		(c) IAAGN (d) IAANG
	(a) 1048 (b) 1072	52.	The number of ways in which a cricket team of 11 players be
	(c) 1024 (d) 625		chosen out of a batch of 15 players so that the captain of
	n P(n,r)		the team is always included, is $[2015-II]$
40.	What is the value of $\sum_{r=1}^{\infty} \frac{r!}{r!}$? [2011-11]		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	r=1 / :	53	(c) 1001 (d) 1505 A polygon has 44 diagonals. The number of its sides is
	(a) $2^n - 1$ (b) 2^n	55.	[2015-II]
	(c) 2^{n-1} (d) 2^n+1		(a) 11 (b) 10
41.	What is the number of ways that 4 boys and 3 girls can be		(c) 8 (d) 7
	seated so that boys and girls alternate? [2012-I]	54.	The number of ways in which 3 holiday tickets can be given
	(a) 12 (b) 72		to 20 employees of an organization if each employee is
	(c) 120 (d) 144		eligible for any one or more of the tickets, is [2015-II]
42.	The number of permutations that can be formed from all the		(a) 1140 (b) 3420 (d) 8000
	letters of the word 'BASEBALL' is: $[2012-11]$	55	(c) 0040 (d) 0000 The number of 3-digit even numbers that can be formed
	(a) 540 (b) 1260 (c) 2780 (d) 5040	55.	from the digits 0 1 2 3 4 and 5 repetition of digits being
13	(c) $5/60$ (d) 5040 If $P(77, 31) = x$ and $C(77, 31) = x$ then which one of the		not allowed, is [2015-II]
45.	following is correct? $[2013-1]$		(a) 60 (b) 56
	(a) $x = y$ (b) $2x = y$		(c) 52 (d) 48
	(c) $77x = 31y$ (d) $x > y$	56.	What is the number of ways in which 3 holiday travel tickets
44.	In how many ways can the letters of the word 'GLOOMY'		are to be given to 10 employees of an organization, if each
	be arranged so that the two O's should not be together?		employee is eligible for any one or more of the tickets?
	[2013-I]		[2010-1]
	(a) 240 (b) 480		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4-	(c) 600 (d) 720	57.	What is the number of four-digit decimal numbers (<1) in
45.	Out of 7 consonants and 4 vowels, words are to be formed		which no digit is repeated? [2016-I]
	by involving 3 consonants and 2 vowels. The number of		(a) 3024 (b) 4536
	Such words formed is . $[2014-1]$		(c) 5040 (d) None of the above
	$\begin{array}{c} (a) & 25200 \\ (b) & 22500 \\ (c) & 10080 \\ (d) & 5040 \\ \end{array}$	58.	What is the number of different messages that can be
46.	How many different words can be formed by taking four		represented by three 0's and two 1's? [2016-1]
	letters out of the letters of the word 'AGAIN' if each word		(a) 10 (b) 9
	has to start with A? [2014-I]	50	(c) 8 (d) / $Out = 615$ points in a plane, a points are in the same straight
	(a) 6 (b) 12	39.	line 445 triangles can be formed by joining these points
	(c) 24 (d) None of the above		What is the value of n^2 [2016-III]
47.	What is the number of ways in which one can post 5 letters		(a) 3 (b) 4
	in 7 letters boxes ? [2014-II]		(c) 5 (d) 6
	(a) 7^5 (b) 3^5	60.	A five-digit number divisible by 3 is to be formed using the
	(c) 5^7 (d) 2520		digits 0, 1, 2, 3 and 4 without repetition of digits. What is the
48.	What is the number of ways that a cricket team of 11 players		number of ways this can be done? [2016-II]
	can be made out of 15 players ? [2014-II]		(a) 96 (b) 48
	(a) 364 (b) 1001		(c) 32 (d) No number can be formed
	(c) 1365 (d) 32760	61.	What is the number of odd integers between 1000 and 9999
49.	How many words can be formed using all the letters of the		with no digit repeated? [2016-II]
	word 'NATION' so that all the three vowels should never		(a) 2100 (b) 2120
	come together? [2015-I]		(c) 2240 (d) 3331

Permutation and Combination

(a) C(17,11)

(c) $C(17,5) \times (5,3)$

(b) C(12, 8)

(d) $C(5,3) \times C(12,8)$

62.	The number of different words (eight-letter words) ending and beginning with a consonant which can be made out of the letters of the word 'EQUATION' is [2017-1] (a) 5200 (b) 4320 (c) 3000 (d) 2160	69.	The total number of 5-digit numbers that can be composed of distinct digits from 0 to 9 is [2018-II](a) 45360(b) 30240(c) 27216(d) 15120What is the sum of all three digit numbers that say here
63.	How many different permutations can be made out of the letters of the word 'PERMUTATION'? [2017-11](a) 19958400(b) 19954800(c) 19952400(d) 39916800	/0.	What is the sum of all three-digit numbers that can be formed using all the digits 3, 4 and 5, when repetition of digits is not allowed?[2018-II](a) 2664(b) 3882
64.	A tea party is arranged for 16 people along two sides of a long table with eight chairs on each side. Four particular men wish to sit on one particular side and two particular men on the other side. The number of ways they can be	71.	(c) 4044 (d) 4444 Three dice having digits 1, 2, 3, 4, 5 and 6 on their faces are marked I, II and III and rolled. Let x, y and z represent the number on die-I die-II and die -III respectively. What is the number of possible outcomes such that $x > y > z$?
	(a) $24 \times 8! \times 8!$ (b) $(81)^3$		[2018-II]
65. 66.	(c) $210 \times 8! \times 8!$ (d) $16!$ How many numbers between 100 an 1000 can be formed with the digits 5, 6, 7, 8, 9, if the repetition of digits is not allowed? [2018-I] (a) 3^5 (b) 5^3 (c) 120 (d) 60 How many four-digit numbers divisible by 10 can be formed using 1, 5, 0, 6, 7 without repetition of digits? [2018-I] (a) 24 (b) 36 (c) 44 (d) 64 What is the number of triangles that can be formed by	72. 73.	 (a) 14 (b) 16 (c) 18 (d) 20 There are 10 points in a plane. No three of these points are in a straight line. What is the total number of straight lines which can be formed by joining the points? [2019-1] (a) 90 (b) 45 (c) 40 (d) 30 From 6 programmers and 4 typists, an office wants to recruit 5 people. What is the number of ways this can be done so as to recruit at least one typist? [2019-1]
67. 68.	What is the number of triangles that can be formed by choosing the vertices from a set of 12 points in a plane, seven of which lie on the same straight line? [2018-I] (a) 185 (b) 175 (c) 115 (d) 105 There are 17 cricket players, out of which 5 players can bowl. In how many ways can a team of 11 players be selected so as to include 2 howders? [2018 II]	74.	(a) 209 (b) 210 (c) 246 (d) 242 How many three-digit even numbers can be formed using the digits 1, 2, 3, 4 and 5 when repetition of digits is not allowed? [2019-1] (a) 36 (b) 30 (c) 24 (d) 12

	ANSWER KEY																		
1	(c)	9	(c)	17	(c)	25	(b)	33	(d)	41	(d)	49	(c)	57	(b)	65	(d)	73	(c)
2	(c)	10	(d)	18	(d)	26	(c)	34	(b)	42	(d)	50	(a)	58	(a)	66	(a)	74	(d)
3	(d)	11	(c)	19	(b)	27	(a)	35	(d)	43	(d)	51	(b)	59	(c)	67	(a)		
4	(b)	12	(b)	20	(d)	28	(b)	36	(c)	44	(a)	52	(c)	60	(d)	68	(d)		
5	(b)	13	(b)	21	(b)	29	(a)	37	(b)	45	(a)	53	(a)	61	(c)	69	(c)		
6	(a)	14	(c)	22	(c)	30	(c)	38	(b)	46	(c)	54	(d)	62	(b)	70	(a)		
7	(a)	15	(c)	23	(b)	31	(b)	39	(d)	47	(a)	55	(c)	63	(a)	71	(d)		
8	(d)	16	(c)	24	(b)	32	(b)	40	(a)	48	(c)	56	(d)	64	(c)	72	(b)		

HINTS & SOLUTIONS

8.

9.

10.

12.

- (c) Three digit number less then 600 will have first element 100, and last element 599. First place will not have digit more than 6, hence, 7 and 9 can not be taken : So, first digit can be selected in 4 ways. Second digit can be selected in 6 ways and since repetition of digits are allowed, third digit can also be selected in 6 ways : So, number of ways are 4 × 6 × 6 = 144.
- 2. (c) First chair can be occupied in 4 ways and second chair can be occupied in 3 ways, third chair can be occupied in 2 ways and last chair can be occupied in one ways only. So total number of ways = $4 \times 3 \times 2 \times 1 = 24$
- 3. (d) CORPORATION is 11 letter word. It has 5 vowels (O, O, O, A, I) and 6 consonants (C, R,

P, R, T, N) In 11 letters, there are 5 even places (2nd, 4th, 6th, 8th

and 10^{th} positions)

5 vowels can take 5 even places in $\frac{5!}{3!}$ ways

(:: Since O is repeated thrice)

Similarly, 6 consonasts can take 6 odd places in $\frac{6!}{2!}$ ways.

(: R is repeated twice)

$$\therefore \quad \text{Total number of ways} = \frac{5!}{3!} \times \frac{6!}{2!} = 20 \times 360 = 7200$$

4. (b) Starting with the letter A and arranging the other four letters, there are 24 words. There are the first 24 words. Then starting with G that comes next in dictionary order and arranging A, A, L, N in different ways, there are

 $\frac{4!}{2!}$ = 12 words. Next the 37th word starts with L, that

comes next in dictionary order there are 12 words starting with L. This accounts up to the 48 words. The 49th word is 'NAAGL'

5. (b) Selection of 2 members out of 11 has ¹¹C₂ number of ways

 $^{11}C_2 = 55$

(a) Number of faces in a cube = 6 Number of triangles formed by joining mid points of

faces is selection of three points from 6 points = ${}^{6}C_{3}$

$$=\frac{6!}{3!3!}=20$$

6.

Hence , both A and R are individually true and R is correct explanation of A.

7. (a) Number of selection of 20 distinct things taken 8 at a time is given by

 ${}^{20}C_8 = \frac{20!}{12!8!}$ and selecting 12 out of 20 is

$${}^{20}C_{12} = \frac{20!}{12!8!}$$

Thus, both ${}^{20}C_8$ and ${}^{20}C_{12}$ are same.

- \Rightarrow Both A and R are individually true and R is correct explanation of A.
- (d) With A at first place, rest 4 places will be arranged in 4! ways so, Number of words begin with A=4!=24 Similarly with B at first place,

Number of words begin with $B = \frac{4!}{2!} = 12$

[As there are two A_s]

Number of words begin with $R = \frac{4!}{2!} = 12$

Thus, 48 words have starting letter A, B and R.

So, 49th word will be ZAABR and 50th word will be ZAARB.

- (c) Number of ways in which 7 persons can stand in the form of a ring = (7-1)! = 6!
- (d) There are two vowels A and E. There are total 5 places out of which two places are to be occupied by vowels. So, 3 places can be occupied by 2 vowels in ${}^{3}P_{2}$ ways and after two vowels occupy two places, 3 consonants will occupy 3 places in ${}^{3}P_{3} = 3$! way, hence, Required number of ways = ${}^{3}P_{2} \times 3$! = $6 \times 6 = 36$
- 11. (c) Given expression is :

$$\frac{(n \ 2)! \ (n \ 1)!(n-1)!}{(n+1)!(n-1)!} \quad x \ (let)$$

$$\Rightarrow x \frac{(n 2)(n 1)n(n-1)! (n 1)(n-1)!}{(n+1)(n-1)!}$$
$$= (n+2)n + 1 = n^2 + 2n + 1 = (n+1)^2$$

Which is a perfect square.

(b) According to given restriction: B must not precede A (immediately or otherwise),

 \Rightarrow A must follow B, i.e., B should addressed the meeting at first place

So, rest of the four speakers can address in 4! ways.

- \therefore Required number of ways = 4! = 24
- 13. (b) From each railway station, there are 19 different tickets to be issued. There are 20 railway station So, total number of tickets = $20 \times 19 = 380$.

Permutation and Combination

- 14. (c) To make a 5 digit number, 0 can not come in the bagining. So, it can be filled in 4 ways. Rest of the places can be filled in 4! ways. So total number of digit formed = $4 \times 4!$ $=4 \times 24 = 96$
- K men selected out of 5 and 5 k women out of 5. 15. (c) These are ${}^{5}C_{k}$ and ${}^{5}C_{5-k}$

According to problem : ${}^{5}C_{k} \times {}^{5}C_{5-k} = 100$

$$\Rightarrow \frac{5!}{k!(5-k)!} \times \frac{5!}{(5-k)!5!} = 100$$
$$\Rightarrow \left(\frac{5}{-5}\right)^2 = 100$$

$$(k!(5-k)!)$$

$$\Rightarrow \frac{5!}{k!(5-k)!} = 10$$

This is true for
$$k = 2$$
 or 3.

16. (c) Number of triangles formed from 12 point = ${}^{12}C_3$ Since 7 parts are collinear, then ${}^{7}C_{3}$ triangles will not be formed so. $= {}^{12}C_3 - {}^7C_3$

$$=\frac{12!}{3!9!} - \frac{7!}{3!4!} = \frac{12.11.10}{3.2.1} - \frac{7.6.5}{3.2.1}$$
$$= 220 - 35 = 185$$

- 17. (c) Total number of arrangement = 6! = 720Total number of arrangement while all the Hindi books are together = $4! \times 3! = 24 \times 6 = 144$... The number of ways, in which books are arranged, while all the Hindi books are not together =720 - 144 = 576
- (d) There are three vowels and they have four odd places 18. to arrange. Other letters are four and has four places to arrange.
 - \therefore The number of words = ${}^{4}P_{3} \times 4!$

$$=\frac{4!}{(4-3)!} \times 4!$$
 576

24.

19. (b) The required number of ways

..

$$= {}^{11}C_6 - ({}^{7}C_6 \times {}^{4}C_0 + {}^{7}C_5 \times {}^{4}C_1)$$

= $\frac{11 \times 10 \times 9 \times 8 \times 7}{5 \times 4 \times 3 \times 2} - \left(7 + \frac{7 \times 6}{2} \times 4\right)$
= $462 - (7 + 84) = 371$

20. (d) Since
$${}^{32}P_6 = k {}^{32}C_6$$

$$\Rightarrow \frac{32!}{(32-6)!} = k \cdot \frac{32!}{6!(32-6)!}$$

 \Rightarrow k=6!=720

21. (b) Consider option 'a'
Let us take
$$n = 9$$

Since, $9! = 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 362880$
which is not divisible by 990.

Now assume, n = 11Since 11! = 39916800 which is divisible by 990. Thus, required smallest natural number 11 22. (c) Given P(5, r) = P(6, r-1) $\Rightarrow {}^{5}P_{r} {}^{6}P_{r-1}$ $\Rightarrow \frac{5!}{(5-r)!} \quad \frac{6!}{(6-r-1)!}$ $\Rightarrow \frac{5!}{(5-r)!} \quad \frac{6!}{(7-r)!}$ $\Rightarrow \frac{5!}{(5-r)!} \frac{6 \times 5!}{(7-r)(6-r)(5-r)!}$ $\Rightarrow (7-r)(6-r)=6$ $\Rightarrow 42 - 13r + r^2 = 6$ $\Rightarrow r^2 - 13r + 36 = 0$ $\Rightarrow r^2 - 9r - 4r + 36 = 0$ \Rightarrow (r-9)(r-4)=0 \Rightarrow r=4 ($:: r \neq 9$) 23. (b) Total number of letters = 4No. of vowels = 2No. of consonants = 2Possibilities of words formed from the letters of word "JOKE" are JOKE, KOJE, KEJO, JEKO, EJOK, EKOJ, OKEJ, OJEK Thus, required number of words = 8(b) Given C(n, 12) = C(n, 8) $\Rightarrow {}^{n}C_{12} = {}^{n}C_{8}$ $\Rightarrow \frac{n!}{(n-12)!12!} = \frac{n!}{(n-8)!8!}$ 1

$$\Rightarrow \frac{1}{(n-12)!(12 \times 11 \times 10 \times 9 \times 8!)}$$

$$= \frac{1}{(n-8)(n-9)(n-10)(n-11)(n-12)!8!}$$

$$\Rightarrow \frac{1}{12 \times 11 \times 10 \times 9} = \frac{1}{(n-8)(n-9)(n-10)(n-11)}$$

$$\Rightarrow (n-8)(n-9)(n-10)(n-11)$$

$$= 12 \times 11 \times 10 \times 9$$

$$\Rightarrow n-8 = 12, n-9 = 11, n-10 = 10 \text{ and } n-11 = 9$$

$$\Rightarrow n = 20$$

$$\Rightarrow C(22, n) = {}^{22}C_{20}$$

$$= \frac{22!}{2!20!} = \frac{22 \times 21}{2} = 231$$

(b) Let total no. of team participated in a championship be n. 25. Since, every team played one match with each other team.

:
$${}^{n}C_{2} = 153 \Longrightarrow \frac{n!}{2!(n-2)!} = 153$$

$$\Rightarrow \frac{n(n-1)(n-2)!}{2!(n-2)!} = 153 \Rightarrow \frac{n(n-1)}{2} = 153$$
$$\Rightarrow n(n-1) = 306$$
$$\Rightarrow n^2 - n - 306 = 0$$
$$\Rightarrow n^2 - 18n + 17n - 306 = 0$$
$$\Rightarrow n (n-18) + 17 (n-18) = 0$$
$$\Rightarrow n = 18, -17$$

n cannot be negative
$$\therefore n \neq -17$$
$$\Rightarrow n = 18$$

26. (c) Before 1000 there are one digit, two digits and three digits numbers.Numbers of times 3 appear in one digit number = 20×9

Numbers of times 3 appear in one digit number = 20×9 Number of times 3 appear in two digit numbers = 11×9 Number of times 3 appear in three digit numbers = 21 Hence total number of times the digit 3 appear while writing the integers from 1 to 1000 = 180 + 99 + 21 = 300

27. (a) Total no. of letters in BANANA = 6
No. of repeated letter N = 2
No. of repeated letter A = 2
Therefore

Number of ways that can be formed by using the words

$$\text{`BANANA'} = \frac{6!}{3!2!} = \frac{6 \times 5 \times 4 \times 3!}{3! \times 2!} = 60$$

Number of ways in which two N comes together

$$=\frac{5!}{3!}=20$$

- \therefore Required number of ways = 60 20 = 40
- 28. (b) Total no. of digits = 6

30.

To form a odd numbers we have only 3 choice for the unit digits.

Now, Extreme left place can be filled in 6 ways the middle place can be filled in 6 ways.

 \therefore Required number of numbers = $6 \times 6 \times 3 = 108$

29. (a) Total no. of players = 12 No. of chosen players = 8

Number of ways to choose 8 players from 12 players

$$={}^{12}C_8 = \frac{12!}{8!4!} = \frac{12 \times 11 \times 10 \times 9 \times 8!}{8!4!} = 495$$

Since, out of the 8 players 1 is to be elected as captain and another vice-captain

Therefore number of ways to choose a captain and a vice-captain

$$= {}^{8}C_{1} \times {}^{7}C_{1} = 8 \times 7 = 56 \quad (:: {}^{n}C_{1} = n)$$

Hence, required number of ways = $495 \times 56 = 27720$ (c) Consider the word UNIVERSAL

Total no. of vowels = U, I, E, A = 4Let us consider these as a single letter. UIEANVRSL Then, total no. of letters = 6

NDA Topicwise Solved Papers - MATHEMATICS

Then, number of ways to arrange them = 6! = 720But vowels can also arranged in 4! or 24 ways. Hence, total number of ways = $720 \times 24 = 17280$

31. (b) Required number of ways

 6_{C_0} 6_{C_1} 6_{C_2} ${}^6C_6 - 1 = 2^6 - 1 = 64 - 1 = 63$

32. (b) Total no. of Men = 7 Total no. of women = 5 Required number of ways = ${}^{7}C_{3} \times {}^{5}C_{2}$

$$= \frac{7!}{3!4!} \times \frac{5!}{2!3!} = \frac{7 \times 6 \times 5}{3 \times 2} \times \frac{5 \times 4}{2}$$
$$= 7 \times 5 \times 10 = 35 \times 10 = 350$$

33. (d) Since, combinations of taking 1, 2, 3, ..., *n* things at a times are ${}^{n}C_{1}$, ${}^{n}C_{2}$, ..., ${}^{n}C_{n}$.

$$\therefore \text{ Total number of combination} = {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$$
$$= 1 + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n} - 1$$
$$= 2^{n} - 1$$

34. (b) Number of ways when one specified book is always included. So, 4 books can be chosen from remaining 9 ways:

$$= m = {}^9C_4$$
$$\Rightarrow m = 126$$

and number of ways when one specified book is always excluded = $n = {}^9C_5$ $\Rightarrow n = 126$ $\Rightarrow m = n$

35. (d) Required number of ways = $6 \times 5 = 30$

36. (c) Let
$$P(15, n-1) : P(16, n-2) = 3 : 4$$

$$\Rightarrow \frac{{}^{15}P_{n-1}}{{}^{16}P_{n-2}} \frac{3}{4}$$

$$\Rightarrow \frac{15!}{(15-n-1)!} \times \frac{(16-n-2)!}{16!} \frac{3}{4}$$

$$\Rightarrow \frac{15!}{(16-n)!} \times \frac{(18-n)!}{16!} \frac{3}{4}$$

$$\Rightarrow \frac{(18-n)!}{16(16-n)!} \frac{3}{4}$$

$$\Rightarrow \frac{(18-n)(17-n)(16-n)!}{16(16-n)!} \frac{3}{4}$$

$$\Rightarrow (18-n)(17-n)=12$$

$$\Rightarrow 306-17n-18n+n^{2}=12$$

$$\Rightarrow n^{2}-35n+294=0$$

$$\Rightarrow (n-14)(n-21)=0$$

$$\Rightarrow n=14 \qquad (\because n \neq 21)$$

37. (b) We have to construct 5 digit numbers which are greater than 41000.

So, we have only 2 ways to choose 5th digit.

м-128

[∵ Only 4 or 5 can come at 5th place] Thus, for 4th place we have 4 ways to choose digits. For 3rd place we have 3 ways. For 2nd place we have 2 ways. and for unit place we have only 1 way.

Required number of ways = $2 \times 4 \times 3 \times 2 \times 1 = 48$

a straight line =
$${}^{5}C_{3} - {}^{3}C_{3} = \frac{5!}{3!2!} - 1 = \frac{5 \times 4}{2} - 1$$

= 10 - 1 = 9

39. (d) There are 4 candidates.

This means there are 4 blank spaces for 1 post. Now, that 1 post is to be selected by votes of 5 men. So, All 4 places can be fill by each man's votes.

: There is 5 ways for 1 place..

Hence, Required ways

 $=5 \times 5 \times 5 \times 5 = 625$ (\because we have 4 places).

40. (a) Consider
$$\sum_{r=1}^{n} \frac{P(n, r)}{r!} \equiv \sum_{r=1}^{n} C(n, r)$$

Now, consider

$$(1+1)^{n} = {}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$$

$$\Rightarrow 2^{n} = 1 + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$$

$$\Rightarrow 2^{n} - 1 = {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}$$

$$\Rightarrow 2^{n} - 1 = \sum_{r=1}^{n} {}^{n}C_{r} \equiv \sum_{r=1}^{n} \frac{P(n, r)}{r!}$$

41. (d) BGBGBGB

Required no. of ways = $4! \times 3! = 144$

42. (d) There are total 8 letters in the word BASEBALL, in which we have 2 B's, 2A's and 2 L's.

$$\therefore \quad \text{Required No. of permutations} = \frac{3!}{2! \times 2! \times 2!}$$

$$=\frac{8\times7\times6\times5\times4\times3\times2\times1}{8}=5040$$

43. (d) As we know

=

$$P(n,r) = r! C(n,r)$$

 $\therefore \quad \text{From the question, we have} \\ x = r ! (y) \\ \text{Here } r = 31 \\ \therefore \quad x = (31)! \cdot y \rightarrow x > y$

44. (a)
$$\frac{6!}{2!} - 5! = 240$$

45. (a) Number of words =
$$5! \times {^7C_3} \times {^4C_2}$$

$$= 120 \times \frac{7!}{4!3!} \times \frac{4!}{2!2!} = 25200$$

- 46. (c) As 'A' must be first letter of each word. Total number of words = 4! = 24
- 47. (a) First letter can be put any 7 letters boxes = 7 ways Similarly, 2nd, 3rd, 4th and 5th letters be put in 7 ways each, respectively $\therefore 7 \times 7 \times 7 \times 7 \times 7 = 7^5$
- 48. (c) Number of ways that a cricket team of 11 players can

be made out of 15 players = ${}^{15}C_{11} = \frac{15!}{11! 4!}$

$$= \frac{15 \times 14 \times 13 \times 12 \times 11!}{11! \times 1 \times 2 \times 3 \times 4} = 1365$$

49.

50.

51.

91

(c) The given word is 'NATION'. Total number of words that can be formed from given word 'NATION'

$$= \frac{6!}{2!} = \frac{6 \times 5 \times 4 \times 3 \times 2!}{2!} = 360$$

Now numbers of words that can be formed from given word 'NATION', so that all vowels never come together.

$$= 360 - \left[4! \times \frac{3!}{2!}\right] = 360 - \left[24 \times 3\right]$$
$$= 360 - 72 = 288$$

 \therefore Option (c) is correct.

(a) $A = \{x, y, z\}$ B = (p, q, r, s) n(A) = 3 n(B) = 4 \therefore Number of distinct relations $= 2^{n(A) \times n(B)} = 2^{3 \times 4} = 2^{12} = 4096$ \therefore option (a) is correct.

First two words	no of words form
(according to dictionary)	no. or words form
AA	3!=6
AG	3!=6
AI	3!=6
AN	3!=6
GA	3!=6
GI	3!/2!=3
GN	3!/2!=3
IA	3!=6
IG	3!/2!=3
IN	3!/2!=3
NA	3!=6
	total = 54

it means 50th word will be starting with 'NA'.

$$\Rightarrow {}^{n}C_{3} = 10$$

$${}^{3}C_{3} = 1; {}^{4}C_{3} = 4; {}^{5}C_{3} = 10$$

$$\Rightarrow \boxed{n=5}$$

60. (d) Since sum of digits = 10 (which is not divisible by 3) \therefore No numbers can be formed.

61. (c) Case I

When unit digit can be 1, 3, 5 or 7 & digit at thousand's place can be 1, 2, 3, 4, 5, 6, 7 or 8. No. of ways digits can be filled are:

7874

Total no's = $7 \times 8 \times 7 \times 4 = 1568$. Case II

When unit digit can be 9 & digit at thousand's place can be 1, 2, 3, 4, 5, 6, 7 or 8. No. of ways digits can be filled are:

8871

Total no's = $8 \times 8 \times 7 \times 1 = 448$.

Case III

When unit digit can be 1, 3, 5 or 7 & digit at thousand's place can be 9.

No. of ways digits can be filled are:

Total no's = $1 \times 8 \times 7 \times 4 = 224$.

- :. Number of odd digits between 1000 & 9999 with no digit repeated = 1568 + 448 + 224= 2240.
- 62. (b) EQUATION 8 letters.
 - Consonants Q, T, N 3 letters. first letter of 8 – letter word can be any of 3 consonants Last letter of 8 – letter word can be remaining 2 consonants. The middle 6 – letters can be arranged in 6! ways. So, number of different words = $3 \times 2 \times 6!$

$$=6 \times 720 = 4320$$

63.

(a) PERMUTATION 11 letters and T is repeated 2 times.

$$\therefore \text{ Different permutations} \quad \frac{11!}{2!} \\ = 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \\ = 19958400$$

64. (c) Number of ways
$$=\frac{8!8!}{4!6!} \times 10!$$

$$= (8!)^{2} \times \frac{10!}{4!6!}$$

= $8!^{2} \times \frac{10 \times 9 \times 8 \times 7}{4!}$
= $(8!)^{2} \times \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1}$

$$=(210) \times (8!)^2$$

$$NA = MAAGI(49^{th} place)$$

$$NA = NAAIG(50^{th} place)$$

$$-NAGAI(51^{th} place)$$

$$-NAGIA(52^{th} place)$$

$$-NAIAG(53^{th} place)$$

$$-NAIAG(54^{th} place)$$

52. (c) If captain is always included then we can choose 10 more players out of the remaining 14 players. So

$$^{14}C_{10} = \frac{14!}{10!4!} = 1001$$

53. (a) No. of diagonals in a polygen = ${}^{n}C_{2} - n$

$$\Rightarrow 44 = {}^{n}C_{2} - n$$
$$\Rightarrow 44 = \frac{n!}{n!} - n$$

$$2!(n-2)!$$

$$\Rightarrow 44 = \frac{n(n-1)}{2} - n$$

$$\Rightarrow 44 = \frac{n(n-3)}{2}$$

$$\Rightarrow n^2 - 3n - 88 = 0$$

$$\Rightarrow (n-11)(n+8) = 0$$

$$n \neq -8$$

$$n = 11$$

54. (d) \therefore Each employee is eligible for 1 or more of the tickets. \therefore No. of ways = $20 \times 20 \times 20 = 8000$.

- 55. (c) No. of digits to be filled at one's place = 3 No. of digits to be filled at 10's place = 5 No. of digits to be filled at 100's place = 4 \therefore Total no. of digits formed = $3 \times 5 \times 4 = 60$ If zero is at 100's place; Then; no. of digits to be filled at one's place = 2 & no. of digits to be filled at 10's place = 4 \therefore No. of digits formed with zero at 100's place = $1 \times 2 \times 4 = 8$
 - : Required no. of digits formed = 60 8 = 52.
- 56. (d) No. of ways in which 3 holiday travel tickets are to be given to 10 employees = $10^3 = 1000$
- 57. (b) Let the given 4 digit decimal number is Places after decimal can be filled in the following ways:

• 7 8 9 9

Total number of ways = $7 \times 8 \times 9 \times 9 = 4536$

58. (a) Number of different messages that can be represented by three 0's and two 1's is 10.

Option (a) is correct.

59. (c) Here, ${}^{15}C_3 - {}^{n}C_3 = 445$

$$\Rightarrow {}^{n}C_{3} = \frac{15!}{3!12!} - 445$$

Permutation and Combination

- 65. (d) Number between 100 and 1000 are 3-digit numbers. It is given that the digits should not be repeated. Number of given digits = 5. In a 3-digit number, first number can be arranged in 5 ways. Second number in 4 ways. Third number in 3 ways.
- ∴ Numbers that can be formed = 5 × 4 × 3 = 60
 66. (a) A number divisible by 10 means the last digit is 0. So, the remaining 3 digits can be arranged in 4 × 3 × 2 ways = 24 ways.
- 67. (a) To form a triangle, we need 3 points. 12 points are given.

So, ${}^{12}C_3$ triangles can be formed.

But, given that 7 points are on a straight line. selecting 3 points from this set will not form a triangle.

So, number of triangles formed ${}^{12}C_3 - {}^7C_3$

$$=\frac{12!}{3!9!}-\frac{7!}{3!4!}$$

$$=\frac{12\times11\times10}{3\times2\times1}-\frac{7\times6\times5}{3\times2\times1}=220-35=185$$

- 68. (d) 3 bowlers are selected among 5 bowlers in ${}^{5}C_{3}$ ways. Remaining 8 player's are selected from 12 player's in ${}^{12}C_{8}$ ways.
 - \therefore total number of ways = ${}^{12}C_8 \times {}^{5}C_3$.
- 69. (c) Number of 5 digits numbers with all distinct digit is same as filling of 5 vacent placed out of 10 boxes. First digit of any number can be choosen in 9 ways. Remaining 4 digits can be choosen in remaining 9 digits in ${}^{9}P_{4}$ ways.

Total number of such number

$$= 9 \times 9 \times 8 \times 7 \times 6 = 27216$$

70. (a) Number of 3 digit number made from digit 3, 4 or 5 and having all distinct digit = 3! = 6

and sum of such numbers are

71. (d)

Casas	Dice III	Dice II	Dice I	Total No. of Ways				
Cases	(z)	(y)	(x)	10(a) 100. 01 W ays				
		2	3, 4, 5, 6					
т	1	3	4, 5, 6	4 + 3 + 2 + 1 - 10				
1	1	4	5,6	4+3+2+1=10				
		5	6					
			4, 5, 6					
II	2	4	5,6	3 + 2 + 1 = 6				
		5	6					
ш	3	4	5,6	2 + 1 = 3				
- 111	5	5	6	2 + 1 - 3				
IV	4	5	6	1				

Total number of ways = 10 + 6 + 3 + 1 = 20

72. (b) A straight line can be formed by joining 2 points. \therefore Total number of straight lines = ${}^{10}C_2$

$$=\frac{10\times9}{2\times1}=45$$

- 73. (c) Number of ways ${}^{4}C_{1}{}^{6}C_{4} + {}^{4}C_{2}{}^{6}C_{3} + {}^{4}C_{3}{}^{6}C_{2} + {}^{4}C_{4}{}^{6}C_{1}$ = (4) (15) + (6) (20) + (4) (15) + (1) (6) = 60 + 120 + 60 + 6 = 246
- 74. (d) Given digits are 1, 2, 3, 4 and 5.

Total number of 3-digit even numbers = ${}^{4}C_{2} \times {}^{2}C_{1}$.

$$=\frac{3\times4}{2}\times2=12$$

EBD 7346

Cartesian Coordinate System and Straight Line

The lines (p+2q)x + (p-3q)y = p-q for different values of 1. p and q pass through the fixed point given by which one of the following? [2006-1]

(a)
$$\left(\frac{3}{2}, \frac{5}{2}\right)$$
 (b) $\left(\frac{2}{5}, \frac{2}{5}\right)$
(c) $\left(\frac{3}{5}, \frac{3}{5}\right)$ (d) $\left(\frac{2}{5}, \frac{3}{5}\right)$

2. What is the angle between the two straight lines

y =
$$(2 - \sqrt{3})x + 5$$
 and y = $(2 + \sqrt{3})x - 7$? [2006-1]
(a) 60° (b) 45°
(c) 20° (b) 15°

- (c) 30° (d) 15°
- 3. What is the image of the point (2, 3) in the line y = -x? (a) (-3, -2)(b) (-3,2)
- (c) (-2, -3)[2006-II] (d) (3,2)4. The middle point of A(1, 2) and B(x, y) is C(2, 4). If BD is

perpendicular to AB such that CD = 3 unit, then what is the length BD? [2006-II]

(a) $2\sqrt{2}$ unit	(b)	2 unit
----------------------	-----	--------

- (c) 3 unit (d) $3\sqrt{2}$ unit
- If the points A(1, 2), B(2, 4) and C(3, a) are collinear, what is 5. the length BC? [2006-II]
 - (a) $\sqrt{2}$ unit (b) $\sqrt{3}$ unit

(c)
$$\sqrt{5}$$
 unit (d) 5 unit

What is the acute angle between the lines Ax + By = A + B6. and A(x-y) + B(x+y) = 2B?[2007-I]

(a)
$$45^{\circ}$$
 (b) $\tan^{-1}\left(\frac{A}{\sqrt{A^{2}+B^{2}}}\right)$
(c) (d) 60°

~

7. If p be the length of the perpendicular from the orgin on the straight line x + 2by + 2p = 0, then what is the value of b?

(a)
$$\frac{1}{p}$$
 (b) p

(c)
$$\frac{1}{2}$$
 (d) $\frac{\sqrt{3}}{2}$ [2007-1]

8. In what ratio does the line y - x + 2 = 0 cut the line joining (3, -1) and (8, 9)? [2007-I]

- (a) 2:3 (b) 3:2
- (c) 3:-2(d) 1:2
- The points (2, -2), (8, 4), (4, 6) and (-1, 1) in order are the vertices of which one of the following quadrilaterals?
 - (a) Square

9

- (b) Rhombus
- (c) Rectangle(but not square)
- (d) Trapezium [2007-I]
- If p be the length of the perpendicular from the origin on the 10.
 - straight line ax + by = p and b = $\frac{\sqrt{3}}{2}$, then what is the angle between the perpendicular and the positive direction of [2007-I] x-axis? (c) 60° (d) 90°
- (a) 30° (b) 45° The straight line ax + by + c = 0 and the coordinate axes form 11. an isosceles triangle under which one of the following conditions?

(b)
$$|a| = |c|$$

$$|=|c|$$

(a) |a| = |b|

(d) none of these [2007-I](c) |b The coordinates of P and Q are (-3, 4) and (2, 1), respectively. 12. If PQ is extended to R such that PR = 2QR, then what are the coordinates of R? [2007-II]

(a)
$$(3,7)$$
 (b) $(2,4)$
(c) $\left(-\frac{1}{2},\frac{5}{2}\right)$ (d) $(7,-2)$

Which one of the following points on the line 2x - 3y = 5 is 13. [2007-II] equidistant from (1, 2) and (3, 4)? (a) (7 3) (b) (4 1)

(a)
$$(7,3)$$
 (b) $(4,1)$
(c) $(1,-1)$ (d) $(-2,-3)$

The following question consist of two statements, one 14. labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer.

Assertion (A) : If two triangles with vertices (x_1, y_1) , $(x_2, y_2), (x_3, y_3)$ and $(a_1, b_1), (a_2, b_2), (a_3, b_3)$ satisfy the relation

$$\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \begin{vmatrix} a_1 & b_1 & 1 \\ a_2 & b_2 & 1 \\ a_3 & b_3 & 1 \end{vmatrix}, \text{ then the triangles are}$$

congruent.

	Reason (R) : For the given triangles satisfying the above	25.	What is the product of the perpendiculars from the two
	relation implies that the triangles have equal area.		points $\left(\pm\sqrt{b^2-a^2},0\right)$ to the line as $\cos\phi \pm by \sin\phi - ab^2$
	(a) Both \mathbf{A} and \mathbf{R} are individually true, and \mathbf{R} is the correct		points $(1, 1, 2, 3, 4)$ to the fine $dx \cos \psi + \delta y \sin \psi - d\delta$.
	explanation of A .		[2009-11]
	(b) Both A and \mathbf{R} are individually true but \mathbf{R} is not the		(a) a^2 (b) b^2
	correct explanation of A .	24	(c) ab (d) a/b
	(c) A is true but R is false.	26.	The middle point of the segment of the straight line joining
	(d) A is false but R is true. [2007-II]		the points (p, q) and $(q, -p)$ is $(r/2, s/2)$. What is the length
15.	If A $(2, 3)$, B $(1, 4)$, C $(0-2)$ and D (x, y) are the vertices of a		of the segment? [2009-11] (a) $\Gamma(2 + 2)1/21/2$ (b) $\Gamma(2 + 2)1/21/4$
	parallelogram, then what is the value of (x, y) ?		(a) $[(s^2 + r^2)^{1/2}]/2$ (b) $[(s^2 + r^2)^{1/2}]/4$
	(a) $(1,-3)$ (b) $(2,4)$	27	(c) $(S^2 + T^2)^{1/2}$ (d) $S + T$
	(c) $(1,1)$ (d) $(0,0)$ [2008-1]	27.	what is the locus of a point which is equidistant from the point $(w_1 + w_2 + w_3)$ and the point $(w_2 + w_3 + w_3)^2$
16.	If O be the origin and A (x_1, y_1) , B (x_2, y_2) are two points,		point $(m+n, n-m)$ and the point $(m-n, n+m)$?
	then what is (OA) (OB) $\cos \angle AOB$?		[2009-11]
	$() 2 2 \qquad () 2 2$		(a) $mx - ny$ (b) $nxmy$
	(a) $x_1^2 + x_2^2$ (b) $y_1^2 + y_2^2$	20	(c) $mx - my$ (d) $mxmy$ Let $Q(0, 0, 0)$ $P(2, 4, 5)$ $Q(m, n, n)$ and $P(1, 1, 1)$ be the
	(c) $x_1 x_2 + y_1 y_2$ (d) $x_1 y_1 + x_2 y_2$ [2008-I]	20.	Let $O(0, 0, 0)$, $F(5, 4, 5)$, $Q(m, n, r)$ and $R(1, 1, 1)$ be the variance of a parallelegram taken in order. What is the value
17.	The numerical value of the perimeter of a square exceeds		vertices of a parametogram taken in order. What is the value of $m + n + n^2$
	that of its area by 4. What is the side of the square?		01 m + n + r! [2010-1] (a) 6 (b) 12
	(a) 1 unit (b) 2 unit		(a) 0 (b) 12 (c) 15 (d) More than 15
	(c) 3 unit (d) 4 unit [2008-1]	20	(c) 15 (d) More than 15 What is the image of the point $(1, 2)$ on the line $2x \pm 4y = 1 - 02$
18.	If (a, b) , (c, d) and $(a - c, b - d)$ are collinear, then which one	29.	what is the image of the point $(1, 2)$ of the ime $3x + 4y - 1 - 0$?
	of the following is correct?		() (7 6) (7 1) (7 1)
	(a) $bc - ad = 0$ (b) $ab - cd = 0$		(a) $\left(-\frac{1}{5}, -\frac{1}{5}\right)$ (b) $\left(\frac{1}{8}, \frac{1}{2}\right)$ [2010-1]
	(c) $bc + ad = 0$ (d) $ab + cd = 0$ [2008-1]		
19.	The point of intersection of the two lines $2x + 3y + 4 = 0$ and		(a) $\left(\frac{7}{2}, \frac{1}{2}\right)$ (d) $\left(-\frac{7}{2}, \frac{1}{2}\right)$
	4x + 3y + 2 = 0 is at a distance d from origin. What is the		$\begin{pmatrix} 0 \\ 8 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 6 \\ 5 \\ 2 \end{pmatrix}$
	value of <i>d</i> ? [2008-II]	30.	If $(-5, 4)$ divides the line segment between the coordinate
			axes in the ratio 1: 2, then what is its equation? [2010-I]
• •	(a) $\sqrt{2}$ (b) $\sqrt{3}$ (c) $\sqrt{5}$ (d) $\sqrt{7}$		(a) $8x + 5y + 20 = 0$ (b) $5x + 8y - 7 = 0$
20.	The line through the points $(4, 3)$ and $(2, 5)$ cuts off intercepts		(c) $8x-5y+60=0$ (d) $5x-8y+57=0$
	of lengths λ and μ on the axes. Which one of the following	31.	What is the equation to the straight line joining the origin
	is correct? [2008-II]		
	(a) $\lambda > \mu$ (b) $\lambda < \mu$		to the point of intersection of the lines $\frac{x}{y} + \frac{y}{z} = 1$ and
	(c) $\lambda > -\mu$ (d) $\lambda = \mu$		a b
21.	What is the locus of a point which is equidistant from the		$\frac{x}{y} + \frac{y}{z} - 12$ (2010 III)
	points $(a + b, a - b)$ and $(b - a, a + b)$? [2008-II]		b a [2010-11]
	(a) $bx - ay = 0$ (b) $bx + ay = 0$		(a) $x+y=0$ (b) $x+y+1=0$
	(c) $-ax + by = 0$ (d) $ax + by = 0$		(c) $x-y=0$ (d) $x+y+2=0$
22.	What is the area of the triangle formed by the lines	32.	If the straight lines $x - 2y = 0$ and $kx + y = 1$ intersect at the
	y - x = 0, y + x = 0, x = c? [2009-1]		$\begin{pmatrix} 1 \end{pmatrix}$
	(a) $c/2$ (b) c^2		point $\begin{bmatrix} 1, \\ 2 \end{bmatrix}$, then what is the value of k? [2010-II]
	(c) $2c^2$ (d) $c^2/2$		(a) 1 (b) 2 (c) $1/2$ (d) $-1/2$
23.	What is the foot of the perpendicular from the point $(2, 3)$ on	33	What is the maximum number of straight lines that can be
	the line $x + y - 11 = 0$? [2009-1]	55.	drawn with any four points in a plane such that each line
	(a) $(1,10)$ (b) $(5,6)$		contains at least two of these points? [2010-II]
	(c) $(6,5)$ (d) $(7,4)$		(a) 2 (b) 4 (c) 6 (d) 12
24.	Consider the following statements : [2009-1]	34.	A square is drawn by joining mid points of the sides of a
	1. The equation to a straight line parallel to the axis of x is		square. Another square is drawn inside the second square
	y = d, where d is a constant.		in the same way and the process is continued in definitely.
	2. The equation to the axis of x is $x = 0$.		If the side of the first square is 16 cm, then what is the sum
	Which of the statement (s) given above is/are correct?		of the areas of all the squares? [2010-II]
	(a) 1 only (b) 2 only		(a) 256 sq cm (b) 512 sq cm
	(c) Both 1 and 2 (d) Neither 1 nor 2		(c) 1024 sq cm (d) $512/3 \text{ sq cm}$

			[2009-II]
	(a) a^2	(b)	b^{2}
	(c) <i>ab</i>	(d)	a/b
	The middle point of the seg	ment	t of the straight line joining
	the points (p, q) and $(q, -p)$) is (<i>1</i>	$\frac{1}{2}$, $\frac{s}{2}$). What is the length
	of the segment?		[2009-II]
	(a) $[(s^2 + r^2)^{1/2}]/2$	(b)	$[(s^2 + r^2)^{1/2}]/4$
	(c) $(s^2 + r^2)^{1/2}$	(d)	s + r
•	What is the locus of a point	t wh	ich is equidistant from the
	point $(m+n, n-m)$ and the	e poir	nt $(m-n, n+m)$?
			[2009-11]
	(a) $mx = ny$	(b)	nx = -my
	(c) $nx = my$	(d)	mx = -ny
•	Let $O(0, 0, 0), P(3, 4, 5), P(3, 4, 5)$	Q(m)	(n, r) and $R(1, 1, 1)$ be the
	vertices of a parallelogram	taken	in order. What is the value
	of $m + n + r$?		[2010-1]
	(a) 6	(b)	12
	(c) 15	(d)	More than 15
•	What is the image of the poin	t(1, 2)	2) on the line $3x+4y-1=0$?
	(a) $\left(-\frac{7}{5},-\frac{6}{5}\right)$	(b)	$\left(\frac{7}{2},\frac{1}{2}\right)$ [2010-1]
	(5 5)	(-)	(8 2)
	(7 1)	(1)	(71)
	(c) $\left(\frac{\overline{8}}{\overline{8}}, -\frac{\overline{2}}{2}\right)$	(d)	$\left(-\frac{1}{5},\frac{1}{2}\right)$
•	If $(-5, 4)$ divides the line s	egme	ent between the coordinate

- im number of straight lines that can be r points in a plane such that each line o of these points? [2010-II] (d) 12 (c) 6
- by joining mid points of the sides of a are is drawn inside the second square the process is continued in definitely. square is 16 cm, then what is the sum [2010-II] e squares? (b) 512 sq cm
 - (d) 512/3 sq cm (c) 1024 sq cm

EBD 7346

35.	What is the slope of the line perpendicular to the line		
	$\frac{x}{1} + \frac{y}{2} = 1?$ [2010-II]		(a
	4 3		
	(a) $\frac{5}{4}$ (b) $-\frac{5}{4}$		(
	4 4		(t
	(c) $-\frac{4}{2}$ (d) $\frac{4}{2}$	47.	If
•			(]
36.	If the area of a triangle with vertices $(-3, 0)$, $(3, 0)$ and $(0, 1)$ is 0 areas if the vertex is the vertex of 12 (2010 II)		
	(0, k) is 9 sq unit, then what is the value of k? [2010-11]		(8
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48	9) H
37.	What is the locus of a point which moves	-10.	11
	equidistant from the coordinate axes? [2011-I]		0
	(a) $x \pm y = 0$ (b) $x + 2y = 0$		
	(c) $2x+y=0$ (d) None of these		15
38.	What is the equation of the line joining the origin with the		
	point of intersection of the lines $4x + 3y = 12$ and $3x + 4y = 12$?		(8
	[2011-I]		
	(a) $x+y=1$ (b) $x-y=1$		(
20	(c) $3y=4x$ (d) $x=y$ If the sum of the sums of the distances of the point.		((
39 .	If the sum of the squares of the distances of the point (r, y) from the points $(r, 0)$ and $(-r, 0)$ is $2h^2$ then which	49.	F
	one of the following is correct? $[2011-1]$		k
	(a) $x^2 + a^2 = b^2 + v^2$ (b) $x^2 + a^2 = 2b^2 - v^2$		(
	(c) $x^2 - a^2 = b^2 + v^2$ (d) $x^2 + a^2 = b^2 - v^2$		(
40.	The line $mx + ny = 1$ passes through the points (1, 2) and	50.	V
	(2, 1). What is the value of m ? [2011-1]		d
	(a) 1 (b) 3		(8
	1 1	51	0 V
	(c) $\frac{1}{2}$ (d) $\frac{1}{3}$	51.	n
41.	What is the equation of the line passing through		tl
	(2, -3) and parallel to Y-axis? [2011-I]		(;
	(a) $Y = -3$ (b) $Y = 2$		(
	(c) $X=2$ (d) $X=-3$	52.	W
42.	What is the locus of the point which is at a distance 8 units		A
	to the left of Y-axis? [2011-1] (a) $V=9$		(a
	(a) $A = 8$ (b) $I = 8$ (c) $Y = -8$ (d) $Y = -8$		(c
43	Two straight lines $x - 3y - 2 = 0$ and $2x - 6y - 6 = 0$	52	14
	(a) never intersect [2011-1]	55.	11 1i
	(b) intersect at a single point		(2
	(c) intersect at infinite number of points		(0
	(d) intersect at more than one point (but finite	54.	Ť
	number of points)		li
14.	If $(a, 0)$, $(0, b)$ and $(1, 1)$ are collinear, what is		(a
	(a + b - ab) equal to? [2011-1] (a) 2 (b) 1		(0
	(a) 2 (b) 1 (c) 0 (d) -1	55.	W
1 5.	What are the co-ordinates of the foot of the		62
	perpendicular from the point (2, 3) on the line		(a
	x+y-11=0? [2011-11]	-/	(0
	(a) (2,9) (b) (5,6)	56.	Ŵ
	(c) $(-5, 6)$ (d) $(6, 5)$		X-
16 .	How many diagonal will be there in an n-sided		(a
	regular polygon? [2011-II]		(0

(a)
$$\frac{n(n-1)}{2}$$
 (b) $\frac{n(n-3)}{2}$
(c) $n^2 - n$ (d) $\frac{n(n+1)}{2}$

- 47. If (p, q) is the point on the x-axis equidistant from the points (1, 2) and (2, 3), then which one of the following is correct? [2011-II]
 - (a) p=0, q=4 (b) p=4, q=0(c) p=3/2, q=0 (d) p=1, q=0If p is the length of the perpendicular drawn from the
 - origin to the line $\frac{x}{a} + \frac{y}{b} = 1$, then which one of the following is correct?

	[2011-11]						
(a) $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$	(b) $\frac{1}{p^2} = \frac{1}{a^2} - \frac{1}{b^2}$						
(c) $\frac{1}{p} = \frac{1}{a} + \frac{1}{b}$	$(d) \frac{1}{p} = \frac{1}{a} - \frac{1}{b}$						
For what value of k, are the lin	hes $x + 2y - 9 = 0$ and						
kx + 4y + 5 = 0 parallel?	[2011-II]						
(a) 2	(b) -1						
(c) 1	(d) 0						
What is the equation of a	line parallel to x-axis at a						
distance of 5 units below x-ax	is? [2011-II]						
(a) $x=5$	(b) $x = -5$						
(c) $y = 5$	(d) $y = -5$						
What is the equation of line	passing through $(0, 1)$ and						
making an angle with the y-a	xis equal to the inclination of						
the line $x - y = 4$ with x-axis?	[2012-1]						
(a) $y = x + 1$	(b) $x = y + 1$						
(c) $2x = y + 2$	(d) None of the above						
What is the perimeter of the triangle with vertices							
A(-4, 2), B(0, -1) and C(3, 3)?	[2012-I]						
(a) $7 + 3\sqrt{2}$ (b) $10 + 5\sqrt{2}$						
(c) $11 + 6\sqrt{2}$ (e)	d) $5 + \sqrt{2}$						
If the mid point between the po	bints $(a + b, a - b)$ and $(-a, b)$						

53. If the mid point between the points (a + b, a - b) and (-a, b) lies on the line ax + by = k, what is k equal to? [2012-I]
(a) a/b
(b) a + b

- (c) ab (d) a b
- 4. The acute angle which the perpendicular from origin on the line 7x 3y = 4 makes with the x-axis is [2012-I]
 - (a) zero (b) positive but not $\pi/4$
- (c) negative (d) $\pi/4$. What is the distance between the lines 3x + 4y = 9 and
- 5. What is the distance between the lines 3x + 4y = 9 and 6x + 8y = 18? [2012-I]
 - (a) 0 (b) 3 units
 - (c) 9 units (d) 18 units
- 56. What is the perpendicular distance of the point (x, y) from x-axis? [2012-1]

Cartesian Coordinate System and Straight Line

(a)

(1, 1)(c) (-2, -2)

57.	The line making an angle (–	120°) with x-axis is situated i	n
	the:	[2012-1]	/ /
	(a) first quadrant	(b) second quadrant	69.
	(c) third quadrant	(d) fourth quadrant	
58.	The locus of a point equidist	ant from three collinear poin	ts
	is:	[2012-II]
	(a) a straight line	(b) a pair of points	70.
	(c) a point	(d) the null set	
59.	The equation to the locus	of a point which is alway	/S
	equidistant from the points (1	, 0) and $(0, -2)$ is :	
	(a) $2x + 4y + 3 = 0$	[2012-II]
	(b) $4x + 2y + 3 = 0$		
	(c) $2x + 4y - 3 = 0$		
	(d) $4x + 2y - 3 = 0$		
60.	The points $(5, 1), (1, -1)$ and (11, 4) are : [2012-I	7
	(a) collinear		- 71
	(b) vertices of right angled	triangle	/1.
	(c) vertices of equilateral tr	iangle	
	(d) vertices of an isosceles	triangle	
61.	What is the perpendicular dis	tance between the parallel line	es 72.
	3x + 4y = 9 and $9x + 12y + 28$	= 0? /2012-L	[]
	-		
	(a) $\frac{7}{-}$ units	(b) $\frac{8}{-}$ units	
	$\binom{a}{3}$	(0) $\frac{3}{3}$ and $\frac{3}{3}$	
	10	11	
	(c) $\frac{10}{-10}$ units	(d) $\frac{11}{-}$ units	73.
	3	(4) 3	
62.	Let p, q, r, s be the distances f	rom origin of the points (2, 6),
	(3, 4), (4, 5) and (-2, 5) re	spectively. Which one of th	ie 74.
	following is a whole number?	2012-II]
	(a) p	(b) q	
	(c) r	(d) s	
63.	From the point (4, 3) a per	pendicular is dropped on th	ie 75
	x-axis as well as on the y-axis.	If the lengths of perpendicula	rs
	are p, q respectively, then y	which one of the following	is
	correct?	[2012-1]	!]
	(a) $p = q$	(b) $3p = 4q$	76
	(c) $4p = 3q$	(d) $p+q=5$	/0.
64.	The line $y = 0$ divides the line	e joining the points $(3, -5)$ and	d
	(-4, 7) in the ratio :	<i>[2012-II]</i>	7
	(a) 3:4	(b) 4:5	
	(c) $5:7$	(d) 7:9	77.
65.	The equation of a straight li	ne which makes an angle 45	5°
	with the x-axis with v-interce	pt 101 units is $.$ [2012-I	7
	(a) $10x + 101y = 1$	(b) $101x + y = 1$	1
	(c) $x + y - 101 = 0$	(d) $x - y + 101 = 0$	
	(0) h y 101 0		
66.	If the points (2, 4), (2, 6) and	$(2+\sqrt{3}, k)$ are the vertices	of
	an aquilatoral triangle than	what is the value of lt?	
	(a) 6	what is the value of K $($	70
	(a) 0	(0) $5 [2012-1]$] /0.
(7	(0) = 3	(u) 1 inht line mhiek	1.
0/.	what is the equation of a stra (2, 4) and some $(2, 1)$	ight line which passes throug	,11
	(3, 4) and sum of whose x and	u y intercepts is 14?	1 7
	(a) $4x + 3y = 24$	(0) $x+y=14$ [2013-1	·] 79.
(0)	(c) $4x - 3y = 0$	(a) $3x + 4y = 25$	1
68.	I ne point whose abscissa is e	equal to its ordinate and which	n 17
	is equidistant from A $(-1, 0)$ a	and $B(0, 5)$ is [2013	IJ

What is the area of the	e triang	le whose v	vertices are
(3, 0), (0, 4) and $(3, 4) $?			[2013-I]
(a) 6 sq. unit	(b)	7.5sq. unit	
(c) 9 sq. unit	(d)	12 sq. unit	
A straight line passes thro	ugh the	points (5, 0) and (0, 3).
The length of the perpendic	cular fro	om the point	(4, 4) on the
lineis			
		17	
(a) $\frac{\sqrt{1}}{}$	(b)	$\sqrt{\frac{1}{2}}$	[2013-1]
2		V 2	
15		17	
(c) $\frac{15}{\sqrt{24}}$	(d)	$\frac{17}{2}$	
$\sqrt{34}$		2	
What is the inclination of t	he line	$\sqrt{3}x - y - 1 =$	= 0 ?
(a) 30°	(b)	. , 60°	[2013_1]
(a) 50°	(d)	150°	[2015 1]
Two straight line paths a	re renre	esented by t	he equation
2x - y = 2 and $-4x + 2y = 6$	5 Then t	the naths wil	1
(a) cross each other at or	ne noint	·	[2013-1]
(b) not cross each other	iie point	•	[2010 1]
(c) cross each other at ty	vo point	s	
(d) cross each other at in	finitely	many points	6
For what value of k, the equ	ations 3	x - y = 8 and	9x - ky = 24
will have infinitely many so	olutions	?	[2013-1]
(a) 6 (b) 5	(c)	3 (d)	1
What is the area of the tria	ingle bo	unded by the	e side $x = 0$,
y = 0, and $x + y = 2?$			[2013-I]
(a) 1 square unit	(b)	2 square un	it
(c) 4 square unit	(d)	8 square un	it
If the three vertices of the pa	rallelog	ram ABCD a	are $A(1, a), B$
(3, a), C(2, b), then D is eq	ual to		[2013-II]
(a) $(3, b)$	(b)	(6, <i>b</i>)	
(c) $(4, b)$	(d)	(5, b)	
What is the equation of	the line	which pas	ses through
(4, -5) and is perpendicular	to 3x +	4y + 5 = 0?	[2013-II]
(a) $4x - 3y - 31 = 0$	(b)	3x - 4y - 41	=0
(c) $4x + 3y - 1 = 0$	(d)	3x + 4y + 8 =	= 0
For what value of k are the	two strai	ight lines $3x$	+4y=1 and
4x + 3y + 2k = 0 equidistant	t from th	ne point (1, 1)?
			[2013-II]
	what is the area of the (3, 0), (0, 4) and (3, 4)? (a) 6 sq. unit (c) 9 sq. unit A straight line passes throw The length of the perpendicular (a) $\frac{\sqrt{17}}{2}$ (c) $\frac{15}{\sqrt{34}}$ What is the inclination of the field of the perpendicular (a) 30° (c) 135° Two straight line paths and $2x - y = 2$ and $-4x + 2y = 6$ (a) cross each other at ordicate of the trian the triant	what is the area of the triang (3, 0), (0, 4) and (3, 4)? (a) 6 sq. unit (b) (c) 9 sq. unit (d) A straight line passes through the The length of the perpendicular for line is (a) $\frac{\sqrt{17}}{2}$ (b) (c) $\frac{15}{\sqrt{34}}$ (d) What is the inclination of the line (a) 30° (b) (c) 135° (d) Two straight line paths are represent 2x - y = 2 and $-4x + 2y = 6$. Then the (a) cross each other at one point (b) not cross each other (c) cross each other at infinitely For what value of k, the equations 3 will have infinitely many solutions (a) 6 (b) 5 (c) What is the area of the triangle bo y = 0, and $x + y = 2$? (a) 1 square unit (b) (c) 4 square unit (c) (c) (a, b), then D is equal to (a) (3, b) (c) (a) (3, b) (c) (a) (3, b) (c) (a) (d) What is the equation of the line (4, -5) and is perpendicular to $3x +$ (a) $4x - 3y - 31 = 0$ (b) (c) $4x + 3y - 1 = 0$ (c) For what value of k are the two strait 4x + 3y + 2k = 0 equidistant from the	what is the area of the triangle whose v (3, 0), (0, 4) and (3, 4)? (a) 6 sq. unit (b) 7.5 sq. unit (c) 9 sq. unit (d) 12 sq. unit A straight line passes through the points (5, 0) The length of the perpendicular from the point line is (a) $\frac{\sqrt{17}}{2}$ (b) $\sqrt{\frac{17}{2}}$ (c) $\frac{15}{\sqrt{34}}$ (d) $\frac{17}{2}$ What is the inclination of the line $\sqrt{3}x - y - 1 =$ (a) 30° (b) 60° (c) 135° (d) 150° Two straight line paths are represented by t 2x - y = 2 and $-4x + 2y = 6$. Then the paths wil (a) cross each other at one point (b) not cross each other (c) cross each other at infinitely many points (d) cross each other at infinitely many points For what value of k, the equations $3x - y = 8$ and will have infinitely many solutions? (a) 6 (b) 5 (c) 3 (d) What is the area of the triangle bounded by the y=0, and $x + y = 2$? (a) 1 square unit (b) 2 square uni (c) 4 square unit (d) 8 square uni fthe three vertices of the parallelogram <i>ABCD</i> at (3, <i>a</i>), <i>C</i> (2, <i>b</i>), then <i>D</i> is equal to (a) (3, <i>b</i>) (b) (6, <i>b</i>) (c) (4, <i>b</i>) (d) (5, <i>b</i>) What is the equation of the line which pas (4, -5) and is perpendicular to $3x + 4y + 5 = 0$? (a) $4x - 3y - 31 = 0$ (b) $3x - 4y - 41$ (c) $4x + 3y - 1 = 0$ (d) $3x + 4y + 83$ For what value of <i>k</i> are the two straight lines $3x$ 4x + 3y + 2k = 0 equidistant from the point (1, 1)

(b) (2,2)

(d) (3,3)

(a)
$$\frac{1}{2}$$
 (b) 2

(c)
$$-2$$
 (d) $-\frac{1}{2}$

A point P moves such that its distances from (1, 2) and (-2, 3) are equal. Then the locus of *P* is [2013-II]

- (a) straight line (b) Parabola
- (c) ellipse (d) hyperbola
- The equation of the locus of a point which is equidistant from the axes is [2013-II]
 - (a) y = 2x(b) x = 2y
 - (c) $y = \pm x$ (d) 2y + x = 0

- 80. What angle does the line segment joining (5, 2) and (6, -15) subtend at (0, 0)? [2013-11] (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) $\frac{3\pi}{4}$ 81. The length of latus rectum of the ellipse $4x^2 + 9y^2 = 36$ is [2013-11] (a) $\frac{4}{3}$ (b) $\frac{8}{3}$ (c) 6 (d) 12
- 82. What is the equation to the straight line passing through (5, -2) and (-4, 7)? [2013-II] (a) 5x-2y=4 (b) -4x+7y=9
 - (a) 5x + 2y + 4(b) 4x + 7y + 7y(c) x + y = 3(d) x - y = -1
- 83. What is the angle between the lines x + y = 1 and x y = 1? [2013-II]
 - (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$
- 84. The centroid of the triangle with vertices (2, 3), (-2, -5) and (3, 5) is at [2013-II]
 (a) (1, 1)
 (b) (2, -1)
 - (c) (1,-1) (d) (1,2)
- 85. The equation of the line, the reciprocals of whose intercepts on the axes are *m* and *n*, is given by [2013-II] (a) nx + my = mn (b) mx + ny = 1
 - (c) mx + ny = mn (d) mx ny = 1
- 86. Consider the following points :
 [2014-I]

 1. (0,5)
 2. (2,-1)
 - 3. (3, -4)

Which of the above lie on the line 3x + y = 5 and at a distance

 $\sqrt{10}$ from (1, 2)?

- (a) 1 only (b) 2 only
- (c) 1 and 2 only (d) 1, 2 and 3
- 87. What is the equation of the line through (1, 2) so that the segment of the line intercepted between the axes is bisected at this point? [2014-I] (a) 2x-y=4 (b) 2x-y+4=0
 - (a) 2x-y-4 (b) 2x-y+4=0(c) 2x+y=4 (d) 2x+y+4=0
- 88. What is the equation of straight line passing through the point (4, 3) and making equal intercepts on the coordinate axes ? [2014-I]
 - (a) x+y=7(b) 3x+4y=7(c) x-y=1(d) None of these
- 89. A (3, 4) and B(5, -2) are two points and P is a point such that PA = PB. If the area of triangle PAB is 10 square unit, what are the coordinates of P ? [2014-II]
 - (a) (1, 0) only (b) (7, 2) only
 - (c) (1,0) or (7,2) (d) Neither (1,0) nor (7,2)
- 90. Which of the following is correc in respect of the equations

$$\frac{x-1}{2} = \frac{y-2}{3} \text{ and } 2x + 3y = 5?$$
 [2014-II]

- (a) They represent two lines which are parallel.
- (b) They represent two lines which are perpendicular.
- (c) They represent two lines which are neither parallel nor perpendicular.
- (d) The first equation does not represent a line.

DIRECTIONS (Qs. 91-93): For the next three (3) items that follow:

Consider the triangle *ABC* with vertices A(-2, 3), B(2, 1) and C(1, 2).

91. What is the circumcentre of the triangle ABC ? [2015-I] (a) (-2, -2) (b) (2, 2)

(c)
$$(-2,2)$$
 (d) $(2,-2)$

92. What is the centroid of the tirnalge *ABC*? [2015-I]

(a)
$$\left(\frac{1}{3}, 1\right)$$
 (b) $\left(\frac{1}{3}, 2\right)$
(c) $\left(1, \frac{2}{3}\right)$ (d) $\left(\frac{1}{2}, 3\right)$

- 93. What is the foot of the altitude from the vertex A of the triangle ABC? [2015-I]
 (a) (1,4) (b) (-1,3)
 (c) (-2,4) (d) (-1,4)
- 94. A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its *y*-intercept is [2015-I]
 - (a) $\frac{3}{4}$ (b) $\frac{4}{3}$ (c) $\frac{1}{3}$ (d) 3
- 95. The Perpendicular distance between the straight lines 6x + 8y + 15 = 0 and 3x + 4y + 9 = 0 is [2015-I]
 - (a) $\frac{3}{2}$ units (b) $\frac{3}{10}$ unit (c) $\frac{3}{4}$ unit (d) $\frac{2}{7}$ unit
- 96. The length of perpendicular from the origin to a line is 5 units and the line makes an angle 120° with the positive direction of *x*-axis. The equation of the line is [2015-I]

(a)
$$x + \sqrt{3}y = 5$$
 (b) $\sqrt{3}x + y = 10$

(c)
$$\sqrt{3x} - y = 10$$
 (d) None of these

97. The equation of the line joining the origin to the point of

interesection of the lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{b} + \frac{y}{a} = 1$ is [2015-I] (a) x - y = 0 (b) x + y = 0(c) x = 0 (d) y = 0

- 98. If a line is perpendicular to the line 5x y = 0 and forms a triangle of area 5 square units with co-ordinate axes, then its equation is [2015-II]
 - (a) $x + 5y \pm 5\sqrt{2} = 0$ (b) $x 5y \pm 5\sqrt{2} = 0$

(c)
$$5x + y \pm 5\sqrt{2} = 0$$
 (d) $5x - y \pm 5\sqrt{2} = 0$

Cartesian Coordinate System and Straight Line

99.	The three lines $4x + 4y = 1$, $8x - 3y = 2$, $y = 0$ are [2015-II]											
	(a)	the sides of an isosceles	triar	ngle								
	(b)	concurrent		-								
	(c) mutually perpendicular											
	(d)	the sides of an equilatera	l tria	ngle								
100.	Thel	line $3x + 4y - 24 = 0$ inters	ects	the x-axis at A	and y-axis							
	at B.	Then the circumcentre of	the	triangle OAB	where O is							
	the o	rigin is			[2015-II]							
	(a)	(2,3)	(b)	(3,3)		DIR						
	(c)	(4,3)	(d)	None of the	above	follo						
101.	The	product of y the perpend	licul	ars from the	two points	Cons						
	(±4,	0) to the line $3x \cos \phi + 5y$	sin o	♦=15 is	[2015-II]	and						
	(a)	25	(b)	16		111.						
	(c)	9	(d)	8								
102.	Thel	ines $2x = 3y = -z$ and $6x =$	-y=	=-4z	[2015-II]							
	(a)	are perpendicular	(b)	are parallel		112.						
	(c)	intersect at an angle 45°	(d)	intersect at ar	n angle 60°							
103.	Two	straight lines passing thro	ough	the point $A(3)$, 2) cut the							
	line	2y = x + 3 and x-axis	perp	endicularly a	t P and Q							
	respe	ectively. The equation of t	he li	ne PQ is	[2015-II]							
	(a)	7x + y - 21 = 0	(b)	x + 7y + 21 =	0							
	(c)	2x + y - 8 = 0	(d)	x+2y+8=0		112						
104.	Astr	aight line intersects x and	y axe	es at P and Q re	espectively.	113.						
	If(3,	5) is the middle point of P	Q, th	en what is the	area of the							
	trian	gle OPQ?			[2016-I]							
	(a)	12 square units	(b)	15 square un	its							
	(c)	20 square units	(d)	30 square un	its							
DIR	ECT	IONS (Qs. 105-106): Fo	or the	e next two (2)	items that	114						
folle	ow:					114.						
Con	sider	the lines $y = 3x$, $y = 6x$ an	d y=	= 9	[2016-I]							

105. What is the area of the triangle formed by these lines? 27 27 27 27 27 27 27

(a)	$\frac{27}{4}$ square units	(b)	$\frac{27}{2}$ square units
(c)	$\frac{19}{4}$ square units	(d)	$\frac{19}{2}$ square units
The	controid of the triangl	a is at wh	ich one of the faller

106. The centroid of the triangle is at which one of the following points?

(a)	(3,6)	(b)	$\left(\frac{3}{2}, 6\right)$
(c)	(3,3)	(d)	$\left(\frac{3}{2},9\right)$

DIRECTIONS (Qs. 107-108): For the next two (2) items that follow:

Conside	or the curves $y = x - 1 $	and $ \mathbf{x} =$	2 [2016-1]
107. Wh	nat is/are the point(s)	of interse	ction of the curves ?
(a)	(-2, 3) only	(b)	(2, 1) only
(c)	(-2, 3) and $(2, 1)$	(d)	Neither $(-2, 3)$ nor $(2, 1)$
108. Wh	hat is the area of the reg	gion boun	ided by the curves and x-
axi	s?		
(a)	3 square units	(b)	4 square units
(c)	5 square units	(d)	6 square units
DIREC	TIONS (Qs. 109-110): For the	e next two (2) items that
follow:			

Consider the two lines x + y + 1 = 0 and 3x + 2y + 1 = 0

109. What is the equation of the line passing through the point of intersection of the given lines and parallel to x-axis?

- (a) y+1=0 (b) y-1=0
- (c) y-2=0 (d) y+2=0). What is the equation of the line passing through the point
- of intersection of the given lines and parallel to y-axis? [2016-1]

(a)
$$x + 1 = 0$$

(b) $x - 1 = 0$
(c) $x - 2 = 0$
(d) $x + 2 = 0$

DIRECTIONS (Qs. 111-113): For the next three (3) items that follow:

Consider a parallelogram whose vertices are A(1, 2), B(4, y), C(x, 6) and D(3, 5) taken in order. [2016-I]

- 11. What is the value of $AC^2 BD^2$?
 - (a) 25 (b) 30 (c) 36 (d) 40

112. What is the point of intersection of the diagonals?

(a)
$$\left(\frac{7}{2}, 4\right)$$
 (b) $(3, 4)$
(c) $\left(\frac{7}{2}, 5\right)$ (d) $(3, 5)$

113. What is the area of the parallelogram?

(a)
$$\frac{7}{2}$$
 square units
(b) 4 square units
(c) $\frac{11}{2}$ square units
(d) 7 square units

114. (a, 2b) is the mid-point of the line segment joining the points (10, -6) and (k, 4). If a - 2b = 7, then what is the value of k? [2016-I]

(a)	2	(b)	3
(c)	4	(d)	5

115. An equilateral triangle has one vertex at (0,0) and another at $(3, \sqrt{3})$. What are the coordinates of the third vertex?

[2016-II]

(a) $(0, 2\sqrt{3})$ only

7

- (b) $(3, -\sqrt{3})$ only
- (c) $(0, 2\sqrt{3})$ or $(3, -\sqrt{3})$
- (d) Neither $(0, 2\sqrt{3})$ nor $(3, -\sqrt{3})$
- 116. What is the equation of the straight line which passes through the point of intersection of the straight lines x + 2y = 5and 3x + 7y = 17 and is perpendicular to the straight line 3x + 4y = 10? [2016-II]
 - (a) 4x + 3y + 2 = 0 (b) 4x y + 2 = 0
 - (c) 4x 3y 2 = 0 (d) 4x 3y + 2 = 0
- 117. If (a, b) is at unit distance from the line 8x + 6y + 1 = 0, then which of the following conditions are correct? [2016-II]
 - 1. 3a 4b 4 = 0
 - 2. 8a + 6b + 11 = 0
 - 3. 8a + 6b 9 = 0

Select the correct answer using the code given below:

- (a) 1 and 2 only (b) 2 and 3 only
- (c) 1 and 3 only (d) 1, 2 and 3

м-137

- 118. A straight line cuts off an intercept of 2 units on the positive direction of x-axis and passes through the point (-3, 5). What is the foot of the perpendicular drawn from the point (3, 3) on this line? [2016-II] (a) (1,3) (b) (2,0) (c) (0,2)(d) (1,1)
- 119. What is the curve which passes through the point (1,1) and
 - whose slope is $\frac{2y}{x}$? [2016-II] (a) Circle (b) Parabola
 - (c) Ellipse
- (d) Hyperbola 120. If a vertex of a triangle is (1, 1) and the midpoints of two sides
- of the triangle through this vertex are (-1, 2) and (3, 2), then the centroid of the triangle is [2017-1]

(a)
$$\left(-\frac{1}{3}, \frac{7}{3}\right)$$
 (b) $\left(-1, \frac{7}{3}\right)$
(c) $\left(\frac{1}{3}, \frac{7}{3}\right)$ (d) $\left(1, \frac{7}{3}\right)$

- 121. The incentre of the triangle with vertices $A(1,\sqrt{3}), B(0,0)$
 - and C(2, 0) is [2017-I] (a) $\left(1, \frac{\sqrt{3}}{2}\right)$ (b) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$ (c) $\left(\frac{2}{3}, \frac{\sqrt{3}}{2}\right)$ (d) $\left(1, \frac{1}{\sqrt{2}}\right)$
- 122. If the three consecutive vertices of a parallelogram are (-2, -1), (1, 0) and (4, 3), then what are the coordinates of the fourth vertex? [2017-I]
 - (b) (1,0) (a) (1,2)(c) (0,0)(d) (1,-1)
- 123. What is the ratio in which the point $C\left(-\frac{2}{7},-\frac{20}{7}\right)$ divides the line joining the points A(-2, -2) and B(2, -4)? [2017-I]

(a) 1:3 (b) 3:4

- (c) 1:2 (d) 2:3
- 124. What is the equation of the straight line parallel to 2x + 3y+1 = 0 and passes through the point (-1, 2)? [2017-I] (a) 2x + 3y - 4 = 0(b) 2x + 3y - 5 = 0(c) x+y-1=0(d) 3x - 2y + 7 = 0
- 125. If the centroid of a triangle formed by (7, x), (y, -6) and (9, x)10) is (6, 3), then the values of x and y are respectively [2017-I]
 - (a) 5,2 (b) 2,5
 - (d) 0,0 (c) 1,0

126. The points (a, b), (0, 0), (-a, -b) and (ab, b^2) are

- (a) the vertices of a parallelogram
- (b) the vertices of a rectangle
- (c) the vertices of a square
- (d) collinear

127. The distance of the point (1, 3) from the line 2x + 3y = 6, measured parallel to the line 4x + y = 4, is [2017-II]

(a)
$$\frac{5}{\sqrt{13}}$$
 units (b) $\frac{3}{\sqrt{17}}$ unit

(c)
$$\sqrt{17}$$
 units (d) $\frac{\sqrt{17}}{2}$ units

128. The equation of a straight line which cuts off an intercept of 5 units on negative direction of y-axis and makes an angle 120° with positive direction of x-axis is [2017-II]

(a)
$$y + \sqrt{3}x + 5 = 0$$

(b) $y - \sqrt{3}x + 5 = 0$
(c) $y + \sqrt{3}x - 5 = 0$
(d) $y - \sqrt{3}x - 5 = 0$

- 129. The equation of the line passing through the point (2, 3)and the point of intersection of lines 2x - 3y + 7 = 0 and 7x + 4y + 2 = 0 is [2017-II] (b) 21x - 46y + 96 = 0(a) 21x + 46y - 180 = 0
 - (c) 46x + 21y + 155 = 0(d) 46x - 21y - 29 = 0
- 130. What is the distance between the points which divide the line segment joining (4, 3) and (5, 7) internally and externally in the ratio 2:3? [2018-1]

(a)
$$\frac{12\sqrt{17}}{5}$$
 (b) $\frac{13\sqrt{17}}{5}$
(c) $\frac{\sqrt{17}}{5}$ (d) $\frac{6\sqrt{17}}{5}$

- 131. What is the equation of the straight line cutting off an intercept 2 from the negative direction of y-axis and inclined at 30° with the positive direction of x-axis? [2018-I]
 - (a) $x 2\sqrt{3}y 3\sqrt{2} = 0$

(b)
$$x + 2\sqrt{3}y - 3\sqrt{2} = 0$$

(c)
$$x + \sqrt{3}y - 2\sqrt{3} = 0$$

- (d) $x \sqrt{3}y 2\sqrt{3} = 0$
- 132. What is the equation of the line passing through the point of intersection of the lines x + 2y - 3 = 0 and 2x - y + 5 = 0 and parallel to the line y - x + 10 = 0? [2018-I] (a) 7x - 7y + 18 = 0 (b) 5x - 7y + 18 = 0(c) 5x - 5y + 18 = 0 (d) x - y + 5 = 05x - 5y + 18 = 0

the line
$$ax + by = c$$
 satisfies the relation $p^2 = \frac{c^2}{a^2 + b^2}$.

2 The length p of the perpendicular from the origin to

the line $\frac{x}{a} + \frac{y}{b} = 1$ satisfies the relation $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$.

3. The length p of the perpendicular from the origin to the line y = mx + c satisfies the relation $\frac{1}{p^2} = \frac{1 + m^2 + c^2}{c^2}$.

- Which of the above is/are correct?
- (a) 1, 2 and 3(b) 1 only
- 1 and 2 only (d) 2 only (c)

Cartesian Coordinate System and Straight Line

134. What is the equation of the straight line passing through the point (2, 3) and making an intercept on the positive y-axis equal to twice its intercept on the positive x-axis?

[2018-I]

[2018-1]

[2018-II]

- (a) 2x+y=5 (b) 2x+y=7
- (c) x+2y=7 (d) 2x-y=1135. The perpendiculars that fall from any point of the straight line 2x + 11y=5 upon the two straight lines 24x + 7y=20 and
 - 4x 3y = 2 are
 - (a) 12 and 4 respectively
 - (b) 11 and 5 respectively
 - (c) Equal to each other
 - (d) Not equal to each other
- 136. The equation of the line, when the portion of it intercepted between the axes is divided by the point (2, 3) in the ratio of 3 : 2, is [2018-1]
 - (a) Either x + y = 4 or 9x + y = 12
 - (b) Either x + y = 5 or 4x + 9y = 30
 - (c) Either x + y = 4 or x + 9y = 12
 - (d) Either x + y = 5 or 9x + 4y = 30
- 137. What is the distance between the straight lines 3x + 4y = 9and 6x + 8y = 15? [2018-1]
 - (a) $\frac{3}{2}$ (b) $\frac{3}{10}$
 - (c) 6 (d) 5
- 138. The second degree equation [2018-II] $x^2 + 4y - 2x - 4y + 2 = 0$ represents
 - (a) A point
 - (b) An ellipse of semi-major axis 1
 - (c) An ellipse with eccentricity $\frac{\sqrt{3}}{2}$

(d) None of the above

139. The angle between the two lines lx + my + n = 0and l'x + m'y + n' = 0 is given by $tan^{-1}\theta$. What θ equal to? [2018-II]

(a)
$$\left| \frac{\ell \mathbf{m}' - \ell' \mathbf{m}}{\ell \ell' - \mathbf{m} \mathbf{m}'} \right|$$
 (b) $\left| \frac{\ell \mathbf{m}' + \ell' \mathbf{m}}{\ell \ell' + \mathbf{m} \mathbf{m}'} \right|$
(c) $\left| \frac{\ell \mathbf{m}' - \ell' \mathbf{m}}{\ell \ell' + \mathbf{m} \mathbf{m}'} \right|$ (d) $\left| \frac{\ell \mathbf{m}' + \ell' \mathbf{m}}{\ell \ell' - \mathbf{m} \mathbf{m}'} \right|$

 $\frac{(l)}{|\ell\ell' + mm'|} \frac{(l)}{|\ell\ell' - l}$ 140. Consider the following statements:

1. The distance between the lines

$$y = mx + c_1$$
 and $y = mx + c_2$ is $\frac{|c_1 - c_2|}{\sqrt{1 - m^2}}$.

2. The distance between the lines $ax + by + c_1$ and

$$ax + by + c_2 = 0$$
 is $\frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}}$.

- 3. The distance between the lines x = c and $x = c_2$ is $|c_1 c_2|$. Which of the above statements are correct?
- which of the above statements are correct.
- (a) 1 and 2 only (b) 2 and 3 only (c) 1 and 2 only (c) 1 and 2 only (c) 1 and 3 only (c) 1
- (c) 1 and 3 only (d) 1, 2 and 3

- 141. What is equation of straight line pass through the point of intersection of the line $\frac{x}{2} + \frac{y}{3} = 1$ and $\frac{x}{3} + \frac{y}{2} = 1$, and parallel the 4x + 5y - 6 = 0? [2018-II] (a) 20x + 25y - 54 = 0(b) 25x + 20y - 54 = 0(c) 4x + 5y - 54 = 0(d) 4x + 5y - 45 = 0142. Consider the following statements: [2018-II]
- **Statement I** : If the line segment joining the points P(m, n) and Q(r, s) subtends an angle α at the

origin, then
$$\cos \alpha = \frac{ms - nr}{\sqrt{\left(m^2 + n^2\right)\left(r^2 + s^2\right)}}$$

Statements II : In any triangle ABC, it is true that $a^2 = b^2 + c^2 - 2bc \cos A.$

What of the following is correct in respect of the above two statements?

- (a) Both Statement I and Statement II are true and Statement II is the correct explanation of Statement I
- (b) Both Statement I and Statement II are true, but Statement II is not the correct explanation of Statement I
- (c) Statement I is true, but Statement II is false
- (d) Statement I is false, but Statement II is true
- 143. Consider the following statements :[2019-I]1. For an equation of a line,
 - $x \cos q + y \sin q = p$, in normal form, the length of the perpendicular from the point (a, b) to the line is | $a \cos q + b \sin q + p$ |.
 - 2. The length of the perpendicular from the point (a, b) to

the line
$$\frac{x}{a} + \frac{y}{b} = 1$$
 is $\left| \frac{a\alpha + b\beta - ab}{\sqrt{a^2 + b^2}} \right|$.

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 144. The points (1, 3) and (5, 1) are two opposite vertices of a rectangle. The other two vertices lie on the line y = 2x + c. What is the value of c? [2019-I]

(a) 2 (b)
$$-2$$

(c) 4 (d)
$$-4$$

145. If the lines 3y+4x=1, y=x+5 and 5y+bx=3 are concurrent, then what is the value of b? [2019-I] (a) 1 (b) 3

146. What is the equation of the straight line which is perpendicular to y = x and passes through (3, 2)? [2019-I]

(a)
$$x - y = 5$$
 (b) $x + y = 5$

(c) x+y=1 (d) x-y=1

147. The straight lines x + y - 4 = 0, 3x + y - 4 = 0 and x + 3y - 4 = 0 form a triangle, which is [2019-I]

- (a) isosceles (b) right-angled
- (c) equilateral (d) scalene

148. The centroid of the triangle with vertices
$$A(2, -3, 3)$$
, $B(5, -3, -4)$ and $C(2, -3, -2)$ is the point [2019-I]

3, -4) and C
$$(2, -3, -2)$$
 is the point [2]

(a)
$$(-3, 3, -1)$$
 (b) $(3, -3, -1)$

(c)
$$(3, 1, -3)$$
 (d) $(-3, -1, -3)$

149. The minimum distance from the point (4, 2) to $y^2 = 8x$ is equal to [2019-I]

(a) $\sqrt{2}$ (b) $2\sqrt{2}$ (c) 2 (d) $3\sqrt{2}$ 150. What is the minimum value of $a^2x + b^2y$ where $xy = c^2$?

(a) abc (c) 3abc oc oc [2019-I]

(b)	2ab
(d)	4ab

	ANSWER KEY																		
1	(d)	16	(c)	31	(c)	46	(b)	61	(d)	76	(a)	91	(a)	106	(b)	121	(d)	136	(d)
2	(a)	17	(b)	32	(c)	47	(b)	62	(b)	77	(d)	92	(b)	107	(c)	122	(a)	137	(b)
4	(b)	18	(a)	33	(c)	48	(a)	63	(c)	78	(a)	93	(d)	108	(c)	123	(b)	138	(a)
3	(a)	19	(c)	34	(b)	49	(a)	64	(c)	79	(c)	94	(b)	109	(d)	124	(a)	139	(c)
5	(c)	20	(d)	35	(d)	50	(d)	65	(d)	80	(c)	95	(b)	110	(b)	125	(a)	140	(b)
6	(a)	21	(c)	36	(a)	51	(a)	66	(b)	81	(b)	96	(b)	111	(c)	126	(b)	141	(a)
7	(d)	22	(b)	37	(a)	52	(b)	67	(a)	82	(c)	97	(a)	112	(a)	127	(d)	142	(d)
8	(a)	23	(b)	38	(d)	53	(c)	68	(b)	83	(d)	98	(a)	113	(d)	128	(a)	143	(d)
9	(d)	24	(a)	39	(d)	54	(c)	69	(a)	84	(a)	99	(b)	114	(a)	129	(b)	144	(d)
10	(c)	25	(a)	40	(d)	55	(a)	70	(b)	85	(b)	100	(c)	115	(c)	130	(a)	145	(c)
11	(a)	26	(c)	41	(c)	56	(d)	71	(b)	86	(c)	101	(c)	116	(d)	131	(d)	146	(b)
12	(d)	27	(c)	42	(c)	57	(c)	72	(b)	87	(c)	102	(a)	117	(b)	132	(c)	147	(a)
13	(b)	28	(c)	43	(a)	58	(d)	73	(c)	88	(a)	103	(a)	118	(d)	133	(c)	148	(b)
14	(a)	29	(a)	44	(c)	59	(a)	74	(b)	89	(c)	104	(d)	119	(b)	134	(b)	149	(b)
15	(a)	30	(c)	45	(b)	60	(a)	75	(c)	90	(b)	105	(a)	120	(d)	135	(c)	150	(b)

HINTS & SOLUTIONS

1. As given, (p+2q)x + (p-3q)y = p-q(d) \Rightarrow px + 2qx + py - 3qy = p - q $\Rightarrow p(x+y)-q(3y-2x)=p-q$ Equation co-efficient of p and q \Rightarrow x+y=1and 3y-2x=1 Solving these, we get $x = \frac{2}{5}, y = \frac{3}{5}.$

So, line passes through $\left(\frac{2}{5}, \frac{3}{5}\right)$.

2. (a) The given lines are

$$y = (2 - \sqrt{3}) x + 5$$
 and $y = (2 + \sqrt{3}) x - 7$

Therefore, slope of first line $m_1 = 2 - \sqrt{3}$ and slope of second line $m_2 = 2 + \sqrt{3}$

$$\therefore \quad \tan \theta = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right| = \left| \frac{2 + \sqrt{3} - 2 + \sqrt{3}}{1 + (4 - 3)} \right|$$
$$= \left| \frac{2\sqrt{3}}{2} \right| = \sqrt{3} = \tan \frac{\pi}{3} \implies \theta = \frac{\pi}{3} = 60^{\circ}$$

3. (a) Let there be a point P(2,3) on cartesian plane. Image of this point in the line y = -x will lie on a line which is perpendicular to this line and distance of this point from y = -x will be equal to distance of the image from this line.

Let Q be the image of p and let the co-ordinate of Q be (h, k)

Slope of line y = -x is -1

Line joining P, Q will be perpendicular to y = -x so, its slope = 1.

Let the equation of the line be y = x + c since this passes through point (2, 3)

 $3 = 2 + c \Longrightarrow c = 1$

and the equation y = x + 1

The point of intersection R lies in the middle of P & Q. Point of intersection of line y = -x and y = x + 1 is

 $\frac{1}{2}$

$$2y=1, \Rightarrow y=\frac{1}{2} \text{ and } x=-\frac{1}{2}$$

Hence, $\frac{h+2}{2}=-\frac{1}{2}$ and $\frac{k+3}{2}=$

$$\Rightarrow$$
 h=-3 and k=-2

So, the image of the point (2, 3) in the line y = -x is (-3, -2).

Cartesian Coordinate System and Straight Line

(b) Given that mid point of A (1, 2) and B (x, y) is C (2, 4), 4.

$$\frac{1+x}{2} = 2 \text{ and } \frac{2+y}{2} = 4$$

⇒ x = 3 and y = 6
So, coordinates of B are (3, 6).
Given that
BD ⊥ AB and CD = 3 unit

BC =
$$\sqrt{(2-3)^2 + (4-6)^2} = \sqrt{1+4} = \sqrt{5}$$

In right angled \triangle BCD, CD² = BC² + BD²
 \Rightarrow 9 = 5 + BD² \Rightarrow BD² = 4 \Rightarrow BD = 2 unit

- 5. (c) Since the points are collinear.
 - 1 2 3 2 4 = 01 а 1

_

6.

Expanding the determinant

$$\Rightarrow 1\begin{vmatrix} 4 & 1 \\ a & 1 \end{vmatrix} - 2\begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} + 1\begin{vmatrix} 2 & 4 \\ 3 & a \end{vmatrix} = 0$$

$$\Rightarrow (4-a)-2(2-3)+1(2a-12)=0$$

$$\Rightarrow 4-a+2+2a-12=0$$

$$\Rightarrow a-6=0$$

$$\Rightarrow a=6$$

Thus, Coordinates of C are (3, 6).
Thus, BC = $\sqrt{(3-2)^2 + (6-4)^2}$

$$= \sqrt{1+4} = \sqrt{5} \text{ unit}$$

(a) Lines are $L_1 = Ax + By = A + B$ and $L_2 = A(x-y) + B(x+y) = 2B$
Slope of L_1 is $-\frac{A}{B}$
 $m_1 = -\frac{A}{B}$ [m₁ is the side of line L_1]
For line L_2 :
 $Ax - Ay + Bx + By = 2B$
(A + B)x - (A - B)y = 2B.
Slope of line L_2 in $\frac{(A + B)}{A - B}$
 $m_2 = \frac{(A + B)}{(A - B)}$ [m₂ is the slope of line L_2]
If angle between line L_1 and L_2 is θ then
 $\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2}$

$$= \frac{-\frac{A}{B} - \frac{A+B}{A-B}}{1 + \left(-\frac{A}{B}\right) \times \left(\frac{A+B}{A-B}\right)} = \frac{\frac{-A(A-B) - B(A+B)}{B(A-B)}}{\frac{B(A-B) - A(A+B)}{B(A-B)}}$$
$$= \frac{-A^2 + AB - AB - B^2}{AB - B^2 - A^2 - AB} = \frac{-B^2 - A^2}{-B^2 - A^2} = 1$$
so, $\theta = \frac{\pi}{4}$

7. (d) Length of perpendicular from the origin on the straight line x + 2by - 2p = 0 is

$$\left| \frac{0 + 2b \times 0 - 2p}{\sqrt{1^2 + (2b)^2}} \right| = p$$

or $p = \left| \frac{-2p}{\sqrt{1^2 + 4b^2}} \right|$
or $p^2 = \frac{4p^2}{1 + 4b^2}$
 $\frac{4}{1 + 4b^2} = 1$
 $\Rightarrow 1 + 4b^2 = 4 \text{ or } 4b^2 = 3$
 $\Rightarrow b^2 = \frac{3}{4} \Rightarrow b = \pm \frac{\sqrt{3}}{2} \Rightarrow b = \frac{\sqrt{3}}{2} \text{ matches with the even action}}$

given option.

8.

9.

(a) Let the point of intersection divide the line segment joining points, (3, -1) and (8, 9) in k: 1 ratio then:

The point is
$$\left(\frac{8k+3}{k+1}, \frac{9k-1}{k+1}\right)$$

Since this point lies on the line y - x + 2 = 0

We have,
$$\frac{9k-1}{k+1} - \frac{8k+3}{k+1} + 2 = 0$$

= $\frac{9k-1-8k-3}{k+1} + 2 = 0 = \frac{k-4}{k+1} + 2 = 0$
= $k-4+2k+2=0=3k-2=0$
 $k = \frac{2}{3}:1$ i.e. 2:3

(d) Let points be A(2, -2), B(8, 4), C(4, 6) and D(-1, 1) in order and are vertices of a quadrilateral. $AB^2 = (8-2)^2 + (4+2)^2 = 36 + 36 = 72$ $BC^2 = (4-8)^2 + (6-4)^2 = 16 + 4 = 20$ $CD^2 = (4+1)^2 + (6-1)^2 = 25 + 25 = 50$ $AD^2 = (2+1)^2 + (-2-1)^2 = 9 + 9 = 18$ Thus $AB \neq BC \neq CD \neq AD$ Hence, quadrilateral is a trapezium.

13.

14.

10. (c) Equation of line is ax + by - p = 0, then length of perpendicular, from the origin.

$$p = \left| \frac{a \times 0 + b \times 0 - p}{\sqrt{a^2 + b^2}} \right| \text{ or } p = \left| \frac{-p}{\sqrt{a^2 + b^2}} \right|$$

or $\left| \frac{1}{\sqrt{a^2 + b^2}} \right| = 1$ or $a^2 + b^2 = 1$
$$b = \frac{\sqrt{3}}{2} \text{ or } b^2 = \frac{3}{4}$$

$$a^2 + \frac{3}{4} = 1$$

$$a^2 = \frac{1}{4} \implies a = \frac{1}{2} \qquad [a = -\frac{1}{2} \text{ not taken since} angle is with + ve direction to x-axis.]}$$

Equation is $\frac{1}{2}x + \frac{\sqrt{3}}{2}y = p$ or $x \cos 60^\circ + y \sin 60^\circ = p$ Angle = 60°

(a) Co-ordinate axes and straight line ax + by + c = 011. form an isosceles triangle. This is possible when, the line makes equal intercept on both the axes.

Expressing ax + by + c = 0 in intercept form:

ax + by = -c or
$$\frac{x}{-\frac{c}{a}} + \frac{y}{-\frac{c}{b}} = 1$$

So, x-inntercept = $-\frac{c}{a}$ and y-intercept = $-\frac{c}{b}$
Since, $-\frac{c}{a} = -\frac{c}{b}$

а Hence, a = b

12.

Intercepts can be on both the sides of axis. So, |a| = |b|

(d) As given : Coordinates of P and Q are (-3, 4) and (2, 1)respectively. Let coordinates of R be (x, y). As given : PR = 2 QR $\Rightarrow PR-QR=QR \Rightarrow PQ=QR.$ So, Q is the mid point of P and R $\rightarrow 2 - \frac{-3+x}{2}$ and $1 - \frac{4+y}{2}$

$$\Rightarrow 2 - \frac{1}{2} \text{ and } 1 - \frac{1}{2}$$
$$\Rightarrow x = 7 \text{ and } y = -2$$
$$\therefore \text{ Coordinates of } R = (7 - 7)$$

$$\therefore$$
 Coordinates of R = (7, -2)

(b) Let point P(x₁, y₁) be equidistant from point A(1, 2)
and B(3, 4).

$$\therefore$$
 PA = PB
 \Rightarrow PA² = PB²
 \Rightarrow $(1-x_1)^2 + (2-y_1)^2 = (3-x_1)^2 + (4-y_1)^2$
 \Rightarrow $1+x_1^2 - 2x_1 + 4 + y_1^2 - 4y_1$
 $= 9 + x_1^2 - 6x_1 + 16 + y_1^2 - 8y_1$
 \Rightarrow $4x_1 + 4y_1 = 20$
 \Rightarrow $x_1 + y_1 = 5$ (1)
As P (x₁, y₁) lies on $2x - 3y = 5$ (2)
On solving Eqs. (1) and (2), we get
 $x_1 = 4$ and $y_1 = 1$
 \therefore Coordinates of P are (4, 1).
(a) (A) and (P) are true and (P) is correct explanation of

- (A) and (R) are true and (R) is correct explanation of (A)(a) A.
- 15. (a) As given : A (2, 3), B (1, 4), C (0, -2) and D (x, y) are the vertices of a parallelogram. Diagonals of a parallelogram bisect each other So, mid-point are same for both diagonals AC and BD.

$$\frac{2+0}{2} = \frac{1+x}{2} \text{ and } \frac{3-2}{2} = \frac{4+y}{2}$$
$$\Rightarrow x = 1 \text{ and } y = -3$$
$$\Rightarrow D(x, y) = (1, -3)$$

(c) Let O (0, 0), A (x₁, y₁) and B (x₂, y₂) be three points $\sqrt{2}$ 16.

OA =
$$\sqrt{x_1^2 + y_1^2}$$
, OB = $\sqrt{x_2^2 + y_2^2}$
AB = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
In \triangle AOB,

$$A(x_1, y_1) \\ O(0, 0) B(x_2, y_2)$$

$$\cos \angle AOB = \frac{OA^2 + OB^2 - AB^2}{2.OA.OB}$$

$$\Rightarrow \text{ OA.OB } \cos \angle \text{AOB} = \frac{\text{OA}^2 + \text{OB}^2 - \text{AB}^2}{2}$$

$$= \frac{x_1^2 + y_1^2 + x_2^2 + y_2^2 - \left\{ (x_2 - x_1)^2 + (y_2 - y_1)^2 \right\}}{2}$$

$$\Rightarrow \text{OA.OB.cos} \angle \text{AOB}$$

$$x_1^2 + y_1^2 + x_2^2 + y_2^2 - \left\{ x_2^2 + x_1^2 - 2x_1x_2 + y_2^2 + y_1^2 - 2y_1y_2 + y_2^2 + y_1^2 - 2y_1y_2 + y_2^2 + y_1^2 - 2y_1y_2 + y_2^2 + y_1^2 +$$

$$=\frac{x_1^2 + y_1^2 + x_2^2 + y_2^2 - \left\{x_2^2 + x_1^2 - 2x_1x_2 + y_2^2 + y_1^2 - 2y_1y_2\right\}}{2}$$
$$=\frac{2(x_1x_2 + y_1y_2)}{2} = x_1x_2 + y_1y_2$$

17. (b) Let the side of the square
$$-x$$
 units
According to question,
 $x^2 + 4 = 4x$
 $\Rightarrow x^2 - 2x$
 \therefore Side of square -2 unit
 $(a - b) - (b - a)) = 0$
 $(a - b) - (b - a)) = 0$
 $(a - b) - (b - a)) = 0$
 $(a - b) - (b - a)) = 0$
 $(a - b) - (b - a)) = 0$
 $(a - b) - (b - a)) = 0$
 $(a - b) - (b - a)) = 0$
 $(a - b) - (b - a)) = 0$
 $(a - b) - (b - a)) = 0$
 $(a - b) - (b - a)) = 0$
 $(a - a - b) = 0$
 $($

line

...(i) ...(ii)

$$d_{1} = \frac{a\sqrt{b^{2} - a^{2}}\cos\phi - ab}{\sqrt{a^{2}\cos^{2}\phi + b^{2}\sin^{2}\phi}}$$
At point $(-\sqrt{b^{2} - a^{2}}, 0)$

$$d_{2} = \frac{-a\sqrt{b^{2} - a^{2}}\cos\phi - ab}{\sqrt{a^{2}\cos^{2}\phi + b^{2}\sin^{2}\phi}}$$

$$\therefore d_{1}d_{2} = -\frac{[a^{2}(b^{2} - a^{2})\cos^{2}\phi - a^{2}b^{2}]}{a^{2}\cos^{2}\phi + b^{2}\sin^{2}\phi} = a^{2}$$
Two joining points are (p, q) and $(q, -p)$
Mid point of (p, q) and $(q, -p)$ is $\left(\frac{p+q}{2}, \frac{q-p}{2}\right)$
But it is given that the mid-point is $\left(\frac{r}{2}, \frac{s}{2}\right)$.
$$\therefore \frac{p+q}{2} = \frac{r}{2} \text{ and } \frac{q-p}{2} = \frac{s}{2}$$

$$\Rightarrow p+q=r \text{ and } q-p=s$$
Now, length of segment = $\sqrt{(p-q)^{2} + (q+p)^{2}}$
(by distance formula)
$$= \sqrt{s^{2} + r^{2}} = (s^{2} + r^{2})^{1/2}$$
Let the locus of a point be (h, k)
Let the given points be
$$P(m+n, n-m) \text{ and } Q(m-n, n+m)$$

$$\therefore \text{ By distance formula, we have}$$

$$\sqrt{[h-(m+n)]^{2} + [k-(n-m)]^{2}}$$

$$= \sqrt{[h-(m-n)]^{2} + [k-(n+m)]^{2}}$$

$$\Rightarrow h^{2} + (m+n)^{2} - 2h(m-n) + k^{2} + (n-m)^{2} - 2k(n-m)$$

$$\Rightarrow 2h(m-n-m-n) + 2k(n+m-n+m) = 0$$

$$\Rightarrow -4hn + 4km = 0 \Rightarrow mk = nh$$
Hence, locus of a point is $nx = my$.

28. (c)
$$R(1, 1, 1)$$
 Q(m, n, r)
O(0,0, 0) $P(3, 4, 5)$

OPQR is a parallelogram and OQ, PR are the diagonals of parallelogram.

We know that in a parallelogram, diagonals bisect each other.

$$\therefore \quad \left(\frac{0+m}{2}, \frac{0+n}{2}, \frac{0+r}{2}\right) \equiv \left(\frac{1+3}{2}, \frac{1+4}{2}, \frac{1+5}{2}\right)$$

$$\therefore \quad \frac{m}{2} = \frac{4}{2}, \ \frac{n}{2} = \frac{5}{2}, \ \frac{r}{2} = \frac{6}{2}$$
$$\implies \quad m = 4, \ n = 5, \ r = 6$$

Hence, m + n + r = 4 + 5 + 6 = 15

29. (a) Let (a, b) be the image of point (1, 2) w.r.t. line 3x+4y-1=0

$$\therefore \left(\frac{a+1}{2}, \frac{b+2}{2}\right) \text{ will be on the line } 3x+4y-1=0$$
$$\Rightarrow 3\left(\frac{a+1}{2}\right)+4\left(\frac{b+2}{2}\right)-1=0$$
$$\Rightarrow 3a+3+4b+8-2=0$$
$$\Rightarrow 3a+4b+9=0$$

Now, co-ordinates given in option 'a' satisfies the equation 3a+4b+9=0

Thus, the image of point (1, 2) is $\left(-\frac{7}{5}, -\frac{6}{5}\right)$.

30. (c) Let A(a, 0) and B(0, b) be two points on x-axis and y-axis respectively

$$\begin{array}{c} 1 \\ \hline A(a,0) \\ \hline (-5,4) \\ B(0,b) \end{array}$$

Given (-5, 4) divides line *AB* in the ratio 1 : 2. By section formula we have

$$-5 = \frac{1 \times 0 + 2 \times a}{3}$$

$$\Rightarrow a = \frac{-15}{2} \text{ and } 4 = \frac{1 \times b + 2 \times 0}{3}$$

$$\Rightarrow b = 12$$

Thus, $A = \left(\frac{-15}{2}, 0\right) \text{ and } B = (0, 12)$

$$(-15)$$

Hence, equation of line joining $\left(\frac{-15}{2}, 0\right)$ and (0, 12) is

$$(y-0) = \frac{12-0}{0+\frac{15}{2}} \cdot \left(x+\frac{15}{2}\right)$$

$$\Rightarrow y = \frac{4}{5}(2x+15)$$

$$\Rightarrow 5y = (8x + 60) \Rightarrow 8x - 5y + 60 = 0$$

31. (c) We know that the equation of straight line passing

through the intersection point of two lines $\frac{x}{a} + \frac{y}{b} = 1$

and
$$\frac{x}{b} + \frac{y}{a} = 1$$
, is
 $\left(\frac{x}{a} + \frac{y}{b} - 1\right) + \lambda \left(\frac{x}{b} + \frac{y}{a} - 1\right) = 0$...(i)

26. (c)

27. (c)

Cartesian Coordinate System and Straight Line

This line passes through the origin.

$$\therefore \quad (0-1)+\lambda(0-1)=0 \Rightarrow \lambda=-1$$
On putting the value of λ in Eq. (i), we get
$$\left(\frac{x}{a}+\frac{y}{b}-1\right)-1\left(\frac{x}{b}+\frac{y}{a}-1\right)=0$$

$$\Rightarrow \quad \frac{x}{a}+\frac{y}{b}-1-\frac{x}{b}-\frac{y}{a}+1=0$$

$$\Rightarrow \quad x\left(\frac{1}{a}-\frac{1}{b}\right)-y\left(\frac{1}{a}-\frac{1}{b}\right)=0$$

$$\Rightarrow \quad x-y=0$$

32. (c) Since the straight lines x - 2y = 0 and kx + y = 1 intersect at the point $\left(1, \frac{1}{2}\right)$. \therefore The point $\left(1, \frac{1}{2}\right)$ satisfies the equation kx + y = 1 \therefore Put x = 1, and $y = \frac{1}{2}$ in eqⁿ kx + y = 1, we get $k \cdot 1 + \frac{1}{2} = 1 \Rightarrow k = \frac{1}{2}$

33. (c) Required number of lines =
$${}^{4}C_{2} = \frac{4!}{2!2!} = 6$$

34. (b) Let ABCD, EFGH and IJKL be squares. Let side of square ABCD = 16Now, Area of $ABCD = (16)^2$

Area of EFGH =
$$\frac{(16)^2}{2}$$
,
Area of IJKL = $\frac{(16)^2}{4}$ So on.

F

С

Е

Required sum,

$$= 16^{2} + \frac{1}{2}(16)^{2} + \frac{1}{4}(16)^{2} + \dots \infty$$

= $(16)^{2} \left\{ 1 + \frac{1}{2} + \frac{1}{4} + \dots \infty \right\}$
Now, $1 + \frac{1}{2} + \frac{1}{4} + \dots \infty$ is a GP
 \therefore Sum = $\frac{a}{1-r}$ where $a = 1$ and $r = \frac{1}{2}$
 \therefore $1 + \frac{1}{2} + \frac{1}{4} + \dots + \infty = \frac{1}{1 - \frac{1}{2}} = 2$

$$256 \times 2 = 512$$
 sq. cm

=

35. (d) Given equation of the line
$$\frac{x}{4} + \frac{y}{3} = 1$$

can be written as
 $3x + 4y = 12 \implies 4y = -3x + 12$
 $\implies y = \frac{-3}{4}x + \frac{12}{4}$
The slope of the line $\frac{x}{y} + \frac{y}{3} = 1$ is $\frac{-3}{4}$
 \therefore Slope of the line perpendicular to this line
 $= -\left(\frac{-1}{3/4}\right) = \frac{4}{3}$
36. (a) Let the vertices of the \triangle ABC be
 $A(-3,0), B(3,0)$ and $C(0,k)$.
 \therefore Area of \triangle ABC $= \frac{1}{2} \begin{vmatrix} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & k & 1 \end{vmatrix}$
Given, area is 9
 $\Rightarrow 9 = \frac{1}{2} \{-3(-k) + 1(3k)\}$
 $\Rightarrow 18 = 3k + 3k$
 $\Rightarrow k = \frac{18}{6} = 3$
37. (a) We have,
 $y = x$...(i)
 $y = -x$ (i)
 $y = -x$ (ii)
 $x = -y$ (ii)
 $x = -y$ (iii)
 $x = -y$ (iii)
On simplifying (i) and (ii), we get
 $x = \frac{12}{7}$ and $y = \frac{12}{7}$
 \therefore Point of intersection of given line is $\left(\frac{12}{7}, \frac{12}{7}\right)$.
Hence, the equation of line passing through (0, 0)
and $\left(\frac{12}{7}, \frac{12}{7}\right)$ is

$$\frac{y-0}{x-0} = \frac{\frac{12}{7}-0}{\frac{12}{7}-0} \implies y = x$$

39. (d) Let P (x, y) be a point and A = (a, 0), B = (-a, 0). Now, PA² = (x - a)² + y² PB² = (x + a)² + y² Since the sum of the distances of the point P (x, y) from the points A (a, 0) and B (-a, 0) is 2b². \therefore PA² + PB² = 2b² (x - a)² + (y)² + (x + a)² + (y)² = 2b² $\Rightarrow x^{2} + a^{2} - 2ax + y^{2} + x^{2} + a^{2} + 2ax + y^{2} = 2b^{2}$ $\Rightarrow x^{2} + a^{2} + y^{2} = b^{2}$ $\Rightarrow x^{2} + a^{2} = b^{2} - y^{2}$

- 40. (d) Sinceline mx + ny = 1 passes through (1, 2) and (2, 1) therefore they satisfied the equation.
 ⇒ m+2n=1 ... (i) and 2m+n=1 ... (ii)
 From eqs. (i) and (ii), we get m = n = 1/3
 41. (c) Since required line is parallel to y-axis therefore its equa-
- tion is x = 2. (: Required line passes through (2,-3))
- 42. (c) Required locus is X = -8 which is at a distance of 8 units to the left of *Y*-axis.
- 43. (a) Given equation of straight lines are x-3y-2=0 and 2x -6y-6=0Here, $a_1=1, a_2=2, b_1=-3, b_2=-6$,

$$c_1 = -2, c_2 = -6$$

Now, $\frac{a_1}{a_2} = \frac{1}{2}, \frac{b_1}{b_2} = \frac{1}{2}, \frac{c_1}{c_2} = \frac{1}{3}$
 $\Rightarrow \frac{a_1}{a_2} = \frac{b_1}{a_1} \neq \frac{c_1}{a_2}$

$$a_2 \quad b_2 \quad c_2$$

 \therefore Both straight lines never intersect.

44. (c) Since, (a, 0), (0, b) and (1, 1) are collinear.

$$\therefore \begin{vmatrix} a & 0 & 1 \\ 0 & b & 1 \\ 1 & 1 & 1 \end{vmatrix} = 0$$

$$\Rightarrow a(b-1)+1(0-b)=0$$

$$\Rightarrow ab-a-b=0$$

$$\Rightarrow a+b-ab=0$$

45. (b) Let B be the foot of perpendicular AB.

$$A(2, 3)$$

$$B = \frac{A(2, 3)}{x + y - 11 = 0}$$
Now, $x + y - 11 = 0$

$$\Rightarrow y = -x + 11$$

$$\Rightarrow Slope = -1$$

$$\therefore product of their slopes = -1$$

$$\Rightarrow -1 + Slope of AB = -1$$

$$\Rightarrow Slope of AB = 1$$
Now, equation of AB is given as
$$y - 3 = 1 (x - 2)$$
(using slope point form)
$$\Rightarrow y - x = 1$$
...(3)
Now, foot of perpendicular
= Point of intersection of line AB and $x + y - 11 = 0$
So, on solving equation (1) and (2) we get $x = 5, y = 6$.
Hence, $B = (5, 6)$.
$$n(x - 3)$$

46. (b) A *n*-sided regular polygon have
$$\frac{n(n-3)}{2}$$
 diagonals.

47. (b) Since
$$(p, q)$$
 is the point on the x-axis
 $\therefore q=0$
Let $P=(p, 0)$
 $A=(1, 2)$ and $B=(2, 3)$
Given: $PA=PB$
 $\Rightarrow PA^2=PB^2$
 $\Rightarrow (1-p)^2+4=(2-p)^2+9$
 $\Rightarrow 1+p^2-2p-4-p^2+4p=5$
 $\Rightarrow 2p=8$
 $\Rightarrow p=4$
Hence, $p=4, q=0$

48.

49.

(a) Given equation of line is
$$\frac{x}{a} + \frac{y}{b} = 1$$

 $\Rightarrow bx + ay - ab = 0$

$$p = \frac{|b.0 + a.0 - ab|}{\sqrt{b^2 + a^2}} \qquad p$$

$$p = \frac{ab}{\sqrt{b^2 + a^2}}$$

bx + ay - ab = 0

on squaring both side, we get

$$p^{2} = \frac{a^{2}b^{2}}{a^{2} + b^{2}} \Rightarrow \frac{1}{p^{2}} = \frac{a^{2} + b^{2}}{a^{2}b^{2}} = \frac{1}{b^{2}} + \frac{1}{a^{2}}$$

(a) Given equation of lines are

$$x + 2y - 9 = 0 \Rightarrow 2y = -x + 9$$

 $\Rightarrow y = -\frac{1}{2}x + \frac{9}{2}$...(1)
and $kx + 4y + 5 = 0 \Rightarrow 4y = -kx - 5$

$$\Rightarrow y = \frac{-k}{4}x - \frac{5}{4} \qquad \dots (2)$$

Since line (1) and line (2) are parallel therefore their slopes are equal.

$$\frac{-1}{2} = \frac{-k}{4} \implies k = 2$$

50. (d) Equation of a line parallel to x-axis at a distance of 5 units below x-axis is y=-5

51. (a) Given line is
$$x - y = 4$$

slope = 1 i.e. m = 1
Since required line passes through $(0, 1)$
 $\therefore y - 1 = m(x - 0)$
 $\Rightarrow y - 1 = 1 (x) \Rightarrow y = x + 1$
52. (b) By using Distance formula,
 $A(-4, 2)$
 $B(0, -1)$ C $(3, 3)$
We have, $AB = \sqrt{(0 + 4)^2 + (-1 - 2)^2} = \sqrt{16 + 9} = 5$
BC = $\sqrt{9 + 16} = 5$
CA = $\sqrt{49 + (1)^2} = \sqrt{50} = 5\sqrt{2}$
Hence, Required Perimeter = AB + BC + CA
 $= 10 + 5\sqrt{2}$
53. (c) Given points are $(a + b, a - b)$ and $(-a, b)$
Mid point is $\left(\frac{a + b - a}{2}, \frac{a - b + b}{2}\right) = \left(\frac{b}{2}, \frac{a}{2}\right)$
Since, it lies on ax + by = k
 \therefore $a\left(\frac{b}{2}\right) + b\left(\frac{a}{2}\right) = k \Rightarrow k = ab$
54. (c) Given line, $7x - 3y = 4$
 $\Rightarrow 3y = 7x - 4$
 $\Rightarrow y = \left(\frac{7}{3}\right)x - \left(\frac{4}{3}\right)$
 \therefore Slope = $\frac{7}{3}$
The slope of the line perpendicular to $7x - 3y = 4$ is $\left(\frac{-3}{7}\right)$.
If '0' is the angle between the perpendicular line with
slope $\frac{-3}{7}$ and x-axis, then $\frac{-3}{7} = \tan \theta \Rightarrow \theta$ is negative.
55. (a) Given lines are
 $3x + 4y = 9$...(1)
 $2(3x + 4y = 9)$...(2)
Which are parallel to each other.
Distance between them = $\frac{|9 - 9|}{\sqrt{9 + 16}} = \frac{0}{5} = 0$
56. (d) $p = \frac{|y|}{\sqrt{1}} = |y|$

- 58. (d) There can not be any point which is equidistant from three collinear points.
 - $\therefore \text{ Locus} = \text{null set.}$ (a) Let P (x, y) be the point.

59.

Let A = (1, 0) and B = (0, -2) then PA = PB

$$\Rightarrow (PA)^2 = (PB)^2.$$

 \Rightarrow $(x-1)^2 + y^2 = x^2 + (y+2)^2$.

$$\Rightarrow 1-2x=4y+4$$

$$\Rightarrow 2x+4y+3=0$$

60. (a) Let A
$$(5, 1)$$
; B $(1, -1)$ and C $(11, 4)$ are the given points.

Slope of AB =
$$\frac{-1-1}{-4} = \frac{-2}{-4} = \frac{1}{2}$$

Slope of BC =
$$\frac{4 - (-1)}{11 - 1} = \frac{5}{10} = \frac{1}{2}$$

- Slope of AB = Slope of BC
- \Rightarrow AB || BC and B is a common point
- \Rightarrow Points, A, B, C lie on a same straight line.

$$\Rightarrow$$
 A (5, 1); B (1, -1) and C(11, 4) are collinear.

61. (d) The given lines are :-
$$3x+4y=9$$

$$\Rightarrow \quad y = \frac{9}{4} - \frac{3}{4}x \qquad \dots (i)$$

and
$$9x + 12y + 28 = 0 \implies y = \frac{-7}{3} - \frac{3x}{4}$$
 (ii)

We have,

$$m = \frac{-3}{4}; C_1 = \frac{9}{4}; C_2 = \frac{-7}{3}$$

Now, Distance
$$= \frac{|C_1 - C_2|}{\sqrt{1 + m^2}} = \frac{\left|\frac{9}{4} - \left(-\frac{7}{3}\right)\right|}{\sqrt{1 + \frac{9}{16}}} = \frac{11}{3}$$
 units

62. (b) Let A (2, 6); B (3, 4); C (4, 5) and D (-2, 5) are the given points. Let O be the origin, i.e. O (0, 0)

$$OA = \sqrt{(2-0)^{2} + (6-0)^{2}} = \sqrt{40} = 2\sqrt{10} \text{ units}$$

$$OB = \sqrt{(3-0)^{2} + (4-0)^{2}} = \sqrt{9+16} = 5 \text{ units}$$

$$OC = \sqrt{(4-0)^{2} + (5-0)^{2}} = \sqrt{16+25} = \sqrt{41} \text{ units}$$

$$OD = \sqrt{(-2-0)^{2} + (5-0)^{2}} = \sqrt{4+25} = \sqrt{29} \text{ units}$$
So, q = OB = 5 units is the correct answer.

67. (a) Equation of a straight line in intercept form is

$$\frac{x}{a} + \frac{y}{b} = 1 \Longrightarrow \frac{3}{a} + \frac{4}{b} = 1 \qquad \dots (i)$$

Given,
$$a + b = 14$$
 (ii)

On solving (i) and (ii) we get

$$\frac{3}{a} + \frac{4}{14-a} = 1 \Rightarrow a^2 - 13a + 42 = 0$$

$$\Rightarrow (a-7) (a-6) = 0$$

$$\Rightarrow a = 6 \text{ and } b = 8$$

or $a = 7 \text{ and } b = 7$.

$$\therefore \text{ Required eqns are } 4x + 3y = 24 \text{ or } x + y = 1.$$

68. (b) Let the required point be P(x, x)

Since
$$PA = PB$$

 $\Rightarrow (PA)^2 = (PB)^2$
 $\Rightarrow (x+1)^2 + x^2 = x^2 + (x-5)^2$
 $\Rightarrow x^2 + 1 + 2x = x^2 + 25 - 10x$
 $\Rightarrow 12x = 24 \Rightarrow x = 2$
Hence, Required point is (2, 2).

69. (a) Required Area

$$= \frac{1}{2} \begin{vmatrix} 3 & 0 & 1 \\ 0 & 4 & 1 \\ 3 & 4 & 1 \end{vmatrix} = \frac{1}{2} [3(4-4) + 1(0-12)] = 6$$

70. (b) Suppose equation of line is

$$\frac{x}{5} + \frac{y}{3} = 1$$

$$\Rightarrow 3x + 5y - 15 = 0$$

Now, length of perpendicular

Now, length of perpendicular from (4, 4) on 3x + 5y - 15 = 0 is

$$P = \left| \frac{3.4 + 5.4 - 15}{\sqrt{34}} \right| = \left| \frac{17}{\sqrt{34}} \right| = \frac{\sqrt{17} \cdot \sqrt{17}}{\sqrt{17} \cdot \sqrt{2}}$$
$$P = \sqrt{\frac{17}{2}}$$

71. (b) Given equation can be written as

 $y = \sqrt{3}x - 1$ on comparing with y = mx + c

We get
$$\tan \theta = \sqrt{3} \Longrightarrow \theta = 60^{\circ}$$

(b) Given lines are 2x - y = 2 and 2x - y = -3 since, Both lines are parallel so they will never meet.

73. (c) For infinite solution
$$\frac{3}{9} = \frac{-1}{-k} = \frac{8}{24}$$

$$\Rightarrow \frac{1}{3} = \frac{1}{k} \Rightarrow k = 3$$

72.

(c)

$$M(0, 3) \xrightarrow{q} A(4, 3)$$

$$p$$

$$X' \xleftarrow{0} (4, 0) \xrightarrow{Y} X$$

$$p = \sqrt{(4-4)^2 + (3-0)^2} = 3$$

$$q = \sqrt{(4-0)^2 + (3-3)^2} = 4$$
Now, $4p = 4 \times 3 = 12$
 $3q = 3 \times 4 = 12$
 $\therefore 4p = 3q$
(c) Let P(x, y) be the point of division that divides the line joining (3, -5) and (-4, 7) in the ratio of k : 1

Now,
$$y = \frac{7k - 5}{k + 1}$$
 (i)
Since, P lies on $y = 0$ or x -axis then, from eq. (i)
 $0 = \frac{7k - 5}{k + 1} \Rightarrow 7k = 5 \Rightarrow k = \frac{5}{7}$

65. (d) The equation of the required line is,

$$y=mx+c$$
(i)
where m = tan 45° = 1
and c = y-intercept = 101 units
 \therefore from (i)
 $y=x+101 \Rightarrow x-y+101=0$

66. (b)

64.

63.

 $4 \times 1 + 3 \times 1 + 2K$

78.

79.

80.

7 + 2K

$$\Rightarrow \sqrt{x^2} = \sqrt{y^2}$$

$$\Rightarrow y = \pm x$$

(c) Slope of line joining (5, 2) and (0, 0)

$$\tan A = m_1 = \frac{2-0}{5-0} = \frac{2}{5}$$

Slope of line joining (6, -15) and (0, 0)

$$\tan B = m_2 = \frac{-15}{6} = \frac{-5}{2}$$

Now,
$$m_1 \cdot m_2 = \frac{2}{5} \left(-\frac{5}{2} \right) = -1$$

Hence, both lines are perpendicular. and than angle

between them
$$=\frac{\pi}{2}$$

81. (b) $4x^2 + 9y^2 = 36$
 $\frac{x^2}{3^2} + \frac{y^2}{2^2} = 1$
Length of latus rectum $= 2 \times \frac{2^2}{3} = \frac{8}{3}$
82. (c) Equation of line

$$y+2 = \frac{7+2}{-4-5} (x-5)$$
$$\Rightarrow y+2 = -x+5$$
$$\Rightarrow x+y=3$$

83. (d) Slope of x + y = 1 is -1
Slope of x - y = 1 is 1
Let tan A = -1, tan B = 1
A =
$$\frac{3\pi}{4}$$
, B = $\frac{\pi}{4}$
A - B = $\frac{\pi}{2}$
84. (a) Centroid = $\left(\frac{2-2+3}{3}, \frac{3-5+5}{3}\right)$
=(1, 1)
85. (b) Let line be $\frac{x}{a} + \frac{y}{b} = 1$
given that $\frac{1}{a} = m$ and $\frac{1}{b} = n$
 $a = \frac{1}{m}$, $b = \frac{1}{n}$
equation of line, mx + ny = 1
86. (c) All three points (0, 5), (2, -1) and (3, -4) lie on
 $3x + y = 5$
 $\sqrt{(0-1)^2 + (-1-2)^2} = \sqrt{10}$
 $\sqrt{(2-1)^2 + (-1-2)^2} = \sqrt{10}$
 $\sqrt{(3-1)^2 + (-4-2)^2} = \sqrt{40} = 2\sqrt{10}$
87. (c) $\frac{Y}{Y'}$
B (0, y)
(1, 2)
(1, 2)
(1, 2)
(1, 2)
(2, 0) and (0, 4)
y - 0 = $\frac{4-0}{0-2}(x-2)$
y = -2x + 4
2x + y = 4
88. (a) Let equation of line be $\frac{x}{a} + \frac{y}{a} = 1$ or x + y = a

line passing through (4, 3), then a = 0Required equation, x + y = 789. (c) Given A (3, 4) and B (5, -2)

Let, P (x, y)
Given that, PA = PB

$$\Rightarrow$$
 PA² = PB²

 $\Rightarrow (x-3)^2 + (y-4)^2 = (x-5)^2 + (y+2)^2$ $\Rightarrow x^2 - 6x + 9 + y^2 - 8y + 16$ $= x^2 - 10x + 25 + y^2 + 4y + 4$ \Rightarrow 4x - 12y = 4 \Rightarrow x - 3y = 1 ...(i) \therefore Area of $\triangle PAB = 10$ $\therefore \quad \frac{1}{2} \begin{vmatrix} x & y & 1 \\ 3 & 4 & 1 \\ 5 & -2 & 1 \end{vmatrix} = \pm 10$ $\Rightarrow x (4+2) - y (3-5) + 1 (-6-20) = \pm 20$ \Rightarrow 6x + 2y - 26 = \pm 20 \Rightarrow 6x + 2y - 26 = 20 or, 6x + 2y - 26 = -20 \Rightarrow 6x + 2y = 46 ...(ii) or 6x + 2y = 6...(iii) From eqs. (i) and (ii), we get x = 7, y = 2Similarly, from eqs. (i) and (iii), we get x = 1, y = 0Hence, coordinates of P are (7, 2) or (1, 0)(b) Given equation of line is

 $\frac{x-1}{2} = \frac{y-2}{3}$ $\Rightarrow 3x-3 = 2y-4 \Rightarrow 3x-2y+1 = 0$ $\Rightarrow y = \frac{3x}{2} + \frac{1}{2}$ and equation of second line is 2x + 3y = 5 $\Rightarrow y = \frac{-2}{3}x + \frac{5}{3}$ \therefore Slope of first line, $m_1 = \frac{3}{2}$ and slope of second line, $m_2 = -\frac{2}{3}$ $\therefore m_1 m_2 = -1$

90.

Hence, two lines are perpendicular to each other.

91. (a) A circumcentre is a point at which perpendicular bisectors meet each other. Here, 'E' represents circumcentre

Mid-point of BC =
$$\left(\frac{2+1}{2}, \frac{1+2}{2}\right) = \left(\frac{3}{2}, \frac{3}{2}\right)$$

Slope of BC = $\frac{2-1}{1-2} = -1$ \therefore Slope of DE = 1 Now, equation of $\overleftarrow{\text{ED}}$ is $\left(y - \frac{3}{2}\right) = 1\left(x - \frac{3}{2}\right)$ $\begin{array}{ccc} \therefore & 2y - 3 = 2x - 3 \\ \therefore & x = y \end{array}$ Now, mid-point of AC = $\left(\frac{-2+1}{2}, \frac{3+2}{2}\right) = \left(-\frac{1}{2}, \frac{5}{2}\right)$ Slope of AC = $\frac{3-2}{-2-1} = -\frac{1}{3}$ \therefore Slope of EF = 3 Now, equation of $\overrightarrow{\text{EF}}$ is $\left(y - \frac{5}{2}\right) = 3\left(x + \frac{1}{2}\right)$ $\therefore 2y-5=6x+3$...(ii) From equations (i) and (ii), x = -2 and y = -2Hence, circumcentre of $\triangle ABC$ is (x, y) = (-2, -2) \therefore Option (a) is correct. (b) Centroid of the triangle $=\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$ $(x_1, y_1) \bigwedge^{A} (-2, 3)$ C(1, 2) ^B(2, 1) (x_{3}, y_{3}) (x_2, y_2) $=\left(\frac{-2+2+1}{3},\frac{3+1+2}{3}\right)=\left(\frac{1}{3},2\right)$: Option (b) is correct. 93. (d) Slope of BC = $\frac{2-1}{1-2} = -1$ (-2, 3)(2, 1) C(1, 2)(x, y) Slope of AD = 1Now, equation of \overrightarrow{BC} is

y-2=-1(x-1)

92.

.
$$y-2=-x+1$$

. $x+y-3=0$...(i)

and equation of AD is

94.

95.

$$y-3) = I(x+2)$$

$$\therefore x-y+5=0 \qquad ...(ii)$$

From equations (i) and (ii)

x = -1 and y = 4

:. Foot of altitude from the vertex A of the triangle ABC is (-1, 4) \therefore Option (d) is correct.

(b) A line passes through (2, 2) and is perpendicular to the line 3x + y = 3Slope of line 3x + y = 3 is -3

Slope of line which passes through (2, 2) is $\frac{1}{3}$ \therefore Equation of line passes through (2, 2) and having slope $\left(\frac{1}{3}\right)$ is $(y-2) = \frac{1}{3}(x-2)$ $\begin{array}{cc} \therefore & 3y-6=x-2\\ \therefore & x-3y+4=0 \end{array}$ In order to find y-intercept of the line

Put
$$x = 0$$
 in $x - 3y + 4 = 0$
 $\therefore -3y = -4$
 $\therefore y = \frac{4}{3}$
 $\therefore \text{ Option (b) is correct.}$
 $) 6x + 8y + 15 = 0$... (i)

(b)
$$6x + 8y + 15 = 0$$

and 3x + 4y + 9 = 0

$$6x + 8y + 15 = 0$$

$$d$$

$$6x + 8y + 18 = 0$$

Multiply equation (ii) by 2, we get 6x + 8y + 18 = 0Distance between the straight lines

$$\frac{|\mathbf{c}_2 - \mathbf{c}_1|}{|\mathbf{c}_2 - \mathbf{c}_1|} = \frac{18 - 15}{|\mathbf{c}_2 - \mathbf{c}_1|^2} = \frac{3}{10}$$
 unit

$$\sqrt{a^2 + b^2} = \sqrt{(6)^2 + (8)^2} = 10$$

Option (b) is correct. *.*..

96. (b)

...(ii)

In
$$\triangle OCB$$
,
 $\sin 60^{\circ} = \frac{5}{OB} \Rightarrow OB = \frac{5}{\sin 60^{\circ}}$
 $OB = \frac{5 \times 2}{\sqrt{3}} = \frac{10}{\sqrt{3}}$
In $\triangle ACO$,
 $\angle OAC = 30^{\circ}$
 $\sin 30^{\circ} = \frac{5}{AO} \Rightarrow AO = \frac{5 \times 2}{1} = 10$
Normal form of line AB
 $\frac{X}{OB} + \frac{Y}{OA} = 1$
 $\frac{\sqrt{3}X}{10} + \frac{Y}{10} = 1$
 $\Rightarrow \sqrt{3}X + Y = 10$.
(a) $\frac{x}{a} + \frac{y}{b} = 1$...(i)
Arrow solving equations (i) and (ii), we get the intersection point.
bx + ay = ax + by
 $\Rightarrow (b-a)x = (b-a)y$
 $\therefore x = y$...(ii)
 $\Rightarrow \frac{x}{a} + \frac{x}{b} = 1$
 $\therefore x(a+b) = ab$
 $\therefore x = \frac{ab}{a+b}$ and $y = \frac{ab}{a+b}$ from equation (iii)
Now, equation of line joining (0, 0) and
 $\left(\frac{ab}{a+b}, \frac{ab}{a+b}\right)$
Here, slope of line = 1
 $\therefore y = x$
 $\therefore Option (a) is correct.$
(a) $5x = y = 0$
 $y = 5x$...(1)
Slope $= 5$
Slope of perpendicular line will be $-\frac{1}{5}$.
Let equation of line is
 $y = \left(-\frac{1}{5}\right)x + c$...(2)
Putting $y = 0$
 $x = 5c$
 $OB = 5c$
Intersecting point A

м-152

97.

98.

99. (b)

So from the figure it is clear that all the three lines are concurrent at point P.

Since circumcentre of right angled triangle lies on the midpoint of hypotenuse.

Cartesian Coordinate System and Straight Line

So mid point of AB is
$$\left(\frac{0+8}{2}, \frac{6+0}{2}\right)$$
 or (4, 3)

101. (c) If length of perpendicular be p_1 from the point (4, 0)

$$p_{1} = \frac{12\cos\phi - 15}{\sqrt{(3\cos\phi)^{2} + (5\cos\phi)^{2}}}$$
$$= \frac{15 - 12\cos\phi}{15 - 12\cos\phi}$$

$$-\frac{1}{\sqrt{(3\cos\phi)^2+(5\cos\phi)^2}}$$

If length of perpendicular be p_2 from the point (-4, 0)

$$p_{2} = \left| \frac{-12\cos\phi - 15}{\sqrt{(3\cos\phi)^{2} + (5\cos\phi)^{2}}} \right|$$
$$= \frac{(12\cos\phi + 15)}{\sqrt{(3\cos\phi)^{2} + (5\sin\phi)^{2}}}$$
$$p_{1}.p_{2} = \frac{(15 - 12\cos\phi)(12\cos\phi + 15)}{(3\cos\phi)^{2} + (5\sin\phi)^{2}}$$
$$= \frac{(225 - 144\cos^{2}\phi)}{9\cos^{2}\phi + 25\sin^{2}\phi} = \frac{9(25 - 16\cos^{2}\phi)}{25 - 16\cos^{2}\phi}$$
$$= 9$$

102. (a)
$$2x = 3y = -z$$

or
$$\frac{x}{3} = \frac{y}{2} = \frac{z}{-6}$$

 $6x = -y = -4z$
or $\frac{x}{2} = \frac{y}{-12} = \frac{z}{-3}$
 $\cos\theta = \frac{x_1x_2 + y_1y_2 + z_1z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_3^2}}$
 $= \frac{(6 - 24 + 18)}{\sqrt{3^2 + 2^2 + (-6)^2} \cdot \sqrt{2^2 + (-12)^2 + (-3)^2}}$
 $\cos\theta = 0$
 $\theta = 90^{\circ}$
So lines are perpendicular

103. (a) (-1, 1) X' (-1, 1) Y (1, 2) 90° (3, 2) 0 Q (3, 0)(3, 0)

- :. Putting the values of (x=3) & (y=0) in options we get:
- Equation of line PQ = 7x + y 21 = 0
- 104. (d) As we know that line PQ intersects x-axis and y-axis at P and Q.

Hence area of triangle $OPQ = \frac{1}{2} \times 6 \times 10 = 30$ sq. unit

105. (a) OAB is triangle.

Area of triangle =
$$\frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times \text{AB} \times \text{OP}$$

 $\frac{1}{2} \times \frac{3}{2} \times 0$ 27

 $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

Area of triangle =
$$\frac{27}{4}$$
 square units

106. (b) Coordinates of *O*, *A*, *B* are (0, 0) $\left(\frac{3}{2}, 9\right)$, (3, 9) respectively.

$$\therefore \text{ Centroid } C = \left[\left(\frac{0 + \frac{3}{2} + 3}{3} \right), \left(\frac{0 + 9 + 9}{3} \right) \right] = \left(\frac{3}{2}, 6 \right)$$

м-154

and
$$x = 2$$

Hence curves intersect at
$$(-2, 3)$$
 and $(2, 1)$.
Bounded region is shaded.

108. (c) So area of bounded region has two triangles ACB and BDE.

> Area of $\triangle ACB = \frac{1}{2} \times 3 \times 3 = \frac{9}{2}$ Area of $\triangle BDE = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}$ Area of region bounded by curves and x-axis is 0 1

Area =
$$\triangle ACB + \triangle BDE = \frac{9}{2} + \frac{1}{2} = 5$$
 square units

Sol. (109 -110):

Equations of lines x + y + 1 = 03x+2y+1=03x + 3y + 3 = 03x + 2y + 1 = 0y = -2x = 1Points of intersection (1, -2).

109. (d) Equation of x-axis

y=0Line parallel to x axis is y = kIf this line passes through (1, -2) then k = -2 $\Rightarrow v = -2$ $\Rightarrow y + 2 = 0$ Equation of line passing through (1, -2) and parallel to x-axis is y + 2 = 0110. (b) Equation of y-axis x = 0Equation of line parallel to y-axis is x = k

> If this line passes through (1, -2 then)x = 1Hence equation of line which passes through point of intersection of given line (1, -2) and parallel to y-axis x = 1 $\Rightarrow x - 1 = 0$

$$a = \frac{7}{2}, b = 4$$

$$AC^{2} = (1-x)^{2} + (2-6)^{2} = (1-6)^{2} + (-4)^{2} = 41$$

$$BD^{2} = (3-4)^{2} + (5-3)^{2} = 1+4=5$$

$$AC^{2} - BD^{2} = 41-5$$

$$\boxed{AC^{2} - BD^{2} = 36}$$

112. (a) Point of intersection (a, b) is $\left(\frac{7}{2}, 4\right)$. 113. (d) Area of parallelogram = 2 area of A AI

 $\Rightarrow x = 6$

 $\Rightarrow y = 3$

 $b = \frac{5+y}{2} = \frac{2+6}{2}$

13. (d) Area of parallelogram = 2 area of
$$\Delta$$
 ADB
 $\vec{a} = \overline{AB} = (4-1)\hat{i} + (3-2)\hat{j}$
 $\vec{b} = \overline{AD} = (3-1)\hat{i} + (5-2)\hat{j}$
 \therefore Area of parallelogram = $2\left[\frac{1}{2}|\vec{a} \times \vec{b}|\right] = |\vec{a} \times \vec{b}|$
Now; $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 0 \\ 2 & 3 & 0 \end{vmatrix} = 7\hat{k}.$
 \therefore Area = $|\vec{a} \times \vec{b}| = |7\hat{k}| = \sqrt{49} = 7$ square unit
14. (a) $M \equiv$ mid point of line segment PQ
 $\overrightarrow{P} \qquad M \qquad Q$
(K, 4) (a, 2b) (10, -6)
 $\frac{K+10}{2} = a \Rightarrow K = (2a-10)$
 $2b = \frac{4-6}{2} = -1$
given $a - 2b = 7$...(1)
Put the values of a & b in eq (1), we get
 $\frac{K+10}{2} + 1 = 7$
 $\frac{K+10}{2} = 6 \Rightarrow K = 12-10$

$$K = 2$$

1
Cartesian Coordinate System and Straight Line

115. (c) Let ABC is equilateral triangle with A(0, 0) and 119. (b) $\frac{dy}{dx} = \frac{2y}{x}$ $B(3,\sqrt{3})$ and C to be known. $\therefore AB = \sqrt{(3-0)^2 + (\sqrt{3}-0)^2} = \sqrt{9+3} = \sqrt{12}$ Take option (a) i.e. $C(0, 2\sqrt{3})$ $CA = \sqrt{0^2 + (2\sqrt{3})^2} = \sqrt{12}$ $CB = \sqrt{(3)^2 + (\sqrt{3})^2} = \sqrt{12}$ Take option (b) i.e. $C(3, -\sqrt{3})$ $CA = \sqrt{3^2 + (\sqrt{3})^2} = \sqrt{12}$ $CB = \sqrt{(0)^2 + (2\sqrt{3})^2} = \sqrt{12}$: Both option (a) and (b) are correct. 116. (d) Intersecting lines are : x+2y=5 & 3x+7y=17On solving these we get : x = 1 & y = 2Equation of perpendicular line is $3x + 4y = 10 \text{ or } y = \frac{-3}{4}x + 10$ So, slope = $\frac{-3}{4}$ \Rightarrow Slope of required line = $\frac{4}{3}$: Equation of given line is $(y-2) = \frac{4}{3}(x-1)$ or 4x-3y+2=0117. (b) Here $\frac{|8a+6b+1|}{\sqrt{8^2+6^2}} = 1 \implies |8a+6b+1| = 10$ \Rightarrow 8a + 6b + 1 = ± 10 \Rightarrow 8a + 6b + 1 = 10 & 8a + 6b + 1 = -10 \Rightarrow 8a+6b-9=0 & 8a+6b+11=0 118. (d) The given line passes through (-3, 5) and (2, 0). Its equation is $\Rightarrow y = -x + 2$ Slope = m = -1and slope of perpendicular line $= -\frac{1}{m} = 1$ Equation of this line passing through (3, 3) is : (y-3)=1(x-3) $\Rightarrow y = x.$ From eq. (1) we get, x = -x + 2 $\Rightarrow x = 1$ and y = 1.

 $\Rightarrow \frac{dy}{v} = 2\frac{dx}{x}$ On integration $\int \frac{dy}{y} = 2 \int \frac{dx}{x}$ $\Rightarrow \log y = 2\log x + \log a$ $\Rightarrow \log y = \log x^2 + \log a$ $\Rightarrow \log v = \log(x^2 \cdot a)$ $\Rightarrow v = x^2 a$ at (1, 1); a = 1 $\Rightarrow x^2 = y = 4\left(\frac{1}{4}\right)y$

 \Rightarrow the curve is parabola.

120. (d) Midpoint of AB = (-1, 2)

$$\Rightarrow \left(\frac{\mathbf{x}_2 + \mathbf{1}}{2}, \frac{\mathbf{y}_2 + \mathbf{1}}{2}\right) = \left(-1, 2\right)$$

 $\Rightarrow \frac{x_2+1}{2} = -1; \ \frac{y_2+1}{2} = 2$ $\Rightarrow x_2 + 1 = -2; y_2 + 1 = 4$ $\Rightarrow x_2 = -3, y_2 = 3$ Midpoint of AC = (3, 2)

$$\Rightarrow \left(\frac{x_1+1}{2}, \frac{y_1+1}{2}\right) = (3,2)$$

$$\Rightarrow x_1+1=6; y_1+1=4$$

$$\Rightarrow x_1=5, y_1=3$$

So, vertices of triangle ABC are (1, 1), (-3, 3), (5, 3)

So, centroid =
$$\left(\frac{1-3+5}{3}, \frac{1+3+3}{3}\right) = \left(\frac{3}{3}, \frac{7}{3}\right) = \left(1, \frac{7}{3}\right)$$

121. (d) Vertices of triangle, $A(1,\sqrt{3}), B(0,0), C(2,0)$ observe the figure,

BD = 1, DC = 1, AD =
$$\sqrt{3}$$

So, AB = 2. AC = 2 (Using Pythagoras theorem) So, given triangle is equilateral triangle In equilateral triangle, Incentre is controid only.

$$\therefore \text{ Incentre } = \left(\frac{1+0+2}{3}, \frac{\sqrt{3}+0+0}{3}\right)$$
$$= \left(\frac{3}{3}, \frac{\sqrt{3}}{3}\right)$$
$$= \left(1, \frac{1}{\sqrt{3}}\right)$$

122. (a) Given vertices of parallelogram are (-2, -1), (1, 0), (4, 3)

Let the fourth vertex be (x, y)We know, in a parallelogram diagonals bisect each other.

i.e, Midpoint of AC = Midpoint of BD

$$\Rightarrow \left(\frac{-2+4}{2}, \frac{-1+3}{2}\right) = \left(\frac{X+1}{2}, \frac{Y+0}{2}\right)$$
$$\Rightarrow (1,1) = \left(\frac{X+1}{2}, \frac{Y+0}{2}\right)$$
$$\Rightarrow X+1=2; Y+0=2$$
$$\Rightarrow X=1, Y=2$$

123. (b) $C = \left(\frac{2K-2}{K+1}, \frac{-4K+2}{K+1}\right)$
$$So, \frac{2K-2}{K+1} = \frac{-2}{7}$$
$$C\left(\frac{-2}{7}, \frac{-20}{7}\right)$$
$$A = \frac{1}{(-2, 2)} = \frac{1}{K} = \frac$$

$$\Rightarrow \frac{2'(K-1)}{K+1} = \frac{-2'}{7}$$
$$\Rightarrow 7K - 7 = -K - 1$$
$$\Rightarrow 8K = 6 \Rightarrow K = \frac{3}{4}$$
$$\therefore K : 1 = \frac{3}{4} : 1 = 3 : 4$$

- 124. (a) The equation of line parallel to 2x + 3y + 1 = 0 is 2x + 3y + K = 0It is passing through point (-1, 2) $\therefore 2(-1) + 3(2) + K = 0$ $\Rightarrow -2 + 6 + K = 0 \Rightarrow K = -4$ \therefore Eqn. is 2x + 3y - 4 = 0125. (a) Contradict of given triangle
- 125. (a) Centroid of given triangle (7 + 2) = (-10)

$$= \left(\frac{7+y+9}{3}, \frac{x-6+10}{3}\right)$$
$$\Rightarrow \left(\frac{16+y}{3}, \frac{x+4}{3}\right) = (6,3)$$
$$\Rightarrow 16+y=18; x+4=9$$
$$\Rightarrow y=2; x=5$$

126. (b) Given points, A(a, b), B(0, 0), C(-a, -b), $D(ab, b^2)$.

Slope of AB =
$$\frac{b-0}{a-0} = \frac{b}{a}$$

Slope of BC = $\frac{b}{a}$
Slope of AC = $\frac{b}{a}$
Slope of BD = $\frac{b}{a}$.

So, the points are collinear.

127. (d) The line 4x + y = 4 can be written as y = -4x + 4. So, slope is -4. The line parallel to 4x + y = 4 will have slope -4 only. Given point = (1, 3) Equation of line passing through (1, 3) and slope -4 is y-3 = -4(x-1) $\Rightarrow y-3 = -4x + 4 \Rightarrow 4x + y = 7$. Solving the two equations, we get

$$2x + 3y = 6 \Rightarrow 4x + 6y = 12$$

$$4x + y = 7$$

$$\underbrace{\cancel{()} (-) (-)}_{5y = 5 \Rightarrow y = 1}$$

$$2x + 3y = 6 \Rightarrow 2x + 3(1) = 6$$

$$\Rightarrow 2x = 3 \Rightarrow x = \frac{3}{2}.$$

.

Distance between the points (1, 3) and $\left(\frac{3}{2}, 1\right)$ is

$$\sqrt{\left(\frac{3}{2}-1\right)^2 + \left(1-3\right)^2} = \sqrt{\left(\frac{1}{2}\right)^2 + \left(-2\right)^2} = \sqrt{\frac{1}{4}+4} = \sqrt{\frac{17}{4}} = \frac{\sqrt{17}}{2}.$$

Cartesian Coordinate System and Straight Line

- 128. (a) Slope of the required line, $m = \tan 120^{\circ} = -\sqrt{3}$ (since it is making angle with positive direction of x-axis). Given, line cuts off an intercept of 5 units on negative direction of y-axis. This means line is intersecting yaxis at (0, -5)
 - P = (0, -5) and $m = -\sqrt{3}$.

$$\therefore$$
 Equation of line is $y - (-5) = -\sqrt{3}(x - 0)$

$$\Rightarrow$$
 y + 5 = $-\sqrt{3}x$

$$\Rightarrow$$
 y + $\sqrt{3}$ x + 5 = 0

129. (b) Required line is (2x-3y+7)+k(7x+4y+2)=0. Given that this line passes through (2, 3) $\therefore (2(2)-3(3)+7)+k(7(2)+4(3)+2)=0$. $\Rightarrow 4-9+7+k(14+12+2)=0$ $\Rightarrow 2+k(28)=0$

$$\Rightarrow 28k = -2 \Rightarrow k = \frac{-1}{14}$$

.: Required line

$$\Rightarrow (2x - 3y + 7) + \left(\frac{-1}{14}\right)(7x + 4y + 2) = 0$$
$$\Rightarrow 28x - 42y + 98 - 7x - 4y - 2 = 0$$
$$\Rightarrow 21x - 46y + 96 = 0.$$

130. (a) Let A(x, y) be the point that divides (4, 3) and (5, 7) 132 internally is ratio 2:3

A =
$$(x, y) = \left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right)$$

= $\left(\frac{10 + 12}{2 + 3}, \frac{14 + 9}{2 + 3}\right) = \left(\frac{22}{5}, \frac{23}{5}\right)$.

Let B(x', y') be point that divides (4, 3) and (5, 7) externally in ratio 2:3

$$B = (x', y') = \left(\frac{mx_2 - nx_1}{m - n}, \frac{my_2 - ny_1}{m - n}\right)$$
$$= \left(\frac{10 - 12}{2 - 3}, \frac{14 - 9}{2 - 3}\right) = (2, -5)$$

Distance between A and B = $\sqrt{(x'-x)^2 + (y'-y)^2}$

$$= \sqrt{\left(2 - \frac{22}{5}\right)^2 + \left(-5 - \frac{23}{5}\right)^2}$$
$$= \sqrt{\frac{\left(-12\right)^2}{25} + \frac{\left(-48\right)^2}{25}}$$
$$= \frac{12}{5}\sqrt{1 + 4^2} = \frac{12}{5}\sqrt{17}.$$

131. (d) Given, angle $(\theta) = 30^{\circ}$

:. m = tan 30° =
$$\frac{1}{\sqrt{3}}$$
.
Point = (-2, 0) i.e., C = -2.

Slope-intercept form is y = mn + c

$$\Rightarrow y = \frac{1}{\sqrt{3}} x - 2$$
$$\Rightarrow \sqrt{3}y = x - 2\sqrt{3}$$

.

$$\Rightarrow x - \sqrt{3}y - 2\sqrt{3} = 0$$

132. (c) Given lines,

$$x+2y-3=0$$
(1)
 $2x-y+5=0$ (2)

$$(1) \times 2 \Rightarrow 2x + 4y - 6 = 0$$

$$(2) \Rightarrow 2x - y + 5 = 0$$

$$(\cancel{y}) (+) (-)$$

$$5y - 11 = 0 \Rightarrow y = \frac{11}{5}$$

$$(1) \Rightarrow x + 2\left(\frac{11}{5}\right) - 3 = 0$$

$$\Rightarrow x + \frac{22}{5} - 3 = 0 \Rightarrow x + \frac{7}{5} = 0 \Rightarrow x = \frac{-7}{5}.$$

Given, the required line is parallel to $y - x + 10 = 0.$
$$\Rightarrow y = x - 10.$$

$$\Rightarrow y = x - 10$$
$$\Rightarrow y = (1)x + (-10)$$

$$\therefore \text{ slope } (m) = 1$$

: Required line with slope 1 and passing through

$$\left(\frac{-7}{5}, \frac{11}{5}\right) \text{ is}$$

$$y - y_1 = m(x - x_1)$$

$$\Rightarrow y - \frac{11}{5} = 1\left(x + \frac{7}{5}\right)$$

$$\Rightarrow 5y - 11 = 5x + 7 \Rightarrow 5x - 5y + 18 = 0.$$

point

NDA Topicwise Solved Papers - MATHEMATICS

133. (c) 1: We know, the perpendicular distance from
(x₁, y₁) to line ax + by + c = 0 is
$$\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

Here, (x₁, y₁) = (0, 0) and distance = P.
 $\therefore P = \frac{|a(0) + b(0) + (c)|}{\sqrt{a^2 + b^2}}$
 $\Rightarrow P^2 = \frac{c^2}{a^2 + b^2}$
 \therefore 1 is correct.
2: Line is $\frac{x}{a} + \frac{y}{b} = 1 \Rightarrow (\frac{1}{a})x + (\frac{1}{b})y + (-1) = 0$
 $P = \frac{|\frac{1}{a}(0) + \frac{1}{b}(0) - 1|}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} = \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}}$
 $= P^2 = \frac{1}{\frac{1}{a^2} + \frac{1}{b^2}} = \frac{a^2b^2}{b^2 + a^2}$
 $\Rightarrow \frac{1}{p^2} = \frac{a^2 + b^2}{a^2b^2} = \frac{1}{a^2} + \frac{1}{b^2}$
2 is correct.
3: Line is y = mx + c \Rightarrow mx - y + c = 0.
 $\therefore P = \frac{|m(0) - 0 + c|}{\sqrt{m^2 + 1}}$
 $\Rightarrow P^2 = \frac{c^2}{m^2 + 1} \Rightarrow \frac{1}{p^2} = \frac{m^2 + 1}{c^2}$
3 is wrong.
 \therefore Only 1 and 2 are correct.
134. (b) Given line passes through (2, 3)

Intercept form: $\frac{x}{a} + \frac{y}{b} = 1$

 $\Rightarrow \frac{x}{a} + \frac{y}{2a} = 1$

$$\Rightarrow 2x + y = 2a \qquad \dots(1)$$

But this passes through (2, 3)
$$\therefore 2a = 2(2) + 3 = 7$$

$$\Rightarrow a = \frac{7}{2}.$$

$$\therefore$$
 Equation of line is $2x + y = 2\left(\frac{7}{2}\right)$
$$\Rightarrow 2x + y = 7.$$

(c) We know, the perpendicular distance (d) from
 (x_1, y_1) to line $ax + by + c = 0$ is $\frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$.

 $\sqrt{a^2 + b^2}$ Let us find a point on line 2x + 11y - 5 = 0. for x = 0, 2(0) + 11y - 5 = 0 $\Rightarrow 11y - 5 = 0$ $\Rightarrow y = \frac{5}{11}$.

$$y = \frac{1}{11}$$

So, $(x, y) = \left(0, \frac{5}{11}\right)$

135.

Let us find perpendicular distances of this point to the given lines.

$$24x + 7y = 20$$

$$\Rightarrow 24x + 7y - 20 = 0$$

$$d_{1} = \frac{\left| 24(0) + 7\left(\frac{5}{11}\right) - 20\right|}{\sqrt{24^{2} + 7^{2}}}$$

$$= \frac{\left| \frac{35}{11} - 20\right|}{\sqrt{625}}$$

$$= \frac{\left| \frac{-185}{11} \right|}{25} = \frac{185}{11 \times 25} = \frac{37}{55}$$

$$4x - 3y = 2$$

$$\Rightarrow 4x - 3y = 2$$

$$\Rightarrow 4x - 3y - 2 = 0$$

$$d_{2} = \frac{\left| 4(0) - 3\left(\frac{5}{11}\right) - 2\right|}{\sqrt{16 + 9}}$$

$$= \frac{\left| \frac{-15}{11} - 2\right|}{\sqrt{25}}$$

$$= \frac{37}{55}$$

 \therefore $d_1 = d_2$

136. (d) Intercept form of line is $\frac{x}{a} + \frac{y}{b} = 1$.

We know, the point which divides a line joining two points (x_1, y_1) and (x_2, y_2) in the ratio m:n is

$$\left(\frac{\mathrm{mx}_{2} + \mathrm{nx}_{1}}{\mathrm{m} + \mathrm{n}}, \frac{\mathrm{my}_{2} + \mathrm{ny}_{1}}{\mathrm{m} + \mathrm{n}}\right)$$
Case 1: m:n = 2:3

$$\therefore (2,3) = \left(\frac{(2)(a) + 3(0)}{2 + 3}, \frac{2(0) + 3(b)}{2 + 3}\right)$$

$$\Rightarrow (2,3) = \left(\frac{2a}{5}, \frac{3b}{5}\right)$$

$$\Rightarrow \frac{2a}{5} = 2 \quad ;\frac{3b}{5} = 3$$

$$\Rightarrow a = 5; b = 5.$$

$$\therefore \text{ Equation of line is } \frac{x}{5} + \frac{y}{5} = 1 \Rightarrow x + y = 5$$
Case 2: m:n = 3:2

$$\therefore (2,3) = \left(\frac{3(a) + 2(0)}{3 + 2}; \frac{3(0) + 2(b)}{3 + 2}\right)$$

$$\Rightarrow (2,3) = \left(\frac{3a}{5}, \frac{2b}{5}\right)$$

$$\Rightarrow \frac{3a}{5} = 2; \frac{2b}{5} = 3$$

$$\Rightarrow a = \frac{10}{3}, b = \frac{15}{2}$$

$$\therefore \text{ Equation of line is } \frac{\frac{x}{10} + \frac{y}{15} = 1}{3 + \frac{y}{15} = 1}$$

 $\Rightarrow 9x + 4y = 30$ 137. (b) Given lines, L₁ = 3x + 4y - 9 = 0

$$L_2 = 6x + 8y - 15 = 0 \implies 3x + 4y - \frac{15}{2} = 0$$
.

Observe that the coefficients of x and y are same. \therefore L₁ and L₂ are parallel lines.

Distance between parallel lines $= \frac{|c_1 - c_2|}{\sqrt{a^2 + b^2}}$

$$=\frac{\left|-9+\frac{15}{2}\right|}{\sqrt{3^2+4^2}}$$

$$=\frac{\left|\frac{-18+15}{2}\right|}{\sqrt{25}}=\frac{3}{10}.$$

138. (a)
$$(x^2 - 2x + 1) + (4y^2 - 4y + 1) = 0$$

 $\Rightarrow (x - 1)^2 + (2y - 1)^2 = 0$
 $\Rightarrow x = 1, y = \frac{1}{2}$
It is a point.
139. (c) $\tan^{-1}(\theta) = \tan^{-1} \left| \frac{\ell m' - \ell' m}{\ell \ell' + mm'} \right|$
 $\Rightarrow \theta = \left| \frac{\ell m' - \ell' m}{\ell \ell' + mm'} \right|$

140. (b) Using distance between two parallel lines formula.

141. (a) Given equations:
$$\frac{x}{2} + \frac{y}{3} = 1$$
 and $\frac{x}{3} + \frac{y}{2} = 1$
Point of intersection $= \left(\frac{6}{5}, \frac{6}{5}\right)$

Let equation of line be 4x + 5y + k = 0

Putting
$$\left(\frac{6}{5}, \frac{6}{5}\right)$$
, $k = -\frac{54}{5}$

 \therefore Equation of line is 20x + 25y - 54 = 0

142. (d)
$$\cos \alpha = \frac{mr + ns}{\sqrt{m^2 + n^2}\sqrt{r^2 + s^2}}$$

Statement 1 is false, statement 2 is true.

143. (d) The length of perpendicular from (α, β) to line x cos θ + ysin θ - p = 0 | α cos θ + β sin θ - p|
∴ Statement 1 is false. The length of perpendicular from (α, β) to line

$$\frac{x}{a} + \frac{y}{b} = 1$$

$$\frac{x}{a} + \frac{y}{b} = 1 \Longrightarrow bx + ay - ab = 0$$
So, perpendicular is $\left| \frac{b\alpha + a\beta - ab}{\sqrt{a^2 + b^2}} \right|$

: Statement 2 is also false.

144. (d) Given, opposite vertices of rectangle are A(1, 3) and C (5, 1)

We know, diagonals of rectangle bisect each other. So, midpoint of AC lies on line y = 2x + c.

Mid point of AC =
$$\left(\frac{1+5}{2}, \frac{3+1}{2}\right) = \left(\frac{6}{2}, \frac{4}{2}\right) = (3, 2)$$

 $y = 2x + c \Rightarrow 2 = 2(3) + c$
 $\Rightarrow c = 2 - 6 = -4$
145. (c) Given lines, $3y + 4x = 1 \Rightarrow 4x + 3y - 1 = 0$
 $y = x + 5 \Rightarrow x - y + 5 = 0$

 $5y + bx = 3 \Rightarrow bx + 5y - 3 = 0$ Since, these lines are concurrent,

$$\begin{vmatrix} 4 & 3 & -1 \\ 1 & -1 & 5 \\ b & 5 & -3 \end{vmatrix} = 0$$

$$\Rightarrow 4 (3-25) - 3 (-3-5b) -1 (5+b) = 0$$

$$\Rightarrow 4 (-22) + 9 + 15b - 5 - b = 0$$

$$\Rightarrow -88 + 14b = 0$$

$$\Rightarrow -84 + 14b = 0$$

$$\Rightarrow b = 6$$

146. (b) Given line, $y = x$

$$\Rightarrow x - y = 0$$

Slope of this line $= \frac{-1}{-1} = 1$
Slope of line perpendicular to this line $= -1$
The perpendicular line passes through (3, 2)
 \therefore Equation is $y - 2 = -1 (x - 3) \Rightarrow y - 2 = -x + 3$

$$\Rightarrow x + y - 5 = 0 \Rightarrow x + y = 5$$

147. (a) Given lines: $L_1 = x + y - 4 = 0$
 $L_2 = 3x + y - 4 = 0$
 $L_3 = x + 3y - 4 = 0$
Slope of $L_1 = m_1 = \frac{-1}{1} = -1$
Slope of $L_2 = m_2 = \frac{-3}{1} = -3$
Slope of $L_3 = m_3 = \frac{-1}{3}$
Angle between L_1 and L_2

$$\Rightarrow \tan \theta_1 = \left| \frac{-1 - (-3)}{1 + (-1)(-3)} \right| = \frac{-1 + 3}{1 + 3} = \frac{1}{2}$$

Angle between L_2 and L_3

$$\Rightarrow \tan \theta_2 = \left| \frac{-3 - \left(\frac{-1}{3}\right)}{1 + (-3)\left(\frac{-1}{3}\right)} \right| = \left| \frac{-9 + 1}{3 + 3} \right| = \frac{4}{3}$$

Angle between L_1 and L_3

$$\Rightarrow \tan \theta_3 = \left| \frac{-1 - \left(\frac{-1}{3}\right)}{1 + (-1)\left(\frac{-1}{3}\right)} \right| = \left| \frac{-3 + 1}{3 + 1} \right| = \frac{1}{2}$$

 \therefore The triangle formed is an isosceles triangle.
148. (b) Given vertices of triangle are A(2, -3, 3), B(5, -3, -4) and C(2, -3, -2)
Centroid $= \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3} \right)$
 $= \left(\frac{2 + 5 + 2}{3}, \frac{-3 - 3 - 3}{3}, \frac{3 - 4 - 2}{3} \right)$

149. (b) Given equation is
$$y^2 - 8x$$

Take an arbitrary point on this curve. If we take y as P,
then point is $\left(\frac{P^2}{8}, P\right)$.
The distance between $\left(\frac{P^2}{8}, P\right)$ and (4, 2) is
 $d^2 = \left(\frac{P^2}{8} - 4\right)^2 + (P - 2)^2$...(1)
 $= \frac{1}{64}(P^2 - 32)^2 + (P - 2)^2$
 $\Rightarrow 2d. \frac{dd}{dp} = \frac{1}{64} \times 2(P^2 - 32) \times 2P + 2(P - 2)$
 $= \frac{1}{16}(P^2 - 32)P + 2(P - 2)$
for minimum distance, $\frac{dd}{dp} = 0$
 $\Rightarrow P^3 - 32P + 32P - 64 = 0$
 $\Rightarrow P^3 - 32P + 32P - 64 = 0$
 $\Rightarrow P^3 - 32P + 32P - 64 = 0$
 $\Rightarrow P^3 - 32P + 32P - 64 = 0$
 $\Rightarrow P = 4$
 $\therefore (1) \Rightarrow d^2 = \left(\frac{16}{8} - 4\right)^2 + (4 - 2)^2$
 $= (-2)^2 + (2)^2 = 8$
 $\Rightarrow d = \sqrt{8} = 2\sqrt{2}$
150. (b) Let $p = a^2x + b^2y$ and $xy = c^2$
 $\Rightarrow y = \frac{c^2}{x}$...(1)
 $\Rightarrow P = a^2x + b^2 \left(\frac{c^2}{x}\right)$
Now, $\frac{dP}{dx} = 0 \Rightarrow a^2 - \frac{b^2c^2}{x^2} = 0$
 $\therefore y = \frac{c^2}{bc} = \frac{ac^2}{bc}$
 $\Rightarrow a^2 = \frac{b^2c^2}{x^2}$
 $\Rightarrow x = \frac{bc}{a} \therefore P_{\min} = a^2 \left(\frac{bc}{a}\right) + b^2 \left(\frac{ac}{b}\right)$
 $= abc + abc = 2abc.$

Pair of Straight Lines

 $(\mathbf{8})$

[2016-I]

- 1. The bisector of the acute angle between the straight lines 3x 4y 3 = 0 and 12x + 5y + 6 = 0 passes through which one of the following points ? [2006-II] (a) (5,3) (b) (-3,6)
 - (c) (2,7) (d) (-1,4)
- 2. What is the locus of the point of intersection of the straight lines (x/a) + (y/b) = m and (x/a) (y/b) = 1/m? [2006-II]
 (a) Circle (b) Parabola
 (c) Ellipse (d) Hyperbola
- 3. What does the equation $x^3y + xy^3 xy = 0$ represent? [2008-II]
 - (a) A pair of straight lines only
 - (b) A pair of straight lines and a circle
 - (c) A rectangular hyperbola only
 - (d) A rectangular hyperbola and a circle
- 4. What is the value of λ if the straight line $(2x + 3y + 4) + \lambda$ (6x - y + 12) = 0 is parallel to y-axis? [2012-II] (a) 3 (b) -6
 - (c) 4 (d) -3
- 5. The value of k for which the lines 2x + 3y + a = 0 and 5x + ky + a = 0 represent family of parallel lines is [2013-II] (a) 3 (b) 4.5
 - (c) 7.5 (d) 15
- 6. What is the equation of the line mid-way between the lines 3x-4y+12=0 and 3x-4y=6? [2014-I] (a) 3x-4y-9=0 (b) 3x-4y+9=0
 - (c) 3x 4y 3 = 0 (d) 3x 4y + 3 = 0

7. What is the product of the perpendiculars drawn from the points $(\pm \sqrt{a^2 - b^2}, 0)$ upon the line $bx \cos \alpha + ay \sin \alpha = ab$? [2014-II] (a) a^2 (b) b^2

(c) $a^2 + b^2$ (d) a + b

8. What is the acute angle between the lines represented by the equations $y - \sqrt{3}x - 5 = 0$ and $\sqrt{3}y - x + 6 = 0$?

- (a) 30° (b) (c) 60° (d)
- 9. What is the equation of the right bisector of the line segment joining (1, 1) and (2, 3)? [2016-II]
 (a) 2x + 4y 11 = 0
 (b) 2x 4y 5 = 0
 (c) 2x 4y 11 = 0
 (d) x y + 1 = 0

75°

10. What is the acute angle between the pair of straight lines

$$\sqrt{2x} + \sqrt{3y} = 1$$
 and $\sqrt{3x} + \sqrt{2y} = 2$? [2017-I]
(a) $\tan^{-1}\left(\frac{1}{2\sqrt{6}}\right)$ (b) $\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$
(c) $\tan^{-1}(3)$ (d) $\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$
11. The angle between the lines $x + y - 3 = 0$ and $x - y + 3 = 0$

 The angle between the lines x + y - 3 = 0 and x - y + 3 = 0 is α and the acute angle between the lines x - √3y + 2√3 = 0 and √3x - y + 1 = 0 is β. Which one of the following is correct? [2017-II]

 (a) α = β
 (b) α > β
 (c) α < β
 (d) α = 2β

 What is the angle between the straight lines (m² - mn)

12. What is the angle between the straight lines $(m^2 - mn)$ y = $(mn + n^2) x + n^3$ and $(mn + m^2) y = (mn - n^2) x + m^3$, where m > n? [2018-I]

(a)
$$\tan^{-1}\left(\frac{2mn}{m^2+n^2}\right)$$
 (b) $\tan^{-1}\left(\frac{4m^2n^2}{m^4-n^4}\right)$

(c)
$$\tan^{-1}\left(\frac{4m^2n^2}{m^4+n^4}\right)$$
 (d) 45°

	ANSWER KEY																		
1	(c)	2	(d)	3	(b)	4	(a)	5	(c)	6	(d)	7	(b)	8	(a)	9	(a)	10	(a)
11	(*)	12	(b)																

HINTS & SOLUTIONS

6.

7.

Slope = $\frac{-5}{k}$

1. (c) The equations of given straight lines are

3x-4y-3=0 ...(1) and 12x+5y+6=0 ...(2) Re-writing equations, so that constant term in both have same sign. We write second equation so that its constant term is negative. Then, equation of bisector of the acute angle between the given straight lines is

$$\frac{3x-4y-3}{\sqrt{3^2+4^2}} = -\frac{(12x+5y+6)}{\sqrt{12^2+5^2}}$$

$$\Rightarrow \quad \frac{3x-4y-3}{5} = -\frac{-12x-5y-6}{13}$$

$$\Rightarrow \quad 39x-52y-39 = -60x-25y-30$$

$$\Rightarrow \quad -60x-25y-30-39x+52y+39 = 0$$

$$\Rightarrow \quad -99x+27y+9 = 0$$

$$\Rightarrow \quad -11x+3y+1 = 0$$
Putting x = 2 and y = 7
This equation is satisfied by (2, 7).
Thus, the bisector of acute angle between the given straight lines passes through (2, 7)
The straight lines passes through (2, 7)

$$\frac{x}{a} + \frac{y}{b} = m \qquad \dots(i)$$

and $\frac{x}{a} - \frac{y}{b} = \frac{1}{m}$ From Eqs. (1) and (2), we get

 $\left(\frac{x}{a} + \frac{y}{b}\right) \left(\frac{x}{a} - \frac{y}{b}\right) = m \times \frac{1}{m} = 1$ $\implies \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

which represents a Hyperbola and is the locus of point of intersection the given straight lines.

...(ii)

3. (b) Given equation $x^{3}y + xy^{3} - xy = 0$

 $\begin{array}{l} x \ y + xy \ -xy = 0 \\ \Rightarrow \ xy \ (x^2 + y^2) = xy \\ \Rightarrow \ xy \ (x^2 + y^2 - 1) = 0 \\ \Rightarrow \ x^2 + y^2 = 1, xy = 0 \end{array}$

Above equations represent a pair of straight lines and a circle.

4. (a) The given line is, $(2x+3y+4) + \lambda (6x-y+12) = 0$ $\Rightarrow (2+6\lambda)x + (3-\lambda)y + 4 + 12\lambda = 0 \qquad \dots (i)$ Since line (i) is parallel to y-axis. $\therefore \text{ Coefficient of } y = 0$ $3 - \lambda = 0 \Rightarrow \boxed{\lambda = 3}$

5. (c)
$$2x + 3y + a = 0$$
 or $y = \frac{-2}{3}x - \frac{a}{3}$
Slope $= \frac{-2}{3}$
 $5x + ky + a = 0$ or $y = \frac{-5}{k}x\frac{-a}{5}$

lines are parallel

$$\frac{-2}{3} = \frac{-5}{k}$$

$$k = \frac{15}{2} = 7.5$$
(d) $3x - 4y + 12 = 0$ or $y = \frac{3}{4}x + 3$
 $3x - 4y = 6$ or $y = \frac{3}{4}x - \frac{3}{2}$
Equation of line mid-way between these two lines
 $y = \frac{3}{4}x + \left(\frac{3 - \frac{3}{2}}{2}\right)$
 $y = \frac{3}{4}x + \frac{3}{4}$
 $4y = 3x + 3$
 $3x - 4y + 3 = 0$
(b) Given equation of line is $bx \cos \alpha + ay \sin \alpha = ab$
Perpendicular distance from point $\left(\sqrt{a^2 - b^2}, 0\right)$ is

$$d_1 = \left| \frac{b\cos\alpha\sqrt{a^2 - b^2 + 0 - ab}}{\sqrt{b^2\cos^2\alpha + a^2\sin^2\alpha}} \right|$$

(: distance from (x_1, y_1) to ax + by + c = 0 is

is

$$= \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

Similarly, perpendicular distance from point $(\sqrt{12^2 + 12^2})$ is

$$(-\sqrt{a^2 - b^2}, 0)^{1S}$$

$$d_2 = \left| \frac{-b \cos \alpha \sqrt{a^2 - b^2} + 0 - ab}{\sqrt{b^2 \cos^2 \alpha + a^2 \sin^2 \alpha}} \right|$$
By product of d₁ and d₂, we get

$$= \frac{(b\cos\alpha\sqrt{a^2 - b^2} - ab)(b\cos\alpha\sqrt{a^2 - b^2} + ab)}{(\sqrt{b^2\cos^2\alpha + a^2\sin^2\alpha})(\sqrt{b^2\cos^2\alpha + a^2\sin^2\alpha})}$$
$$= \frac{b^2\cos^2\alpha(a^2 - b^2) - a^2b^2}{b^2\cos^2\alpha + a^2\sin^2\alpha}$$
$$= \frac{a^2b^2\cos^2\alpha - b^4\cos^2\alpha - a^2b^2}{b^2\cos^2\alpha + a^2\sin^2\alpha}$$
$$= \frac{a^2b^2(\cos^2\alpha - 1) - b^4\cos^2\alpha}{b^2\cos^2\alpha + a^2\sin^2\alpha}$$

 $= \frac{-b^2[a^2 \sin^2 \alpha + b^2 \cos^2 \alpha]}{b^2 \cos^2 \alpha + a^2 \sin^2 \alpha}$ Hence, product of the perpendiculars = $-b^2 = b^2$ (since, distance is positive) (a) $y - \sqrt{3}x - 5 = 0$ 8. (i) $\sqrt{3}v - x + 6 = 0$ (ii) y = mx + c11. From (i) and from (ii) $y = \sqrt{3}x + 5 \qquad \qquad y = \frac{x}{\sqrt{3}} - \frac{6}{\sqrt{3}}$ $m_1 = \sqrt{3}$ $m_2 = \frac{1}{\sqrt{3}}$ Angle between two lines $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{1 + \sqrt{3} \frac{1}{\sqrt{2}}} \right| = \frac{1}{\sqrt{3}}$ $= \tan 30^{\circ}$ $\theta = 30^{\circ}$ 12. 9. (a) Equation of given line is $(y-3) = \left(\frac{3-1}{2-1}\right)(x-2)$ $\Rightarrow y = 2x - 1$ Slope $m_1 = 2$ and slope of perpendicular = $-\frac{1}{2}$ The perpendicular is also bisector, therefore it will pass through its mid-point. \Rightarrow Coordinates of mid-point of given line are : $\left(\frac{2+1}{2},\frac{3+1}{2}\right)$ or $\left(\frac{3}{2},2\right)$. So, equation of perpendicular bisector is : $(y-2) = -\frac{1}{2} \left(x - \frac{3}{2} \right)$ $\Rightarrow 2x + 4y - 11 = 0$ 10. (a) Given lines, $\sqrt{2}x + \sqrt{3}y = 1$ and $\sqrt{3}x + \sqrt{2}y = 2$ We know, Slope (m) = $\frac{-a}{b}$ \therefore Slope of $\sqrt{2}x + \sqrt{3}y = 1$ is $m_1 = \frac{-\sqrt{2}}{\sqrt{3}}$ Slope of $\sqrt{3}x + \sqrt{2}y = 2$ is $m_2 = \frac{-\sqrt{3}}{\sqrt{2}}$ $\tan \theta = \left| \frac{\mathbf{m}_1 - \mathbf{m}_1}{1 + \mathbf{m}_1 \mathbf{m}_2} \right| = \left| \frac{\frac{-\sqrt{3}}{\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{3}}}{1 + \left(\frac{-\sqrt{2}}{\mathcal{K}}\right) \left(\frac{-\sqrt{3}}{\sqrt{2}}\right)} \right|$

$$= \left| \frac{-3+2}{\sqrt{6}} \right| = \left| \frac{-1}{2\sqrt{6}} \right| = \frac{1}{2\sqrt{6}}$$
$$\therefore \theta = \tan^{-1} \left(\frac{1}{2\sqrt{6}} \right)$$
(*) The slope of line x + y - 3 =

. (*) The slope of line x + y - 3 = 0 is -1The slope of line x - y + 3 = 0 is 1 So, these are perpendicular lines and so angle between them is 90°. $\therefore \alpha = 90^{\circ}$

> The slope of line $x - \sqrt{3}y + 2\sqrt{3} = 0$ is $m_1 = \frac{1}{\sqrt{3}}$ The slope of line $\sqrt{3}x - y + 1 = 0$ is $m_2 = \sqrt{3}$.

$$\therefore \tan \beta = \left| \frac{\sqrt{3} - \frac{1}{\sqrt{3}}}{1 + \left(\sqrt{3}\right) \left(\frac{1}{\sqrt{3}}\right)} \right| = \left| \frac{2}{2\sqrt{3}} \right| = \frac{1}{\sqrt{3}} \therefore \beta = 30^{\circ}$$

(b) Given straight lines are $(m^2 - mn) y = (mn + n^2)x + n^3$...(1) $(mn + m^2) y = (mn - n^2)x + m^3$...(2) (1) $\Rightarrow y = \frac{(mn + n^2)}{m^2 - mn}x + \frac{n^3}{m^2 - mn}$ So, slope of (1), $m_1 = \frac{mn + n^2}{m^2 - mn}$ (2) $\Rightarrow y = \frac{mn - n^2}{mn + m^2}x + \frac{m^3}{mn + m^2}$ So, slope of (2), $m_2 = \frac{mn - n^2}{mn + m^2}$ If α is the angle between lines (1), (2), then $\tan \alpha = \frac{m_1 - m_2}{1 + m_1 m_2}$ $= \frac{\frac{mn + n^2}{n^2 - mn} - \frac{mn - n^2}{mn + m^2}}{1 + (\frac{mn + n^2}{m^2 - mn})(\frac{mn - n^2}{mn + m^2})}$ $= \frac{(mn + n^2)(mn + m^2) - (mn - n^2)(m^2 - mn)}{(m^2 - mn)(mn + m^2) + (mn + n^2)(mn - n^2)}$ $= \frac{m^2n^2 + m^3n + mn^3 + m^2n^2 - m^3n + m^2n^2 - mn^3 + mn^3 - n^4}{m^3 + m^4 - m^2n^2 - m^3 + m^2n^2 - mn^3 + mn^3 - n^4}$

 $\tan \alpha = \frac{4m^2n^2}{m^4 n^4} \Rightarrow \alpha = \tan^{-1} \left(\frac{4m^2n^2}{m^4 n^4} \right)$

Circles

- An equilateral triangle is inscribed in the circle $x^2 + y^2 = a^2$ 1. with one of the vertices at (a, 0). What is the equation of the side opposite to this vertex ? [2006-I]
 - (a) 2x a = 0(b) x + a = 0
 - (d) 3x 2a = 0(c) 2x+a=0
- What is the radius of the circle passing through the points 2. (0, 0), (a, 0) and (0, b)? [2006-I]
 - (a) $\sqrt{a^2 b^2}$

(c)
$$\frac{1}{2}\sqrt{a^2+b^2}$$
 (d) $2\sqrt{a^2+b}$

- 3. If two circles A, B of equal radii pass through the centres of each other, then what is the ratio of the length of the smaller arc to the circumference of the circle A cut off by the circle **B**? [2006-II]
 - $\frac{1}{2}$ (b) (a) (d) $\frac{2}{3}$ (c)
- If the extremities of a diameter of a circle are (0, 0) and 4. $(a^3, 1/a^3)$, then the circle passes through which one of the following points? [2006-II]

(a)
$$(a^2, 1/a^2)$$
 (b) $(a, 1/a)$
(c) $(a, -a)$ (d) $(1/a, a)$

5. What is the length of the intercept made on the x-axis by the circle $x^2 + y^2 + 2gx + 2fy + c = 0$? [2006-11]

(a)
$$\frac{\sqrt{(g^2 - c)}}{2}$$
 (b) $\frac{\sqrt{(g^2 - 4c)}}{2}$
(c) $2\sqrt{(g^2 - 4c)}$ (d) $2\sqrt{(g^2 - c)}$

- Under which one of the following conditions does the circle 6. $x^2 + y^2 + 2gx + 2fy + c = 0$ meet the x-axis in two points on opposite sides of the origin? [2007-I]
 - (a) c > 0(b) c < 0
 - (c) c = 0(d) c < 0

- 7. What is the equation of a circle, whose centre lies on the x-axis at a distance h from the origin and the circle passes through the origin? [2007-I]

 - (d) $x^2 + y^2 h^2 = 0$
 - Consider a circle of radius R. What is the length of a chord which subtends an angle θ at the centre? [2007-II]

(a)
$$2R \sin\left(\frac{\theta}{2}\right)$$
 (b) $2R \sin \theta$
(c) $2R \tan\left(\frac{\theta}{2}\right)$ (d) $2R \tan \theta$

What is the equation of circle which touches the lines x = 0, [2007-II]

- y = 0 and x = 2? (a) $x^2 + y^2 + 2x + 2y + 1 = 0$
- (b) $x^2 + y^2 4x 4y + 1 = 0$

(c)
$$x^2 + y^2 - 2x - 2y + 1 = 0$$

(d) None of these

9.

Equation of a circle passing through origin is $x^2 + y^2 - 6x$ 10. + 2y = 0. What is the equation of one of its diameters?

[2008-I]

(a) x + 3y = 0(b) x + y = 0(c)

c)
$$x = y$$
 (d) $3x + y = 0$

- Point (1, 2) relative to the circle $x^2 + y^2 + 4x 2y 4 = 0$ is a/ 11. [2008-1] an
 - (a) exterior point
 - (b) interior point, but not centre
 - (c) boundary point
 - (d) centre
- If the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ (c > 0) touches the y-12. axis, then which one of the following is correct?

[2008-I]

- (a) $g = -\sqrt{c}$ only (b) $g = \pm\sqrt{c}$
- (c) $f = \sqrt{c}$ only (d) $f = \pm \sqrt{c}$

- (a) $x^2 + y^2 2hx = 0$
- (b) $x^2 + y^2 2hx + h^2 = 0$ $v^2 \pm v^2 \pm 2hx$ 0 =

(c)
$$x^2 + y^2 + 2hxy = 0$$

(b)
$$\sqrt{a^2 + b^2}$$
 8.

- 13. The equation of the circle which touches the axes at a distance 5 from the origin is $y^2 + x^2 2\alpha x 2\alpha y + \alpha^2 = 0$. What is the value of α ? [2008-II] (a) 4 (b) 5
 - (c) 6 (d) 7
- 14. ABC is an equilateral triangle inscribed in a circle of centre O and radius 5 cm. Let the diameter through C meet the circle again at D. [2008-II]

Assertion (A): $AD \cdot BD < OB \cdot OC$

Reason (R): $2(AD^2 + BD^2) = CD^2 = 100$ sq cm

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is not the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- 15. If x-axis is tangent to the circle $x^2 + y^2 + 2gx + 2fy + k = 0$, then which one of the following is correct? [2009-I]
 - (a) $g^2 = k$ (b) $g^2 = f$ (c) $f^2 = k$ (d) $f^2 = g$
 - (c) $J^{-} = k$ (d) $J^{-} = \xi$
- 16. The circle $x^2 + y^2 + 4x 4y + 4 = 0$ touches [2009-II]
 - (a) Only the *x*-axis (b) Only the *y*-axis
 - (c) Both the axes (d) Neither of the axes
- 17. Consider the following statements in respect of circles $x^2 + y^2 - 2x - 2y = 0$ and $x^2 + y^2 = 1$ [2010-1]
 - 1. The radius of the first circle is twice that of the second circle.
 - 2. Both the circles pass through the origin.

Which of the statements given above is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 18. What is the equation to circle which touches both the axes and has centre on the line x + y = 4? [2010-II]
 - (a) $x^2 + y^2 4x + 4y + 4 = 0$
 - (b) $x^2 + y^2 4x 4y + 4 = 0$
 - (c) $x^2 + y^2 + 4x 4y 4 = 0$
 - (d) $x^2 + y^2 + 4x + 4y 4 = 0$
- 19. Under which of the following conditions does a general second degree equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ ($a \neq 0$) represents a circle? [2010-II]
 - (a) h = g, a = b
 - (b) h = g = f, a = b
 - (c) h = 0, a = b
 - (d) $h=0, g^2+f^2-c=a+b$
- 20. For the equation [2011-I] $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$

where $a \neq 0$, to re	present a circle,	the condition will be
--------------------------	-------------------	-----------------------

- (a) a = b and c = 0 (b) f = g and h = 0
- (c) a = b and h = 0 (d) f = g and c = 0
- 21. What is the radius of the circle touching x-axis at (3, 0) and y-axis at (0, 3)? [2011-II]
 - (a) 3 units (b) 4 units
 - (c) 5 units (d) 6 units
- 22. Which one of the following points lies inside a circle of radius 6 and centre at (3, 5)? [2013-1]
 - (a) (-2, -1) (b) (0, 1)
 - (c) (-1, -2) (d) (2, -1)
- 23. The radius of the circle $x^2 + y^2 + x + c = 0$ passing through the origin is [2013-II]

(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{2}$
(c) 1 (d) 2

DIRECTIONS (Qs. 24-25): For the next two (02) items that follow: Consider the circles $x^2 + y^2 + 2ax + c = 0$ and $x^2 + y^2 + 2by + c = 0$. [2014-II]

24. What is the distance between the centres of the two circles?

(a)
$$\sqrt{a^2 + b^2}$$
 (b) $a^2 + b^2$
(c) $a + b$ (d) $2(a + b)$

25. The two circles touch each other if

(a)
$$c = \sqrt{a^2 + b^2}$$
 (b) $\frac{1}{c} = \frac{1}{a^2} + \frac{1}{b^2}$

(c)
$$c = \frac{1}{a^2} + \frac{1}{b^2}$$
 (d) $c = \frac{1}{a^2 + b^2}$

- 26. A straight line x = y + 2 touches the circle $4(x^2 + y^2) = r^2$. The value of r is [2015-II]
 - (a) $\sqrt{2}$ (b) $2\sqrt{2}$ (c) 2 (d) 1
- 27. If the centre of the circle passing through the origin is (3, 4), then the intercepts cut off by the circle on x-axis and y-axis respectively are [2015-II]
 - (a) 3 unit and 4 unit (b) 6 unit and 4 unit
 - (c) 3 unit and 8 unit (d) 6 unit and 8 unit
- 28. If a circle of radius b units with centre at (0, b) touches the
 - line $y = x \sqrt{2}$, then what is the value of b? [2016-I]

(a)
$$2+\sqrt{2}$$
 (b) $2-\sqrt{2}$
(c) $2\sqrt{2}$ (d) $\sqrt{2}$

DIRECTIONS (Qs. 29-30): For the next two (2) items that follow:

Consider the two circles $(x - 1)^2 + (y - 3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0$ [2016-1] 29. What is the distance between the centres of the two circles?

м-166

a)	5 units	(b) 6 units	
c)	8 units	(d) 10 units	

30. If the circles intersect at two distinct points, then which one of the following is correct?

(a)	r = 1	(b) $1 < r < 2$
(c)	r=2	(d) $2 < r < 8$

DIRECTIONS (Qs. 31-32): For the next two (2) items that follow:

Consider a circle passing through the origin and the points (a, b)and (-b, -a). [2016-I]

31. On which line does the centre of the circle lie?

(a) x+y=0 (b) x-y=0(c) x+y=a+b (d) $x-y=a^{2}$

- (c) x + y = a + b (d) $x y = a^2 b^2$
- 32. What is the sum of the squares of the intercepts cut off by the circle on the axes?

(a)
$$\left(\frac{a^2 + b^2}{a^2 - b^2}\right)^2$$
 (b) $2\left(\frac{a^2 + b^2}{a - b}\right)^2$
(c) $4\left(\frac{a^2 + b^2}{a - b}\right)^2$ (d) None of the above

- 33. What is the radius of the circle passing through the point (2, 4) and having centre at the intersection of the lines x y = 4 and 2x + 3y + 7 = 0? [2016-II]
 (a) 3 units
 (b) 5 units
 - (c) $3\sqrt{3}$ units (d) $5\sqrt{2}$ units
- 34. The two circles $x^2 + y^2 = r^2$ and $x^2 + y^2 10x + 16 = 0$ intersect at two distinct points. Then which one of the following is correct? [2017-1] (a) 2 < r < 8 (b) r = 2 or r = 8

(c) r < 2 (d) r > 2

35. What is the equation of the circle which passes through the points (3, -2) and (-2, 0) and having its centre on the line 2x - y - 3 = 0? [2017-1] (a) $x^2 + y^2 + 3x + 2 = 0$

(b)
$$x^2 + y^2 + 3x + 12y + 2 = 0$$

NDA Topicwise Solved Papers - MATHEMATICS

(c)
$$x^2 + y^2 + 2x = 0$$

- (d) $x^2 + y^2 = 5$
- 36. The equation of the circle which passes through the points (1, 0), (0, -6) and (3, 4) is [2017-II] (a) $4x^2 + 4y^2 + 142x + 47y + 140 = 0$
 - (b) $4x^2 + 4y^2 142x 47y + 138 = 0$
 - (c) $4x^2 + 4y^2 142x + 47y + 138 = 0$
 - (d) $4x^2 + 4y^2 + 150x 49y + 138 = 0$
- 37. The equation of a circle whose end points of a diameter are (x_1, y_1) and (x_2, y_2) is [2018-II]
 - (a) $(x-x_1)(x-x_2) + (y-y_1)(y-y_2) = x^2 + y^2$

(b)
$$(x-x_1)^2 + (y-y_1)^2 = x_2y_2$$

(c) $x^2 + y^2 + 2x_1x_2 + 2y_1y_2 = 0$

(d)
$$(x-x_1)(x-x_2)+(y-y_1)(y-y_2)=0$$

38. If y-axis touches the circle

 $x^{2} + y^{2} + gx + fy + \frac{c}{4} = 0$, then the normal at this point intersects the circle at the point [2018-II]

(a) $\left(-\frac{g}{2}, -\frac{f}{2}\right)$ (b) $\left(-g, -\frac{f}{2}\right)$ (c) $\left(-\frac{g}{2}, f\right)$ (d) (-g, -f)

39. A circle is drawn on the chord of a circle $x^2 + y^2 = a^2$ as diameter. The chord lies on the line x + y = a. What is the equation of the circle ? [2019-I] (a) $x^2 + y^2 - ax - ay + a^2 = 0$ (b) $x^2 + y^2 - ax - ay = 0$ (c) $x^2 + y^2 + ax + ay = 0$ (d) $x^2 + y^2 + ax + ay - 2a^2 = 0$ 40. The circle $x^2 + y^2 + 4x - 7y + 12 = 0$, cuts an intercept on yaxis equal to [2019-I] (a) 1 (b) 3

(d) 7

	ANSWER KEY																		
1	(c)	5	(d)	9	(c)	13	(b)	17	(d)	21	(a)	25	(b)	29	(a)	33	(d)	37	(d)
2	(c)	6	(b)	10	(a)	14	(d)	18	(b)	22	(b)	26	(b)	30	(d)	34	(a)	38	(b)
3	(c)	7	(a)	11	(a)	15	(a)	19	(c)	23	(b)	27	(d)	31	(a)	35	(b)	39	(b)
4	(d)	8	(a)	12	(d)	16	(c)	20	(c)	24	(a)	28	(a)	32	(b)	36	(c)	40	(a)

(c) 4

HINTS & SOLUTIONS

5.

1. (c) Since the equilateral triangle is inscribed in the circle with centre at the origin, centroid lies on the origin.

So,
$$\frac{AO}{OD} = \frac{2}{1}$$

and
$$OD = \frac{1}{2}AO = \frac{a}{2}$$

So, other vertices of triangle have coordinates,

$$\left(-\frac{a}{2},\frac{\sqrt{3a}}{2}\right)$$
 and $\left[-\frac{a}{2},-\frac{\sqrt{3}}{2}a\right]$

: Equation of line BC is :

$$x = -\frac{a}{2}$$

$$\Rightarrow 2x + a = 0$$

2.

(c) Let (h, k) be the centre of the circle.Since, circle is passing through (0, 0), (a, 0) and (0, b), distance between centre and these points would be same and equal to radius.

Hence, $h^2 + k^2 = (h - a)^2 + k^2 = h^2 + (k - b)^2$ $\Rightarrow h^2 + k^2 = h^2 + k^2 + a^2 - 2ah = h^2 + k^2 + b^2 - 2bk$ $\Rightarrow h^2 + k^2 = h^2 + k^2 + a^2 - 2ah$ $\Rightarrow h = a^2$

$$\Rightarrow 11 - \frac{1}{2}$$

Similarly, $k = \frac{b}{2}$

: Radius of circle =
$$\sqrt{h^2 + k^2} = \frac{1}{2}\sqrt{a^2 + b^2}$$

3. (c) When two circles A and B of equal radii pass through the centres of each other, the angle made by arc of B at

the centre of B is 90°.

So, length of small arc of B =
$$\frac{2\pi r 90^{\circ}}{360^{\circ}} = \frac{\pi r}{2}$$

Hence, circumference of A cut off by the circle B

$$= 2\pi r - \frac{\pi r}{2} = \frac{3\pi r}{2}$$

 $\therefore \quad \text{Required ratio} = \frac{\pi r / 2}{3\pi r / 2} = \frac{1}{3}$

$$(0, 0) \text{ and } \left(a^{3}, \frac{1}{a^{3}}\right), \text{ equation of circle is}$$

$$(x-0) (x-a^{3}) + (y-0) \left(y - \frac{1}{a^{3}}\right) = 0$$

$$\Rightarrow x^{2} - xa^{3} + y^{2} - \frac{y}{a^{3}} = 0$$

$$\Rightarrow x^{2} + y^{2} - xa^{3} - \frac{y}{a^{3}} = 0$$

Putting
$$x = \frac{1}{a}$$
 and $y = a$, the equation is satisfied.

Thus, the circle passes through the point $\left(\frac{1}{a}, a\right)$.

(d) Let the circle $S \equiv x^2 + y^2 + 2gx + 2fy + c = 0$ cut x-axis at two points A, and B at x = a and x = b. Let C be the centre and AB the chord.

Length of chord AB = b - a. Perpendicular from centre c on chord bisect this chord

at point M. Radius $r = \sqrt{g^2 + f^2 - c}$ also radius AC = $r = \sqrt{AM^2 + CM^2}$ $AM = \frac{AB}{2} = \frac{b-a}{2}$

8.

9.

10.

(a) Let there be a circle of radius R and chord AB.

$$OD \perp AB \text{ and } AD = DB.$$

 $and AD = 2AD$
 $\angle AOB = \theta$
 $\Rightarrow \angle AOD = \frac{\theta}{2}$
In $\triangle AOD$,
 $\sin \frac{\theta}{2} = \frac{AD}{OA}$
 $\sin \frac{\theta}{2} = \frac{AD}{R}$
 $AD = R \sin \frac{\theta}{2}$

- Length of chord AB = 2A D = 2R $\sin \frac{\theta}{2}$
- (c) Refer to the figure it is clear that coordinates of centre of circle are (1, 1) and diameter of circle = 2 and hence radius of circle is 1.

 \therefore Equation of circle with centre (1, 1) and radius = 1 is $(x-1)^{2} + (y-1)^{2} = 1$ $\Rightarrow x^{2} - 2x + 1 + x^{2}$

$$\Rightarrow x^2 - 2x + 1 + y^2 - 2y + 1 = 1$$

$$\Rightarrow x^2 + y^2 - 2x - 2y + 1 = 0$$

(a) Equation of the given circle is:

$$x^2 + y^2 - 6x + 2y = 0$$

$$\Rightarrow x (x - 6) + y (y + 2) = 0$$

or, $(x - 0) (x - 6) + (y - 0) (y + 2) = 0$

This is the equation of circle in diameter form. Here, end points of diameter are (0, 0) and (6, -2). Hence, equation of diameter is a line which passes through the points (0, 0) and (6, -2) which is

$$(y-0) = \frac{-2}{6} (x-0) \Longrightarrow x + 3y = 0$$

11. (a) We put the co-ordinates of the given point in the given equation of circle

 $x^2 + y^2 + 4x - 2y - 4 = 0$

- At (1, 2)
- $(1)^{2}+(2)^{2}+4(1)-2(2)-4$
- = 1 + 4 + 4 4 4 = 1 > 0
- Point (1, 2) lies out side the circle i.e, an exterior \Rightarrow point.

So,
$$r = \sqrt{\left(\frac{b-a}{2}\right)^2 + (-f)^2}$$

Thus, $\sqrt{g^2 + f^2 - c} = \sqrt{\left(\frac{b-a}{2}\right)^2 + f^2}$
or $g^2 + f^2 - c = \left(\frac{b-a}{2}\right)^2 + f^2$
or $\left(\frac{b-a}{2}\right)^2 = g^2 - c$
 $\frac{b-a}{2} = \sqrt{g^2 - c}$

Hence, $b - a = AB = 2\sqrt{g^2 - c}$ The length of the intercept made on the x-axis by the

circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is $2\sqrt{g^2 - c}$.

(b) For a circle to meet x-axis in two points on the opposite 6. side of the origin its radius r, should be more than the distance of its centre from the origin. Co-ordinate of centre of the circle $x^2 + y^2 + 2gx + 2fy$ +c=0 is (-g, -f):

In the figure shown,

OQ = OP = r, and distance of centre C, from origin, O is CO

$$r > \sqrt{OC} \text{ i.e. } r > \sqrt{(-g)^2 + (-f)^2}$$

or, $\sqrt{(-g)^2 + (-f)^2 - c} > \sqrt{(-g)^2 + (-f)^2}$
or, $g^2 + f^2 - c > g^2 + f^2$
or, $-c > 0$
or, $c < 0$

7. (a) Centre of the circle is (h, 0) and circle passes through the origin. In the general equation of circle: $x^2 + y^2 + 2gx + 2fx + c = 0$ g = -h and f = 0so, $x^2 + y^2 - 2hx + 0 + c$ = $x^2 + y^2 - 2hx + c = 0$...(i) since circle passes through origin (0, 0) $0 + 0 - 0 + c = 0 \implies c = 0$

and equation (i) radius to $x^2 + y^2 - 2hx = 0$

13. (b) Coordinates of the centre of given circle = (α, α) and

Then, other root will always real.

(A) : Consider AD·BD < OB·OC
Now, OA = 5 cm (Radius), OB = 5 cm (Radius) and OC = 5 cm (Radius)

Since, $\triangle OAD$ and $\triangle OBD$

are congruent by SAS therefore

$$AD = OA = 5 \text{ cm}$$

and BD = OB = 5 cm

Thus,
$$AD \cdot BD = 5 \times 5 = 25$$

and $OB \cdot OC = 5 \times 5 = 25$

Thus, we have

 $AD \cdot BD = 25 = OB \cdot OC$

Now (R):
$$2(AD^2 + BD^2)$$

= $2[25 + 25] = 100$
and $CD^2 = (10)^2 = 100$

Thus,
$$2(AD^2 + BD^2) = CD^2 = 100$$
 sq. cm

Hence, (A) is false and (R) is true.

15. (a) Length of intercept on the x-axis made by the circle

$$x^{2} + y^{2} + 2gx + 2fy + k = 0$$
 is $2\sqrt{g^{2} - k}$

Since, circle touches the x-axis therefore intercept on x-axis=0

16. (c) Given equation of circle is $x^{2} + 4x + 4 + y^{2} - 4y = 0$

Add 4 on both side,

$$x^{2} + 4x + 4 + y^{2} - 4y + 4 = 0 + 4$$

$$\Rightarrow (x+2)^2 + (y-2)^2 = 2^2$$

Here, we observe that the values of centre and radius are same.

Hence, it touches both the axes.

17. (d) The equation of first circle is $x^2 + y^2 - 2x - 2y = 0$.

Radius
$$= \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$$

and equation of second circle is $x^2 + y^2 = 1$.

Radius = 1

18.

From above it is clear that the radius of first circle is not twice that of second circle.

: Statement 1 is not correct.

Also, first circle passes through the origin while second circle does not pass through the origin.

Hence, neither 1 nor 2 statement is correct.

(b) The equation of circle, which touches both the axes, is given by

$$x^2 + y^2 - 2rx - 2ry + r^2 = 0$$
(i)

Now, the centre (r, r) of this circle lies on the line

$$x+y=4$$

- $r+r=4 \Longrightarrow r=2$
- $\therefore \quad \text{Put value of } r \text{ in Eq. (i), we get} \\ x^2 + y^2 4x 4y + 4 = 0$

which is required equation of circle,

- 19. (c) The given equation represents a circle, if a = b, h = 0.
- 20. (c) The equation $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$ represents a circle, if a = b and h = 0.
- 21. (a) Since, circle is touching x-axis at (3, 0) and y-axis at (0, 3) therefore radius = 3 unit

 $c^2 = a^2 b^2 - a^2 c - b^2 c + c^2$

(b) Radius of circle = 6, centre = (3, 5)22. : Equation of circle is $S \equiv (x-3)^2 + (y-5)^2 = (6)^2$ \Rightarrow S = (x-3)² + (y-5)² - 36 Now, consider all the four options. (a)(-2,-1)Put it in S $S = (-2-3)^2 + (-1-5)^2 - 36 = 25 + 36 - 36 = 25 > 0$ \Rightarrow (-2, -1) is outside the circle. (b) (0,1) $S \equiv (0-3)^2 + (1-5)^2 - 36$ =9+16-36=25-36=-11 < 0Hence, (0, 1) lies inside a circle.

(b) Circle is passing through origin then C = 0Now, $x^2 + y^2 + x = 0$ 23.

$$x^{2} + x + \frac{1}{4} - \frac{1}{4} + y^{2} = 0$$
$$\left(x + \frac{1}{2}\right)^{2} + y^{2} = \left(\frac{1}{2}\right)^{2}$$

 \therefore Radius of given circle is $\frac{1}{2}$ units

(a) Equations of circles are $x^2 + y^2 + 2ax + c = 0$ and $x^2 + y^2 + 2by + c = 0$ 24. Since, the centres of two circles are (-a, 0) and (0, -b)2 *.*...

. Distance between two centres =
$$\sqrt{a^2 + b^2}$$

(b) Two circles touch each other, iff distance between two 25. centres = Sum of radius of two circles

$$\sqrt{a^{2} + b^{2}} = \sqrt{a^{2} - c} + \sqrt{b^{2} - c}$$
On squaring both sides, we get
$$b = \frac{b + \sqrt{2}}{\sqrt{2}}$$

$$a^{2} + b^{2} = a^{2} - c + b^{2} - c + 2\sqrt{(a^{2} - c)(b^{2} - c)}$$

$$\Rightarrow c = \sqrt{(a^{2} - c)(b^{2} - c)}$$
Again, squaring both sides, we get
$$\Rightarrow b = \frac{b + \sqrt{2}}{\sqrt{2}}$$

$$\Rightarrow a^{2}b^{2} = (a^{2} + b^{2}) c \Rightarrow \frac{1}{c} = \frac{1}{a^{2}} + \frac{1}{b^{2}}$$
26. (b) $\because 4(x^{2} + y^{2}) = r^{2}$
 $\Rightarrow x^{2} + y^{2} = \left(\frac{r}{2}\right)^{2}$
Center (0, 0) and radius $\frac{r}{2}$
Eq. of line is ; $x - y - 2 = 0$
 \because Line touches the circle.
 $\therefore \frac{r}{2} = \frac{|0 - 0 - 2|}{\sqrt{(1)^{2} + (-1)^{2}}}$
 $r = 2\sqrt{2}$
27. (d) Equation of circle having radius r and centre (3, 4) is
 $= (x - 3)^{2} + (y - 4)^{2} = r^{2}$
if it is passing through (0, 0)
 $\therefore (0 - 3)^{2} + (0 - 4)^{2} = r^{2}$
 $\Rightarrow r^{2} = 25$
equation of circle is
 $(x - 3)^{2} + (y - 4)^{2} = 25$
putting $y = 0$
 $\therefore x = 6$ unit = interception x-axis

y = 8 unit 28. Distance from the centre to the point of line which (a) touches circle is OM = radius

intercept on y axis (putting x = 0) is

$$y = x - \sqrt{2} \text{ or } x - y - \sqrt{2} = 0$$

$$0$$

$$(0, b)$$

$$r = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

$$x_0 = 0$$

$$Y_0 = b$$

$$b = \frac{|1(0) + (-1)(b) - \sqrt{2}|}{\sqrt{(1)^2 + (-1)^2}}$$

$$b = \frac{b + \sqrt{2}}{\sqrt{2}}$$

$$(\sqrt{2} - 1)b = \sqrt{2}$$

$$\Rightarrow \boxed{b = 2 + \sqrt{2}}$$

Circles Sol. (29-30) : Given equation of circles $(x-1)^2 + (y-3)^2 = r^2$ $(h_1, k_1) \equiv \text{coordinates of centre} \equiv (1, 3)$ $\therefore x^2 + y^2 - 8x + 2y + 8 = 0$ $\Rightarrow (x-4)^{2} + (y+1)^{2} = (3)^{2}$ $(h_2, k_2) \equiv \text{coordinates of centre} \equiv (4, -1)$ 29. (a) Distance between centres of two circles $d = \sqrt{(h_1 - h_2)^2 + (k_1 - k_2)^2}$ $\Rightarrow d = \sqrt{(1-4)^2 + (3+1)^2}$ $\Rightarrow d = \sqrt{25}$ d = 5 units 30. (d) Radius of circle one $= r_1 = r$ Radius of circle two $= r_2 = 3$ ·· Circle intersects at two points so distance between circle is $d < r_1 + r_2$ 5 < r + 3r > 2 also $r \le 5 + 2$. Hence, 2 < r < 8(a) Suppose; $x^2 + y^2 + 2gx + 2fy + c = 0$ is the eq. of the 31. cir Si (0.

circle.
Since; it passes through

$$(0, 0); (a, b) & (-b, -a)$$

 $\therefore C = 0$
 $a^2 + b^2 + 2ga + 2fb = 0$...(1)
 $\therefore a^2 + b^2 - 2gb - 2fb = 0$...(2)
on solving:
 $g = -f$
 \therefore centre $\equiv (-g, -f)$ or $(+f, -f)$
 \therefore from options:

$$x + y = 0$$
 is the line which passes through $(f, -f)$

(b) The two intercepts are : -2g & -2f \therefore from eq (1) & (2) we get;

.... a² *.*...

...

32.

33.

$$g = \frac{-1}{2} \left(\frac{a^2 + b^2}{a - b} \right) \& f = \frac{1}{2} \left(\frac{a^2 + b^2}{a - b} \right)$$

is sum of squares of intercepts

$$= \left(\frac{a^2 + b^2}{a - b}\right)^2 + \left(\frac{a^2 + b^2}{a - b}\right)^2$$
$$= 2\left[\frac{a^2 + b^2}{a - b}\right]^2$$

(d) We have x-y=4 & 2x+3y+7=0On solving, we get, x = 1 & y = -3

(these are coordinates of centre of the circle)

- \Rightarrow radius = $\sqrt{(2-1)^2 + (4+3)^2} = 5\sqrt{2}$
- 34. (a) For the circle, $x^2 + y^2 = r^2$, centre (0, 0) radius = r If the circle $x^2 + y^2 10x + 16 = 0$ is compared with general form $x^{2} + y^{2} + 2g + 2fy + c = 0$, we get 2g = -10, 2f = 0, c = 16 \Rightarrow g = -5, f = 0

$$\therefore \text{ centre} = (+5, 0)$$

radius =
$$\sqrt{g^2 + f^2 - c} = \sqrt{25 + 0 - 16} = \sqrt{9} = 3$$

Given, two circles intersect at two distinct points,

To interset at two points, r should be greater than 2 So, 2 < r < 8

35. (b) Given, centre of circle lies on line 2x - y - 3 = 0Let x = h2ł

$$2h - y - 3 = 0 \Longrightarrow y = 2n - 3$$

A
$$(3, -2)$$

O
(h, 2h - 3)
B $(-2, 0)$

$$\therefore \text{ centre of circle} = (h, 2h - 3)$$
We know, $OA = OB$

$$\Rightarrow (h - 3)^2 + (2h - 3 + 2)^2 = (h + 2)^2 + (2h - 3)^2$$

$$\Rightarrow h^2 - 6h + 9 + (2h - 1)^2 = h^2 + 4h + 4 + 4h^2 - 12h + 9$$

$$\Rightarrow \mu^2 - 6h + 9 + \mu^2 - 4h + 1$$

$$= \mu^2 + 4h + 4 + \mu^2 - 12h + 9$$

$$\Rightarrow -10h + 10 = -8h + 13$$

$$\Rightarrow -2h = 3 \Rightarrow h = \frac{-3}{2}$$

$$\therefore \text{ centre } = \left(\frac{-3}{2}, 2\left(\frac{-3}{2}\right) - 3\right) = \left(\frac{-3}{2}, -6\right)$$

$$\therefore \text{ radius} = (h + 2)^2 + (2h - 3)^2$$

$$= \left(\frac{-3}{2} + 2\right)^2 + \left[2\left(\frac{-3}{2}\right) - 3\right]^2 = \frac{1}{4} + 36$$

$$\therefore \text{ Function of circle}$$

: Equation of circle

$$\Rightarrow \left(x + \frac{3}{2}\right)^2 + (y+6)^2 = \frac{1}{4} + 36$$

$$\Rightarrow x^2 + y^2 + 3x + 12y + 2 = 0$$

(c) Let A = (1, 0), B = (0, -6), C = (3, 4)
Equation of AB is L : $\frac{y-0}{-6-0} = \frac{x-1}{0-1}$

$$\Rightarrow \frac{y}{-6} = \frac{x-1}{-1} \Rightarrow y = 6x - 6$$

$$\Rightarrow 6x - y - 6 = 0.$$

Equation of circle (c) with AB as diameter is $(x-1)(x-0) + (y-0)(y+6) = 0$

$$\Rightarrow x^2 - x + y^2 + 6y = 0.$$

The system of circle passing through the intersection
of the circle C and the line L is given by C + kL = 0

38.

(b)

The syste of the circle C and the line L is given by C + kL = 0

$$\Rightarrow x^2 - x + y^2 + 6y + k(6x - y - 6) = 0$$

This circle is passing through (3, 4)

$$\therefore (3)^2 - 3 + (4)^2 + 6(4) + k[6(3) - 4 - 6] = 0$$

$$\Rightarrow 9-3+16+24+k(18-10)=0$$

$$\Rightarrow 46 + 8k = 0 \Rightarrow 8k = -46 \Rightarrow k = \frac{-46}{8} = \frac{-23}{4}$$

: Equation of circle is

$$x^{2} - x + y^{2} + 6y + \left(\frac{-23}{4}\right)(6x - y - 6) = 0$$

$$\Rightarrow 4x^{2} - 4x + 4y^{2} + 24y - 138x + 23y + 138 = 0$$

$$\Rightarrow 4x^{2} + 4y^{2} - 142x + 47y + 138 = 0.$$

37. (d) Equation of circle is $(x-x_1)(x-x_2) + (y-y_1)(y-y_2) = 0$

► Normal $\frac{-g}{2}$ -f2 -g, (b) Given, equation of circle $\Rightarrow x^2 + y^2 = a^2$ 39. ...(1) Equation of chord $\Rightarrow x + y = a$...(2) $(1) \Longrightarrow x^2 + (a - x)^2 = a^2$ \Rightarrow x²+a²+x²-2ax = a² $\Rightarrow 2x^2 = 2ax$ $\Rightarrow x = 0, a$ When, x = 0, y = a and when x = a, y = 0. \therefore Points of intersection are (0, a) and (a, 0) : Equation of circle with chord as diameter is (x-0)(x-a)+(y-a)(y-0)=0(x - 0)(x - a) + y(y - a)(y - 0) = 0 $\Rightarrow x(x - a) + y(y - a) = 0$ $\Rightarrow x^2 - ax + y^2 - ay = 0$ $\Rightarrow x^2 + y^2 - ax - ay = 0$ (a) Given circle, $x^2 + y^2 + 4x - 7y + 12 = 0$ 40.

Comparing with general form of circle,
$$ax^2+by^2+2gx+2fy+c=0$$
,

$$f = \frac{-7}{2}$$
 and $c = 12$.
y - intercept = $2\sqrt{f^2 - c}$

$$= 2\sqrt{\left(\frac{-7}{2}\right)^2 - 12} = 2\sqrt{\frac{49}{4} - 12}$$
$$= 2\sqrt{\frac{49 - 48}{4}} = 2\left(\frac{1}{2}\right) = 1$$

36.

 $\Rightarrow | x +$

 \Rightarrow x²+y

1. If the latus rectum of an ellipse is equal to one half its minor axis, what is the eccentricity of the ellipse ?

Ellipse & Hyperbola

8.

9.

(a)
$$\frac{1}{2}$$
 (b) $\frac{\sqrt{3}}{2}$
(c) $\frac{3}{4}$ (d) $\frac{\sqrt{15}}{4}$ [2006-1]

- P(2, 2) is a point on the parabola $y^2 = 2x$ and A is its vertex. 2. Q is another point on the parabola such that PQ is perpendicular to AP. What is the length of PQ?
 - (b) $2\sqrt{2}$ (a) $\sqrt{2}$
 - (d) $6\sqrt{2}$ (c) $4\sqrt{2}$ [2006-I]
- The focal distance of a point on the parabola $y^2 = 12x$ is 4. 3. What is the abscissa of the point ? (a) 1 (b) -1

[2006-I] (c) $2\sqrt{3}$ (d) -2

- If (2, 0) is the vertex and the y-axis is the directrix of a 4. parabola, then where is its focus?
 - (a) (0,0)(b) (-2, 0)
 - (c) (4,0) (d) (-4, 0)[2006-I]
- 5. Which one of the following points lies outside the ellipse $(x^2 / a^2) + (y^2 / b^2) = 1$?

(a)
$$(a, 0)$$
 (b) $(0, b)$

- (c) (-a, 0)(d) (a, b) [2006-II]
- What is the equation of the parabola, whose vertex and 6. focus are on the x-axis at distance a and b from the origin respectively? (b > a > 0) [2007-I] (a) $y^2 = 8(b-a)(x-a)$ (b) $y^2 = 4(b+a)(x-a)$

(c)
$$y^2 = 4(b-a)(x+a)$$
 (d) $y^2 = 4(b-a)(x-a)$

7. If the eccentricity and length of latus rectum of a hyperbola are $\frac{\sqrt{13}}{3}$ and $\frac{10}{3}$ units respectively, then what is the length

of the transverse axis? [2007-I]

- (a) $\frac{7}{2}$ unit (b) 12 unit
- (c) $\frac{15}{2}$ unit (d) $\frac{15}{4}$ unit

In how many points do the ellipse $\frac{x^2}{4} + \frac{y^2}{8} = 1$ and the circle $x^2 + y^2 = 9$ intersect? [2007-II] (b) Two (a) One (c) Four (d) None of the above If the foci of the conics $\frac{x^2}{a^2} + \frac{y^2}{7} = 1$ and $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ were to coincide, then what is the value of a? [2007-II] (b) 3 (a) 2 (c) 4 (d) 16

10. Which one of the following is correct? The eccentricity of the conic

$$\frac{x^2}{a^2+\lambda} + \frac{y^2}{b^2+\lambda} = 1, (\lambda \ge 0)$$
 [2008-1]

- (a) increases with increase in λ
- (b) decreases with increase in λ
- (c) does not change with λ
- (d) None of the above

Consider the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (b > a). Then, which one 11. of the following is correct? [2008-11] (a) Real foci do not exist (b) Foci are $(\pm ae, 0)$ (c) Foci are $(\pm be, 0)$ (d) Foci are $(0, \pm be)$

Consider the parabolas $S_1 \equiv y^2 - 4ax = 0$ and 12.

$$S_2 \equiv y^2 - 4bx = 0. S_2 \text{ will contain } S_1, \text{ if } [2008-II]$$
(a) $a > b > 0$ (b) $b > a > 0$
(c) $a > 0, b < 0$ but $|b| > a$ (d) $a < 0, b > 0$ but $b > |a|$
13. Equation of the hyperbola with eccentricity 3/2 and foci at

(± 2, 0) is
$$5x^2 - 4y^2 = k^2$$
. What is the value of k? [2008-II]
(a) 4/3 (b) 3/4

(c) $(4/3)\sqrt{5}$ (d) $(3/4)\sqrt{5}$

14. What is the eccentricity of an ellipse, if its latusrectum is equal to one-half of its minor axis? [2009-I] (a) 1/4 (b) 1/2

(c)
$$\sqrt{3}/4$$
 (d) $\sqrt{3}/2$

м-174

NDA Topicwise Solved Papers - MATHEMATICS

15. What is the sum of focal radii of any point on an ellipse 24. A point P moves such that the difference of its [2009-1] equal to? distances from two given points (c, 0) and (-c, 0) is constant. (a) Length of latusrectum What is the locus of the point *P*? [2010-II] (b) Length of major-axis (a) Circle (b) Ellipse (c) Length of minor-axis (c) Hyperbola (d) Parabola (d) Length of semi-latusrectum If the latusrectum of an ellipse is equal to half its minor axis, 25. 16. What does an equation of the first degree containing one then what is its eccentricity? [2010-II] arbitrary parameter passing through a fixed point represent? (a) $\frac{1}{2}$ [2009-1] (b) $\sqrt{3}$ (a) Circle (b) Straight line (c) Parabola (d) Ellipse (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{\sqrt{2}}$ 17. The curve $y^2 = -4ax$ (a > 0) lies in [2009-II] (a) First and fourth quadrants What are the points of intersection of the curve 26. (b) First and second quadrants $4x^2 - 9y^2 = 1$ with its conjugate axis? [2011-1] (c) Second and third quadrants (a) (1/2, 0) and (-1/2, 0) (b) (0, 2) and (0, -2)(d) Third and fourth quadrants (c) (0, 3) and (0, -3)(d) No such point exists The ellipse $\frac{x^2}{169} + \frac{y^2}{25} = 1$ has the same eccentricity as the 27. What is the sum of the focal distances of a point of an 18. ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1?$ ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. What is the ratio of *a* to *b*? [2011-1] [2009-11] (a) *a* (b) *b* (a) 5/13 (b) 13/5 (d) 2b (c) 2a (c) 7/8 (d) 8/7 What is the area of the triangle formed by the lines joining 28. If (4,0) and (-4,0) are the foci of an ellipse and the semi-19. the vertex of the parabola $x^2 = 12y$ to the ends of the latus minor axis is 3, then the ellipse passes through which one of rectum? [2011-II] the following points? [2010-I] (a) 9 square units (b) 12 square units (a) (2,0) (b) (0,5) (c) 14 square units (d) 18 square units (c) (0,0) (d) (5,0) What is the focal distance of any point $P(x_1, y_1)$ on the 29. What is the locus of points, the difference of whose 20. parabola $v^2 = 4ax$? [2011-II] distances from two points being constant? [2010-I] (a) $x_1 + y_1$ (b) x_1y_1 (a) Pair of straight lines (b) An ellipse (c) ax_1 (d) $a + x_1$ (d) A parabola (c) A hyperbola If the latus rectum of an ellipse is equal to half of the minor 30. axis, then what is its eccentricity? [2012-I] A circle is drawn with the two foci of an ellipse $\frac{x^2}{z^2} + \frac{y^2}{z^2} = 1$ 21. $\frac{2}{\sqrt{3}}$ (b) $\frac{1}{\sqrt{3}}$ (a) at the end of the diameter. What is the equation of the circle? [2010-1] (a) $x^2 + y^2 = a^2 + b^2$ (b) $x^2 + y^2 = a^2 - b^2$ (c) $x^2 + y^2 = 2(a^2 + b^2)$ (d) $x^2 + y^2 = 2(a^2 - b^2)$ (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{1}{\sqrt{2}}$ (d) $x^2 + y^2 = 2(a^2 - b^2)$ 31. What is the eccentricity of the conic $4x^2 + 9y^2 = 144$? 22. What are the equations of the directrices of the ellipse $25x^2 + 16y^2 = 400?$ [2010-I] (a) $\frac{\sqrt{5}}{3}$ (b) $\frac{\sqrt{5}}{4}$ [2012-I] (b) $3y \pm 25 = 0$ (a) $3x \pm 25 = 0$ (d) $v \pm 25 = 0$ (c) $x \pm 15 = 0$ $\frac{3}{\sqrt{5}}$ (d) $\frac{2}{3}$ (c) 23. Let E be the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and C be the circle $x^2 + y^2 = 9$. Let P = (1, 2) and Q = (2, 1). Which one of the following is 32. The sum of the focal distances of a point on the ellipse correct? $\frac{x^2}{4} + \frac{y^2}{9} = 1$ is: (a) Q lies inside C but outside E [2012-II] (b) Q lies outside both C and E4 units (a) (b) 6 units (c) P lies inside both C and E8 units (d) 10 units (c) (d) *P* lies inside *C* but outside *E*.

CONICS – Parabola, Ellipse & Hyperbola

33. The eccentricity e of an ellipse satisfies the condition:

(a)
$$e < 0$$
 (b) $0 < e < 1$

(c)
$$e=1$$
 (d) $e>1$

34. The equation of the ellipse whose vertices are $(\pm 5, 0)$ and foci at $(\pm 4, 0)$ is [2013-1]

[2012-II]

(a)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
 (b) $\frac{x^2}{9} + \frac{y^2}{25} = 1$

- (c) $\frac{x^2}{16} + \frac{y^2}{25} = 1$ (d) $\frac{x^2}{25} + \frac{y^2}{16} = 1$ 35. The difference of focal distances of any point on a hyperbola
 - is equal to [2013-1]
 - (a) latus rectum (b) semi-transverse axis
 - (c) transverse axis (d) semi-latus rectum
- 36. The foci of the hyperbola $4x^2 9y^2 1 = 0$ are [2013-II]

(a)
$$(\pm\sqrt{13},0)$$
 (b) $\left(\pm\frac{\sqrt{13}}{6},0\right)$
(c) $\left(0,\pm\frac{\sqrt{13}}{6}\right)$ (d) None of these

- 37. The axis of the parabola $y^2 + 2x = 0$ is [2013-II] (a) x = 0 (b) y = 0
- (c) x=2
 (d) y=2
 38. What is the sum of the major and minor axes of the ellipse where accentricity is 4/5 and length of latur rectum is 14.4
- whose eccentricity is 4/5 and length of latus rectum is 14.4unit ?(a) 32 units(b) 48 units(c) 64 units(d) None of these

DIRECTIONS (Qs. 39-40): For the next two (02) items that follow:

Consider an ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
. [2014-1]

39. What is the area of the greatest rectangle that can be inscribed in the ellipse ?

(a)	ab	(b)	2 ab
(c)	ab/2	(d)	\sqrt{ab}

- 40. What is the area included between the ellipse and the greatest rectangle inscribed in the ellipse ?
 - (a) $ab(\pi-1)$ (b) $2ab(\pi-1)$
 - (c) $ab(\pi-2)$ (d) None of these
- 41. What is the equation of parabola whose verted is at (0, 0) and focus is at (0, -2)? [2014-I]
 - (a) $y^2 + 8x = 0$ (b) $y^2 - 8x = 0$ (c) $x^2 + 8y = 0$ (d) $x^2 - 8y = 0$
 - (c) $x^{-} + \delta y = 0$ (d) $x^{-} \delta y = 0$
- 42. What is the length of the latus rectum of the ellipse $25x^2 + 16y^2 = 400$? [2014-II]

(a) 25/2	(b)	25/4
----------	-----	------

(c) 16/5 (d) 32/5

folle	ow:				
The	line	2y = 3x + 12	cuts the para	abola 4	$y = 3x^2$. [2014-II]
43.	Whe	ere does the	line cut the	parabo	bla ?
	(a)	At (-2, 3)	only		
	(b)	At (4, 12)	only		
	(c)	At both (-2	2, 3) and (4,	12)	
	(d)	Neither at	(-2, 3) nor (4	1, 12)	
44.	Wha	at is the area	enclosed by	y the pa	arabola and the line?
	(a)	27 square	unit	(b)	36 square unit
	(c)	48 square	unit	(d)	54 square unit
45.	Wha	at is the area	enclosed by	the par	abola, the line and the Y
	axis	in the first o	juadrant?		
	(a)	7 square u	nit	(b)	14 square unit
	(c)	20 square	unit	(d)	21 square unit
46.	The	point on the	e parabola y ²	$a^2 = 4ax$	nearest to the focus has
	its a	abscissa			[2015-I]
	(a)	x=0		(b)	x = a
	(c)	$x = \frac{a}{2}$		(d)	x = 2a
47.	The	hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} =$	=1 pas	sses through the poin
	(3√	$\overline{5}$,1) and the	e length of it	ts latus	s rectum is $\frac{4}{3}$ units. The
	leng	th of the co	njugate axis	is	[2015-1]
	(a)	2 units	, .	(b)	3 units
	(c)	4 units		(d)	5 units
48.	Con	sider any po	oint P on the	ellipse	$\frac{x^2}{25} + \frac{y^2}{9} = 1$ in the first
	qua	drant. Let r a	and s represe	ent its d	listances from (4, 0) and
	(-4,	0) respectiv	ely, then (r +	+s) is e	equal to [2015-II]
	(a)	10 unit		(b)	9 unit
10	(c)	8 unit	0.1 1	(d)	6 unit

DIRECTIONS (Qs. 43-45) : For the next three (03) items that

49. The eccentricity of the hyperbola $16x^2 - 9y^2 = 1$ is [2015-II]

(a)	$\frac{3}{5}$	(b)	$\frac{5}{3}$
(c)	$\frac{4}{5}$	(d)	$\frac{5}{4}$

50. What is the equation of the hyperbola having latus rectum

and eccentricity 8 and
$$\frac{3}{\sqrt{5}}$$
 respectively? [2016-II]

(a)
$$\frac{x^2}{25} - \frac{y^2}{20} = 1$$
 (b) $\frac{x^2}{40} - \frac{y^2}{20} = 1$
(c) $\frac{x^2}{40} - \frac{y^2}{30} = 1$ (d) $\frac{x^2}{30} - \frac{y^2}{25} = 1$

- 51. If the ellipse $9x^2 + 16y^2 = 144$ intercepts the line 3x + 4y = 12, then what is the length of the chord so formed? [2016-II]
 - (a) 5 units (b) 6 units
 - (c) 8 units (d) 10 units

м-176

NDA Topicwise Solved Papers - MATHEMATICS

52.	What	at is the eccentricity of rec	tangular hyperbola? [2016-II]	1
	(a)	$\sqrt{2}$	(b) $\sqrt{3}$	
	(c)	$\sqrt{5}$	(d) $\sqrt{6}$	

DIRECTIONS (Qs. 53-54) : Consider the following for the next two (02) items that follow.

Consider the parabola $y = x^2 + 7x + 2$ and the straight line y = 3x - 3.

- 53. What are the coordinates of the point on the parabola which is closest to the straight line? [2016-II] (a) (0,2)(b) (-2, -8)
 - (c) (-7, 2)(d) (1,10)
- 54. What is the shortest distance from the above point on the parabola to the line? [2016-II]

(a)
$$\frac{\sqrt{10}}{2}$$
 (b) $\frac{\sqrt{10}}{5}$
(c) $\frac{1}{\sqrt{10}}$ (d) $\frac{\sqrt{5}}{4}$

What is the equation of the ellipse having foci $(\pm 2, 0)$ and 55.

the eccentricity $\frac{1}{4}$? [2017-I]

- (a) $\frac{x^2}{64} + \frac{y^2}{60} = 1$ (b) $\frac{x^2}{60} + \frac{y^2}{64} = 1$ (c) $\frac{x^2}{20} + \frac{y^2}{24} = 1$ (d) $\frac{x^2}{24} + \frac{y^2}{20} = 1$
- A man running round a racecourse notes that the sum of 56. the distances of two flag-posts from him is always 10 m and the distance between the flag-posts is 8 m. The area of the path he encloses is [2017-II]
 - (a) 18π square metres (b) 15π square metres
 - (d) 8π square metres (c) 12π square metres
- The position of the point (1, 2) relative to the ellipse 57. $2x^2 + 7y^2 = 20$ is [2017-II]

- (a) outside the ellipse
- inside the ellipse but not at the focus (b)
- on the ellipse (c)
- (d) at the focus
- 58. The equation of the ellipse whose centre is at origin, major

axis is along x-axis with eccentricity $\frac{3}{4}$ and latus rectum 4 [2017-II] units is

$$x^2 - 7x^2$$

(a)
$$\frac{x^2}{1024} + \frac{7y^2}{64} = 1$$
 (b) $\frac{49x^2}{1024} + \frac{7y^2}{64} = 3$

(c)
$$\frac{7x^2}{1024} + \frac{49y^2}{64} = 1$$
 (d) $\frac{x^2}{1024} + \frac{y^2}{64} = 1$

What is the equation of the ellipse whose vertices are 59 $(\pm 5, 0)$ and foci are at $(\pm 4, 0)$? [2018-1]

(a)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
 (b) $\frac{x^2}{16} + \frac{y^2}{9} = 1$

(c)
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
 (d) $\frac{x^2}{9} + \frac{y^2}{25} = 1$

- 60. The sum of the focal distances of a point on an ellipse is constant and equal to the [2019-I]
 - (a) length of minor axis
 - (b) length of major axis
 - (c) length of latus rectum
 - (d) sum of the lengths of semi-major and semi-minor axes
- The equation $2x^2 3y^2 6 = 0$ represents 61. [2019-1]
 - (a) a circle (b) a parabola
 - (c) an ellipse (d) a hyperbola
- 62. The two parabolas $y^2 = 4ax$ and $x^2 = 4ay$ intersect [2019-I]
 - (a) at two points on the line y = x
 - (b) only at the origin
 - (c) at three points one of which lies on y + x = 0
 - (d) only at (4a, 4a)

	ANSWER KEY																
1	(b)	8	(d)	15	(b)	22	(b)	29	(d)	36	(b)	43	(c)	50	(a)	57	(a)
2	(d)	9	(c)	16	(b)	23	(d)	30	(c)	37	(b)	44	(a)	51	(a)	58	(b)
3	(a)	10	(b)	17	(c)	24	(c)	31	(a)	38	(c)	45	(c)	52	(a)	59	(a)
4	(c)	11	(d)	18	(b)	25	(c)	32	(a)	39	(b)	46	(a)	53	(b)	60	(b)
5	(d)	12	(b)	19	(d)	26	(d)	33	(b)	40	(c)	47	(c)	54	(c)	61	(d)
6	(d)	13	(c)	20	(c)	27	(c)	34	(a)	41	(c)	48	(a)	55	(a)	62	(a)
7	(c)	14	(d)	21	(b)	28	(d)	35	(c)	42	(d)	49	(b)	56	(b)		

HINTS & SOLUTIONS

4.

5.

6.

7.

(b) Length of latus rectum of an ellipse is $\frac{2b^2}{a}$ where b is 1.

semi minor axis and a is semi-major axis. As given,

$$\frac{2b^2}{a} = b$$

 $\Rightarrow 2b = a \Rightarrow \frac{b}{a} = \frac{1}{2}$

We know that eccentricity $e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}$

2. (d) Equation of parabola is $y^2 = 2x$, so vertex lies at origin So, co-ordinates of vertex are A(0, 0). Let (x_1, y_1) be the co-ordinates of the point Q

$$\therefore \quad y_1^2 = 2x_1 \qquad \dots (i)$$

and slope of PQ = $\frac{y_1 - 2}{x_1 - 2}$

[co-ordinates of P is (2,2) as given]

Also, slope of AP = $\frac{2-0}{2-0} = 1$

Since, PQ and AP are perpendicular to each other, hence, slope of AP \times Slope of PQ = -1

So,
$$1 \times \left(\frac{y_1 - 2}{x_1 - 2}\right) = -1$$

 $\Rightarrow y_1 - 2 = -x_1 + 2$
 $\Rightarrow x_1 + y_1 = 4 \Rightarrow x_1 = 4 - y_1$
Putting value of x_1 in equation (i)

$$y_1^2 = 8 - 2y_1$$
 or $y_1^2 + 2y_1 - 8 = 0$

$$\Rightarrow$$
 y₁ = -4 and 2

/

Hence, co-ordinates of point Q are (8, -4).

So, required length PQ = $\sqrt{(8-2)^2 + (-4-2)^2}$

$$=\sqrt{36+36}=\sqrt{72}=6\sqrt{2}$$

(a) Focal distance of a point (x_1, y_1) on the parabola is 3. $y^2 = 4ax$ is equal to its distance from directrix x + a = 0 is $\mathbf{x}_1 + \mathbf{a}_2$ For $y^2 = 12x$; comparing with $y^2 = 4ax$. $4a = 12 \Longrightarrow a = 3$, so, $x_1 + 3 = 4$

$$\Rightarrow x_1 = 1$$

(c) Vertex is (2, 0). Since, y-axis is the directrix of a parabola. Equation directrix is x = 0. So, axis of parabola is x-axis. Let the focus be (a, 0)

Distance of the vertex of a parabola from directrix = its distance from focus

So, OV =VF
$$\Rightarrow$$
 $(2-0)^2 = (a-2)^2$

 $\Rightarrow a^2 = 4a \not P a = 4$ $\Rightarrow Focus is (4, 0)$

$$\Rightarrow$$
 Focus is (4, 0)

(d) The equation of ellipse is
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$$

The point for which $\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 > 0$ is outside ellipse.

Since, at (a, 0), 1 + 0 - 1 = 0It lies on the ellipse. At (0, b), 0 + 1 - 1 = 0It lies on the ellipse. At (-a, 0), 1 + 0 - 1 = 0It lies on the ellipse. At (a, b), 1 + 1 - 1 > 0So, the point (a, b) lies outside the ellipse.

- (d) The parabola's vertex and focus lie on x-axis at points (a, 0) and (b, 0). Vertex and focus lie on the x-axis hence, the axis of parabola is x-axis. Equation of parabola Vertex whose is a point (x_1, y_1) then is $(y-y_1)^2 = 4k(x-x_1)$ So, $y_1 = 0$ and $x_1 = a$ and k = distance between focus and vertex = (b - a) so the equation is $(y-0)^2 = 4(b-a) \cdot (x-a)$ i.e., $y^2 = 4(b-a)(x-a)$
- (c) Length of latus rectum of a hyperbola is $\frac{2b^2}{a}$ where

a is the half of the distance between two vertex of the hyperbola.

Latus rectum =
$$\frac{2b^2}{a} = \frac{10}{3}$$

or,
$$b^2 = \frac{5a}{3}$$
 ...(1)

...(2)

In case of hyperbola, $b^2 = a^2(e^2 - 1)$

Since these foci coincides.

Putting value of b² from equation (1) and
$$e = \frac{\sqrt{13}}{3}$$
 in
equation (2),
 $\frac{5a}{3} = a^2 \left(\frac{13}{9} - 1\right)$
or, $\frac{5a}{3} = \frac{4a^2}{9}$
 $\Rightarrow 4a^2 - 15a = 0$ or $a(4 - 15a) = 0$
 $a \neq 0$, hence, $a = \frac{15}{4}$

Length of transverse axis = $2a = 2 \times \frac{15}{4} = \frac{15}{2}$

8. (d) The given equation of circle
is:
$$x^2 + y^2 = 9$$

and ellipse is :
$$\frac{x^2}{4} + \frac{y^2}{8} = 1$$
(2)

....(1)

From eqn. (1) and (2), we get

$$\frac{x^2}{4} + \frac{9 - x^2}{8} = 1$$

$$\Rightarrow 2x^2 + 9 - x^2 = 8 \Rightarrow x^2 = -1$$

$$\Rightarrow x \text{ is not real.}$$

Hence, circle and ellipse do not intersect.

9. (c) The equation of ellipse is given as :

$$\frac{x^2}{a^2} + \frac{y^2}{7} = 1$$

Eccentricity is given by :

$$e = \sqrt{1 - \frac{7}{a^2}}$$

Therefore, foci of ellipse are $(\pm ae, 0)$ ie,

$$\left(\pm a\sqrt{1-\frac{7}{a^2}},0\right)$$

Now, the equation of given hyperbola is

$$\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25} \implies \frac{x^2}{\frac{144}{25}} - \frac{y^2}{\frac{81}{25}} = 1$$

So, $a = \frac{12}{5}$ and $b = \frac{9}{5}$
 $\therefore e' = \sqrt{1 + \frac{81/25}{144/25}} = \sqrt{\frac{144+81}{144}} = \sqrt{\frac{225}{144}}$
$$= \frac{15}{12}.$$

 $\therefore \quad \text{Foci of hyperbola are } \left(\pm \frac{12}{5} \cdot \frac{15}{12}, 0\right) \text{ie}, (\pm 3, 0).$

$$\Rightarrow 3 = a\sqrt{1 - \frac{7}{a^2}}$$
$$\Rightarrow \frac{3}{a} = \sqrt{1 - \frac{7}{a^2}}$$
$$\Rightarrow \frac{9}{a^2} = 1 - \frac{7}{a^2}$$
$$\Rightarrow \frac{16}{a^2} = 1 \Rightarrow a = 4$$

10. (b) Equation of the given conic is an equation of ellipse

$$\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} (x \ge 0)$$

$$\Rightarrow A^2 = a^2 + \lambda \text{ and } B^2 = b^2 + \lambda$$

Eccentricity,
$$e = \sqrt{1 - \frac{B^2}{A^2}} = \sqrt{1 - \frac{b^2 + \lambda}{a^2 + \lambda}}$$

$$=\sqrt{\frac{a^2+\lambda-b^2-\lambda}{a^2+\lambda}} = \sqrt{\frac{a^2-b^2}{a^2+\lambda}}$$

 λ is in the denominator so, when λ increases, the eccentricity decreases.

11. (d) Given equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Since, b > a

$$\therefore$$
 Foci = $(0, \pm be)$

12. (b) If a and b > 0, then graphic representation would be as follows :

 S_2 will contain S_1 , if latusrectum of $S_2 >$ latusrectum of S_1 $\Rightarrow 4b > 4a$ $\therefore b > a > 0$

13. (c) Given equation of hyperbola $5x^2 - 4y^2 = k^2$

$$\Rightarrow \frac{x^2}{\frac{k^2}{5}} - \frac{y^2}{\frac{k^2}{4}} = 1$$

$$\therefore a = \frac{k}{\sqrt{5}} \text{ and } b = \frac{k}{2}$$

The eccentricity $\frac{3}{2}$ and foci at $(\pm 2, 0)$ of $5x^2 - 4y^2 = k^2$
Then, $e = \frac{3}{2}$ and $\pm ae = 2$
 $\Rightarrow \frac{k}{\sqrt{5}} \cdot \frac{3}{2} = 2 \Rightarrow k = \frac{4}{3}\sqrt{5}$

14. (d) Since, Latusrectum of an ellipse = $\frac{2b^2}{a}$

and minor axis = 2b

$$\therefore b = \frac{2b^2}{a} \Rightarrow a = 2b$$

Also, $e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{b^2}{4b^2}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$

15. (b) We know sum of the focal distances of a point on the ellipse is constant and is equal to the length of the major axis.

Thus, we know that, the sum of focal radii of any point on ellipse is equal to length of major axis.

- 16. (b) From the given information, we have an equation of the first degree which contains one arbitrary parameter. Therefore the required equation represents a straight line.
- 17. (c) Given curve $y^2 = -4ax$ which is one of the form of parabola

It is clear from the figure that curve lies in the second and third quadrants.

18. (b) Given ellipse is $\frac{x^2}{169} + \frac{y^2}{25} = 1$

$$\therefore e = \sqrt{1 - \frac{25}{169}} = \frac{12}{13}$$

Also, standard equation of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

and eccentricity,
$$e = \sqrt{1 - \frac{b^2}{a^2}}$$

$$\therefore \frac{12}{13} = \sqrt{1 - \frac{b^2}{a^2}} \Rightarrow \frac{b^2}{a^2} = 1 - \frac{144}{169} = \frac{25}{169}$$
$$\Rightarrow \frac{b}{a} = \frac{5}{13} \Rightarrow \frac{a}{b} = \frac{13}{5}$$

19. (d) Foci of an ellipse are
$$(4, 0)$$
 and $(-4, 0)$. (Given)

$$\therefore 2ae = 8 \implies ae = 4$$

and semi minor axis is $3 \therefore b = 3$

We know that,
$$e = \sqrt{1 - \frac{b^2}{a^2}}$$

$$\Rightarrow \left(\frac{4}{a}\right)^2 = \left(1 - \frac{9}{a^2}\right) \left(\because e = \frac{4}{a}, b = 3\right)$$

$$\Rightarrow \frac{16}{a^2} = \frac{a^2 - 9}{a^2}$$

$$\Rightarrow 16 = a^2 - 9 \Rightarrow a^2 = 25 \Rightarrow a = 5$$

Now, standard equation of an ellipse is
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Thus, the equation of an ellipse is

$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

which is satisfied by (5, 0). Hence the ellipse passes through (5, 0).

- 20. (c) We know that the locus of the difference of whose distances from two points being constant, is a hyperbola.
- 21. (b) Foci of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are given as (ae, 0) and (-ae, 0).

Since, two foci are at the end of the diameter \therefore Equation of circle, is

$$(x-ae)(x+ae)+(y-0)(y-0)=0$$

$$\Rightarrow x^2 - a^2 e^2 + y^2 = 0$$

$$\Rightarrow x^2 + y^2 - a^2 \left(1 - \frac{b^2}{a^2} \right) = 0 \left(\because e = \sqrt{1 - \frac{b^2}{a^2}} \right)$$
$$\Rightarrow x^2 + y^2 - a^2 + b^2 = 0$$
$$\Rightarrow x^2 + y^2 = a^2 - b^2$$

(b) Given equation of ellipse is
$$25x^2 + 16y^2 = 400$$
 which

$$\frac{x^2}{16} + \frac{y^2}{25} = 1$$

can be rewritten as

22.

We know standard equation of ellipse is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

On comparing given equation with standard equation, we get a = 4 and b = 5 (b > a)

 \therefore Equations of the directrices are

$$y = \pm \frac{b}{e} = \pm \frac{5}{\sqrt{1 - \frac{16}{25}}} = \pm \frac{25}{3} \qquad \left(\because e = \sqrt{1 - \frac{a^2}{b^2}} \right)$$

$$\Rightarrow 3y \pm 25 = 0$$

23. (d) Given equation of ellipse E is $\frac{x^2}{9} + \frac{y^2}{4} = 1$

$$\Rightarrow \frac{4x^2 + 9y^2}{36} = 1 \Rightarrow 4x^2 + 9y^2 = 36$$

$$\Rightarrow 4x^2 + 9y^2 - 36 = 0 \qquad \dots(1)$$

and C: Eqn of circle is $x^2 + y^2 = 9$
Which can be rewritten as
 $x^2 + y^2 - 9 = 0 \qquad \dots(2)$

For a point
$$P(1, 2)$$
 we have

 $4(1)^{2} + 9(2)^{2} - 36 = 40 - 36 > 0 \quad [from (1)]$

and $1^2 + 2^2 - 9 = 5 - 9 < 0$ [from (2)]

 \therefore Point *P* lies outside of *E* and inside of *C*.

24. (c) When a point P moves such that the difference of its distances from two given points (c, 0) and (- c, 0) is constant, then the locus of the point P is hyperbola. It is the definition of hyperbola also.

25. (c) Let the equation of ellipse be
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Length of minor axis = 2b

Length of millor units 20

and length of latus rectum = $\frac{2b^2}{a}$

According to the question,

$$\frac{2b^2}{a} = b \implies 2b = a \Longrightarrow 4b^2 = a^2$$

Now, eccentricity of ellipse

$$e = \frac{\sqrt{a^2 - b^2}}{a}$$
$$e = \frac{\sqrt{4b^2 - b^2}}{2b} = \frac{\sqrt{3}b}{2b} = \frac{\sqrt{3}}{2}$$
$$\Rightarrow \quad e = \frac{\sqrt{3}}{2}$$

26. (d) The given equation of curve is $4x^2 - 9y^2 = 1$

$$\Rightarrow \quad \frac{x^2}{1/4} - \frac{y^2}{1/9} = 1$$

This is an equation of a hyperbola which does not intersect with conjugate axes. Hence, no point of intersection exists.

(c) By definition of ellipse, we have

PS + PS' = 2a

27.

Given parabola is $x^2 = 12y$ which is of the form $x^2 = 4ay$. $\Rightarrow 4a = 12 \Rightarrow a = 3$

Now, *LM* is the latus rectum whose length = $4a = 4 \times 3$ = 12

So, area of
$$\Delta LMV = \frac{1}{2} \times LM \times VF$$
.

$$=\left(\frac{1}{2}\times12\times3\right)$$
 sq. unit

= 18 square unit

29.

CONICS – Parabola, Ellipse & Hyperbola

Focal-Distance:

The distance between a point on a parabola and its focus is called its focal distance. Let F(a, 0) be a focus on parabola $y^2 = 4ax$. Since, $P(x_1, y_1)$ on $y^2 = 4ax$

...(1)

$$\therefore \quad y_1^2 = 4ax_1$$

Now, Focal distance

$$PF = \sqrt{(a - x_1)^2 + y_1^2}$$
$$= \sqrt{a^2 + x_1^2 - 2ax_1 + y_1^2}$$
$$= \sqrt{a^2 + x_1^2 - 2ax_1 + 4ax_1}$$

(from 1)

$$= \sqrt{a^2 + x_1^2 + 2ax_1}$$
$$= \sqrt{(a + x_1)^2} = a + x_1$$

Hence, focal distance = $a + x_1$.

30. (c) Length of minor axis = 2b and latus rectum =
$$\frac{2b^2}{a}$$

According to given condition $\frac{2b^2}{a} = b$

$$\Rightarrow 2b = a$$

Now, $e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{b^2}{4b^2}} = \sqrt{\frac{3}{4}}$
$$\Rightarrow e = \frac{\sqrt{3}}{2}$$

31. (a) Given equation can be written as

$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$

This is an ellipse.
 $\Rightarrow a^2 = 36, b^2 = 16$
 $e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{16}{36}} = \sqrt{\frac{20}{36}} = \frac{2\sqrt{5}}{6} = \frac{\sqrt{5}}{3}$
(a) Given equation of ellipse is

32.

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

$$x^2 + y^2$$

$$\Rightarrow \quad \frac{x}{(2)^2} + \frac{y}{(3)^2} = 1$$

 $\Rightarrow a = 2 \text{ and } b = 3$ Length of major axis = 2a = 4Since, we have Sum of the focal distances of a point on ellipse = length of major axis.

 \therefore Required Ans = 4 units.

- 33. (b) The eccentricity e of an ellipse satisfies the condition : 0 < e < 1.
- 34. (a) Since vertices of an ellipse are $(\pm a, 0)$ and foci are $(\pm ae, 0)$

$$\therefore$$
 a = 5 and ae = 4

$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

35.

36.

(c) Transverse axisProof: The focal distance of any point (x, y) on

hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 is

e | x | - a from the nearer focus
e | x | + a from the farther focus.
Difference = (e | x | + a) - (e | x | - a) = 2a
= length of transverse axes.
(b) 4x²-9y²=1

$$x^2 y^2$$

$$\frac{\mathbf{x}^2}{\left(\frac{1}{2}\right)^2} - \frac{\mathbf{y}^2}{\left(\frac{1}{3}\right)^2} = 1$$

eccentricity,
$$e = \sqrt{1 + \frac{\left(\frac{1}{3}\right)^2}{\left(\frac{1}{2}\right)^2}} = \frac{\sqrt{13}}{3}$$

foci = $\left(\pm\frac{1}{2}\times\frac{\sqrt{13}}{3}, 0\right) = \left(\pm\frac{\sqrt{13}}{6}, 0\right)$

м-181

- (b) $y^2 + 2x = 0 \Rightarrow y^2 = -2x$, which is in the form 37. $y^2 = -4ax$. Therefore axis of parabola is x-axis and its equation is y = 0.
- 38. (c) Let 2a and 2b be the length of major and minor axis respectively.

$$\sqrt{1 - \frac{b^2}{a^2}} = \frac{4}{5}$$
$$\frac{b^2}{a^2} = \frac{9}{25}$$
...(i)

Also,
$$\frac{2b^2}{a} = 14.4$$

 $\frac{b^2}{a} = 7.2, b^2 = 7.2 a$

Putting value of $\frac{b^2}{a}$ in equation (i)

$$\frac{7.2}{a} = \frac{9}{25} \implies a = 20$$

b² = 7.2 × 20 = 144
b = 12
the sum of the major and minor axes
= 2a + 2b
= 2 (a + b) = 2 (20 + 12) = 64 units

39. (b) Given equation of ellipse,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Let A (a $\cos \theta$, b $\sin \theta$) be any point on ellipse

(1st quadrant) Coordinate of B = [$a cos (\pi - \theta)$, $b sin (\pi - \theta)$] $= (-a \cos \theta, b \sin \theta)$ (2nd quadrant) Coordinate of C = [a cos (π + θ), b sin (π + θ)] (3rd quadrant) Coordinate of D = [a cos $(2\pi - \theta)$, b sin $(2\pi - \theta)$] $= (a \cos \theta, -b \sin \theta)$ (4th quadrant)

= $(a \cos \theta + a \cos \theta) (b \sin \theta + b \sin \theta)$ = $2a \cos \theta \times 2b \sin \theta$ = $2ab \sin 2\theta$ $=2ab \times 1 = 2ab$

Area of ellipse is π ab Area of shaded region = Area of ellipse – Area of rectangle $= \pi ab - 2ab = ab(\pi - 2)$ 41. (c) Focus is (0, -2)a = -2 and parabola is along y-axis downward $x^2 = 4ay$

$$x^2 = -8y$$

or $x^2 + 8y$

40.

or $x^2 + 8y = 0$ Equation of ellipse is $25x^2 + 16y^2 = 400$ 42. (d)

$$\frac{x^2}{16} + \frac{y^2}{25} = 1$$

Here, $a^2 = 16$ and $b^2 = 25$

$$\therefore \text{ Length of latus rectum} = \frac{2a^2}{b} = \frac{2 \times 16}{5} = \frac{32}{5}$$

43. (c) Equation of line

$$2y=3x+12$$
 ...(i)
Equation of parabola
 $4y=3x^2$...(ii)
From eqs. (i) and (ii), we get
 $2(3x+12)=3x^2$
 $3x^2-6x-24=0$
 $x^2-2x-8=0$
 $(x-4)(x+2)=0$
 $\therefore x=4$
and $x = -2$
Now putting the value of x in eqn (ii)
We get $y = 12$ and $y = 3$

Thus, the points (-2, 3) and (4, 12)
$$3x \pm 12$$

44. (a) Equation of line
$$2y = 3x + 12$$
, $y = \frac{3x + 12}{2}$

Equation of parabola
$$4y = 3x^2$$
, $y = \frac{3x^2}{4}$

$$= \int_{-2}^{4} \left[\frac{3x+12}{2} - \frac{3x^2}{4} \right] dx$$
$$= \frac{1}{2} \left[\frac{3x^2}{2} + 12x \right]_{-2}^{4} - \frac{3}{4} \left[\frac{x^3}{3} \right]_{-2}^{4}$$

45. (c) Equation of line 2y=3x+12 and equations of parabola $4y=3x^2$

$$= \int_0^4 \left(\frac{3x+12}{2} - \frac{3x^2}{4}\right) dx = \left(\frac{3}{4}x^2 + 6x - \frac{x^3}{4}\right)_0^4$$

= $3 \times 4 + 24 - 16 = 36 - 16 = 20$ sq. units. \therefore Area enclosed by the parabola, the line and the y axis in first quadrant = 20 sq. units

46. (a) Here, 'S' represents focus O(0, 0) is a point which is on parabola $y^2 = 4ax$ and nearest to focus (a, 0)

- \therefore abscissa of O (0, 0) is x = 0
- :. Option (a) is correct.

47. (c) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Hyperbola passes through $(3\sqrt{5}, 1)$

$$\therefore \quad \frac{(3\sqrt{5})^2}{a^2} - \frac{1}{b^2} = 1$$

$$\frac{45}{a^2} - \frac{1}{b^2} = 1 \qquad \dots (i)$$

Now length of latus rectum = $\frac{2b^2}{a}$

$$\Rightarrow \frac{4}{3} = \frac{2b^2}{a}$$
$$\Rightarrow \frac{2}{3} = \frac{b^2}{a} \Rightarrow a = \frac{3b^2}{2} \qquad \dots (ii)$$

Putting the value of 'a' from equation (ii) in equation (i),

$$\Rightarrow \frac{45 \times 4}{9b^4} - \frac{1}{b^2} = 1$$

$$\Rightarrow \frac{20}{b^4} - \frac{1}{b^2} = 1$$

$$20 - b^2 = b^4$$

$$b^4 + b^2 - 20 = 0$$

$$b^4 + 5b^2 - 4b^2 - 20 = 0$$

$$b^2 (b^2 + 5) - 4(b^2 + 5) = 0$$

$$(b^2 - 4) (b^2 + 5) = 0$$

$$b^2 = 4, b^2 = -5$$

$$\therefore b^2 = 4 \Rightarrow b = 2$$

Now length of conjugate axis = 2b = 2(2) = 4

$$\therefore \text{ Option (c) is correct.}$$

48. (a)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$

$$\frac{9}{25} + \frac{y^2}{9} = 1$$

$$y = \frac{12}{5}$$

$$P = (3, 12/5)$$

$$r = PO = \sqrt{(4-3)^2 + (0-\frac{12}{5})^2}$$

$$= 13/5$$

$$S = PO' = \sqrt{(-4-3)^2 + (0-\frac{12}{5})^2}$$

$$= 37/5$$

$$r + s = \frac{13}{5} + \frac{37}{5} = \frac{50}{5} = 10 \text{ unit}$$
49. (b) $\because 16x^2 - 9y^2 = 1$
or $\frac{x^2}{(\frac{1}{4})^2} - \frac{y^2}{(\frac{1}{3})^2} = 1$

$$Comparing with \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\therefore a^2 = \frac{1}{16}$$

$$\& b^2 = \frac{1}{9}$$

$$\because e = \sqrt{1 + \frac{1/9}{a^2}}$$

$$\therefore e = \sqrt{1 + \frac{1/9}{1/16}}$$

$$\Rightarrow e = \frac{5}{3}$$

50. (a) Let the equation of hyperbola be
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Latus rectum = $8 = \frac{2b^2}{a} \Rightarrow b^2 = 4a$ (i) Also, $b^2 = a^2(e^2 - 1)$ $\Rightarrow 4a = a^2(e^2 - 1)$ [From (i)] $\Rightarrow 4a = a^2 \left[\left(\frac{3}{\sqrt{5}} \right)^2 - 1 \right]$ $\Rightarrow a = 5 \& b^2 = 20$ \therefore Equation is $\frac{x^2}{25} - \frac{y^2}{20} = 1$

(a) Here,

$$9x^{2} + 16y^{2} = 144 \text{ and } 3x + 4y = 12$$

$$\Rightarrow x = \frac{12 - 4y}{3}$$
So, $9\left(\frac{12 - 4y}{3}\right)^{2} + 16y^{2} = 144$
On solving we get, $y = 0, 3$
For $y = 0; x = 4$
For $y = 3; x = 0$

$$\Rightarrow \text{Length of chord } = \sqrt{(0 - 3)^{2} + (4 - 0)^{2}} = \sqrt{9 + 16}$$

$$= \sqrt{25} = 5 \text{ units}$$

52. (a) Here,
$$b^2 = a^2(e^2 - 1)$$

For rectangular hyperbola : $a = b$
 $\Rightarrow b^2 = b^2(e^2 - 1)$
 $\Rightarrow e^2 - 1 = 1$
 $\Rightarrow e^2 = 2 \Rightarrow e = \pm \sqrt{2}$
For hyperbola, $e > 1$.
Hence, $e = \sqrt{2}$

53. (b) Parabola Eq: $y = x^2 + 7x + 2$ Line eq. : y=3x-3Since all the points given in the options lie on the parabola. Thus we will calculate the distance from the given line

Thus we will calculate the distance from the given line to these points :

for (0, 2): distance =
$$\frac{|3(0) - (2) - 3|}{\sqrt{(3)^2 + (-1)^2}} = \frac{5}{\sqrt{10}}$$

for (-2, -8): distance = $\frac{|3(-2) - (-8) - 3|}{\sqrt{10}} = \frac{1}{\sqrt{10}}$
for (-7, 2): distance = $\frac{|3(-7) - 2 - 3|}{\sqrt{10}} = \frac{26}{\sqrt{10}}$
for (1, 10): distance = $\frac{|3(1) - 10 - 3|}{\sqrt{10}} = \frac{10}{\sqrt{10}}$
 \therefore (-2, -8) is the given point.

55.

51.

(a) foci:
$$(\pm 2, 0)$$
, $e = \frac{1}{4}$
 $c = 2$, $e = \frac{1}{4} = \frac{c}{a} \Rightarrow \frac{2}{a} = \frac{1}{4} \Rightarrow a = 8$
We know, $a^2 - b^2 = c^2$
 $\Rightarrow b^2 = a^2 - c^2 = 8^2 - 2^2 = 64 - 4 = 60$
Eqn of ellipse $\Rightarrow \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
 $\Rightarrow \frac{x^2}{64} + \frac{y^2}{60} = 1$

56. (b) Given that sum of the distances of two flag-posts from him is always 10m. So, the race course is in the shape of ellipse.

From the given figure, $Mf_1 + Mf_2 = 10$

Let 'a' be the length of semi major axis and 'b' be the length of semi minor axis. $\therefore Mf_1 + Mf_2 = 10 \Rightarrow 2a = 10 \Rightarrow a = 5$ Also, $f_1f_2 = 8$ Let $f_1 = (C, 0)$ and $f_2 = (-C, 0)$. $\therefore f_1f_2 = 8 \Rightarrow 2C = 8 \Rightarrow C = 4$

We know, $a^2 = b^2 + c^2 \Longrightarrow 5^2 = b^2 + 4^2 \Longrightarrow b^2 = 25 - 16$ = 9 = 3² \therefore b = 3.

Area of the racecourse = $\pi ab = \pi \times 5 \times 3 = 15\pi$ sq. m 57. (a) Given ellipse, $2x^2 + 7y^2 = 20$.

> Given point, (1, 2)2(1)²+7(2)²-20=2+28-20=38-20=18>0. \therefore Point is outside the ellipse.

58. (b) Given,
$$b^2 = 2a$$
, $c^2 = \left(\frac{3}{4}\right)^2 a^2 = \frac{9}{16}a^2$
We know, $a^2 = b^2 + c^2$
So,

 $a^{2} = 2a + \frac{9}{16}a^{2} \Rightarrow 16a^{2} = 32a + 9a^{2} \Rightarrow 7a^{2} = 32a$ $\Rightarrow a = \frac{32}{7}$ $\therefore b^{2} = \frac{64}{7}$

Equation of ellipse is

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Longrightarrow \frac{x^2}{\left(\frac{32}{7}\right)^2} + \frac{y^2}{\frac{64}{7}} = 1 \Longrightarrow \frac{49x^2}{1024} + \frac{7y^2}{64} = 1.$$

$$= 25\left(\frac{25}{25}\right) = 9$$

$$\therefore a^2 = 25, b^2 = 9$$

Equation of ellipse is $\frac{x^2}{25} + \frac{y^2}{9} = 1.$

61. (d) Given equation, $2x^2 - 3y^2 - 6 = 0$ $\Rightarrow 2x^2 - 3y^2 = 6$

$$\Rightarrow \frac{x^2}{3} - \frac{y^2}{2} = 1$$

This equation represents hyperbola.

62. (a) The parabolas $y^2 = 4ax$ and $x^2 = 4ay$ They intersect at (0, 0) and (4a, 4a) These points lie on y = x

TRIGONOMETRY — Ratio & **Identity, Trigonometric Equations**

6.

7.

9.

- The difference of two angles is 1°; the circular measure of 1. their sum is 1. What is the smaller angle in circular measure?
 - (a) $\left[\frac{180}{\pi} 1\right]$ (b) $\left|1 \frac{\pi}{180}\right|$
 - (c) $\frac{1}{2} \left[1 \frac{\pi}{180} \right]$ (d) $\frac{1}{2} \left[\frac{180}{\pi} 1 \right]$ [2006-I]
- 2. A positive acute angle is divided into two parts whose tangents are $\frac{1}{8}$ and $\frac{7}{9}$. What is the value of this angle?
 - (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{4}$

(c)
$$\frac{\pi}{6}$$
 (d) $\frac{\pi}{12}$ [2006-1]

- If an angle B is complement of an angle A, what are the 3. greatest and least values of cos A cos B respectively ?
 - (b) $\frac{1}{2}, -1$ (a) $0, -\frac{1}{2}$ (d) $\frac{1}{2}, -\frac{1}{2}$ [2006-I] (c) 1,0
- Three expressions are given below : 4. $Q_1 = \sin (A + B) + \sin (B + C) + \sin (C + A)$ $Q_2 = \cos (A - B) + \cos (B - C) + \cos (C - A)$ $Q_3 = \sin A (\cos B + \cos C) + \sin B (\cos C + \cos A) +$ $\sin C (\cos A + \cos B)$

Which one of the following is correct?

- (a) $Q_1 = Q_2$
- (b) $Q_2 = Q_3$
- (c) $Q_1 = Q_3$
- (d) All the expressions are different [2006-1]

For what values of x is the equation $2 \sin \theta = x + \frac{1}{x}$ valid? 5. (a) $x = \pm 1$ (b) All real values of x

(c) $-1 \le x \le 1$ (d) x > 1 and x < -1[2006-I] If $\sin(\pi \cos x) = \cos(\pi \sin x)$, then what is one of the values of sin 2x?

(a)
$$-\frac{1}{4}$$
 (b) $-\frac{1}{2}$

(c)
$$-\frac{3}{4}$$
 (d) -1 [2006-I]

- In a triangle ABC, if $\cos A = \cos B \cos C$, what is the value of $\tan A - \tan B - \tan C$?
 - (a) 0 (b) -1 (c) $1 + \tan A \tan B \tan C$ (d) $\tan A \tan B \tan C - 1$ [2006-I]
- 8.
 - - [2006-1] (d) U
 - Let $45^\circ \le \theta \le 90^\circ$. If $\tan \theta + \cot \theta = (\tan \theta)^i + (\cot \theta)^i$ for some $i \ge 2$, then what is the value of $\sin \theta + \cos \theta$?
 - (b) $\frac{1}{\sqrt{2}}$ (a) $\sqrt{2}$

(c)
$$\frac{(\sqrt{3}+1)}{2}$$
 (d) $\frac{2}{(\sqrt{3}+1)}$ [2006-II]

Given that $\tan \theta = m \neq 0$, $\tan 2\theta = n \neq 0$ and $\tan \theta + \tan 2\theta =$ 10. tan 3 θ , then which one of the following is correct?

(a)
$$m=n$$
 (b) $m+n=1$
(c) $m+n=0$ (d) $mn=-1$ [2006-II]

11. Let A and B be obtuse angles such that $\sin A = \frac{4}{5}$ and

$$\cos B = -\frac{12}{13}$$
. What is the value of $\sin (A + B)$?

(a)
$$-\frac{63}{65}$$
 (b) $-\frac{33}{65}$

(c)
$$\frac{33}{65}$$
 (d) $\frac{63}{65}$ [2006-II]

What is the value of
$$\sqrt{3}$$
 cosec 20° – sec 20° ?

12.	If $\tan^2 B = \frac{1 - \sin A}{1 - \sin A}$ then w	hat is	the value of A	+2B?	21.
	(a) $\frac{\pi}{2}$	(b)	$\frac{\pi}{3}$		
	(c) $\frac{\pi}{4}$	(d)	$\frac{\pi}{6}$	[2006-11]	22.
13.	Given that $\cos 20^\circ - \sin 20^\circ$ 40° ?	= p, t	hen what is the	value of sin	
14	(a) $1 - p^2$ (c) p^2 Given that $p = \tan \alpha + \tan \beta$	(b) (d) and	$1 + p^{2}$ $p^{2} - 1$ $q = \cot q + \cot 1$	[2006-II] B: then what	
	is $\left(\frac{1}{p} - \frac{1}{q}\right)$ equal to ?	, una		, then what	23.
15	(a) $\cot (\alpha - \beta)$ (c) $\tan (\alpha + \beta)$	(b) (d)	$\tan (\alpha - \beta)$ $\cot (\alpha + \beta)$	[2006-II]	24
13.	following equation : Number of degrees in $A = (180 + \pi)/3$	A +	Number of	radians in	24.
16.	(a) 20° (c) 60° If $\sin^{3}\theta + \cos^{3}\theta = 0$, then	(b) (d) what	40° 80° is the value of	<i>[2006-II]</i> θ ?	25.
	(a) $\frac{-\pi}{4}$	(b)	0		
	(c) $\frac{\pi}{4}$	(d)	$\frac{\pi}{3}$	[2006-II]	26.
17.	What is the value of $\csc(\pi+\theta)\cot\{(9\pi/2-\theta) \cot\{(2\pi-\theta) \sec^2(\pi-\theta) \cot^2(\pi-\theta) \cot^2(\pi$	€)}co sec{(1	$\frac{\cos \sec^2(2\pi - \theta)}{3\pi/2) + \theta}$		
18	 (a) 0 (c) −1 What is the value of 	(b) (d)	1 ∞	[2007-I]	27.
10.	$\sin(A+B)\sin(A-B)+\sin \sin(A-B)$	(B+0	C) sin (B-C) +	+ sin (C + A) [2007-I]	
19.	(a) 0 (c) $\cos A + \cos B + \cos C$ Given that $\tan \alpha = m/(m+1)$ the value of $\alpha + \beta$?	(b) (d)), tan	$\sin A + \sin B + \frac{1}{\beta} = 1/(2m+1),$	+ sin C then what is	28.
	(a) 0	(b)	$\frac{\pi}{4}$		29.
	π		π		

(c) $\frac{\pi}{6}$ (d) $\frac{\pi}{3}$ [2007-I]

20. If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$ and $z = r \cos \theta$, then $x^2 + y^2 + z^2$ is independent of which of the following?

(a) r only (b)
$$r, \phi$$

(c)
$$\theta, \phi$$
 (d) r, θ [2007-I]

21. What is the minimum value of $\cos \theta + \cos 2\theta$?

(a)
$$-2$$
 (b) $-\frac{9}{8}$
(c) 0 (d) $-\frac{9}{16}$ [2007-I]

If
$$3 \tan \theta + 4 = 0$$
, where $(\pi/2) < \theta < \pi$, then what is the value of $2 \cot \theta - 5 \cos \theta + \sin \theta$?

- (a) $-\frac{53}{10}$ (b) $\frac{7}{10}$ (c) $\frac{23}{10}$ (d) $\frac{37}{10}$ [2007-1] What is the value of cosec ($13\pi/12$)? (a) $\sqrt{6}$ $\sqrt{2}$ (b) $-\sqrt{6}$ $\sqrt{2}$ (c) $\sqrt{6} - \sqrt{2}$ (d) $-\sqrt{6} - \sqrt{2}$ [2007-1] What is the value of ($\sec\theta - \cos\theta$) ($\csce\theta - \sin\theta$) ($\cot\theta + \tan\theta$)?
- (a) 1 (b) 2 (c) $\sin \theta$ (d) $\cos \theta$ [2007-I]
- 25. If $\alpha + \beta = \frac{\pi}{2}$ and $\beta + \gamma = \alpha$; then which one of the following is correct?

(a)
$$2 \tan \beta + \tan \gamma = \tan \alpha$$

- (b) $\tan \beta + 2\tan \gamma = \tan \alpha$
- (c) $\tan \beta + 2\tan \gamma = \tan \alpha$
- (d) $2(\tan\beta + \tan\gamma) = \tan\alpha$ [2007-I]

6. What is the value of
$$\frac{(\cos 10^\circ + \sin 20^\circ)}{(\cos 20^\circ - \sin 10^\circ)}?$$

(a)
$$\frac{1}{\sqrt{3}}$$
 (b) $-\frac{1}{\sqrt{3}}$

(c)
$$\sqrt{3}$$
 (d) $-\sqrt{3}$ [2007-I]

7. If α and β are such that $\tan \alpha = 2 \tan \beta$, then what is $\sin (\alpha + \beta)$ equal to?

(a) 1
(b)
$$2 \sin (\alpha - \beta)$$

(c) $\sin (\alpha - \beta)$
(d) $3 \sin (\alpha - \beta)$ [2007-II]
What is the value of

$$\cos 306^\circ + \cos 234^\circ + \cos 162^\circ + \cos 18^\circ$$
?
(a) 1 (b) -1

29. Let ABCD be a square and let P be a point on AB such that AP : PB = 1 : 2. If $\angle APD = \theta$, then what is the value of cos θ ?

(a)
$$\frac{1}{\sqrt{10}}$$
 (b) $\frac{1}{\sqrt{5}}$

(c)
$$\frac{2}{\sqrt{10}}$$
 (d) $\frac{2}{\sqrt{5}}$ [2007-II]

- 30. If $\cos 3 A = \frac{1}{2}$, then how many values can sin A assume? (0<A<360°) (a) 3 (b) 4 (c) 5 (d) 6 [2007-II] 31. Let $0^{\circ} < \theta < 45^{\circ}$. Which one of the following is correct? (a) $\sin^2 \theta + \cos^6 \theta = \sin^6 \theta + \cos^2 \theta$ (b) $\csc^2 \theta + \cot^6 \theta = \csc^6 \theta + \cot^2 \theta$ (c) $\sin^2 \theta - \cos^4 \theta = \sin^4 \theta + \cos^2 \theta$ (d) $\csc^2 \theta + \cot^4 \theta = \csc^4 \theta + \cot^2 \theta$ [2007-II] If $\sin A = \sin B$ and $\cos A = \cos B$, then which one of the 32. following is correct? (a) $B = n\pi + A$ (b) $A = 2n\pi - B$ (c) $A = 2n\pi + B$ (d) $B = n\pi - A$ (n is an integer) [2007-II] If $\alpha = \frac{\pi}{8}$, what is the value of $\cos \alpha \cos 2\alpha \cos 4\alpha$? 33.
 - (a) 0 (b) $\frac{1}{4}$ (c) 8 (d) 4

34. What is the value of $\cot(-870^\circ)$?

(a)
$$\sqrt{3}$$
 (b) $\frac{1}{\sqrt{3}}$
(c) $-\sqrt{3}$ (d) $-\frac{1}{\sqrt{3}}$ [2007-II]

35. The following question consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer.

Let X = { $\theta \in [0, 2\pi]$: sin $\theta = \cos\theta$ }

Assertion (A): The number of elements in X is 2.

Reason (R) : sin θ and cos θ are both negative both in second and fourth quadrants.

- (a) Both A and R are individually true, and R is the correct explanation of A.
- (b) Both **A** and **R** are individually true but **R** is not the correct explanation of **A**.
- (c) **A** is true but **R** is false.
- (d) \mathbf{A} is false but \mathbf{R} is true. [2008-I]
- 36. What is the measure of the angle $114^{\circ} 35' 30''$ in radian?
 - (a) 1 rad (b) 2 rad (c) 3 rad (d) 4 rad [2008-1]

37. What is the value of
$$\left(\sin 22\frac{1^\circ}{2} + \cos 22\frac{1^\circ}{2}\right)^4$$
?

(a)
$$\frac{3+2\sqrt{2}}{2}$$
 (b) $\frac{1+2\sqrt{2}}{2}$
(c) $\frac{3\sqrt{2}+2}{2}$ (d) 1 [2008-I]

Which one of the following is correct?

$$\left(1+\cos 67 \frac{1^\circ}{2}\right)\left(1+\cos 112 \frac{1^\circ}{2}\right)$$
 is

38.

[2007-II]

- (a) an irrational number and is greater than 1
- (b) a rational number but not an integer
- (c) an integer
 (d) an irrational number and is less than 1 [2008-1]
- 39. If sin $2A = \frac{4}{5}$, then what is the value of $\tan A\left(0 \le A \le \frac{\pi}{4}\right)$?
 - (a) 1 (b) -1

(c)
$$\frac{1}{2}$$
 (d) 2 [2008-I]

- 40. What is the value of $\frac{\cos 10^\circ \sin 10^\circ}{\cos 10^\circ + \sin 10^\circ}$?
 - (a) $\tan 35^{\circ}$ (b) $\tan 10^{\circ}$ (c) $\frac{1}{\sqrt{2}}$ (d) 1 [2008-1]
- 41. For what value of x does the equation

$4\sin x + 3\sin 2x - 2\sin 3x + \sin 4x = 2\sqrt{3}$ hold?

(a)
$$\frac{\pi}{6}$$
 (b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$ [2008-1]

42. Which one of the following pairs is not correctly matched?

- (a) $\sin 2\pi$: $\sin (-2\pi)$ (b) $\tan 45^{\circ}$: $\tan (-315^{\circ})$ (c) $\pi (4\pi^{-1}0.5)$
- (c) $\cot(\tan^{-1} 0.5)$: $\tan(\cos^{-1} 0.5)$ (d) $\tan 420^{\circ}$: $\tan(-60^{\circ})$ [2008-1]
- 43. What is the value of $\sin\left(\frac{5\pi}{12}\right)$?

(a)
$$\frac{\sqrt{3}+1}{2}$$
 (b) $\frac{\sqrt{6}+\sqrt{2}}{4}$
(c) $\frac{\sqrt{3}+\sqrt{2}}{4}$ (d) $\frac{\sqrt{6}+1}{2}$ [2008-1]

44. What is the correct sequence of the following values?

1.
$$\sin\left(\frac{\pi}{12}\right)$$
 2. $\cos\left(\frac{\pi}{12}\right)$
3. $\cot\left(\frac{\pi}{12}\right)$

Select the correct answer using the code given below

(a)
$$3>2>1$$
 (b) $1>2>3$
(c) $1>3>2$ (d) $3>1>2$ [2008-I]

(a)
$$\frac{1}{2}(\sqrt{2-\sqrt{3}})$$
 (b) $\frac{1}{2}(\sqrt{2+\sqrt{3}})$
(c) $\sqrt{2}+\sqrt{3}$ (d) $\sqrt{2}-\sqrt{3}$ [2008-II]

TRIGONOMETRY - Ratio & Identity, Trigonometric Equations

46.	How many values of	θ between 0° and 360	0° satisfy 57.	One radian is a
	$\tan \theta = k \neq 0$, where k is	s a given number?	[2008-II]	following?
	(a) 1	(b) 2		(a) 90°
	(c) 4	(d) Many	-0	(c) 5/°
47.	If $\sin x + \sin y = a$, $\cos x$	$x + \cos y = b$, then what is	the value 58.	If $\cot(x + y) = 1$
	of $\cos(x-y)$?		[2008-II]	smallest positive
	(a) $a^2 - 1$	(b) $b^2 - 1$		(a) $45^{\circ}, 30^{\circ}$
	(c) $\frac{1}{a^2+b^2-2}$	(d) $\frac{1}{a^2 + b^2}$	50	(c) $15^{\circ}, 60^{\circ}$
	$(0) 2^{(1-1)}$	$(a) 2^{(a-1)}$	59.	$x = \sin \theta \cos \theta$ an
48.	What is $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	$\frac{2\cos 4 4}{\cos 4}$ equal to?	[2008-11]	(a) $u^2 - 2u = 1$
	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$			(a) $y^2 - 2x = 1$
	(a) $\cos A$	(b) $\cos(2A)$	(0	(c) $y^2 - 2x = -1$
	(c) $2\cos(A/2)$	(d) $\sqrt{2\cos A}$	60.	$11 \sin^2 x - \cos^2 x$
49.	The equation $\tan^2 \phi + ta$	$an^{6}\phi = tan^{3}\phi \cdot sec^{2}\phi is$		(a) $p=1$
	(a) identity for only or		(a) $ \mathbf{n} = 1$	
	(b) not an identity			(c) p 1
	(c) identity for all value	ies of b	61.	If $\cos \theta < \sin \theta$ as
	(d) None of the above	φ		one of the follow
50	If sec $A + \tan A = n$ then	what is the value of $\sin A$	9	(a) $0 < \theta < \pi/4$
20.		what is the value of shift	[2008_11]	(c) $0 < \theta < \pi/3$
	$n^2 - 1$	$n^2 \pm 1$	<i>[2000 II]</i> 62.	If $\sin^2 x + \sin^2 y =$
	(a) $\frac{p^2-1}{p^2+1}$	(b) $\frac{p+1}{p^2-1}$		
	p + 1	p = 1 (d) None of these		(a) 1
51	What is the value of tan	$(-1575^{\circ})?$	[2009_]]	(c) 0
51.	(a) 1	(h) $1/2$	[20071]	What is the value
	(c) 0	(d) -1	05.	what is the value
		() - 2	2	(a) -1
52.	For which acute angle (θ , $\csc^2\theta = 3\sqrt{3}\cot\theta - 5$	5 ?	(c) 1
	5π	π	<i>[2009-I]</i> 64	What is the length
	(a) $\frac{3\pi}{12}$	(b) $\frac{\pi}{3}$	0	a central angle m
	π	π		(a) $5\pi/12$ cm
	(c) $\frac{\pi}{6}$	(d) $\frac{\pi}{4}$		(c) $\pi/12cm$
53	If $\tan^2 \theta = 2 \tan^2 \phi + 1$ t	han which one of the fo	llowing is 65.	What is the maxi
55.	fit tail $0 = 2$ tail $\psi \pm 1$, to correct?	iten which one of the fo	[2009-17	(a) 1
	(a) $\cos(2\theta) = \cos(2\phi)$	-1	[2009 1]	
	(b) $\cos(2\theta) = \cos(2\phi)$	+1		(c) $1/\sqrt{2}$
	(c) $\cos(2\theta) - \cos(2\phi)$	$-1^{7}/2$	66.	If $\sin x + \csc x =$
	(c) $\cos(20) = [\cos(20)]$	(j-1)/2		$\sin^4 x + \csc^4 x?$
	(d) $\cos(2\theta) = \lfloor \cos(2\phi) \rfloor$	$\left(1 + 1\right) / 2$		(a) 2
54.	What is the value of $1 -$	sin10° sin50° sin70°?	[2009-1]	(c) 8
	(a) 1/8	(b) 3/8	6/.	What is the value
	(c) 5/8	(d) 7/8		(a) $\sqrt{3}$
55.	The sines of two angles	of a triangle are equal to	o 5/13 and	(c) 4
	99/101. What is the cost	ine of the third angle?	<i>[2009-1]</i> 68.	$If A + B + C = \pi/2$
	(a) 255/1313	(b) 265/1313		$\tan A \tan B + \tan B$
	(c) 275/1313	(d) 770/1313		(a) 0
56.	After subtending an ang	gle of 1000° from its inita	l position,	(c) -1
	the revolving line wil	I be situated in which o	one of the 69.	If $(\sin x + \csc x)$
	ionowing quadrants?	(h) Coord - 1	[2009-1]	then what is the
	(a) First quadrant	(b) Second quadrant		(a) 8
	(c) I nird quadrant	(a) Fourth quadrant		(c) 4

One radian is approxi following?	mately equal to whi	ich one of the [2009-1]				
(a) 90°	(b) 180°					
(c) 57°	(d) 47°					
If $\cot(x + y) = 1/\sqrt{3}$,	$\cot(x-y) = \sqrt{3}$ then	n what are the				
smallest positive value	s of x and y respectiv	ely? [2009-1]				
(a) $45^{\circ}, 30^{\circ}$	(b) 30°, 45°					
(c) $15^{\circ}, 60^{\circ}$	(d) 45°, 15°					
$x = \sin \theta \cos \theta$ and $y =$	$\sin\theta + \cos\theta$ are satisfier	sfied by which				
one of the following eq	uations?	[2009-1]				
(a) $y^2 - 2x = 1$	(b) $y^2 + 2x = 1$					
(c) $y^2 - 2x = -1$	(d) $y^2 + 2x = -1$					
If $\sin^4 x - \cos^4 x = p$, t	hen which one of th	e following is				
correct?		[2009-1]				
(a) $p = 1$	(b) $p = 0$					
(a) $ \mathbf{n} = 1$	(d) $ \mathbf{n} \leq 1$					
(c) p 1	$(\mathbf{u}) \mathbf{p} \leq 1$					
If $\cos \theta < \sin \theta$ and θ li	es in the first quadra	nt, then which				
one of the following is	correct?	[2009-1]				
(a) $0 < \theta < \pi/4$	(b) $\pi/4 < \theta < \pi/2$					
(c) $0 < \theta < \pi/3$	(d) $\pi/3 < \theta < \pi/2$					
If $\sin^2 x + \sin^2 y = 1$, the	n what is the value of	$f \cot(x + y)?$				
		[2009-1]				
(a) 1	(b) $\sqrt{3}$					
(c) 0	(d) $1/\sqrt{2}$					
	$(0) 1/\sqrt{3}$	12000				
what is the value of cos	$\sin^{2} + \cos^{2} \sin^{2} + \cos^{2} + \cos^$	130°?				
(a) 1	(h) 0	[2009-1]				
(a) -1	$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$					
	(d) 2	1, 1				
what is the length of arc	of a circle of radius 5					
a = 11 a = 10	(b) $7\pi/12$ cm	[2009-11]				
(a) $-\frac{12}{2}$	(d) $-\frac{5}{2}$					
What is the maximum y	(u) where $u = 1$	[2000 11]				
	(b) $1/2$	[2009-11]				
(a) I	(0) 1/2					
(c) $1/\sqrt{2}$	(d) $\sqrt{3}/2$					
If $\sin x + \csc x = 2$, the	en what is the value of	of				
$\sin^4 x + \csc^4 x$?		[2009-II]				
(a) 2	(b) 4					
(c) 8	(d) 16					
What is the value of tar	$15^{\circ} + \cot 15^{\circ}?$	[2009-11]				
(a) \overline{b}	(b) $2\sqrt{2}$	2 3				
(a) $\sqrt{3}$	(b) $2\sqrt{3}$					
(c) 4	(d) 2					
If $A + B + C = \pi/2$, then what is the value of						
$\tan A \tan B + \tan B \tan B$	$C + \tan C \tan A?$	[2009-II]				
()						
(a) 0	(b) 1					
(a) 0 (c) -1	 (b) 1 (d) tan A tan B tan 	С				
(a) 0 (c) -1 If $(\sin x + \csc x)^2 + (a)$	(b) 1 (d) $\tan A \tan B \tan \cos x + \sec x)^2 = k + \frac{1}{2}$	$C \\ \tan^2 x + \cot^2 x,$				
(a) 0 (c) -1 If $(\sin x + \csc x)^2 + (a + 1)^2$ then what is the value of	(b) 1 (d) $\tan A \tan B \tan \cos x + \sec x)^2 = k + \cot k?$	C $\tan^2 x + \cot^2 x,$ $[2009-II]$				
(a) 0 (c) -1 If $(\sin x + \csc x)^2 + (a + \cos x)^2$ (a) 8	(b) 1 (d) $\tan A \tan B \tan 2 \tan x + \sec x)^2 = k + \sec x^2$ (b) 7	$C \\ \tan^2 x + \cot^2 x, \\ [2009-II]$				

С

2

1

1

4

В 1

2

2

1

А

(a) 4

(b) 4

(c) 3

(d) 2

70.	If $p = \sin (989^\circ) \cos (991^\circ)$, then which one of the following is correct? [2009-II]	78.	If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{3}$, then what is the value	eof(A+B)?
	(a) <i>p</i> is finite and positive		π	
	(b) p is finite and negative		(a) 0 (b) $\frac{1}{4}$	[2010-I]
	(c) $p=0$ (d) p is undefined		(c) $\frac{\pi}{2}$ (d) π	
	(d) <i>p</i> is underlined		$\begin{pmatrix} c \end{pmatrix}_2$	
71.	If $A = \frac{41\pi}{12}$, then what is the value of $\frac{1 - 3\tan^2 A}{3\tan A - \tan^3 A}$?	79.	If $\cos x \neq -1$, then what is $\frac{\sin x}{1 + \cos x}$ equal to?	[2010-1]
	[2009-II]		(a) $-\cot \frac{x}{2}$ (b) $\cot \frac{x}{2}$	
	(a) -1 (b) 1		2 2 2	
	(c) 1/3 (d) 3		(c) $\tan \frac{x}{2}$ (d) $-\tan \frac{x}{2}$	
72.	Consider the following statements [2009-11]		2 2	
	1. If $\theta = 1200^\circ$, then $(\sec \theta + \tan \theta)^{-1}$ is positive.	80.	What is the value of $\frac{1+\tan 15^{\circ}}{1-\tan 15^{\circ}}$?	[2010-I]
	II. If $\theta = 1200^\circ$, then (cosec $\theta = cot\theta$) is negative. Which of the statements given above is/are correct?		$1 - \tan 13$	
	(a) Lonly (b) Honly		(a) 1 (b) $\frac{1}{\sqrt{2}}$	
	(c) Both I and II (d) Neither I nor II		$\sqrt{2}$	
73.	If $\cot \theta = 2\cos \theta$, where $(\pi/2) < \theta < \pi$, then what is the value		(c) $\frac{1}{\sqrt{2}}$ (d) $\sqrt{3}$	
	of θ ? [2009-II]	01	$\sqrt{3}$	[2010]]
	(a) $5\pi/6$ (b) $2\pi/3$	81.	what is the value of $\sqrt{3}$ cosec 20° – sec 20° ? (a) $1/4$ (b) 4	[2010-1]
	(c) $3\pi/4$ (d) $11\pi/12$		(a) $1/4$ (b) 4 (c) 2 (d) 1	
74.	If $\cot \theta = 5/12$ and θ lies in the third quadrant, then what is		$(1)^{0}$	
	$(2 \sin \theta + 3 \cos \theta)$ equal to? [2009-11]	82.	What is $\tan\left(\frac{7\frac{1}{2}}{2}\right)$ equal to?	[2010-I]
	(a) -4 (b) $-r^2$ for some odd prime <i>n</i>		(a) $\overline{(2 + 5)} = (2 + 2) (b) - \overline{(2 + 5)} = (2 + 2) (c)$	
	(c) $(-a/n)$ where n is an odd prime and a a positive integer		(a) $\sqrt{6} + \sqrt{3} - \sqrt{2} + 2$ (b) $\sqrt{6} + \sqrt{3} + \sqrt{2} + 2$ (c) $\sqrt{6} + \sqrt{3} + \sqrt{2} + 2$ (d) $\sqrt{6} + \sqrt{3} + \sqrt{2} + 2$	
	with (q/p) not an integer		(c) $\sqrt{6} - \sqrt{3} + \sqrt{2} - 2$ (d) $\sqrt{6} + \sqrt{3} + \sqrt{2} - 2$	
	(d) $-p$ for some odd prime p	83.	What is the value of $\frac{\cos 15^\circ + \cos 45^\circ}{3 \cdot 5^\circ}$?	[2010-I]
75.	What is the value of [2009-II]		$\cos^{5}15^{6} + \cos^{5}45^{6}$	
	$\cos(\pi/9) + \cos(\pi/3) + \cos(5\pi/9) + \cos(7\pi/9)?$		(a) $\frac{1}{4}$ (b) $\frac{1}{2}$	
	(a) 1 (b) -1		4 2	
	(c) $-1/2$ (d) $1/2$		(c) $\frac{1}{2}$ (d) None of these	
76.	What is the value of $\sqrt{3}$ cosec 20° - sec 20° ? [2009-II]	84.	The angle A lies in the third quadrant and it s	atisfies the
	(a) 4 (b) 3		equation 4 $(\sin^2 x + \cos x) = 1$. What is the mean	sure of the
	(c) 2 (d) 1		angle A ? (a) 225° (b) 240°	[2010-1]
77.	Match List_I with List_II and select the correct answer using		(c) 210° (d) None of these	
	the code given below the lists [2009-II]		$\sin \theta + 1$	
	List-I List-II	85.	What is $\frac{1}{\cos \theta}$ equal to ?	[2010-II]
	A. $\tan 15^{\circ}$ 1. $-2 - \sqrt{3}$		$\sin \theta + \cos \theta - 1$ $\sin \theta + \cos \theta + 1$	
	B. $\tan 75^{\circ}$ 2. $2 + \sqrt{3}$		(a) $\overline{\sin \theta + \cos \theta + 1}$ (b) $\overline{\sin \theta + \cos \theta - 1}$	
	C $\tan 105^{\circ}$ 3 $-2 \pm \sqrt{3}$		$\sin \theta - \cos \theta - 1$ $\sin \theta - \cos \theta + 1$	
	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \sqrt{2}$		(c) $\frac{\sin \theta + \cos \theta + 1}{\sin \theta + \cos \theta + 1}$ (d) $\frac{\sin \theta - \cos \theta + 1}{\sin \theta + \cos \theta - 1}$	
		86.	One of the angles of a triangle is 1/2 radian and	the other is
	Codes :		99°. What is the third angle in radian measure?	

[2010-II]

(a)
$$\frac{9 \pi - 10}{\pi}$$
 (b) $\frac{90 \pi - 100}{7\pi}$

(c)
$$\frac{90 \pi - 10}{\pi}$$
 (d) None of these
87. What is
$$\left(\frac{\sec 18}{\sec 144} - \frac{\csc 18}{\csc 144}\right)$$
 equal to? [2010-II]
(a) $\sec 18^{\circ}$ (b) $\csc 18^{\circ}$
(c) $-\sec 18^{\circ}$ (d) $-\csc 18^{\circ}$
88. If α and β are positive angles such that $\alpha + \beta = \frac{\pi}{4}$, then what is $(1 + \tan \alpha) (1 + \tan \beta)$ equal to? [2010-II]

(c) 2 (d) 3 89. What is the value of $(\sin 50^\circ - \sin 70^\circ + \sin 10^\circ)$? [2010-II]

(b) 1

(a) 1 (b)
$$\frac{1}{\sqrt{2}}$$

(c) $\frac{\sqrt{3}}{2}$ (d) 0

(a) 0

90. If $\cos A + \cos B = m$ and $\sin A + \sin B = n$, where m, $n \neq 0$, then what is $\sin (A + B)$ equal to? [2010-II]

(a)
$$\frac{mn}{m^2 + n^2}$$
 (b) $\frac{2mn}{m^2 + n^2}$
(c) $\frac{m^2 + n^2}{2mn}$ (d) $\frac{mn}{m + n}$

91. If
$$y = \sec^2 \theta + \cos^2 \theta$$
, where $0 < \theta < \frac{\pi}{2}$, then which one of the following is correct? [2010-II]
(a) $y=0$ (b) $0 \le y \le 2$
(c) $y \ge 2$ (d) None of these
92. If $\tan A = 3/4$ and $\tan B = -12/5$, then how many values can $\cot (A - B)$ have depending on the actual values of A and B?
(a) 1 (b) 2 [2010-II]

- (c) 3 (d) 4 93. What is the value of $\sin 15^{\circ} \sin 75^{\circ}$? [2010-11] (a) 1/4 (b) 1/8
 - (c) 1/16 (d) 1

94. What is the value of
$$\frac{\sin \theta + \cos \theta - \tan \theta}{\sec \theta + \csc e - \cot \theta}$$
, when $\theta = \frac{3\pi}{4}$?
(a) 0 (b) 1 [2010-II]

95. What is the value of sin 292 $\frac{1}{2}^{\circ}$? [2010-II]

(a)
$$\frac{1}{3}\sqrt{2+\sqrt{3}}$$
 (b) $-\frac{1}{3}\sqrt{2-\sqrt{3}}$
(c) $\frac{1}{2}\sqrt{2+\sqrt{2}}$ (d) $-\frac{1}{2}\sqrt{2+\sqrt{2}}$

96. Which one of the following is correct? [2010-II] (a) $\sin 1^\circ > \sin 1$ (b) $\sin 1^\circ < \sin 1$ (d) $\sin 1^\circ = \frac{\pi}{180} \sin 1^\circ$ (c) $\sin 1^\circ = \sin 1$ 97 If in general, the value of sin A is known, but the value of A is not known, then how many values of tan $\left(\frac{A}{2}\right)$ can be calculated? [2011-I] (a) 1 (b) 2 (c) 3 (d) 4 If $x = \sin\theta + \cos\theta$ and $y = \sin\theta \cdot \cos\theta$, then what is the value 98. of $x^4 - 4x^2y - 2x^2 + 4y^2 + 4y + 1$? [2011-I] (a) 0 (b) 1 (d) None of these (c) 2 99. If $(1 + \tan \theta)(1 + \tan \phi) = 2$, then what is $(\theta + \phi)$ equal to? (b) 45° (a) 30° [2011-1] (d) 90° (c) 60° 100. If an angle α is divided into two parts A and B such that A – B = x and $\tan A : \tan B = 2 : 1$, then what is $\sin x$ equal to? (a) $3 \sin \alpha$ (b) $(2 \sin \alpha)/3$ [2011-I] (c) $(\sin \alpha)/3$ (d) $2\sin\alpha$ 101. What is the value of $\tan 9^{\circ} - \tan 27^{\circ} - \tan 63^{\circ} + \tan 81^{\circ}?$ [2011-II] (a) 1 (b) 2 (c) 3 (d) 4 102. If $x = y \cos\left(\frac{2\pi}{3}\right) = z \cos\left(\frac{4\pi}{3}\right)$, then what is xy + yz + zx equal to? [2011-II] (a) -1 (b) 0 (c) 1 (d) 2 103. If $\sin A + \sin B + \sin C = 3$ then what is $\cos A + \cos B + \cos B$ C equal to? [2011-II] (a) – 1 (b) 0 (c) 1 (d) 3 104. If $\tan A - \tan B = x$ and $\cot B - \cot A = y$, then what is $\cot A = y$. (A - B) equal to? [2011-II] (a) $\frac{1}{y} - \frac{1}{x}$ (b) $\frac{1}{x} - \frac{1}{y}$ (c) $\frac{1}{x} + \frac{1}{y}$ (d) $-\frac{1}{x} - \frac{1}{y}$ 105. If $\tan A = 1/2$ and $\tan B = 1/3$, then what is the value of 4A + 4B?[2011-II] (a) π/4 (b) π/2 (c) π (d) 2π 106. What is the maximum value of $3 \cos x + 4 \sin x + 5$? (a) 5 (b) 7 [2011-II] (c) 10 (d) 12 107. If $\sin\theta = \cos^2\theta$, then what is $\cos^2\theta(1 + \cos^2\theta)$ equal to? [2011-II] (a) 1 (h) 0

(a) 1 (b) 0
(c)
$$\cos^2 \theta$$
 (d) $2 \sin \theta$

м-191

108.	What is the value of tan 15°. tan 195°?	<i>2011-II</i>] 120.	Which one of the following is positive in the third quadrant?
	(a) $7-4\sqrt{3}$ (b) $7+4\sqrt{3}$	-	(a) $\sin\theta$ (b) $\cos\theta$ [2012-I]
	(c) $7 \pm 2\sqrt{3}$ (d) $7 \pm 6\sqrt{3}$		(c) $\tan\theta$ (d) $\sec\theta$
		121.	What is the value of $\sin(1920^\circ)$? [2012-1]
109.	What is $\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x}$ equal to? [[2011-II]	(a) $1/2$ (b) $\frac{1}{\sqrt{2}}$
	(a) $2 \tan x$ (b) $2 \operatorname{cosec} x$ (c) $2 \cos x$ (d) $2 \sin x$		$\sqrt{3}$
110.	If sin $3A = 1$, then how many distinct values ca	in sin A	(c) $\frac{1}{2}$ (d) $\frac{1}{3}$
	assume? [2011-II]	1 \mathbf{r}
	(a) 1 (b) 2 (d) 4	122.	Let $sin(A+B) = 1$ and $sin(A-B) = \frac{1}{2}$ where $A, B \in [0, \frac{1}{2}]$.
	$(c) 3 \qquad (d) 4$		What is the value of A? $[2\overline{0}12-I]$
111.	What is $\frac{\sin \theta}{\cos 2\theta}$ $\frac{\cos \theta}{\cos \theta}$ equal to?	2012-I]	(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{2}$
			$\binom{(a)}{6} = \binom{(b)}{3}$
	(a) 1 (b) $\frac{1}{2}$		π (1) π
	1		(c) $\frac{1}{4}$ (d) $\frac{1}{8}$
	(c) $\frac{1}{2}$ (d) 2	123.	What is $\tan(A + 2B)$. $\tan(2A + B)$ equal to? [2012-I]
112	If $\tan \theta + \sec \theta = 4$ then what is the value of $\sin \theta$?	[2012-1]	(a) -1 (b) 0 (d) 2
··- - ·	(a) 8/17 (b) 8/15	124	(c) 1 (d) 2 What is $\sin^2 A - \sin^2 B$ equal to? [2012-1]
	(c) 15/17 (d) 23/32	121.	(a) 0 (b) $1/2$
113.	What is the angle subtended by 1 m pole at a distant	nce 1 km	(c) 1 (d) 2
	on the ground in sexagesimal measure?	<i>2012-1J</i> 125.	What is the value of
	(a) $\frac{9}{2}$ degree (b) $\frac{9}{2}$ degree		$\sin 420^{\circ} \cdot \cos 390^{\circ} + \cos(-300^{\circ}) \cdot \sin(-330^{\circ})?$ [2012-I]
	$\begin{array}{c} (a) 50\pi \text{ argree} \\ (b) 5\pi \text{ argree} \\ (b) 5\pi \text{ argree} \\ (c) 5\pi \text{ argree} \\ (c) c) c \in \mathbb{R} \\ (c) c$		(a) 0 (b) 1 (c) $(a) = 1$
114	(c) 3.4 minute (d) 3.5 minute	126	(c) 2 (d) -1
114.	$\cos(A + B) \sec(A - B)?$	2012-11	1° in radian measure is less than 0.02 radians
			 I radian in degree measure is greater than 45°.
	(a) $\frac{1}{3}$ (b) $\frac{2}{3}$		Which of the above statements is/are correct? [2012-I]
	(c) 1 (d) -1		(a) 1 only (b) 2 only
		107	(c) Both 1 and 2 (d) Neither 1 nor 2
115.	What is $\tan\left(\frac{\pi}{12}\right)$ equal to?	<i>2012-I</i>] ^{127.}	What is maximum value of $\sin^2 x$? [2012-1]
			$\begin{array}{cccc} (a) & -1 \\ (b) & 0 \\ (c) & 1 \\ (c) & 1 \\ (d) & Infinity \\ \end{array}$
	(a) $2-\sqrt{3}$ (b) $2+\sqrt{3}$	128.	If ABCD is a cyclic quadrilateral then what is
	(c) $\sqrt{2} - \sqrt{3}$ (d) $\sqrt{3} - \sqrt{2}$		sinA + sinB - sinC - sinD equal to? [2012-1]
116.	If $\theta = 18^\circ$, then what is the value of $4\sin^2\theta + 2\sin\theta$)?	(a) 0 (b) 1
	(a) -1 (b) 1 [.	2012-1]	(c) 2 (d) $2(\sin A + \sin B)$
		129.	What is the value of $\sin 15^\circ$? [2012-11]
117.	If $\csc \theta - \cot \theta = \frac{1}{\sqrt{2}}$ where $\theta \neq 0$, then what is the set of the set o	the value	$\sqrt{3}-1$ (1) $\sqrt{3}+1$
	$\sqrt{3}$	2012-17	(a) $\frac{1}{2\sqrt{2}}$ (b) $\frac{1}{2\sqrt{2}}$
	(a) 0 (b) $\frac{\sqrt{3}}{3}$	2012 1	(c) $\frac{\sqrt{3}-1}{\sqrt{3}-1}$ (d) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$
	2		(c) $\sqrt{3}+1$ (d) $\sqrt{3}-1$
	(c) $\frac{1}{2}$ (d) $\frac{1}{\sqrt{2}}$	130.	If $4 \sin^2 \theta = 1$, where $0 < \theta < 2\pi$, how many values does θ take? [2012-II]
118.	What is the maximum value of $\sin 3\theta \cos 2\theta + \cos 3\theta$	θsin2θ?	(a) 1 (b) 2
	(a) 1 (b) 2 [. (c) A (d) 10	2012-1]	(c) 4 (d) None of the above
119	What is $\sin A \cos A \tan A + \cos A \sin A \cot A$ equal to	p? 131.	What is the value of $\sin 18^\circ \cos 36^\circ$ equal to? [2012-II]
	••••••••••••••••••••••••••••••••••••••	[2012-I]	(a) 4 (b) 2 (c) $1/4$
	(a) sinA(b) cosA(c) tanA(d) 1		(c) 1 (d) 1/4

132.	If se	$ec \alpha = \frac{13}{5}$ where 270)°<0	$\alpha < 360^{\circ}$ then what is	$\sin \alpha$ equal	1
	to ?	5			[2012-]]]	
		-		10	[=01=11]	
	(a)	$\frac{5}{13}$	(b)	$\frac{12}{13}$		1
	(c)	$-\frac{12}{13}$	(d)	$-\frac{13}{12}$		1
133.	Wh	at is tan (– 585°) eq	ual to	»?	[2012-II]	1
	(a)	1	(b)	-1		
	(c)	$\sqrt{2}$	(d)	$\sqrt{2}$		
124	(c) Corr	$-\sqrt{2}$	(u)	$-\sqrt{5}$	[2012 11]	
134.	1	The value of eas 4	State	ain 46° is positivo	[2012-11]	
	1. 2	The value of cos 4	0 - 3 1°	$\sin 40^\circ$ is positive.		
	Z. W/h	The value of cos 4	4 - 3	nt is/ara correct?	[2012 11]	
	(a)	1 only		2 only	[2012-11]	
	(a)	I Offly Doth 1 and 2	(D) (d)	2 Offly Noither 1 nor 2		
	(\mathbf{C})	Doui 1 and 2	(u)	Neutrel 1 noi 2		1
135.	The by a	angle subtended at n arc of length 1 cm	the c n is :	entre of a circle of r	adius 3 cm [2012-II]	
	(-)	30°	(1 -)	60°		
	(a)	π	(b)	π		1
	(c)	60°	(d)	None of the above	e	
136.	If s	in A = $\frac{2}{\sqrt{5}}$ and cos	5 B =	$\frac{1}{\sqrt{10}}$ where A and $\frac{1}{\sqrt{10}}$	B are acute	1
	ang	les, then what is A	+Be	qual to ?	[2012-II]	
	(a)	135°	(b)	90°		
	(c)	75°	(d)	60°		
137.	If co	$\csc\theta + \cot\theta = c$, th	en wl	hat is $\cos\theta$ equal to	? [2013-I]	1
	(a)	$\frac{c}{c^2-1}$	(b)	$\frac{c}{c^2+1}$		
	(c)	$\frac{c^2 - 1}{c^2 + 1}$	(d)	None of the above	e	1
138.	If si	$n\theta + 2\cos\theta = 1$, the	en wh	hat is $2\sin\theta - \cos\theta$ e	equal to ?	
	(a)	0	(b)	1	[2013-I]	1
	(c)	2	(d)	4		
139	If A	$+ B = 90^{\circ}$ then y	what	is $\sqrt{\sin A \sec B - s}$	in $A \cos B$	
	eau	al to ?		V	[2013_1]	
	(a)	$\sin \Delta$	(h)	cos A	[2013-1]	
	(a)	tan A	(0)	0		
140	Wh	at is $\tan^4 \Delta = \sec^4$	$\Delta + 1$	$\tan^2 \Delta + \sec^2 \Delta$ equ	ual to ?	
140.	(a)		(h)	1	[2013-11]	
	(a)	2	(d)	_1	[2010 1]	
	(0)	2	(u)	1		
141.	Wh	at is the value of tar	n 105	° ?	[2013-1]	1
	(a)	$\frac{\sqrt{3}+1}{\sqrt{3}-1}$	(b)	$\frac{\sqrt{3}+1}{1-\sqrt{3}}$		
	(c)	$\frac{\sqrt{3}-1}{\sqrt{3}+1}$	(d)	$\frac{\sqrt{3}+2}{\sqrt{3}-1}$		

142.	If ta valu	n A = x + 1 and $tan 2$	B = x	-1 , then $x^2 \tan (A -$	- B) has the [2013-I]
	(a)	1	(b)	х	
	(c)	0	(d)	2	
143.	Wha	at is the value of (s	$in^4\theta$	$-\cos^4\theta + 1) \csc^2\theta$	θ?
	(a)	-2	(b)	0	[2013 - I]
	(c)	1	(d)	2	
		cot x +	cose	ecx - 1	
144.	The	expression $\frac{\cot x}{\cot x}$	- cose	$\frac{1}{1} \frac{1}{1}$ is equal to :	[2013-I]
	(a)	$\frac{\sin x}{1 - \cos x}$	(b)	$\frac{1-\cos x}{\sin x}$	
	(a)	$1 + \cos x$	(d)	sin x	
	(0)	sin x	(u)	$1 + \cos x$	
		$1-\tan^2\frac{x}{2}$			
145.	Wha	at is $1 + \tan^2 \frac{x}{2}$ equ	ial to	:	[2013-1]
	(a)	sin x. cos x	(b)	tan x	
	(c)	sin x	(d)	cos x	
146.	Wha	at is $\frac{\cot 54^\circ}{\tan 36^\circ} + \frac{\tan 2}{\cot 7}$	$\frac{20^{\circ}}{0^{\circ}}$ e	equal to?	[2013-II]
	(a)	0	(b)	1	
	(c)	2	(d)	3	
147.	Wha	at is $\sin^2 20^\circ + \sin^2$	70° e	equal to ?	[2013-II]
	(a)	1	(b)	0	
	(c)	-1	(d)	$\frac{1}{2}$	
148.	Wha	at is $(1-\sin^2\theta)(1+$	tan ²	θ) equal to ?	[2013-II]
	(a)	sin ² 0	(b)	$\cos^2\theta$	
	(c)	$\tan^2\theta$	(d)	1	
149.	Wha	at is tan 15° equal t	o?́		[2013-II]
	(a)	2 13	(b)	$2 + \sqrt{3}$	
	()	2 - \(\bar{y}\)5	(0)	2+35	
	(c)	$1 - \sqrt{3}$	(d)	$1 + \sqrt{3}$	
150.	Con	sider the following:			[2013-II]
	1.	$\tan\left(\frac{\pi}{6}\right)$	2.	$\tan\left(\frac{3\pi}{4}\right)$	
	3.	$\tan\left(\frac{5\pi}{4}\right)$	4.	$\tan\left(\frac{2\pi}{3}\right)$	
	Wha	at is the correct ord	er?		
	(a)	1 < 4 < 2 < 3	(b)	4 < 2 < 1 < 3	
	(c)	4 < 2 < 3 < 1	(d)	1 < 4 < 3 < 2	
151.	If co	$\cos x = \frac{1}{3}$, then what i	is sin .	$x \cdot \cot x \cdot \operatorname{cosec} x \cdot \tan x$	x equal to?
		-			[2013-II]
		2		3	

(a) $\frac{2}{3}$ (c) 2 (b) $\frac{3}{2}$ (d) 1

[2014-II]

[2014-II]

[2014-II]

[2014-II]

[2014-II]

[2014-II]

м-194

NDA Topicwise Solved Papers - MATHEMATICS

152. The complete solution of $3 \tan^2 x = 1$ is given by : [2014-I] 160. What is $\cos 20^\circ + \cos 100^\circ + \cos 140^\circ$ equal to ? [2014-I] (a) 2 (b) 1 (a) $x = n\pi \pm \frac{\pi}{3}$ (b) $x = n\pi + \frac{\pi}{3}$ only (c) 1/2 (d) 0 161. What is $\sin^2(3\pi) + \cos^2(4\pi) + \tan^2(5\pi)$ equal to ?[2014-I] (c) $x = n\pi \pm \frac{\pi}{6}$ (d) $x = n\pi + \frac{\pi}{6}$ only (a) 0 (b) 1 (c) 2 (d) 3 where $n \in Z$ 153. What is the value of $\cos 36^\circ$? [2014-I] 162. What is $\sqrt{1+\sin 2\theta}$ equal to ? [2014-II] (a) $\frac{\sqrt{5}-1}{4}$ (b) $\frac{\sqrt{5}+1}{4}$ (a) $\cos\theta - \sin\theta$ (b) $\cos\theta + \sin\theta$ (c) $2\cos\theta + \sin\theta$ (d) $\cos\theta + 2\sin\theta$ (c) $\frac{\sqrt{10+2\sqrt{5}}}{4}$ (d) $\frac{\sqrt{10-2\sqrt{5}}}{4}$ 163. If $\cot A = 2$ and $\cot B = 3$, then what is the value of A + B? 154. Consider the following statements : [2014-I] (a) $\pi/6$ (b) π Value of sin θ oscillates between -1 and 1. 1 (c) $\pi/2$ (d) $\pi/4$ Value of $\cos \theta$ oscillates between 0 and 1. 2 Which of the above statements is/are correct ? 164. What is $\sin^2 66\frac{1}{2}^\circ - \sin^2 23\frac{1}{2}^\circ$ equal to ? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 (a) sin 47° (b) cos 47° 155. Consider the following statements : [2014-I] (d) $2\cos 47^{\circ}$ (c) $2\sin 47^{\circ}$ $n\left(\sin^2 67\frac{1^\circ}{2} - \sin^2 22\frac{1^\circ}{2}\right) > 1$ for all positive integers 1. 165. What is $\frac{\cos 7x - \cos 3x}{\sin 7x - 2\sin 5x + \sin 3x}$ equal to ? $n \geq 2$. (b) $\cot x$ (a) $\tan x$ 2. If x is any positive real number, then nx > 1 for all (c) $\tan 2x$ (d) $\cot 2x$ positive integers $n \ge 2$. 166. If $\frac{\sin(x+y)}{\sin(x-y)} = \frac{a+b}{a-b}$, then what is $\frac{\tan x}{\tan y}$ equal to ? Which of the above statements is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 156. Consider the following statements : [2014-I] If 3θ is an acute angle such that $\sin 3\theta = \cos 2\theta$, then (a) $\frac{b}{a}$ 1. (b) $\frac{a}{b}$ the mesurement of θ in radian equals to $\frac{\pi}{10}$ (c) *ab* (d) 1 167. If $\sin A \sin (60^\circ - A) \sin (60^\circ + A) = k \sin 3A$, then what is k One radian is the angle subtended at the centre of a 2. equal to? circle by an arc of the same circle whose length is equal (a) 1/4 (b) 1/2 to the diameter of that circle. (c) 1 (d) 4 Which of the above statements is/are correct? (a) 1 only (b) 2 only 168. The line $y = \sqrt{3}$ meets the graph $y = \tan x$, where (c) Both 1 and 2 (d) Neither 1 nor 2 [2014-1] 157. Consider the following statements : $x \in \left(0, \frac{\pi}{2}\right)$, in k points. What is k equal to? [2014-II] $\sin|x| + \cos|x|$ is always positive. 1. (a) One (b) Two $sin(x^2) + cos(x^2)$ is always positive. 2. (c) Three (d) Infinity Which of the above statements is/are correct ? 169. Which one of the following is one of the solutions of the (a) 1 only (b) 2 only equation of the equation $\tan 2\theta$. $\tan \theta = 1$? [2014-II] (c) Both 1 and 2 $\mathbf{1}$ (d) Neither 1 nor 2 (a) $\pi/12$ (b) $\pi/6$ 158. What is $\frac{1+\sin A}{1-\sin A} - \frac{1-\sin A}{1+\sin A}$ equal to ? [2014-I] (c) $\pi/4$ (d) $\pi/3$ (a) $\sec A - \tan A$ (b) $2 \sec A \cdot \tan A$ **DIRECTIONS (Qs. 170-172):** For the next three (03) items that (d) $4 \operatorname{cosec} A \cdot \operatorname{cot} A$ (c) $4 \sec A \cdot \tan A$ follow. 159. What is $\frac{\cot 224^\circ - \cot 134^\circ}{\cot 226^\circ + \cot 316^\circ}$ equal to ? Given that $16\sin^5 x = p\sin 5x + q\sin 3x + r\sin x$. [2014-I] 170. What is the value of p? (a) $-\csc 88^{\circ}$ (b) $-\csc 2^{\circ}$ (b) 2 (a) 1 (c) $-\csc 44^{\circ}$ (d) $-\csc 46^{\circ}$ (c) -1(d) -2

171. What is the value of q? [2014-II]	
(a) 3 (b) 5	(a)
(c) 10 (d) -5	
172. What is the value of r ? [2014-II]	
(a) 5 (b) 8	(c)
(c) 10 (d) -10	DIRECT
1/3. Let θ be a positive angle. If the number of degrees in θ is	follow .
divided by the number of radians in θ , then an irrational	Con
number $\frac{180}{\pi}$ results. If the number of degrees in θ is	2a s
multiplied by the number of radians in θ , then an irrational	181. The
number $\frac{125\pi}{9}$ results. The angle θ must be equal to	(a) (b)
[2015-]]	(c)
(a) 30° (b) 45°	(d)
(c) 50° (d) 60°	$102.$ $\sin F$
DIRECTIONS (Qs. 174-175): For the next two (2) items that follow.	(b) (c)
Let α be the root of the equation $25\cos^2\theta + 5\cos\theta - 12 = 0$,	(d)
where $\frac{\pi}{2} < \alpha < \pi$	
where $\frac{1}{2} < \alpha < \pi$.	183. If p
174. What is $\tan \alpha$ equal to? [2015-1]	then
(a) $\frac{-3}{-3}$ (b) $\frac{3}{-3}$	1.
4 4	2. S - 1 -
(c) $\frac{-4}{-4}$ (d) $\frac{-4}{-4}$	(a)
(0) 3 (0) 5	(a) (c)
175. What is $\sin 2\alpha$ equal to? [2013-1]	DIRECT
(a) $\frac{24}{25}$ (b) $\frac{-24}{25}$	that follo
25 25 25	Give
(c) $\frac{-5}{-5}$ (d) $\frac{-21}{-5}$	\mathbf{x}^2 +
$\frac{12}{12}$ 25 176 (1 sin 4 + cos 4) ² is equal to [2015]	194 W/bo
(a) $2(1 - \cos A)(1 + \sin A)$	104. Wila (a)
(b) $2(1 - \sin A)(1 + \cos A)$	(a) (c)
(c) $2(1 - \cos A)(1 - \sin A)$	185 Wha
(d) None of the above	(a)
177. What is $\frac{\cos\theta}{\cos\theta} + \frac{\sin\theta}{\cos\theta}$ equal to? [2015-II]	(u) (c)
$1 - \tan \theta 1 - \cot \theta 1$	186. If A
(a) $\sin \theta - \cos \theta$ (b) $\sin \theta + \cos \theta$ (c) $2 \sin \theta$ (d) $2 \cos \theta$	and
178 The value of $\sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + \sin^2 20^\circ +$	4
$+\sin^2 90^\circ$ is [2015-11]	$\frac{A}{D}$ ec
(a) 7 (b) 8	B (a)
(1) 0 (1) 19	(a) (c)
(c) 9 (d) $\frac{1}{2}$	187. sin A
170 On simplifying $\sin^3 A + \sin 3A$ $\cos^3 A - \cos 3A$	1 4
1/9. On simplifying $\frac{1}{\sin A}$ $\frac{1}{\cos A}$, we get	1
[2015-11]	
(a) sin3A (b) cos3A	2. 2
(c) $\sin A + \cos A$ (d) 3 180 If $\sin x + \sin y = a$ and $\cos x + \cos y = b$ then	
100. If sill $x + \sin y = a$ and $\cos x + \cos y = 0$, then	2 0
$\tan^2\left(\frac{x+y}{2}\right) \tan^2\left(\frac{x-y}{2}\right)$ is equal to [2015-II]	3. 8

(a)
$$\frac{a^4 b^4 4b^2}{a^2b^2 b^4}$$
 (b) $\frac{a^4 - b^4 4b^2}{a^2b^2 b^4}$
(c) $\frac{a^4 - b^4 4a^2}{a^2b^2 a^4}$ (d) None of the above
IRECTIONS (Qs. 181-182) : For the next two (02) items that
illow.
Consider a triangle ABC satisfying
 $2a \sin^2\left(\frac{C}{2}\right) 2c \sin^2\left(\frac{A}{2}\right) 2a 2c - 3b$
31. The sides of the triangle are in [2015-11]
(a) G.P.
(b) A.P.
(c) H.P.
(d) Neither in G.P. nor in A.P nor in H.P.
32. sin A, sin B, sin C are in [2015-11]
(a) G.P.
(b) A.P.
(c) H.P.
(d) Neither in G.P. nor in A.P nor in H.P.
33. If $p = tan\left(-\frac{11\pi}{6}\right)$, $q = tan\left(\frac{21\pi}{4}\right)$ and $r = cot\left(\frac{283\pi}{6}\right)$,
then which of the following is/are correct ? [2015-11]
1. The value of $p \times r$ is 2.
2. p, q and r are in G.P.
Select the correct answer using the code given below :
(a) 1 only (b) 2 only
(c) Both 1 and 2 (d) Neither 1 nor 2
IRECTIONS (Qs. 184-185) : For the next two (2) items
that follow.
Given that tan α and tan β are the roots of the equation
 $x^2 + bx + c = 0$ with $b \neq 0$.
34. What is $tan(\alpha + \beta)$ equal to? [2016-1]
(a) $b(c - 1)$ (b) $c(b - 1)$
(c) $c(b - 1)^{-1}$ (d) $b(c - 1)^{-1}$
35. What is $sin(\alpha + \beta)sec\alpha sec\beta$ equal to? [2016-1]
(a) $b (c - 1)^{-1}$ (b) c
36. If $A = (cos 12^\circ - cos 36^\circ)(sin 96^\circ + sin 24^\circ)$ [2016-1]
and $B = (sin 60^\circ - sin 12^\circ)(cos 48^\circ - cos 72^\circ)$, then what is
 $\frac{A}{B}$ equal to?
(a) -1 (b) 0
(b) -1 (c) $1 = (b) 0$
(c) $1 = (b) -1$ (c) 2
37. sin $A + 2 sin 2A + sin 3A$ is equal to which of the following?
1. $4 \sin 2A \cos^2\left(\frac{A}{2}\right)$ [2016-11]

1.
$$4 \sin 2A \cos^2\left(\frac{1}{2}\right)$$
 [20
2. $2 \sin 2A \left(\sin \frac{A}{2} + \cos \frac{A}{2}\right)^2$
3. $8 \sin A \cos A \cos^2\left(\frac{A}{2}\right)$

Select the correct answer using the code given below: (a) 1 and 2 only (b) 2 and 3 only (c) 1 and 3 only (d) 1, 2 and 3 188. If $x = \sin 70^{\circ} . \sin 50^{\circ}$ and $y = \cos 60^{\circ} . \cos 80^{\circ}$, then what is xy equal to? [2016-II] (a) 1/16 (b) 1/8 (c) 1/4 (d) 1/2 189. If $\sin \theta_1 + \sin \theta_2 + \sin \theta_3 + \sin \theta_4 = 4$, then what is the value of $\cos \theta_1 + \cos \theta_2 + \cos \theta_3 + \cos \theta_4 = ?$ [2016-II] (b) 1 (a) 0 (c) 2 (d) 4 190. What is the value of [2016-II] $\left(1+\cos\frac{\pi}{8}\right)\left(1+\cos\frac{3\pi}{8}\right)\left(1+\cos\frac{5\pi}{8}\right)\left(1+\cos\frac{7\pi}{8}\right)?$ (a) $\frac{1}{2}$ (b) $\frac{1}{2} + \frac{1}{2\sqrt{2}}$ (c) $\frac{1}{2} - \frac{1}{2\sqrt{2}}$ (d) $\frac{1}{8}$ 191. If $x \cos \theta + y \sin \theta = z$, then what is the value of $(x \sin \theta - y \cos \theta)^2$? [2016-II] (a) $x^2 + y^2 - z^2$ (b) $x^2 - y^2 - z^2$ (d) $x^2 + y^2 + z^2$ (c) $x^2 - y^2 + z^2$ 192. If sin $18^{\circ} = \frac{\sqrt{5} - 1}{4}$, then what is the value of sin 81° ? [2016-II] (a) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ (b) $\frac{\sqrt{3+\sqrt{5}}+\sqrt{5+\sqrt{5}}}{4}$ (c) $\frac{\sqrt{3-\sqrt{5}}+\sqrt{5-\sqrt{5}}}{4}$ (d) $\frac{\sqrt{3+\sqrt{5}}-\sqrt{5-\sqrt{5}}}{4}$ 193. What is $\frac{1 - \tan 2^{\circ} \cot 62^{\circ}}{\tan 152^{\circ} - \cot 88^{\circ}}$ equal to? [2016-II] (a) $\sqrt{3}$ (b) $-\sqrt{3}$ (c) $\sqrt{2} - 1$ (d) $1 - \sqrt{2}$ 194. If $\sin A = \frac{3}{5}$, where $450^\circ < A < 540^\circ$, then $\cos \frac{A}{2}$ is equal to [2017-I] (a) $\frac{1}{\sqrt{10}}$ (b) $-\sqrt{\frac{3}{10}}$ (c) $\frac{\sqrt{3}}{\sqrt{10}}$ (d) None of the above 195. What is $\frac{1}{\sin 10^\circ} - \frac{\sqrt{3}}{\cos 10^\circ}$ equal to? [2017-I] (a) 0 (b) 1 (d) 4 (c) 2

196.	If $K = \sin\left(\frac{\pi}{18}\right)\sin\left(\frac{5\pi}{18}\right)\sin\left(\frac{5\pi}{18}\right)$	$\left(\frac{7\pi}{18}\right)$, then what is	s the value
	of K?	(10)	[2017-I]
	(a) $\frac{1}{2}$	(b) $\frac{1}{4}$	
	(c) $\frac{1}{8}$	(d) $\frac{1}{16}$	
197.	The expression $\frac{\sin \alpha + \sin \beta}{\cos \alpha + \cos \beta}$	is equal to	[2017-I]
	(a) $\tan\left(\frac{\alpha+\beta}{2}\right)$	(b) $\cot\left(\frac{\alpha+\beta}{2}\right)$	
	(c) $\sin\left(\frac{\alpha+\beta}{2}\right)$	(d) $\cos\left(\frac{\alpha+\beta}{2}\right)$	
198.	If $\sin\theta = 3 \sin (\theta + 2\alpha)$, the $2 \tan \alpha$ is equal to	en the value of tan	$(\theta + \alpha) + (2017 - I)$
	$\begin{array}{c} \begin{array}{c} a \\ (a) \\ \end{array} \begin{array}{c} -1 \\ \end{array}$	(b) 0	[=0171]
199.	(c) I What is the value of tan 18°	(d) 2	[2017-I]
	(a) $\frac{\sqrt{5}-1}{\sqrt{10+2\sqrt{5}}}$	(b) $\frac{\sqrt{5}-1}{\sqrt{10+\sqrt{5}}}$	
	(c) $\frac{\sqrt{10+2\sqrt{5}}}{\sqrt{5}-1}$	(d) $\frac{\sqrt{10+\sqrt{5}}}{\sqrt{5}-1}$	
200	If $\tan (\alpha + \beta) = 2$ and $\tan (\alpha - \beta) = 2$	$(-\beta) = 1$, then $\tan(2)$	α) is equal
	(a) -3	(b) –2	[2017-1]
	(c) $-\frac{1}{3}$	(d) 1	
201.	If $\sec \theta - \csc \theta = \frac{4}{3}$, then	what is $(\sin \theta - c c)$	os θ) equal
	to?		[2017-I]
	(a) -2 only	(b) $\frac{1}{2}$ only	
	(c) Both -2 and $\frac{1}{2}$	(d) Neither $\frac{1}{2}$ no	or –2
202.	The value of $\tan 9^\circ - \tan 27^\circ$	$-\tan 63^\circ + \tan 81^\circ$	is equal to
	(a) -1 (c) 1	(b) 0 (d) 4	[2017-11]
203.	The value of $\sqrt{3}$ cosec 20° -	sec 20° is equal to	[2017-II]
204.	(a) 4 (c) 1 Angle α is divided into tw A-B=x and tan A: tan B=p to	(b) 2 (d) -4 yo parts A and B o: q. The value of sin	such that n x is equal [2017-II]
	(a) $\frac{(p+q)\sin\alpha}{p-q}$	(b) $\frac{p\sin\alpha}{p+q}$	L
	(c) $\frac{p \sin \alpha}{p-q}$	(d) $\frac{(p-q)\sin\alpha}{p+q}$	

		A)	2	213. What is the period	l of the function $f(x) = \sin x$?	[2018-I]
205.	$\sqrt{1} + \sin A = -\left(\sin \frac{1}{2} + \cos \frac{1}{2} \right)$	$\frac{1}{2}$ is true if	[2017-II]	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	
	(a) $\frac{3\pi}{2} < A < \frac{5\pi}{2}$ only	(b) $\frac{\pi}{2} < A < \frac{3\pi}{2}$	only	(c) π	(d) 2π	
	(c) $\frac{3\pi}{2} < A < \frac{7\pi}{2}$	(d) $0 < A < \frac{3\pi}{2}$	2	214. What is $\frac{2\tan\theta}{1+\tan^2\theta}$	equal to?	[2018-II]
	. 1. 1	π	π	(a) cos 2θ	(b) $\tan 2\theta$	
206.	If $\sin x = \frac{1}{\sqrt{5}}$, $\sin y = \frac{1}{\sqrt{10}}$,	where 0 x $\frac{1}{2}$,	$0 y \frac{\pi}{2},$	(c) $\sin 2\theta$	(d) $\csc 2\theta$	
	then what is $(x + y)$ equal to?	_	[2018-I] ²	215. If sec $(\theta - \alpha)$, sec $\alpha \neq 1$, then what i	is the value of $\sin^2 \theta + \cos \alpha$?	where cos [2018-II]
	(a) π	(b) $\frac{\pi}{2}$		(a) 0	(b) 1	
	π	- 0 (k)	2	(c) -1 216 A is an angleir	(d) 1/2 a the fourth quadrant. If s	atisfies the
	(c) $\frac{1}{4}$	(d) 0	-	trigonometric equa	ation $3(3-\tan^2 A-\cot A)^2 = 1$.	thomes the
207	What is $\frac{\sin 5x - \sin 3x}{\cos 3x}$ equ	al to?	[2018_]]	Which one of the	following is a value of A?	[2018-II]
207.	$\cos 5x \cos 3x$		[20101]	(a) 300°	(b) 315°	
	(a) $\sin x$ (c) $\tan x$	(b) $\cos x$ (d) $\cot x$		(c) 330°	(d) 345°	
208.	What is $\sin 105^\circ + \cos 105^\circ e$	equal to?	[2018-1] 2	217. What is/are the	solutions of the trigonometri	с
	(a) $\sin 50^{\circ}$	(b) $\cos 50^{\circ}$		equation cosec $x + i$	$\cot x = \sqrt{3}$, where $0 < x < 2\pi$?	[2018-II]
	(c) $\frac{1}{\sqrt{2}}$	(d) 0		(a) $\frac{5\pi}{3}$ only	(b) $\frac{\pi}{3}$ only	
209.	If $\frac{\sin x}{\sin x - y} = \frac{a}{a - b}$, then we	what is $\frac{\tan x}{\tan y}$ equa	l to?	(c) π only	(d) $\pi, \frac{\pi}{3}, \frac{5\pi}{3}$	
		-	[2018-I]			
	(a) $\frac{a}{-}$	(b) $\frac{b}{-}$	2	218. If $\theta = \frac{\pi}{8}$, then wh	hat is the value of	
	b a b	a a - b		$(2\cos\theta + 1)^{10}$ (2 cm	$(2\cos 2\theta - 1)^{10} (2\cos \theta - 1)^{10} (2\cos \theta - 1)^{10}$	$(4\theta - 1)^{10}?$
	(c) $\frac{a-b}{a-b}$	(d) $\frac{a}{a} \frac{b}{b}$				[2018-II]
210.	If $\sin \alpha + \sin \beta = 0 = \cos \alpha + \cos \alpha$	by β , where $0 < \beta < \beta$	$\alpha < 2\pi$, then	(a) 0	(b) 1 (b) 4	
	which one of the following is	correct?	[2 019 II]	(C) 2	(0) 4 ($0 < \alpha < \beta < \pi$) are the roots of th	e quadratic
	(a) $\alpha = \pi - \beta$ (c) $\alpha = 2\pi - \beta$	(b) $\alpha = \pi + \beta$ (d) $2\alpha = \pi + 2\beta$	[2018-1] 2	equation $4x^2 - 3 =$	0, then what is the value of sec	$\alpha \times \sec \beta$?
	(c) $\alpha - 2n - \beta$	(u) $2\alpha - \pi + 2p$	(Δ)			[2018-11]
211.	Suppose cos A is given. If o	nly one value of	$\cos\left(\frac{A}{2}\right)$ is	(a) $-\frac{4}{3}$	(b) $\frac{4}{3}$	
	possible, then A must be		[2018-1]	2	2	
	(a) An odd multiple of 90° (b) A multiple of 90°			(c) $\frac{3}{4}$	(d) $-\frac{5}{4}$	
	(c) An odd multiple of 180°		2	4 220 If $\Lambda = \sin^2 \Theta + cc$	4 A the for all real A which	one of the
	(d) A multiple of 180°		2	following is correc	xt?	[2018-II]
	If $\cos \alpha + \cos \beta + \cos \gamma = 0$,	where $0 < \alpha \le \frac{\pi}{2}$,	$0 < \beta \leq \frac{\pi}{2},$	(a) $1 \le A \le 2$	(b) $\frac{3}{4} \le A \le 1$	
212.					+	
212.	$0 < \gamma < \frac{\pi}{2}$ then what is the x	value of sin a + sin	$\beta + \sin \sqrt{2}$	10	2 12	
212.	$0 < \gamma \leq \frac{\pi}{2}$, then what is the v	value of sin α + sin	$\beta + \sin \gamma$?	(c) $\frac{13}{16} \le A \le 1$	(d) $\frac{3}{4} \le A \le \frac{13}{16}$	
212.	$0 < \gamma \le \frac{\pi}{2}$, then what is the v	value of sin α + sin	$\beta + \sin \gamma?$ [2018-1]	(c) $\frac{13}{16} \le A \le 1$ 221. What is the least v	(d) $\frac{3}{4} \le A \le \frac{13}{16}$ value of 25 cosec ² x + 36 sec ² x ²	? [2019-11
212.	$0 < \gamma \le \frac{\pi}{2}$, then what is the v (a) 0	value of sin α + sin (b) 3	$\beta + \sin \gamma?$ [2018-1] 2	(c) $\frac{13}{16} \le A \le 1$ 221. What is the least v (a) 1	(d) $\frac{3}{4} \le A \le \frac{13}{16}$ value of 25 cosec ² x + 36 sec ² x (b) 11	? [2019-1]

(c)
$$\frac{5\sqrt{2}}{2}$$
 (d) $\frac{3\sqrt{2}}{2}$

м-197

м-198

- 222. What is the value of [2019-I] $\frac{\sin 34^{\circ}\cos 236^{\circ}-\sin 56^{\circ}\sin 124^{\circ}}{\cos 28^{\circ}\cos 88^{\circ}+\cos 178^{\circ}\sin 208^{\circ}}?$ (a) −2 (b) -1 (c) 2 (d) 1
- 223. tan 54° can be expressed as [2019-I]

(a)	$\frac{\sin 9^\circ + \cos 9^\circ}{\sin 9^\circ - \cos 9^\circ}$	(b) $\frac{\sin 9^\circ - \cos 9^\circ}{\sin 9^\circ + \cos 9^\circ}$	
(c)	$\frac{\cos 9^\circ + \sin 9^\circ}{\cos 9^\circ - \sin 9^\circ}$	(d) $\frac{\sin 36^{\circ}}{\cos 36^{\circ}}$	

DIRECTIONS (Qs.	224-226) :	Consider	the following f	or the
next 03 (three) items.				

If $p = X \cos \theta - Y \sin \theta$, $q = X \sin \theta$	$\sin\theta + Y \cos\theta$ and $p^2 +$	$4pq + q^2 =$
$AX^2 + BY^2, 0 \le 0 \le \frac{\pi}{2}$.		
224. What is the value of θ ?		[2019 - I]
(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$	
(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{6}$	
225. What is the value of A?		[2019-I]
(a) 4	(b) 3	
(c) 2	(d) 1	
226. What is the value of B?		[2019-I]
(a) -1	(b) 0	
(c) 1	(d) 2	

DIRECTIONS (Qs. 227-228) : Consider the following for the next 02 (two) items.

227.	It is given that $\cos (\theta - \alpha) =$ What is $\cos (\alpha - \beta)$ equal t	= a, $\cos(\theta - \beta) = b$ to ?	[2019-1]
	(a) $ab + \sqrt{1-a^2}\sqrt{1-b^2}$	(b) $ab - \sqrt{1 - a^2} \sqrt{1 - a^2} = ab - \sqrt{1 - a^2} \sqrt{1 - a^2} = ab - ab$	b^2
	(c) $a\sqrt{1-b^2} - b\sqrt{1-a^2}$	(d) $a\sqrt{1-b^2} + b\sqrt{1-b^2} + $	a^2
228.	What is $\sin^2(\alpha - \beta) + 2ab$	$\cos(\alpha - \beta)$ equal to ?	
			[2019-I]
	(a) $a^2 + b^2$	(b) $a^2 - b^2$. ,
	(c) $b^2 - a^2$	(d) $-(a^2+b^2)$	
229.	If $\sin \alpha + \cos \alpha = p$, then v	what is $\cos^2(2\alpha)$ equal	to?
	17		[2019-I]

(a)
$$p^2$$
 (b) p^2-1
(c) $p^2(2-p^2)$ (d) p^2+1

230. If $\tan \theta = \frac{1}{2}$ and $\tan \varphi = \frac{1}{3}$, then what is the value of? [2019-I]

- (b) $\frac{\pi}{6}$ (a) 0
- (d) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$

NDA Topicwise Solved Papers - MATHEMATICS

231. If
$$\cos A = \frac{3}{4}$$
, then what is the value of $\sin\left(\frac{A}{2}\right)\sin\left(\frac{3A}{2}\right)$?
[2019-I]

(a)
$$\frac{5}{8}$$
 (b) $\frac{5}{16}$

(c)
$$\frac{5}{24}$$
 (d) $\frac{7}{32}$

232. What is the value of $\tan 75^\circ + \cot 75^\circ$? [2019-I] (a) 2 (b) 4

(c)
$$2\sqrt{3}$$
 (d) $4\sqrt{3}$

233. What is the value of $\cos 46^\circ \cos 47^\circ \cos 48^\circ \cos 49^\circ \cos$ 50°.... cos 135°? [2019-I] () 1 (b) 0

(a)
$$-1$$

234. If $\sin 2\theta = \cos 3\theta$, where $0 < \theta < \frac{\pi}{2}$, then what is $\sin \theta$ equal to? [2019-I]

(a)
$$\frac{\sqrt{5}+1}{4}$$
 (b) $\frac{\sqrt{5}-1}{4}$

(c)
$$\frac{\sqrt{5}+1}{16}$$
 (d) $\frac{\sqrt{5}-1}{16}$

- 235. What is $(1 + \tan \alpha \tan \beta)^2 + (\tan \alpha \tan \beta)^2 \sec^2 \alpha \sec^2 \beta$ [2019-I] equal to
 - (a) 0 (b) 1
 - (c) 2 (d) 4
- 236. If $p = \csc \theta \cot \theta$ and $q = (\csc \theta + \cot \theta)^{-1}$, then which one of the following is correct? [2019-I]
 - (a) pq = 1(b) p = q
 - (c) p + q = 1(d) p + q = 0
- 237. If $\sin \theta + \cos \theta = \sqrt{2} \cos \theta$, then what is $(\cos \theta \sin \theta)$ equal to? [2019-I]

(a)
$$-\sqrt{2}\cos\theta$$
 (b) $-\sqrt{2}\sin\theta$

(c)
$$\sqrt{2}\sin\theta$$
 (d) $2\sin\theta$

- 238. If $\sin \theta = -\frac{1}{2}$ and $\tan \theta = \frac{1}{\sqrt{3}}$, then in which quadrant does θ lie ? [2019-I] (a) First (b) Second (c) Third (d) Fourth

	ANSWER KEY																		
1	(c)	25	(b)	49	(b)	73	(a)	97	(b)	121	(c)	145	(d)	169	(b)	193	(b)	217	(b)
2	(b)	26	(c)	50	(a)	74	(d)	98	(a)	122	(b)	146	(c)	170	(a)	194	(d)	218	(b)
3	(d)	27	(d)	51	(a)	75	(d)	99	(b)	123	(c)	147	(a)	171	(d)	195	(d)	219	(a)
4	(c)	28	(c)	52	(c)	76	(a)	100	(c)	124	(b)	148	(d)	172	(c)	196	(c)	220	(b)
5	(a)	29	(a)	53	(c)	77	(b)	101	(d)	125	(b)	149	(a)	173	(c)	197	(a)	221	(d)
6	(c)	30	(d)	54	(d)	78	(b)	102	(b)	126	(c)	150	(b)	174	(a)	198	(b)	222	(a)
7	(a)	31	(d)	55	(a)	79	(c)	103	(b)	127	(c)	151	(d)	175	(b)	199	(a)	223	(c)
8	(a)	32	(a)	56	(d)	80	(d)	104	(c)	128	(a)	152	(c)	176	(b)	200	(a)	224	(c)
9	(a)	33	(a)	57	(c)	81	(b)	105	(c)	129	(a)	153	(b)	177	(b)	201	(b)	225	(b)
10	(c)	34	(a)	58	(d)	82	(c)	106	(c)	130	(c)	154	(a)	178	(d)	202	(d)	226	(a)
11	(a)	35	(c)	59	(a)	83	(d)	107	(a)	131	(d)	155	(a)	179	(d)	203	(a)	227	(a)
12	(a)	36	(b)	60	(d)	84	(c)	108	(a)	132	(c)	156	(a)	180	(b)	204	(d)	228	(a)
13	(a)	37	(a)	61	(b)	85	(d)	109	(b)	133	(b)	157	(d)	181	(b)	205	(c)	229	(c)
14	(d)	38	(d)	62	(c)	86	(d)	110	(b)	134	(d)	158	(c)	182	(b)	206	(c)	230	(c)
15	(c)	39	(c)	63	(b)	87	(a)	111	(a)	135	(b)	159	(b)	183	(b)	207	(c)	231	(b)
16	(a)	40	(a)	64	(a)	88	(c)	112	(c)	136	(a)	160	(d)	184	(d)	208	(c)	232	(b)
17	(b)	41	(a)	65	(b)	89	(d)	113	(a)	137	(c)	161	(b)	185	(b)	209	(a)	233	(b)
18	(a)	42	(d)	66	(a)	90	(b)	114	(a)	138	(c)	162	(b)	186	(c)	210	(b)	234	(b)
19	(b)	43	(b)	67	(c)	91	(c)	115	(a)	139	(b)	163	(d)	187	(c)	211	(c)	235	(a)
20	(c)	44	(a)	68	(b)	92	(d)	116	(b)	140	(a)	164	(b)	188	(a)	212	(b)	236	(b)
21	(0)	45	(0)	- 09 - 70	(b)	93 94	(a)	117	(\mathbf{c})	141	(0)	105	(0)	189	(a)	213	(\mathbf{a})	237	(c)
23	(d)	47	(0)	71	(b)	95	(0)	110	(d)	142	(d)	167	(0) (a)	190	(a)	214	(a)	230	(0)
24	(a)	48	(c)	72	(d)	96	(b)	120	(c)	144	(c)	168	(a)	192	(a)	216	(a)		

HINTS & SOLUTIONS

4.

5.

(c) Let the angles are α and β , then $\alpha - \beta = 1^{\circ}$ 1.

> $\Rightarrow \alpha - \beta = \frac{\pi}{180^{\circ}}$ is circular measure ...(i) As given, $\alpha + \beta = 1$...(ii) On solving Eqs. (i) and (ii), we get, $1 \begin{bmatrix} \pi \end{bmatrix}$ 1

$$\alpha = \frac{1}{2} \left[1 + \frac{1}{180^{\circ}} \right] \text{ and } \beta = \frac{1}{2} \left[1 - \frac{1}{180^{\circ}} \right]$$

 β is the smaller angle.

, 1[, π] He

Hence, smaller angle =
$$\frac{1}{2} \begin{bmatrix} 1 - \frac{1}{180^\circ} \end{bmatrix}$$

2. (b) Let two parts of an angle θ are ϕ and ψ . So, $\theta = \phi + \psi$ So, $\tan \theta = \tan (\phi + \psi)$

$$=\frac{\tan\phi+\tan\psi}{1-\tan\phi\tan\psi}=\frac{\frac{1}{8}+\frac{7}{9}}{1-\frac{1}{8}\cdot\frac{7}{9}}=\frac{\frac{9+56}{72}}{\frac{72-7}{72}}=\frac{\frac{65}{72}}{\frac{65}{72}}=1$$

$$= \tan \frac{\pi}{4} \Longrightarrow \theta = \frac{\pi}{4}$$

3. (d) Since, A and B are complementary angles, then A $+B = 90^{\circ}$ Now, $\cos A \cos B = \cos A \cos (90^\circ - A)$

$$= \cos A \sin A = \frac{1}{2} \sin 2A$$

Since, $-1 \le \sin 2A \le 1$ Hence, $-\frac{1}{2} \le \frac{1}{2} \sin 2A \le \frac{1}{2}$. Thus, greatest and least values of cos A cos B are $\frac{1}{2}$ and $-\frac{1}{2}$ (c) We take Q_3 first, $Q_3 = \sin A(\cos B + \cos C) + \sin B(\cos C + \cos A) + \sin B(\cos C + \cos A)$

 $C(\cos A + \cos B)$ = sin A cos B + sin A cos C + sin B cos C + sin B cos A $+\sin C \cos A + \sin C \cos B$ $= \sin(A+B) + \sin(B+C) + \sin(C+A) = Q_1$ $\Rightarrow Q_3 = Q_1$

(a) Given :
$$2\sin\theta = x + \frac{1}{x}$$

We know that $-1 \le \sin \theta < 1, -2 \le 2\sin \theta < 2$

$$\mathrm{So}, -2 \le \mathrm{x} + \frac{1}{\mathrm{x}} < 2$$

Thus, the given equation is valid only if $x = \pm 1$

м-199

(c) Given that : $\sin(\pi \cos x) = \cos(\pi \sin x)$ 6. So, $\cos\left(\frac{\pi}{2} - \pi\cos x\right) = \cos(\pi\sin x)$ $\Rightarrow \frac{\pi}{2} - \pi \cos x = \pi \sin x$ $\Rightarrow \sin x + \cos x = \frac{1}{2}$ Squaring both sides, we get $\sin^2 x + \cos^2 x + 2\sin x \cos x = \frac{1}{4}$ $\Rightarrow \sin 2x = \frac{1}{4} - 1 = -\frac{3}{4}$ (a) As given, $\cos A = \cos B \cos C$ 7. ...(1) tan A - tan B - tan C $=\frac{\sin A}{\cos A}-\frac{\sin B}{\cos B}-\frac{\sin C}{\cos C}$ $= \frac{\sin A}{\cos A} - \frac{(\sin B \cos C + \cos B \sin C)}{\cos B \cos C}$ $=\frac{\sin A - \sin (B \quad C)}{\cos A}$[using(1)] cos A $=\frac{\sin A-\sin \left(\pi -A\right) }{\cos A}$ [Since, $A + B + C = \pi$. So, $B + C = \pi - A$] $=\frac{\sin A - \sin A}{\cos A} = 0$ (a) $\sqrt{3} \operatorname{cosec} 20^\circ - \sec 20^\circ$ 8.

$$= \frac{\sqrt{3}}{\sin 20^{\circ}} - \frac{1}{\cos 20^{\circ}} = \frac{\sqrt{3} \cos 20^{\circ} - \sin 20^{\circ}}{\sin 20^{\circ} \cos 20^{\circ}}$$
$$= \frac{4 \cdot \frac{1}{2} (\sqrt{3} \cos 20^{\circ} - \sin 20^{\circ})}{2 \sin 20^{\circ} \cos 20^{\circ}}$$
$$= \left(\frac{\sqrt{3}}{2} \cos 20^{\circ} - \frac{1}{2} \sin 20^{\circ}\right) \left(\frac{4}{2 \sin 20^{\circ} \cos 20^{\circ}}\right)$$
$$= (\sin 60^{\circ} \cos 20^{\circ} - \cos 60^{\circ} \sin 20^{\circ}) \left(\frac{4}{\sin 40^{\circ}}\right)$$
$$= \sin 40^{\circ} \frac{4}{\sin 40^{\circ}} = 4$$
$$(\because \sin (A - B) = \sin A \cos B - \cos A \sin B)$$

(a) As given,
$$\tan \theta + \cot \theta = (\tan \theta)^{i} + (\cot \theta)^{i}$$

Also, $45^{\circ} \le \theta < 90^{\circ}$ and $i \ge 2$
which is possible only when $\theta = 45^{\circ}$
Since, $\tan 45^{\circ} + \cot 45^{\circ} = 1 + 1 = 2$
and $(\tan 45^{\circ})^{i} + (\cot 45^{\circ})^{i} = 1 + 1 = 2$
Thus, $\sin \theta + \cos \theta = \sin 45^{\circ} + \cos 45^{\circ}$

9.

$$=\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1+1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$$

NDA Topicwise Solved Papers - MATHEMATICS
10. (c) Given that
$$\tan \theta = m$$
 and $\tan 2\theta = n$
We know from fundamentals that
 $\Rightarrow \tan 3\theta = \frac{\tan \theta + \tan 2\theta}{1 - \tan \theta \tan 2\theta}$
Since, $\tan 3\theta = \tan \theta + \tan 2\theta$(as given)
 $\Rightarrow \tan \theta + \tan 2\theta = \frac{\tan \theta + \tan 2\theta}{1 - \tan \theta \tan 2\theta}$
 $\Rightarrow (\tan \theta + \tan 2\theta) (1 - \tan \theta \tan 2\theta) - (\tan \theta + \tan 2\theta) = 0$
 $\Rightarrow (\tan \theta + \tan 2\theta) \{1 - \tan \theta \tan 2\theta - 1\} = 0$
 $\Rightarrow (\tan \theta + \tan 2\theta) - (\tan \theta \tan 2\theta) = 0$
 $\Rightarrow (m + n) - mn = 0; \Rightarrow (m + n) = 0$
[since $m \neq 0$ and $n \neq 0$]

11. (a)
$$\sin A = \frac{4}{5}$$
 and $\cos B = -\frac{12}{13}$

It is given that A and B are obtuse angle

$$\Rightarrow \cos A = \pm \sqrt{1 - \sin^2 A} = \pm \sqrt{1 - \frac{16}{25}} = -\frac{3}{5}$$

Negative sign is taken for cos A since A being obtuse lies in second quadrant.

$$\sin B = \pm \sqrt{1 - \cos^2 B} = \pm \sqrt{1 - \left(\frac{-12}{13}\right)^2}$$
$$= \sqrt{\frac{169 - 144}{169}} = \frac{5}{13}$$

Positive sign is taken since, sin B is positive in second quadrant.

⇒
$$\cos A = \frac{-3}{5}$$
 and $\sin B = \frac{3}{13}$
∴ $\sin (A + B) = \sin A \cos B + \cos A \sin B$
 $= \frac{4}{5} \times \left(\frac{-12}{13}\right) + \frac{-3}{5} \times \left(\frac{5}{13}\right) = -\frac{48}{65} - \frac{15}{65}$
 $= \frac{-48 - 15}{65} = \frac{-63}{65}$

12. (a) Given equation is $\tan^2 B = \frac{1 - \sin A}{1 + \sin A}$

 \Rightarrow Applying componendo and dividendo

$$\frac{1 + \tan^2 B}{1 - \tan^2 B} = \frac{2}{2 \sin A}$$

$$\Rightarrow \sin A = \frac{1 - \tan^2 B}{1 + \tan^2 B} \Rightarrow \sin A = \cos 2B$$

$$\Rightarrow \sin A = \sin \left(\frac{\pi}{2} - 2B\right)$$

$$\Rightarrow A = \frac{\pi}{2} - 2B \Rightarrow A + 2B = \frac{\pi}{2}$$

13. (a) As given,
$$\cos 20^{\circ} - \sin 20^{\circ} = p$$

Squaring both sides, we get
 $(\cos 20^{\circ} - \sin 20^{\circ})^2 = p^2$
 $\Rightarrow \cos^2 20^{\circ} + \sin^2 20^{\circ} - 2\sin 20^{\circ} \cos 20^{\circ} = p^2$
 $\Rightarrow 1 - \sin 40^{\circ} = p^2 \Rightarrow \sin 40^{\circ} = 1 - p^2$
14. (d) Since, $p = \tan \alpha + \tan \beta$
 $and q = \cot \alpha + \cot \beta$
 $q = \cot \alpha + \cot \beta$
 $q = \cot \alpha + \cot \beta$
 $q = \frac{1}{\tan \alpha} + \frac{1}{\tan \beta} = \frac{\tan \alpha \tan \beta}{\tan \alpha \tan \beta}$
 $q = \frac{p}{\tan \alpha \tan \beta} \Rightarrow \frac{1}{q} = \frac{\tan \alpha \tan \beta}{p}$
Hence, $\frac{1}{p} - \frac{1}{q} = \frac{1}{p} - \frac{\tan \alpha \tan \beta}{p}$
 $= \frac{1 - \tan \alpha \tan \beta}{p} = \frac{1 - \tan \alpha \tan \beta}{1 \tan \alpha + \tan \beta} = \frac{1}{\tan(\alpha + \beta)}$
 $= \cot (\alpha + \beta)$
15. (c) Given that number of degrees in A + Number of radians
in $A = \frac{180^{\circ} + \pi}{3} = \frac{180^{\circ}}{3} + \frac{\pi}{3} = 60^{\circ} + \frac{\pi}{3}$
 \Rightarrow Angle A = 60^{\circ}
16. (a) Since, $\sin^3\theta + \cos^3\theta = 0$
 $\Rightarrow (\sin \theta + \cos \theta) (\sin^2\theta - \sin \theta \cos \theta + \cos^2\theta) = 0$
 $(\because a^3 + b^3 = (a + b)(a^2 - ab + b^2))$
 $\Rightarrow (\sin \theta + \cos \theta) (1 - \sin \theta \cos \theta) = 0$
 $\Rightarrow (\sin \theta + \cos \theta) (1 - \sin \theta \cos \theta) = 0$
 $\Rightarrow \sin \theta + \cos \theta = 0$
 $\cos \sin 2\theta = 2$
(discarded since $\sin^2 \theta = 2$ is not possible)
 $\Rightarrow \sin \theta + \cos \theta = 0 \Rightarrow \sin \theta = -\cos \theta$
 $\Rightarrow \tan \theta = -1 \Rightarrow \theta = -\pi/4$
17. (b) The expression
 $\frac{\cos \sec(\pi + \theta) \cot \left\{\frac{9\pi}{2} - \theta\right\} \csc \exp^2(2\pi - \theta)}{\cot(2\pi - \theta) \sec^2(\pi - \theta) \sec \left\{\left(\frac{3\pi}{2}\right) + \theta\right\}}$

$$= \frac{-\cos \operatorname{ec}\theta \tan \theta \cos \operatorname{ec}^{2}\theta}{-\cot \theta \sec^{2}\theta \csc \theta}$$
$$= \frac{\tan^{2}\theta \csc \operatorname{ec}^{2}\theta}{\sec^{2}\theta} = \tan^{2}\theta \times \frac{\cos^{2}\theta}{\sin^{2}\theta}$$
$$= \tan^{2}\theta \times \frac{1}{\tan^{2}\theta} = 1$$

(a) $\sin(A+B)\sin(A-B)$ 18. $=\frac{1}{2}\left\{2\sin\left(A+B\right).\sin(A+B)\right\}$ $= \frac{1}{2} \{ \cos (A - B - A - B) - \cos (A - B + A + B) \}$ [Since $2\sin X \sin Y = \cos (X - Y) - \cos (X + Y)$] $=\frac{1}{2} \{\cos 2B - \cos 2A\}$ Also, $\sin(B+C) \sin(B-C) = \frac{1}{2} \{\cos 2C - \cos 2B\}$ and $\sin(C+A)$. $\sin(C-A)$ $=\frac{1}{2}\left\{\cos 2A - \cos 2C\right\}$ \therefore sin (A + B) sin (A - B) + sin (B + C) sin (B - c) $+\sin(C+A)$. $\sin(C-A)$ $= \frac{1}{2} \{ \cos 2C - \cos 2B + \cos 2A - \cos 2C \}$ $+\cos 2B - \cos 2A\} = 0$ (b) As given, $\tan \alpha = \frac{m}{m+1}$ and $\tan \beta = \frac{1}{2m-1}$ 19. $\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$ $=\frac{\frac{m}{m-1}}{1-\frac{m}{m-1}\times\frac{1}{2m-1}} \quad \frac{m(2m-1) \quad (m-1)}{(m-1)(2m-1)-m}$ $=\frac{2m^2+2m+1}{2m^2+2m+1}=1$ So, $\alpha + \beta = \frac{\pi}{4}$ 20. (c) As given, $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$. As given, x = 1 con-and z = r cos θ Now, x² + y² + z² = r² sin² θ cos² ϕ + r² sin² ϕ sin² θ + r² cos² θ $= r^2 \sin^2 \theta (\sin^2 \phi + \cos^2 \phi) + r^2 \cos^2 \theta$ $= r^2 \sin^2\theta + r^2 \cos^2\theta$ $= r^{2} (\sin^{2} \theta + \cos^{2} \theta)$ $= r^{2}$

Thus, $x^2 + y^2 + z^2$ is independent of θ and ϕ .

21. (b) Let $A = \cos \theta + \cos 2\theta$

 \therefore On differentiating w.r.t. to θ , we get

$$\frac{\mathrm{dA}}{\mathrm{d\theta}} = -\sin\theta - 2\sin 2\theta$$

Put $\frac{dA}{d\theta} = 0$ for maxima or minima.

 $\sin \theta + 2 \sin 2 \theta = 0 \implies \sin \theta + 4 \sin \theta \cos \theta$ $\implies \sin \theta (1 + 4 \cos \theta) = 0$

EBD 7346

NDA Topicwise Solved Papers - MATHEMATICS 24. (a) The given expression is : $(\sec \theta - \cos \theta) (\csc \theta - \sin \theta) (\cot \theta + \tan \theta)$ $= \left(\frac{1}{\cos\theta} - \cos\theta\right) \left(\frac{1}{\sin\theta} - \sin\theta\right) \left(\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}\right)$ $= \left(\frac{1 - \cos^2 \theta}{\cos \theta}\right) \left(\frac{1 - \sin^2 \theta}{\sin \theta}\right) \left(\frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}\right)$ $=\frac{\sin^2\theta}{\cos\theta}\cdot\frac{\cos^2\theta}{\sin\theta}\times\frac{1}{\sin\theta\cos\theta}=\frac{\sin^2\theta\cos^2\theta}{\cos^2\theta\sin^2\theta}=1$ 25. (b) As given, $\alpha + \beta = \frac{\pi}{2}$ and $\beta + \gamma = \alpha$ $\Rightarrow \tan(\beta + \gamma) = \tan \alpha$ $\Rightarrow \frac{\tan\beta + \tan\gamma}{1 - \tan\beta\tan\gamma} = \tan\alpha$ $\theta - 1$ $\Rightarrow \tan \beta + \tan \gamma = \tan \alpha - \tan \alpha \tan \beta \tan \gamma$ $\Rightarrow \tan \beta + \tan \gamma = \tan \alpha - \tan \alpha \cot \alpha \tan \gamma$ $\left(:: \beta + \alpha = \frac{\pi}{2} \Longrightarrow \beta = \pi/2 - \alpha \Longrightarrow \tan(\pi/2 - \alpha) = \cot \alpha\right)$ $\Rightarrow \tan \beta + \tan \gamma = \tan \alpha - \tan \gamma$ $\Rightarrow \tan \beta + 2 \tan \gamma = \tan \alpha$ (c) The given expression is, $\frac{\cos 10^\circ + \sin 20^\circ}{\cos 20^\circ - \sin 10^\circ}$ 26. $= \frac{\cos(90^{\circ} - 80^{\circ}) + \sin 20^{\circ}}{\cos(90^{\circ} - 70^{\circ}) - \sin 10^{\circ}}$ $=\frac{\sin 80^\circ + \sin 20^\circ}{\sin 70^\circ - \sin 10^\circ} = \frac{2\sin \frac{80 + 20}{2} . \cos \frac{80 - 20}{2}}{2\cos \frac{70 + 10}{2} . \sin \frac{70 - 10}{2}}$ $=\frac{2\sin 50^{\circ}\cos 30^{\circ}}{2\cos 40^{\circ}\sin 30^{\circ}}=\frac{\sin(90^{\circ}-40^{\circ})\cot 30^{\circ}}{\cos 40^{\circ}}$ $= \frac{\cos 40^{\circ} \cot 30^{\circ}}{\cos 40^{\circ}} = \cot 30^{\circ} = \sqrt{3}$ 27. (d) As given : $\tan \alpha = 2 \tan \beta$ $\Rightarrow \frac{\tan \alpha}{\tan \beta} \quad 2 \Rightarrow \frac{\sin \alpha / \cos \alpha}{\sin \beta / \cos \beta} \quad 2$ $\Rightarrow \frac{\sin\alpha\cos\beta}{\cos\alpha\sin\beta} \quad 2$ Using componendo and dividendo we get $\frac{\sin\alpha\cos\beta + \cos\alpha\sin\beta}{\sin\alpha\cos\beta - \cos\alpha\sin\beta} = \frac{2+1}{2-1} = 3$ $\Rightarrow \frac{\sin(\alpha+\beta)}{\sin(\alpha-\beta)}$ 3 $\sin(\alpha + \beta) = 3\sin(\alpha - \beta)$

$$\Rightarrow \sin \theta = 0, \text{ or } 4 \cos \theta + 1 = 0$$

$$\Rightarrow \cos \theta = 1 \text{ or } \cos \theta = -\frac{1}{4}$$

Now, $\frac{d^2 A}{d\theta^2} = -\cos \theta - 4\cos 2\theta$

$$= -\cos \theta - 4(2\cos^2 \theta - 1)$$

For $\cos \theta = 1$
 $\frac{d^2 A}{d\theta^2} = -\cos \theta - 4(2\cos^2 \theta - 1)$

$$= -1 - 4(2(1) - 1) = -1 - 4 = -5 < 0$$

So, A is maximum at $\cos \theta = 1$

$$\Rightarrow \left(\frac{d^2 A}{d\theta^2}\right)_{\cos \theta} = \frac{-1}{4} = \frac{1}{4} - 4\left(2, \frac{1}{16} - 1\right) > 0$$

[Since $\cos 2\theta = 2\cos^2 \theta$
 \therefore A is minimum value of $\cos \theta + \cos 2\theta$
or of $\cos \theta + 2\cos^2 \theta - 1$

$$= \left(\frac{-1}{4}\right) + 2\left(\frac{1}{16}\right) - 1$$

$$= \frac{-1}{4} + \frac{1}{8} - 1 - \frac{-2 + 1 - 8}{8} - \frac{-9}{8}$$

22. (c) As given, 3 tan $\theta + 4 = 0 \Rightarrow \tan \theta = -\frac{4}{3}$
[θ lies in second quadrant i.e., $\frac{\pi}{2} < \theta < \pi$]
 $\therefore \cot \theta = -\frac{3}{4} \Rightarrow \cos \theta = -\frac{3}{5}$ and $\sin \theta = \frac{4}{5}$
Now, 2 $\cot \theta - 5 \cos \theta + \sin \theta$

$$= -\frac{6}{4} - \frac{15}{5} - \frac{4}{5} - \frac{-30}{20} - \frac{60}{16} - \frac{23}{10}$$

23. (d) $\csc \left(\frac{13\pi}{12}\right) = \csc \left(\pi + \frac{\pi}{12}\right)$

$$= -\csc \frac{\pi}{12} = -\csc 15^{\circ}$$

$$= -\sqrt{1 + (2 + \sqrt{3})^2} \qquad [\because \cot 15 - 2 - \sqrt{3}]$$

$$= -\sqrt{1 + 4 + 3 + 4\sqrt{3}}$$

$$= -\sqrt{(\sqrt{6})^2 + (\sqrt{2})^2 + 2(\sqrt{6})(\sqrt{2})}$$

$$= -\sqrt{(\sqrt{6} + \sqrt{2})^2} = -\sqrt{6} - \sqrt{2}$$

28. (c) Given expression is:

$$\cos 306^{\circ} + \cos 234^{\circ} + \cos 162^{\circ} + \cos 18^{\circ} = x (Let)$$

$$\Rightarrow x = \cos (360^{\circ} - 54^{\circ}) + \cos (180^{\circ} - 18^{\circ}) + \cos 18^{\circ}$$

$$= \cos 54^{\circ} - \cos 54^{\circ} - \cos 18^{\circ} + \cos 18^{\circ} = 0$$
29. (a) Let, ABCD be a square
having length of side = x

$$\therefore \quad So, AD = AB = x$$
As given : $\frac{AP}{PB} = \frac{1}{2}$

$$\Rightarrow \frac{AP}{PB + AP} = \frac{1}{2 + 1}$$

$$\Rightarrow AP = \frac{1}{1 + 2} x = \frac{x}{3}$$

$$\cos \theta = \frac{AP}{PD}$$
($\because PB + AP = AB$)
Now, PD² = AP² + AD² = $\left(\frac{x}{3}\right)^2 + x^2$

$$= \frac{x^2}{9} + x^2 = \frac{10x^2}{9}$$
33.

$$\Rightarrow PD = \frac{\sqrt{10x}}{3}$$

$$\cos \theta = \frac{x/3}{\sqrt{10x/3}} = \frac{1}{\sqrt{10}}$$
34.
30. (b) Given, $\cos 3A = \frac{1}{2}$

$$\Rightarrow \cos 3A = \cos\left(\frac{\pi}{3}\right) \text{ or } \left(\frac{5\pi}{3}\right)$$
Since, $O < A < 360^{\circ}$,
A can take the values, $\frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}, \frac{11\pi}{9}, \frac{13\pi}{9}$ and

$$\frac{17\pi}{9}.$$
33.
34.
35.
36. (d) (a) In such a problem, we have to check option, one-
by-one

$$\sin^2\theta + \cos^2\theta = \sin^2\theta - \cos^2\theta$$

$$\tan^2\theta - \cos^2\theta = (\sin^2\theta)^3 - (\cos^2\theta)^3$$

$$= (\sin^2\theta - \cos^2\theta) (\sin^4\theta + \sin^2\theta \cos^2\theta + \cos^4\theta)$$

$$(:a^3\theta - \cos^2\theta) (\sin^4\theta + \sin^2\theta \cos^2\theta + \cos^4\theta)$$

$$(:a^3\theta - \cos^2\theta) (\sin^4\theta + \sin^2\theta \cos^2\theta + \cos^4\theta)$$

$$(:a^3\theta - \cos^2\theta) (\sin^2\theta + \cos^2\theta) - 2\sin^2\theta \cos^2\theta$$

$$= \sin^2\theta - \cos^2\theta (\sin^2\theta + \cos^2\theta) - 2\sin^2\theta \cos^2\theta$$

$$= \sin^2\theta - \cos^2\theta - \sin^2\theta \cos^2\theta$$
Which is not equal to R.H.S., $\sin^2\theta - \cos^2\theta$

Option (a) is not correct.

(b) $\therefore \operatorname{cosec}^{6}\theta - \operatorname{cot}^{6}\theta$ $(\csc^2\theta - \cot^2\theta) [(\csc^2\theta - \cot^2\theta)^2 + (\csc\theta \cot\theta)]$ Which is not equal to $\csc^2\theta - \cot^2\theta$. : Option (b) is also not correct. (c) $\sin^4\theta + \cos^4\theta = (\sin^2\theta + \cos^2\theta)^2 - 2\sin^2\theta \cos^2\theta$ $= 1 - 2\sin^2\theta \cos^2\theta.$ Which is not equal to $\sin^2\theta - \cos^2\theta$. Hence, option (c) is also not correct. (d) $(\csc^2\theta + \cot^4\theta)$ $= \csc^2\theta + (\csc^2\theta - 1)^2$ $= \csc^2\theta + \csc^4\theta + 1 - 2 \csc^2\theta$ $= \csc^4\theta + 1 - \csc^2\theta$ $= \operatorname{cosec}^4 \theta + \operatorname{cot}^2 \theta$ Thus option (d) is correct. (a) As given : $\sin A = \sin B$ and $\cos A = \cos B$ $\Rightarrow \frac{\sin A}{\sin A} = \frac{\sin B}{\sin B}$ $\cos A \cos B$ \Rightarrow tanA = tan B or tan B = tan A = tan(n\pi + A) \Rightarrow B=n π +A (a) As given : $\alpha = \frac{\pi}{8}$ $\cos\alpha\cos2\alpha\cos4\alpha = \cos\frac{\pi}{8}.\cos\frac{\pi}{4}\cos\frac{\pi}{2} = 0$ $(\because \cos\frac{\pi}{2}=0)$ (a) $\cot(-870^\circ) = -\cot(2 \times 360^\circ + 150^\circ)$ $= -\cot 150^\circ = -\cot (180^\circ - 30^\circ) = \cot 30^\circ = \sqrt{3}.$ (c) (A): $X = \{ \theta \in [0, 2\pi] : \sin \theta = \cos \theta \}$ Number of elements in X is 2. Since, $\sin \theta = \cos \theta$ is possible at $\theta = 45^{\circ}$ and 225° Since, $\cos \theta$ is negative in IInd quadrant but $\sin \theta$ is positive, R is false. (b) From relation between minute 6 seconds measure : 60"=I' $\Rightarrow 30'' = \frac{1'}{2}$ \Rightarrow 35'30" = $\left(35 + \frac{1}{2}\right)^{\prime} = \left(\frac{71}{2}\right)^{\prime}$ Also, $60^{\circ} = 1^{\circ}$ $\therefore 1' = \left(\frac{1}{60}\right)^{\circ}$ $\Rightarrow \left(\frac{71}{2}\right)' = \left(\frac{71}{2} \times \frac{1}{60}\right)^{\circ} = \left(\frac{71}{120}\right)^{\circ}$

$$\therefore \quad 114^{\circ}35'30' = \left(114 + \frac{71}{120}\right)^{\circ} = \left(\frac{13751}{120}\right)^{\circ}$$

We know that, $2\pi rad = 360^{\circ}$

$$\Rightarrow 1^\circ = \frac{2\pi}{360}$$
 rad

40.

42.

45.

(a) Given expression,

$$\Rightarrow \left(\frac{13751}{120}\right)^{\circ} = \frac{2\pi}{360^{\circ}} \times \frac{13751}{120} \text{ rad} \\ = \frac{2 \times 22 \times 13751}{7 \times 360 \times 120} \text{ rad} = 2.0008069 \text{ rad} \\ \Rightarrow 114^{\circ} 35' 30'' = 2 \text{ rad (approx.)} \\ 37. (a) \text{ Let } x = \left(\sin 22 \frac{1^{\circ}}{2} + \cos^2 22 \frac{1^{\circ}}{2}\right)^2 \\ = \left\{\left(\sin 22 \frac{1^{\circ}}{2} + \cos^2 22 \frac{1^{\circ}}{2} + 2\sin 22 \frac{1^{\circ}}{2} \cos 22 \frac{1^{\circ}}{2}\right)^2 \\ = \left(\sin^2 22 \frac{1^{\circ}}{2} + \cos^2 22 \frac{1^{\circ}}{2} + 2\sin 22 \frac{1^{\circ}}{2} \cos 22 \frac{1^{\circ}}{2}\right)^2 \\ = (1 + \sin 45^{\circ})^2 \qquad (\because 2\sin \theta \cos \theta = \sin 2\theta) \\ = \left(1 + \frac{1}{\sqrt{2}}\right)^2 = \left(\frac{\sqrt{2} + 1}{\sqrt{2}}\right)^2 \\ = \frac{2 + 1 + 2\sqrt{2}}{2} = \frac{3 + 2\sqrt{2}}{2} \\ 38. (d) \text{ The given expression} \\ \left(1 + \cos 67 \frac{1^{\circ}}{2}\right) \left(1 + \cos 112 \frac{1^{\circ}}{2}\right) \\ \text{ can also be writters as :} \\ \left(1 + \cos 67 \frac{1^{\circ}}{2}\right) \left\{1 + \cos \left(180^{\circ} - 67 \frac{1^{\circ}}{2}\right)\right\} \\ = \left(1 + \cos 67 \frac{1^{\circ}}{2}\right) \left\{1 + \cos 67 \frac{1^{\circ}}{2}\right) \\ = 1 - \cos^2 67^{\circ} \frac{1^{\circ}}{2} = \sin^2 67 \frac{1^{\circ}}{2} \\ = \frac{1 - \cos 135^{\circ}}{2} = \frac{\sqrt{2}}{2\sqrt{2}} \qquad (\because \sin^2 A = \frac{1 - \cos 2A}{2}) \\ \text{ Which is an irrational number and is less than 1.} \\ 39. (c) \text{ As given : } \sin 2A = \frac{4}{5} \\ \sin 2A = \frac{2 \tan A}{1 + \tan^2 A} \\ \Rightarrow \frac{2 \tan A}{1 + \tan^2 A} = \frac{4}{5} \\ \Rightarrow 10 \tan A = 4 + 4 \tan^2 A \\ \Rightarrow 5 \tan A = 2 + 2 \tan^2 A \end{cases}$$

 $\Rightarrow 2 \tan^2 A - 5 \tan A + 2 = 0$

- $\Rightarrow 2 \tan^2 A 4 \tan A \tan A + 2 = 0$
- \Rightarrow 2 tan A (tan A-2) 1(tan A-2) = 0

$$\Rightarrow (2 \tan A - 1) (\tan A - 2) = 0$$

$$\Rightarrow \tan A = \frac{1}{2} \text{ (since } A \le \frac{\pi}{4} \Rightarrow \tan A \ne 2 \text{)}$$

 $\frac{\cos 10^{\circ} - \sin 10^{\circ}}{\cos 10^{\circ} + \sin 10^{\circ}} = \frac{1 - \tan 10^{\circ}}{1 + \tan 10^{\circ}} = x \quad (\text{let})$ $x = \frac{\tan 45 - \tan 10^{\circ}}{1 + \tan 45 \cdot \tan 10^{\circ}} = \tan (45 - 10) = \tan 35^{\circ}.$ 41. (a) Given expression $4\sin x + 3\sin 2x - 2\sin 3x + \sin 4x = 2\sqrt{3}$ A quick way is to take from choices take choice (a) first, Let $x = \frac{\pi}{6}$ $\therefore 4\sin\frac{\pi}{6} + 3\sin\frac{\pi}{3} - 2\sin\frac{\pi}{2} + \sin\frac{2\pi}{3}$ $=4\left(\frac{1}{2}\right)+\frac{3\sqrt{3}}{2}-2+\frac{\sqrt{3}}{2}$ $=2\sqrt{3}$ Equation is satisfied So, $x = \frac{\pi}{6}$ is true (d) Fourth pair is not correct matched explained below $\tan 420^\circ = \tan (360 + 60) = \tan 60^\circ$ $\tan 60^\circ \neq \tan (-60^\circ)$

tan 60° ≠ tan (-60°)
43. (b)
$$\sin \frac{5\pi}{12} = \sin 75^{\circ}$$

 $= \sin(45^{\circ} + 30^{\circ})$
 $= \sin45^{\circ}\cos 30^{\circ} + \cos 45^{\circ}\sin 30^{\circ}$
 $= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{1}{\sqrt{2}} \left(\frac{\sqrt{3} + 1}{2}\right)$
 $\sqrt{3} + 1 \sqrt{2} = \sqrt{6} + \sqrt{2}$

$$= \frac{1}{2\sqrt{2}} \times \frac{1}{\sqrt{2}} = \frac{1}{4}$$
44. (a) We work out the given statements.

1.
$$\sin \frac{\pi}{12} = \sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

2.
$$\cos \frac{\pi}{12} = \cos 15^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

3.
$$\cot \frac{\pi}{12} = \cot 15^\circ = 2 + \sqrt{3}$$

So, correct sequence is $3 > 2 > 1$.
(b)
$$\cos 2\theta = 2\cos^2 \theta - 1$$

Put $\theta = 15^\circ$
 $\therefore \cos 30^\circ = 2\cos^2 15^\circ - 1$
 $\Rightarrow \frac{\sqrt{3}}{2} + 1 = 2\cos^2 15^\circ$
 $\Rightarrow \cos^2 15^\circ = \frac{\sqrt{3} + 2}{4}$
 $\Rightarrow \cos 15^\circ = \frac{1}{2}(\sqrt{2 + \sqrt{3}})$

 $+2\cos x \cos y$

 $+\sin x \sin y$)

46. (b) Given, equation is $\tan \theta = k, k \neq 0$ $\Rightarrow \theta = \tan^{-1} k$ Now, we know, If $\tan^{-1}x = \theta$ then $-\infty < x < \infty$ and $\frac{-\pi}{2} < \theta < \frac{\pi}{2}$ Thus, θ will have 2 values between 0° and 360°. or The equation $\tan \theta = k, -\infty < k < \infty$ for any real values of k there are two values of the form α and $\pi + \alpha$, in the interval $0 \le \theta < 2\pi$, which satisfies the given equation. 47. (c) Given $\sin x + \sin y = a$ and $\cos x + \cos y = b$ $\therefore a^2 + b^2 = (\sin x + \sin y)^2 + (\cos x + \cos y)^2$ = $\sin^2 x + \sin^2 y + 2\sin x \sin y + \cos^2 x + \cos^2 y$ $= (\sin^2 x + \cos^2 x) + (\sin^2 y + \cos^2 y) + 2(\cos x \cos y)$ $= 1 + 1 + 2\cos(x - y)$ $\Rightarrow 2\cos(x - y) = a^{2} + b^{2} - 2$

$$\Rightarrow 2\cos(x-y) = a^2 + b^2 - 2$$
$$\Rightarrow \cos(x-y) = \frac{1}{2}(a^2 + b^2 - 2)$$

48. (c)
$$\sqrt{2 + \sqrt{2 + \sqrt{2 + 2\cos 4A}}}$$

 $= \sqrt{2 + \sqrt{2 + \sqrt{2(1 + \cos 4A)}}}$
 $= \sqrt{2 + \sqrt{2 + 2\cos 2A}} \quad \sqrt{2 - \sqrt{2(1 - \cos 2A)}}$
 $(\because 1 + \cos 4A = 2\cos^2 2A)$
 $= \sqrt{2 + 2\cos A} = \sqrt{2(1 - \cos A)}$
 $(\because 1 + \cos 2A = 2\cos^2 A)$
 $= 2\cos\left(\frac{A}{2}\right)$
 $(\because 1 + \cos A = 2\cos^2\left(\frac{A}{2}\right)\right)$
40. (b) Given equation is

49. (b) Given equation is $\tan^2 \phi + \tan^6 \phi = \tan^3 \phi$. $\sec^2 \phi$ $\Rightarrow \tan^2 \phi (1 + \tan^4 \phi) = \tan^3 \phi \cdot \sec^2 \phi$ \Rightarrow (1 + tan⁴ ϕ) = tan ϕ . sec² ϕ Now, $\sec^2\phi = 1 + \tan^2\phi$ \therefore $(1 + \tan^4 \phi) = \tan \phi (1 + \tan^2 \phi)$ \Rightarrow 1 + tan⁴ ϕ = tan ϕ + tan³ ϕ It is not an identity 50. (a) $\sec A + \tan A = P$

$$\Rightarrow \frac{1}{\cos A} + \frac{\sin A}{\cos A} = p$$
$$\Rightarrow \frac{1 + \sin A}{\cos A} = p$$
$$\Rightarrow \frac{(1 + \sin A)^2}{\cos^2 A} = p^2$$
$$\Rightarrow \frac{(1 + \sin A)^2}{1 - \sin^2 A} = p^2$$
$$\Rightarrow \frac{(1 + \sin A)^2}{(1 + \sin A)(1 - \sin A)} = p^2$$

$$\Rightarrow \frac{1+\sin A}{1-\sin A} = p^2$$
$$\Rightarrow \frac{(1+\sin A) + (1-\sin A)}{(1+\sin A) - (1-\sin A)} = \frac{p^2 + 1}{p^2 - 1}$$

(Using componendo and dividendo)

$$\Rightarrow \frac{2}{2\sin A} = \frac{p^2 + 1}{p^2 - 1}$$
$$\Rightarrow \frac{\sin A}{p^2 + 1} = \frac{p^2 - 1}{p^2 + 1}$$

51. (a)
$$\tan(-1575^\circ) = -\tan(4 \times 360^\circ + 135^\circ)$$

= $-\tan 135^\circ = -\tan(90^\circ + 45^\circ) = \cot 45^\circ = 1$

52. (c) Given,
$$\csc^2\theta = 3\sqrt{3}\cot\theta - 5$$

 $\Rightarrow 1 + \cot^2\theta - 3\sqrt{3}\cot\theta + 5 = 0$
[Since, $\csc^2\theta = 1 + \cot^2\theta$]
 $\Rightarrow \cot^2\theta - 3\sqrt{3}\cot\theta + 6 = 0$
Work with option, we find that

This equation is satisfied by $\theta = \frac{\pi}{6}$.

Thus,
$$\theta = \frac{\pi}{6}$$

53. (c) Work with option,

$$\cos(2\phi) - 1 = \frac{1 - \tan^2 \phi}{1 + \tan^2 \phi} - 1$$

$$= -\frac{2 \tan^2 \phi}{1 + \tan^2 \phi} = \frac{-(\tan^2 \theta - 1)}{1 + \frac{\tan^2 \theta - 1}{2}}$$

$$= \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \times 2 = \cos(2\theta)2$$

Thus, $\cos 2\theta = \frac{\cos(2\phi) - 1}{2}$
54. (d) $1 - \sin 10^\circ \sin 50^\circ \sin 70^\circ$

$$= 1 - \frac{1}{2} [2\sin 70^\circ \sin 10^\circ \sin 50^\circ]$$

$$= 1 - \frac{1}{2} [(\cos 60^\circ - \cos 80^\circ) \sin 50^\circ]$$

$$[\because 2 \sin A \sin B = \cos(A - B) - \cos(A + B)]$$

$$= 1 - \frac{1}{2} \left[\frac{1}{2} \sin 50^\circ - \frac{1}{2} 2 \cos 80^\circ \sin 50^\circ \right]$$

$$= 1 - \frac{1}{4} [\sin 50^\circ - \sin 130^\circ + \sin 30^\circ]$$

$$(\because 2 \cos A \sin B = \sin(A + B) - \sin(A - B))$$

$$= 1 - \frac{1}{8} = \frac{7}{8}$$

$$(\because \sin 130^\circ = \sin(180^\circ - 50^\circ = \sin 50^\circ)$$

м-206

55. (a) Let
$$\sin \theta = \frac{5}{13}$$
 and $\sin \phi = \frac{99}{101}$
 $\therefore \cos \{\pi - (\theta + \phi)\}$
 $= -\cos \theta \cos \phi - \sin \theta \sin \phi\}$
 $= -\{\cos \theta \cos \phi - \sin \theta \sin \phi\}$
 $= -\{\sqrt{1 - \frac{25}{169}}\sqrt{1 - (\frac{99}{101})^2} - \frac{5}{13} \times \frac{99}{101}\}$
 $= -\{\frac{12}{13} \times \frac{20}{101} - \frac{5}{13} \times \frac{99}{101}\}$
 $= -\{\frac{240}{1313} - \frac{495}{1313}\} = \frac{255}{1313}$ 64
56. (d) $1000^\circ = 2 \times 360^\circ + 280^\circ$
It is clear that the revolving live will be in fourth
quadrant.
57. (c) 1 radian is approximately equal to 57°
58. (d) Since $\cot(x \ y) \ \frac{1}{\sqrt{3}} \ \cot 60 \ [\cot 60^\circ = \frac{1}{\sqrt{3}}]$ 65
 $\Rightarrow x + y = 60^\circ$...(i)
and $\cot(x - y) = \sqrt{3} = \cot 30^\circ$
 $\Rightarrow x - y = 30^\circ$...(ii)
From equations (i) and (ii), we get
 $x = 45^\circ$ and $y = 15^\circ$
59. (a) Given, $x = \sin \theta \cos \theta$ and $y = \sin \theta + \cos \theta$
 $\therefore \ y^2 - 2x = (\sin \theta + \cos \theta)^2 - 2\sin \theta \cos \theta = 1$
60. (d) Consider $\sin^4 x - \cos^4 x = p$
 $\Rightarrow (\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x) = p$
 $\Rightarrow (\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x) = p$
 $\Rightarrow \sin^2 x - \cos^2 x = p \ (\because \sin^2 x + \cos^2 x) = p$
 $\Rightarrow \sin^2 x - \cos^2 x = p \ (\because \sin^2 x + \cos^2 x) = 1$)
 $\Rightarrow - \cos 2x = -p$
 $\therefore |p| \le 1$
61. (b) We know that, for $\frac{\pi}{4} < \theta$ $\frac{\pi}{2}$
 $\cos \theta < \sin \theta$
62. (c) Given $\sin^2 x + \sin^2 y = 1$
 $\Rightarrow \sin^2 x = 1 - \sin^2 y$
 $\Rightarrow \sin^2 x = \cos^2 y$
 $\Rightarrow \sin x = \cos y$
 $\sin \sin^2 y = 1 - \sin^2 x$, we have
 $\cos x = \sin y$
Now, Consider $\cot(x + y) = \frac{\cos(x - y)}{\sin(x - y)}$
 $= \frac{\cos x \cos y - \sin x \sin y}{\sin(x - y)}$
 $= \frac{\cos x \cos y - \sin x \sin y}{\sin(x - y)}$ 0

0

NDA Topicwise Solved Papers - MATHEMATICS (b) Consider $\cos 10^\circ + \cos 110^\circ + \cos 130^\circ$

63. (b) Consider cos 10° + cos 110° + cos 130°
= cos 130° + cos 110° + cos 110°
=
$$2 \cos\left(\frac{130+10}{2}\right) \cos\left(\frac{130-10}{2}\right) + \cos 110°$$

= $2 \cos\left(\frac{140}{2}\right) \cos\left(\frac{120}{2}\right) + \cos 110°$
= $2 \cos 60° \cos 70° + \cos 110°$
= $\cos 70° + \cos 110°$ ($\because \cos 60 = \frac{1}{2}$)
= $\cos (180° - 110°) + \cos 110°$
= $-\cos 110° + \cos 110° = 0$ ($\because \cos(180° - \theta) = -\cos \theta$)
64. (a) We know length of arc of a circle $= 2\pi r \frac{\theta}{360}$
where 'r' is the radius and θ is the central angle.
So, $r = 5, \theta = 15°$
 \therefore Length $= 2\pi \times 5 \times \frac{15°}{360°} = \frac{5\pi}{12} \text{ cm}$
65. (b) Let $P = \sin \theta \cos \theta$
Multiply and divide by 2, we get
 $P = \frac{2\sin \theta \cos \theta}{2} = \frac{\sin 2\theta}{2}$
The maximum value of $S = \frac{1}{2}$
66. (a) Given sin $x + \csc x = 2$
Consider sin $x + \csc x = 2$
Consider tan 15° + cot 15° $= \frac{\sin 15°}{\cos 15°} + \frac{\cos 15°}{\sin 15°}$
 $= \frac{\sin^2 15° + \cos^2 15°}{\cos 15°} = \frac{2\times 1}{2\cos 15° \sin 15°}$
 $(\because \sin^2 \theta + \cos^2 \theta = 1)$
 $= \frac{2}{\sin 30°} = 4 \left(\because \sin 30° - \frac{1}{2}\right)$
68. (b) Given $A + B + C = \frac{\pi}{2}$
Take tan on both sides,
 $\Rightarrow \tan (A + B + C) = \tan \left(\frac{\pi}{2}\right)$
 $\Rightarrow \tan A \tan B + \tan B \tan C - \tan A \tan B \tan C - \tan A = 1$

69. (b) Given,

$$(\sin x + \csc x)^{2} + (\cos x + \sec x)^{2}$$

$$= k + \tan^{2} x + \cot^{2} x$$

$$\Rightarrow \sin^{2} x + \csc^{2} x + 2 \sin x \csc x + \cos^{2} x + \sec^{2} x$$

$$+ 2 \sec x \cos x = k + \tan^{2} x + \cot^{2} x$$

$$\Rightarrow \sin^{2} x + \csc^{2} x + 2 + \cos^{2} x + \sec^{2} x + 2$$

$$= k + \tan^{2} x + \cot^{2} x$$
($\because \sin x \csc x = 1$ and sec $x \cos x = 1$)

$$\Rightarrow 1 + \csc^{2} x - \cot^{2} x + \sec^{2} x - \tan^{2} x + 4 = k$$

$$\Rightarrow 1 + 1 + 1 + 4 = k \Rightarrow k = 7$$
70. (b) Given, $p = \sin (989^{\circ}) \cos (991^{\circ})$
Which can be written as

$$= \sin (1080^{\circ} - 91^{\circ}) \cos (1080^{\circ} - 89^{\circ})$$

$$= -\sin 91^{\circ} \cos 89^{\circ}$$

$$= -\cos 1^{\circ} \cos 89^{\circ}$$
As cos 1° and cos 89° are positive.
therefore their product is also + ve
Hence, p is finite and negative.

71. (b) Consider
$$\frac{1-3\tan^2 A}{3\tan A - \tan^3 A} = \frac{1}{\tan 3A}$$

(:: $\tan 3A = \frac{3\tan A - \tan^3 A}{1-3\tan^2 A}$)
 $= \frac{1}{\tan \frac{41\pi}{4}} \left(\because A - \frac{4\pi}{12} \right)$
 $= \frac{1}{\tan \left(10\pi + \frac{\pi}{4}\right)} = \frac{1}{\tan \frac{\pi}{4}} = 1$
72. (d) Statement-I: Let $\theta = 1200^\circ$

Consider
$$(\sec \theta + \tan \theta)^{-1} \frac{\sec \theta + \tan \theta}{\sec \theta + \tan \theta}$$

$$\frac{\sec \theta - \tan \theta}{(\sec \theta + \tan \theta)(\sec \theta - \tan \theta)}$$

$$\frac{\sec \theta - \tan \theta}{(\sec^2 \theta - \tan^2 \theta)} = \sec \theta - \tan \theta$$
When $1200 \div 360$
we get remainder as 120°
Now, put $\theta = 120^{\circ}$
 $\Rightarrow (\sec \theta + \tan \theta)^{-1} \sec 120 - \tan 120$
 $= \frac{1}{\cos 120} - \tan (90 \quad 30)$
 $= \frac{1}{\cos (90 \quad 30)} - \cot 30$
 $\frac{1}{-\sin 30} \sqrt{3}$
 $= -2 \quad \sqrt{3}$ which is negative

Now, Statement-II :

73.

74.

Statement-II.

Consider $\csc \theta - \cot \theta$

which is positive. Hence, both statements are incorrect.

(a) Given
$$\cot \theta = 2 \cos \theta$$
, $\frac{\pi}{2} < \theta < \pi$
 $\Rightarrow \frac{\cos \theta}{\sin \theta} = 2 \cos \theta \Rightarrow \frac{\cos \theta}{2 \cos \theta} = \sin \theta$
 $\Rightarrow \frac{1}{2} = \sin \theta \Rightarrow \sin \frac{\pi}{6} = \sin \theta \Rightarrow \theta = \frac{\pi}{6}$
But $\frac{\pi}{2} < \theta < \pi : : \theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$
(d) Let $\cot \theta = \frac{5}{12}$
 $\Rightarrow \tan \theta = \frac{12}{5} = \frac{\text{perpendicular (p)}}{\text{base (b)}}$
 \therefore Hypotenuse (H) = $\sqrt{p^2 + b^2}$
 $= \sqrt{(12)^2 + (5)^2} = \sqrt{144 + 25} = \sqrt{169}$ 13
Consider $2 \sin \theta + 3 \cos \theta$

$$= 2\left(\frac{p}{H}\right) + 3\left(\frac{b}{H}\right)$$
(H-Height)

But θ lies in 3^{rd} quadrant and sin $\theta,$ cos θ both are negative in 3^{rd} quadrant

$$\therefore 2\sin\theta + 3\cos\theta = 2\left(\frac{-p}{H}\right) + 3\left(\frac{-b}{H}\right)$$
$$= 2\left(\frac{-12}{13}\right) + 3\left(\frac{-5}{13}\right)$$
$$= \frac{-24 - 15}{13} = \frac{-39}{13} = -3$$

which is an odd prime.

75. (d) Consider
$$\cos \frac{\pi}{9} + \cos \frac{\pi}{3} + \cos \frac{5\pi}{9} + \cos \frac{7\pi}{9}$$

 $\cos \frac{\pi}{9} = \frac{1}{2} - \cos \frac{5\pi}{9} - \cos \frac{7\pi}{9} + \cos \frac{\pi}{3} - \frac{1}{2}$
 $= \frac{1}{2} + (\cos \frac{\pi}{9} + \cos \frac{5\pi}{9}) + \cos \frac{7\pi}{9}$
 $= \frac{1}{2} + \left[2\cos \frac{6\pi}{18} \cos \frac{4\pi}{18} \right] + \cos \frac{7\pi}{9}$

$$\left[\because \cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) \right]$$
$$= \frac{1}{2} + \left[2\cos\frac{\pi}{3}\cos\frac{2\pi}{9} \right] + \cos\frac{7\pi}{9}$$
$$= \frac{1}{2} + \left[2\cdot\frac{1}{2}\cos\frac{2\pi}{9} \right] + \cos\frac{7\pi}{9}$$
$$= \frac{1}{2} + \cos\frac{2\pi}{9} + \cos\frac{7\pi}{9} = \frac{1}{2} + 2\cos\left(\frac{9\pi}{18}\right)\cos\left(\frac{5\pi}{18}\right)$$
$$= \frac{1}{2} + 2\cos\frac{\pi}{2}\cos\frac{5\pi}{18} - \frac{1}{2}\left(\because\cos\frac{\pi}{2} - 0\right)$$

76. (a) Consider $\sqrt{3}$ cosec $20^\circ - \sec 20^\circ = \frac{\sqrt{3}}{\sin 20^\circ} - \frac{1}{\cos 20^\circ}$

$$= \frac{\sqrt{3}\cos 20^\circ - \sin 20^\circ}{\sin 20^\circ \cos 20^\circ}$$

Multiply and divide by 2 in N^r.
$$= 2 \left(\frac{\sqrt{3}}{\frac{2}{2}\cos 20^\circ - \frac{1}{2}\sin 20^\circ}{\sin 20^\circ \cos 20^\circ} \right)$$
$$2 \left(\frac{\sin 60^\circ \cos 20^\circ - \cos 60^\circ \sin 20^\circ}{\sin 20^\circ \cos 20^\circ} \right)$$
$$(\because \sin 60^\circ = \frac{\sqrt{3}}{2} \text{ and } \cos 60^\circ = \frac{1}{2})$$
$$= \frac{2 \times 2[\sin(60^\circ - 20^\circ)]}{2\sin 20^\circ \cos 20^\circ}$$
$$(\because \sin A \cos B - \cos A \sin B = \sin (A - B) \text{ and } \sin 2\theta = 2 \sin \theta \cos \theta)$$
$$= \frac{4\sin 40^\circ}{\sin 40^\circ} = 4$$

77. (b) (A)
$$\tan 15^\circ = \tan (45^\circ - 30^\circ)$$

$$=\frac{1-\frac{1}{\sqrt{3}}}{1+\frac{1}{\sqrt{3}}}=\frac{\sqrt{3}-1}{\sqrt{3}+1}\times\frac{\sqrt{3}-1}{\sqrt{3}-1}=\frac{3+1-2\sqrt{3}}{2}=2-\sqrt{3}$$

(B)
$$\tan 75^\circ = \tan (45^\circ + 30^\circ) \frac{\tan 45^\circ \tan 30^\circ}{1 - \tan 45^\circ \tan 30^\circ}$$

$$\frac{1}{1-\frac{1}{\sqrt{3}}} = \frac{\sqrt{3}}{\sqrt{3}-1} \times \frac{\sqrt{3}}{\sqrt{3}-1} (By \text{ Rationaliziang})$$
(C) tan (105°) = tan (60° + 45°)

$$= \frac{\sqrt{3}}{1-\sqrt{3}} \times \frac{1}{1} \frac{\sqrt{3}}{\sqrt{3}} = \frac{(\sqrt{3}-1)^2}{1-3}$$

$$= \frac{4+2\sqrt{3}}{-2} = -2 - \sqrt{3}$$

Hence, option (b) is correct.

78. (b) Let
$$\tan A = \frac{1}{2}$$
 and $\tan B = \frac{1}{3}$
We know, $\tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$
 $= \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \cdot \frac{1}{3}} = \frac{\frac{5}{6}}{\frac{5}{6}} = 1 = \tan \pi/4$
 $\Rightarrow A+B = \pi/4$
79. (c) Consider $\frac{\sin x}{1 + \cos x} = \frac{2 \sin x/2 \cos x/2}{1 + 2 \cos^2 (x/2) - 1}$
 $(\because \sin 2x = 2 \sin x \cos x \text{ and } \cos 2x = 2 \cos^2 x - 1)$
 $= \frac{2 \sin x/2 \cos x/2}{2 \cos^2 x/2} = \frac{\sin x/2}{\cos x/2} = \tan x/2$
80. (d) Consider $\frac{1 + \tan 15^{\circ}}{1 - \tan 15^{\circ}} = \frac{\tan 45^{\circ} + \tan 15^{\circ}}{1 - \tan 45^{\circ} \tan 15^{\circ}}$ $(\because \tan 45^{\circ} = 1)$

$$= \tan(45^\circ + 15^\circ) \quad \left(\because \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \right)$$
$$= \tan 60^\circ = \sqrt{3}$$

81. (b) Consider $\sqrt{3}$ cosec 20° – sec 20°

$$=\frac{\sqrt{3}}{\sin 20^{\circ}} - \frac{1}{\cos 20^{\circ}} = \frac{\sqrt{3} \cos 20^{\circ} - \sin 20^{\circ}}{\sin 20^{\circ} \cos 20^{\circ}}$$

Multiply and divide by 4

$$= \frac{4}{2 \sin 20^{\circ} \cos 20^{\circ}} \left(\frac{\sqrt{3}}{2} \cos 20^{\circ} - \frac{1}{2} \sin 20^{\circ} \right)$$
$$= \frac{4}{\sin 40^{\circ}} \left(\frac{\sqrt{3}}{2} \cos 20^{\circ} - \frac{1}{2} \sin 20^{\circ} \right)$$

 $(:: \sin 2\theta = 2 \sin \theta \cos \theta)$

$$= \frac{4}{\sin 40^{\circ}} (\sin 60^{\circ} \cos 20^{\circ} - \cos 60^{\circ} \sin 20^{\circ})$$
$$= \frac{4}{\sin 40^{\circ}} \sin (60^{\circ} - 20^{\circ})$$
$$(\because \sin (A-B) = \sin A \cos B - \cos A \sin B)$$
$$= 4$$

82. (c)
$$\tan\left(7\frac{1}{2}\right)^{\circ} = \frac{\sin\left(7\frac{1}{2}\right)^{\circ}}{\cos\left(7\frac{1}{2}\right)^{\circ}}$$

Multiply and divide by $2\sin\left(7\frac{1}{2}\right)$; we get

$$\frac{2\sin^2\left(7\frac{1}{2}\right)^\circ}{2\sin\left(7\frac{1}{2}\right)^\circ\cos\left(7\frac{1}{2}\right)^\circ} = \frac{2\sin^2\left(\frac{15}{2}\right)^\circ}{2\sin\left(\frac{15}{2}\right)^\circ\cos\left(\frac{15}{2}\right)^\circ}$$
$$= \frac{1-\cos\left(2\times\frac{15}{2}\right)^\circ}{\sin\left(2\times\frac{15}{2}\right)^\circ}$$

 $\left(\because \cos 2\theta = 1 - 2 \sin^2 \theta \text{ and } \sin 2\theta = 2 \sin \theta \cos \theta\right)$

$$= \frac{1 - \cos 15^{\circ}}{\sin 15^{\circ}} = \frac{1 - \left(\frac{\sqrt{3} + 1}{2\sqrt{2}}\right)}{\frac{\sqrt{3} - 1}{2\sqrt{2}}} = \sqrt{2}\left(\sqrt{3} + 1\right) - \left(2 + \sqrt{3}\right)$$
$$= \sqrt{6} + \sqrt{2} - 2 - \sqrt{3} = \sqrt{6} - \sqrt{3} + \sqrt{2} - 2$$
83. (d) Consider $\frac{\cos 15^{\circ} + \cos 45^{\circ}}{\cos^3 15^{\circ} + \cos^3 45^{\circ}}$

85.

86.

$$= \frac{\cos 15^{\circ} + \cos 45^{\circ}}{(\cos 15^{\circ} + \cos 45^{\circ})(\cos^{2} 45^{\circ} + \cos^{2} 15^{\circ} - \cos 45^{\circ} \cos 15^{\circ})}$$

$$(\because a^{3} + b^{3} = (a + b)(a^{2} + b^{2} - ab))$$

$$= \frac{1}{(\cos^{2} 45^{\circ} + \cos^{2} 15^{\circ} - \cos 45^{\circ} \cos 15^{\circ})}$$

$$= \frac{1}{\frac{1}{2} + (\cos 45^{\circ} \cos 30^{\circ} + \sin 45^{\circ} \sin 30^{\circ})^{2} - \frac{\cos 15^{\circ}}{\sqrt{2}}}{[\because \cos 15^{\circ} = \cos (45^{\circ} - 30^{\circ})]}$$

$$= \frac{1}{\frac{1}{2} + (\frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}})^{2} - \frac{1}{\sqrt{2}}(\frac{\sqrt{3} + 1}{2\sqrt{2}})}$$

$$= \frac{1}{\frac{1}{\frac{1}{2} + \frac{3 + 1 + 2\sqrt{3}}{8} - \frac{\sqrt{3} + 1}{4}}}$$

$$= \frac{1}{\frac{4 + 4 + 2\sqrt{3} - 2\sqrt{3} - 2}{8}} = \frac{8}{6} = \frac{4}{3}$$
(c) Given equation is $4(\sin^{2} x + \cos x) = 1$

84. (c) Given equation is $4(\sin^2 x + \cos x)$ $\Rightarrow 4 \sin^2 x + 4 \cos x = 1$

- $\Rightarrow 4\sin^2 x + 4\cos x 1 = 0$
- $\Rightarrow 4(1-\cos^2 x)+4\cos x-1=0$
- $\Rightarrow 4-4\cos^2 x+4\cos x-1=0$
- $\Rightarrow -4\cos^2 x + 4\cos x + 3 = 0$
- $\Rightarrow 4\cos^2 x 4\cos x 3 = 0$

This is the quadratic in
$$\cos x$$
.

$$\Rightarrow 4 \cos^{2} x - 6 \cos x + 2 \cos x - 3 = 0$$

$$\Rightarrow (2 \cos x - 3)(2 \cos x + 1) = 0$$

$$\Rightarrow \cos x = \frac{3}{2} \text{ and } \cos x = -\frac{1}{2}$$

$$\cos x = \frac{3}{2} \text{ is not possible therefore } \cos x = -\frac{1}{2}$$

$$\Rightarrow \cos A = -\frac{1}{2} = \cos 210^{\circ}$$

$$\Rightarrow A = 210^{\circ}$$
(d) Consider $\frac{1 + \sin \theta}{\cos \theta} = \frac{1 + \frac{2 \tan \frac{\theta}{2}}{1 + \tan^{2} \frac{\theta}{2}}}{\frac{1 - \tan^{2} \frac{\theta}{2}}{1 + \tan^{2} \frac{\theta}{2}}}$

$$(\because \sin 2\theta = \frac{2 \tan \theta}{1 + \tan^{2} \theta} \text{ and } \cos 2\theta = \frac{1 - \tan^{2} \theta}{1 + \tan^{2} \theta}$$

$$= \frac{\left(1 + \tan \frac{\theta}{2}\right)^{2}}{\left(1 - \tan \frac{\theta}{2}\right)(1 + \tan \frac{\theta}{2})}$$

$$= \frac{1 + \tan \frac{\theta}{2}}{1 - \tan \frac{\theta}{2}} = \frac{\cos \frac{\theta}{2} + \sin \frac{\theta}{2}}{\cos \frac{\theta}{2} - \sin \frac{\theta}{2}}$$
Multiplied and divide by $2 \sin \frac{\theta}{2}$

$$= \frac{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} + 2 \sin^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} - 2 \sin^{2} \frac{\theta}{2}}$$

$$= \frac{\sin \theta + 1 - \cos \theta}{\sin \theta - 1 + \cos \theta}$$

$$(\because \sin 2\theta = 2 \sin \theta \cos \theta \text{ and } \cos 2\theta = 1 - 2 \sin^{2} \theta$$

$$(\therefore \sin 2\theta = 2 \sin \theta \cos \theta \text{ and } \cos 2\theta = 1 - 2 \sin^{2} \theta$$

$$(\therefore \sin 2\theta = 2 \sin \theta \cos \theta \text{ and } \cos 2\theta = 1 - 2 \sin^{2} \theta$$

$$(\therefore \sin 2\theta = 2 \sin \theta \cos \theta \text{ and } \cos 2\theta = 1 - 2 \sin^{2} \theta$$

$$(\therefore \sin 2\theta = 2 \sin \theta \cos \theta \text{ and } \cos 2\theta = 1 - 2 \sin^{2} \theta$$

$$(\therefore \sin 2\theta = 2 \sin \theta \cos \theta \text{ and } \cos 2\theta = 1 - 2 \sin^{2} \theta$$

$$(\therefore \sin 2\theta = 2 \sin^{2} \theta + 2\theta + 2\theta = \pi$$

$$(\therefore \sin 2\theta = 2 \sin^{2} \theta + 2\theta + 2\theta = \pi$$

$$(\therefore \sin \theta = 1 - \cos \theta + 2\theta + 2\theta = \pi$$

$$(\therefore \sin \theta = 1 - 2\theta + 2\theta = \pi$$

$$(\therefore \sin \theta = 1 - 2\theta + 2\theta + 2\theta = \pi$$

$$(\therefore \sin \theta = 1 - 2\theta + 2\theta + 2\theta = \pi$$

$$(\therefore \sin \theta = 1 - 2\theta + 2\theta + 2\theta = \pi$$

$$(\therefore \sin \theta = 1 - 2\theta + 2\theta + 2\theta = \pi$$

$$(\therefore \sin \theta = 1 - 2\theta + 2\theta + 2\theta = \pi$$

$$(\therefore \sin \theta = 1 - 2\theta + 2\theta + 2\theta = \pi$$

$$(\therefore \sin \theta = 1 - 2\theta + 2\theta + 2\theta = \pi$$

$$(\therefore \sin \theta = 1 - 2\theta + 2\theta + 2\theta = \pi$$

$$(\therefore \sin \theta = 1 - 2\theta + 2\theta + 2\theta = \pi$$

$$(\therefore \sin \theta = 1 - 2\theta + 2\theta + 2\theta = \pi$$

$$(\therefore \sin \theta = 1 - 2\theta + 2\theta + 2\theta = \pi$$

$$(x + 2\theta + 2\theta = 2\theta$$

$$(x + 2\theta + 2\theta = \theta$$

$$(x + 2\theta + 2\theta =$$

Hence, the third angle in radian is $\frac{9\pi - 10}{20}$.

87. (a) Consider
$$\left(\frac{\sec 18^{\circ}}{\sec 144^{\circ}} + \frac{\cos ec 18^{\circ}}{\cos ec 144^{\circ}}\right)$$

$$= \frac{\sec 18^{\circ}}{\sec (180^{\circ} - 36^{\circ})} + \frac{\cos ec 18^{\circ}}{\cos ec (180^{\circ} - 36^{\circ})}$$

$$= -\frac{\sec 18^{\circ}}{\sec 36^{\circ}} + \frac{\cos ec 18^{\circ}}{\cos ec 36^{\circ}} (\because \sin, \csc are + ve in 2^{nd} quadrant)$$

$$= \frac{\sin 36^{\circ}}{\sin 18^{\circ}} - \frac{\cos 36^{\circ}}{\cos 18^{\circ}} = \frac{\sin 36^{\circ} \cos 18^{\circ} - \cos 36^{\circ} \sin 18^{\circ}}{\sin 18^{\circ} \cos 18^{\circ}}$$

$$= \frac{\sin (36^{\circ} - 18^{\circ})}{\sin 18^{\circ} \cos 18^{\circ}} = \frac{\sin 18^{\circ}}{\sin 18^{\circ} \cos 18^{\circ}} = \sec 18^{\circ}$$

$$= \frac{\sin (36^{\circ} - 18^{\circ})}{\sin 18^{\circ} \cos 18^{\circ}} = \frac{\sin 18^{\circ}}{\sin 18^{\circ} \cos 18^{\circ}} = \sec 18^{\circ}$$

$$= \frac{\sin (36^{\circ} - 18^{\circ})}{\sin 18^{\circ} \cos 18^{\circ}} = \frac{\sin 12^{\circ}}{\sin 18^{\circ} \cos 18^{\circ}} = \sec 18^{\circ}$$

$$= \frac{\sin (36^{\circ} - 18^{\circ})}{\sin 18^{\circ} \cos 18^{\circ}} = 1$$

$$\Rightarrow \tan (\alpha + \beta) = \tan \frac{\pi}{4}$$

$$\Rightarrow \tan (\alpha + \beta) = \tan \frac{\pi}{4}$$

$$\Rightarrow \tan (\alpha + \beta) = \tan \frac{\pi}{4}$$

$$\Rightarrow \tan (\alpha + \beta) = \tan \alpha \tan \beta$$
By adding 1 on both sides, we get
1 + \tan \alpha + \tan \beta = 1 - \tan \alpha \tan \beta
By adding 1 on both sides, we get
1 + \tan \alpha (1 + \tan \beta) = 2
89. (d) Consider sin 50^{\circ} - sin 70^{\circ} + sin 10^{\circ}
$$= 2\cos \frac{70^{\circ} + 50^{\circ}}{2} \cdot \sin \frac{50^{\circ} - 70^{\circ}}{2} + \sin 10^{\circ} = 0$$

$$\left(\because \cos 60^{\circ} = \frac{1}{2}\right)$$
90. (b) Let $\cos 4 + \cos B = m$...(i)
and $\sin A + \sin B = n$...(i)
and $\sin A + \sin B = n$...(i)
Consider $\sin (A + B) = \frac{(m^{2} + n^{2})\sin(A + B)}{m^{2} + n^{2}}$

$$= \frac{[2 + 2\cos(A - B)]\sin(A + B)}{2 + 2\cos(A - B)}$$
(from i and ii)

$$= \frac{2\sin(A + B) + 2\sin(A - B) + \sin(A + B - A + B)}{1 + 2\cos(A - B)}$$

$$= \frac{2\sin(A + B) + 2\sin(A - B) + \sin(A + B - A + B)}{1 + 1 + 2\cos(A - B)}$$

$$= \frac{2\sin(A+B) + \sin 2A + \sin 2B}{1+1+2\cos(A-B)}$$

$$= \frac{2(\cos A - \cos B)(\sin A - \sin B)}{\sin^2 A - \cos^2 A - \sin^2 B - \cos^2 B - 2\cos A \cos B} - 2\sin A \sin B$$

$$= \frac{2(\cos A - \cos B)(\sin A - \sin B)}{(\sin A - \sin B)^2} (\cos A - \cos B)^2$$

$$= \frac{2mn}{m^2 - n^2} (\text{from (i) and (ii)})$$
Hence, $\sin(A+B) = \frac{2mn}{m^2 - n^2}$

$$) \text{ Since, } \cos^2\theta \text{ lies between 0 and 1 therefore,}$$
 $\sec^2 \theta + \cos^2 \theta \ge 2, \forall 0 < \theta - \frac{\pi}{2}$

$$\therefore \quad y \ge 2$$

$$(1) \ \tan A = \frac{3}{4} \ \text{and } \tan B = -\frac{12}{5}$$

$$\therefore \quad \cot(A-B) = \frac{1}{\tan(A-B)} = \frac{1+\tan A \tan B}{\tan A - \tan B}$$

$$) \text{ Consider sin 15° sin 75°} = \sin(45° - 30°) \sin(45° + 30°) = (\sin 45° \cos 30° - \cos 45° \sin 30°) (\sin 45° \cos 30° + \cos 45° \sin 30°) (using \sin (A+B) = \sin A \cos B + \cos A \sin B and \sin (A-B) \sin A \cos B - \cos A \sin B)$$

$$= \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} + \frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right)$$

$$= \left(\frac{\sqrt{3}-1}{2\sqrt{2}}\right) \left(\frac{\sqrt{3}+1}{2\sqrt{2}}\right) = \frac{3-1}{8} = \frac{2}{8} = \frac{1}{4}$$

$$\text{ Now, put value of } \theta = \frac{3\pi}{4}, \text{ we get}$$

$$\frac{\sin \frac{3\pi}{4} + \cos \frac{3\pi}{4} - \tan \frac{3\pi}{4}}{\sec \frac{3\pi}{4} + \csc \frac{3\pi}{4} - \cot \frac{3\pi}{4}}$$

$$= \frac{\sin \frac{\pi}{4} - \cos \frac{\pi}{4} \tan \frac{\pi}{4}}{-\frac{1}{\cos \frac{\pi}{4}} - \frac{1}{\sin \frac{\pi}{4}} - \frac{1}{\tan \frac{\pi}{4}}} = \frac{\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2} + 1} = 1$$

95. (c)
$$\sin\left(292\frac{1}{2}\right)^{\circ} = \sin\frac{585^{\circ}}{2}$$

 $=\sqrt{\frac{1-\cos 585^{\circ}}{2}}$
 $\left(\because \cos 2\theta = 1-2\sin^{2}\theta \Rightarrow \sin\theta = \sqrt{\frac{1-\cos 2\theta}{2}}\right)$
 $=\sqrt{\frac{1-\cos(360^{\circ}+225^{\circ})}{2}} = \sqrt{\frac{1-\cos 225^{\circ}}{2}}$
 $=\sqrt{\frac{1-\cos(180^{\circ}+45^{\circ})}{2}}$
 $=\sqrt{\frac{1-\cos(180^{\circ}+45^{\circ})}{2}}$
 $=\sqrt{\frac{1-\cos(45)}{2}} \sqrt{\frac{1-\frac{1}{\sqrt{2}}}{2}} = \sqrt{\frac{\sqrt{2}+1}{2\sqrt{2}}} = \frac{1}{2}\sqrt{2+\sqrt{2}}}$
96. (b) We know that, $1^{\circ} < 1$ radian $\left(\because 1 - \frac{\pi}{180}$ radian $\right)$
 $\Rightarrow \sin 1^{\circ} < \sin 1$

97. (b) We know,
$$\sin A = \frac{2 \tan \frac{A}{2}}{1 \tan^2 \frac{A}{2}}$$
 ... (1)

If $\sin A$ is known then equation (1) becomes

quadratic equation in
$$\tan\left(\frac{A}{2}\right)$$
. This mean 2 values of
 $\tan\left(\frac{A}{2}\right)$ can be calculated.

98. (a) Let
$$x = \sin \theta + \cos \theta$$
 and $y = \sin \theta \cdot \cos \theta$
Now, $x^4 - 4x^2y - 2x^2 + 4y^2 + 4y + 1$
 $= (\sin \theta + \cos \theta)^4 - 4(\sin \theta + \cos \theta)^2y - 2(\sin \theta + \cos \theta)^2 + 4y^2 + 4y + 1)$
 $= (\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta)^2 - 4(\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta)y - 2(\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta) + 4y^2 + 4y + 1)$
 $= (1 + 2y)^2 - 4(1 + 2y)y - 2(1 + 2y) + 4y^2 + 4y + 1$
 $= 1 + 4y^2 + 4y - 4y - 8y^2 - 2 - 4y + 4y^2 + 4y + 1 = 0$
99. (b) Given, $(1 + \tan \theta)(1 + \tan \phi) = 2$
 $\Rightarrow 1 + \tan \theta + \tan \phi + \tan \theta \tan \phi = 2$
 $\Rightarrow \tan \theta + \tan \phi = 1 - \tan \theta \tan \phi$
 $\Rightarrow \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi} = 1$
 $\Rightarrow \tan (\theta + \phi) = \tan 45^{\circ}$
 $\Rightarrow \theta + \phi = 45^{\circ}$
100. (c) Since, angle α is divided into two parts A and B.
 $\therefore \alpha = A + B$ (1)
and $x = A - B$ (given)(2)
On solving (1) and (2) we get,

$$A = \frac{\alpha x}{2}, B = \frac{\alpha - x}{2}$$

Now, consider $\frac{\tan A}{\tan B} = \frac{2}{1}$ $\Rightarrow \frac{\tan\left(\frac{\alpha - x}{2}\right)}{\tan\left(\frac{\alpha - x}{2}\right)} \quad \frac{2}{1}$ $\Rightarrow \frac{\sin\left(\frac{\alpha+x}{2}\right)\cos\left(\frac{\alpha-x}{2}\right)}{\cos\left(\frac{\alpha+x}{2}\right)\sin\left(\frac{\alpha-x}{2}\right)} \quad \frac{2}{1}$ Multiply and divide by 2, $\Rightarrow \frac{2\sin\left(\frac{\alpha+x}{2}\right)\cos\left(\frac{\alpha-x}{2}\right)}{2\cos\left(\frac{\alpha+x}{2}\right)\sin\left(\frac{\alpha-x}{2}\right)}$ 2 $\Rightarrow \frac{\sin\alpha \quad \sin x}{\sin\alpha - \sin x} \quad 2$ $\Rightarrow \sin \alpha \quad \sin x \quad 2\sin \alpha - 2\sin x$ \Rightarrow 3 sin x = sin α $\Rightarrow \sin x = \frac{\sin \alpha}{3}$ 101. (d) Given expression is $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ$ $= \tan 9^{\circ} - \tan 27^{\circ} - \tan (90^{\circ} - 27^{\circ}) + \tan (90^{\circ} - 9^{\circ})$ = tan9° - tan27° - cot27° + cot9° $=(\tan 9^\circ + \cot 9^\circ) - (\tan 27^\circ + \cot 27^\circ)$ $=\frac{1}{\sin 9 \ \cos 9} - \frac{1}{\sin 27 \ \cos 27}$ $=\frac{2}{\sin 18^\circ}-\frac{2}{\sin 54^\circ}$ $= \frac{2}{\sin 18^{\circ}} - \frac{2}{\sin (90^{\circ} - 36^{\circ})}$ $=\frac{2}{\sin 18^{\circ}}-\frac{2}{\cos 36^{\circ}}$ $= 2\left[\frac{4}{\sqrt{5}-1} - \frac{4}{\sqrt{5}+1}\right] = 8 \times \frac{2}{4} = 4$ (By putting value of $\sin 18^\circ$ and $\cos 36^\circ$) 102. (b) Let $x = y \cos\left(\frac{2\pi}{3}\right) = z \cos\left(\frac{4\pi}{3}\right)$ $\Rightarrow x = y \cos\left(\pi - \frac{\pi}{3}\right) = -y \cos\frac{\pi}{3} - \frac{-y}{2}$

and
$$x = z \cos\left(\pi + \frac{\pi}{3}\right) = -z \cos\frac{\pi}{3} = \frac{-z}{2}$$
 ...(2)

...(1)

from (1) and (2)

$$\frac{-y}{2} = \frac{-z}{2} \Rightarrow y = z$$

Thus, $xy + yz + zx = zx + z^2 + xz = 2xz + z^2$
 $= -y. (y) + y^2 = -y^2 + y^2 = 0$
103. (b) Let $\sin A + \sin B + \sin C = 3$
 $\Rightarrow \sin A = \sin B = \sin C = 1$ (\because max value of $\sin is 1$)
 $\therefore \cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - 1} = 0$
Similarly, $\cos B = 0 = \cos C$
Hence, $\cos A + \cos B + \cos C = 0 + 0 + 0 = 0$
104. (c) Let $\tan A - \tan B = x$ and $\cot B - \cot A = y$.

$$\Rightarrow \frac{1}{\tan B} - \frac{1}{\tan A} = y$$
$$\Rightarrow \frac{\tan A - \tan B}{\tan A \tan B} = y \Rightarrow \frac{x}{\tan A \tan B} = y$$
Consider $\cot (A - B) = \left(\frac{1}{\tan (A - B)}\right)$

$$= \frac{1 + \tan A \tan B}{\tan A - \tan B} = \frac{1 + \frac{x}{y}}{x} = \frac{y + x}{xy} = \frac{1}{x} + \frac{1}{y}.$$

105. (c) Let
$$\tan A = \frac{1}{2}$$
, $\tan B = \frac{1}{3}$
We know,

$$\tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \times \frac{1}{3}} = \frac{5}{6} \times \frac{6}{5}$$
$$\tan (A+B) = 1$$
$$\Rightarrow A+B = \tan^{-1}(1) = \frac{\pi}{4}$$

Multiply by 4 on both side,

$$4(A+B) = \frac{\pi}{4} \times 4 \Longrightarrow 4A + 4B = \pi$$

106. (c) Maximum value of

$$3\cos x + 4\sin x + 5 = \sqrt{(4)^2 + (3)^2} + 5 = \sqrt{16 + 9} + 5$$
$$= \sqrt{25} + 5 = 5 + 5 = 10$$

107. (a) Let
$$\sin\theta = \cos^2\theta$$

 $\Rightarrow \sin^2\theta = \cos^4\theta$...(1)
Consider
 $\cos^2\theta(1 + \cos^2\theta) = \cos^2\theta + \cos^4\theta$
 $= \cos^2\theta + \sin^2\theta$ (using 1)
 $= 1$
108. (a) Consider $\tan 15^\circ \tan 195^\circ$
 $= \tan 15^\circ \tan (180 + 15^\circ)$
 $= \tan 15^\circ \tan 15^\circ$ ($\because \tan(180 + \theta) = \tan \theta$)

$$= (\tan 15^{\circ})^{2}$$

$$= (2-\sqrt{3})^{2} \qquad (\because \tan 15^{\circ} = 2-\sqrt{3})$$

$$= 4+3-4\sqrt{3} = 7-4\sqrt{3}$$
109. (b) $\frac{\sin x}{1+\cos x} + \frac{1+\cos x}{\sin x} = \frac{\sin^{2} x+1+\cos^{2} x+2\cos x}{(1+\cos x)(\sin x)}$

$$= \frac{2+2\cos x}{(1+\cos x)(\sin x)} = \frac{2(1+\cos x)}{(1+\cos x)(\sin x)}$$

$$= \frac{2}{\sin x} = 2\csc x$$
110. (b) Let $\sin 3A = 1$

$$\Rightarrow 3\sin A - 4\sin^{3} A = 1$$

$$\Rightarrow 4\sin^{3} A - 3\sin A + 1 = 0$$

$$\Rightarrow (\sin A + 1)(4\sin^{2} A - 4\sin A + 1) = 0$$

$$\Rightarrow (\sin A + 1)(2\sin A - 1)^{2} = 0$$

$$\Rightarrow \sin A = -1 \text{ or } \frac{1}{2}$$
Hence, $\sin A$ can take two distinct values.
111. (a) $\frac{\sin \theta}{\csc \theta} + \frac{\cos \theta}{\sec \theta} = \frac{\sin \theta}{\frac{1}{\sin \theta}} + \frac{\cos \theta}{\cos \theta} = \sin^{2}\theta + \cos^{2}\theta = 1$
112. (c) $\tan \theta + \sec \theta = 4$

$$\Rightarrow \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} = 4$$

$$\Rightarrow \frac{\sin \theta}{\cos \theta} + \frac{1}{\cos \theta} = 4$$

$$\Rightarrow 1 + \sin \theta = 4 \cos \theta$$
Squaring on both side,
 $(1 + \sin \theta)^{2} = 16(1 - \sin \theta)(1 + \sin \theta)$
 $1 + \sin \theta = 16 - 16\sin \theta$
 $17\sin \theta = 16 - 1$
sin $\theta = \frac{15}{17}$
113. (a) Let AB be the pole of 1m.
BC = 1 km = 1000 m
Let '\theta' be the required angle.
Now, $\tan \theta = \left(\frac{1}{1000}\right)^{\circ}$
Since '\theta' is very small
 $\therefore \tan \theta = \theta = \left(\frac{1}{1000}\right)^{\circ}$
 C
1000 m
B

Now, consider option (a)

$$\left(\frac{9}{50\pi}\right)^{\circ} = \left(\frac{9}{50 \times 180}\right)^{\circ} = \left(\frac{9}{9000}\right)^{\circ} = \left(\frac{1}{1000}\right)^{\circ}$$

Hence, required angle = $\left(\frac{9}{50\pi}\right)^{\circ}$

114. (a) Consider
$$\cos (A + B)$$
. $\sec (A - B)$

$$= \frac{\cos(A + B)}{\cos(A - B)} = \frac{\cos A \cos B - \sin A \sin B}{\cos A \cos B + \sin A \sin B}$$
Divide Nr and Dr by $\sin A \sin B$,

$$\frac{\cot A \cot B - 1}{\cot A \cot B + 1} = \frac{2 - 1}{2 + 1} = \frac{1}{3}$$
115. (a) $\tan \frac{\pi}{12} = \tan \left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \frac{\tan \pi/3 - \tan \pi/4}{1 + \tan \pi/3 \tan \pi/4}$

$$= \frac{\sqrt{3} - 1 - 3 + \sqrt{3}}{(1)^2 - (\sqrt{3})^2} = \frac{2(\sqrt{3} - 2)}{-2} = 2 - \sqrt{3}$$
116. (b) Consider $4\sin^2\theta + 2\sin\theta = 2\sin\theta (2\sin\theta + 1)$
Put $\theta = 18^\circ$ in the above we get
Required expression $= 2\sin^2\theta (2\sin^2\theta + 1)$
As we know, $\sin 18^\circ = \frac{\sqrt{5} - 1}{4}$

$$= 2\left(\frac{\sqrt{5} - 1}{4}\right)\left[2\left(\frac{\sqrt{5} - 1}{4}\right) + 1\right]$$

$$= \left(\frac{\sqrt{5} - 1}{2}\right)\left(\frac{\sqrt{5} - 1}{2} + 1\right)$$

$$= \frac{\sqrt{5} - 1}{2}\left[\frac{\sqrt{5} + 1}{2}\right] = \frac{5 - 1}{4} = 1$$
117. (c) Consider, $\csc\theta - \cot\theta = \frac{1}{\sqrt{3}}$

$$\Rightarrow \frac{1}{\sin\theta} - \frac{\cos\theta}{\sin\theta} = \frac{1}{\sqrt{3}} \Rightarrow \frac{1 - \cos\theta}{\sin\theta} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \frac{1 - (1 - 2\sin^2\theta/2)}{2\sin\theta/2\cos\theta/2} = \frac{1}{\sqrt{3}} \Rightarrow \frac{2\sin^2\theta/2}{2\sin\theta/2\cos\theta/2} = \frac{\sin\theta/2}{2} = 1$$

$$\Rightarrow \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} = \frac{1}{\sqrt{3}} \Rightarrow \tan \frac{\theta}{2} = \tan 30^{\circ}$$
$$\Rightarrow \theta = 60^{\circ}$$
$$\therefore \cos\theta = \cos 60^{\circ} = \frac{1}{2}$$

 $\frac{1}{\sqrt{3}}$

118. (a) Consider $\sin 3\theta \cos 2\theta + \cos 3\theta \sin 2\theta$

$$= \sin(3\theta + 2\theta) \qquad \qquad \left[\begin{array}{c} \because \sin A \cos B + \cos A \sin B \\ = \sin(A + B) \end{array} \right]$$

 $= \sin(5\theta)$ We know, $-1 < \sin\theta < 1$ Hence, maximum value of given expression is 1. Given expression

$$= \sin A \cos A \cdot \frac{\sin A}{\cos A} + \cos A \sin A \frac{\cos A}{\sin A}$$
$$= \sin^2 A + \cos^2 A = 1$$

120. (c) $\tan \theta$ is positive in third quadrant

$$\begin{array}{c|c} S & A \\ \hline T & C \end{array}$$

121. (c)
$$\sin(1920^\circ) = \sin(360 \times 5 + 120^\circ)$$

= $\sin 120^\circ$ ($\because \sin(360^\circ + \theta) = \sin \theta$)
= $\sin(90^\circ + 30^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}$
122. (b) $\sin(A + B) = 1$

$$\Rightarrow \sin (A + B) = \sin 90^{\circ}$$

$$\Rightarrow A + B = 90^{\circ} \qquad ...(1)$$

Given
$$\sin (A - B) = \frac{1}{2} = \sin 30^{\circ}$$

 $\Rightarrow A - B = 30^{\circ}$...(2)
On solving (1) and (2), we get
 $A = 60$
 $B = 30$

123. (c)
$$\tan(A+2B)$$
. $\tan(2A+B)$
Put A = 60 and B = 30 in above expression
We get $\tan(120^\circ)$. $\tan(150^\circ)$
= $\tan(90^\circ + 30^\circ) \tan(90^\circ + 60^\circ)$
= $\cot 30^\circ$. $\cot 60^\circ = \sqrt{3} \cdot \frac{1}{\sqrt{3}} = 1$

124. (b)
$$\sin^2 A - \sin^2 B = \sin^2 60^\circ - \sin^2 30^\circ = \frac{3}{4} - \frac{1}{4} = \frac{1}{2}$$

- 125. (b) Given expression $= \sin (360^{\circ} + 60^{\circ}) \cdot \cos(360^{\circ} + 30^{\circ}) + \cos (360^{\circ} - 60^{\circ})$ $(-\sin (360^{\circ} - 30^{\circ}))$ $= \sin 60^{\circ} \cdot \cos 30^{\circ} + \cos 60^{\circ} \sin 30^{\circ} = \sin(60^{\circ} + 30^{\circ})$ $= \sin 90^{\circ} = 1$
- 126. (c) (1) $1^{\circ} = \left(\frac{\pi}{180}\right)$ radian = 0.01746 radian which is less than 0.02 radian.

(2) 1 radian =
$$\left(\frac{180}{\pi}\right)^{\circ} = 57^{\circ}16'22''$$
 approx. which is

greater than 45°.

Hence, both statements are true.
127. (c)
$$-1 < \sin x < 1 \Rightarrow 1 < \sin^2 x < 1$$

Hence, maximum value of $\sin^2 x = 1$

128. (a) We know in cyclic quadrilateral, ABCD

$$A+C=180^{\circ}, B+D=180^{\circ}$$

 $\therefore A=180^{\circ}-C, B=180^{\circ}-D$
 $\sin A + \sin B - \sin C - \sin D$
 $= \sin (180^{\circ}-C) + \sin (180^{\circ}-D) - \sin C - \sin D$
 $= \sin C + \sin D - \sin C - \sin D = 0$

135. (b) Let θ be the required angle

129. (a) $\sin 15^\circ = \sin [45^\circ - 30^\circ]$ $= \sin 45^{\circ} \cdot \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}$ $=\frac{1}{\sqrt{2}}\times\frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}}\times\frac{1}{2}$ $=\frac{\sqrt{3}}{2\sqrt{2}}-\frac{1}{2\sqrt{2}}=\frac{\sqrt{3}-1}{2\sqrt{2}}$ 130. (c) $4\sin^2\theta = 1$ $\Rightarrow \sin^2 \theta = \frac{1}{4} \Rightarrow \sin \theta \qquad \frac{1}{2} \Rightarrow \theta \qquad \frac{\pi}{6}$ Hence θ take 4 values. (one value for each quadrant) 131. (d) We know that $\sin 18^\circ = \frac{\sqrt{5}-1}{4}$ Now, $\cos 36^\circ = 1 - 2\sin^2 18^\circ$ $= 1 - \frac{2}{16} \left(\sqrt{5} - 1\right)^2 = 1 - \frac{\left(3 - \sqrt{5}\right)}{4}$ $\cos 36^\circ = \frac{\sqrt{5}+1}{4}$ Now, $\sin 18^\circ \cos 36^\circ = \frac{\left(\sqrt{5}\right)^2 - (1)^2}{16} = \frac{4}{16} = \frac{1}{4}$ 132. (c) We have sec $\alpha = \frac{13}{5}$ Since $\frac{3\pi}{2} < \alpha < 2\pi$ $\therefore \sin \alpha < 0$ Now, $\sin \alpha = -\sqrt{1 - \frac{1}{\sec^2 \alpha}}$ $=-\sqrt{1-\frac{25}{169}} = -\sqrt{\frac{144}{169}} = -\frac{12}{13}$ 133. (b) $\tan(-585^\circ) = -\tan 585$ $=-\tan [540^\circ + 45^\circ] = -\tan \left[3\pi + \frac{\pi}{4}\right]$ $= -\left[\frac{\tan 3\pi + \tan \frac{\pi}{4}}{1 - \tan 3\pi \tan \frac{\pi}{4}}\right] = -\left[\frac{0+1}{1 - 0 \times 1}\right] = -1$ 134. (d) Since $\cos \theta > \sin \theta$, in $\left| 0, \frac{\pi}{4} \right|$ and $\cos \theta < \sin \theta$, in $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ $\therefore \cos 46^\circ - \sin 46^\circ = -ve$ and $\cos 44^\circ - \sin 44^\circ = +ve$ So, both the above statements are incorrect.

138. (c) Let
$$\sin \theta + 2 \cos \theta = 1$$
 (i)
Consider $2 \sin \theta - \cos \theta = \alpha$ (let) (ii)
squaring and adding
 $\sin^2 \theta + 4 \cos^2 \theta + 4 \sin \theta \cos \theta + 4 \sin^2 \theta + \cos^2 \theta + 4 \sin \theta \cos \theta = 1 + \alpha^2$.
 $\Rightarrow (\sin^2 \theta + \cos^2 \theta) + 4 (\cos^2 \theta + \sin^2 \theta) = 1 + \alpha^2$.
 $\Rightarrow 1 + 4 = 1 + \alpha^2 \Rightarrow \alpha^2 = 4 \Rightarrow \alpha = 2$.

139. (b) Let
$$A + B = 90^{\circ}$$

Consider $\sqrt{\sin A \sec B - \sin A \cos B}$
 $= \sqrt{\sin A \sec (90^{\circ} - A) - \sin A \cos (90^{\circ} - A)}$
 $= \sqrt{\sin A \csc ecA - \sin A \sin A} = \sqrt{1 - \sin^2 A} = \cos A.$

140. (a) Consider $\tan^4 A - \sec^4 A + \tan^2 A + \sec^2 A$ = $(\tan^2 A)^2 - (\sec^2 A)^2 + \tan^2 A + \sec^2 A$. = $(\tan^2 A + \sec^2 A) (\tan^2 A - \sec^2 A)$ + $\tan^2 A + \sec^2 A$ = $-(\tan^2 A + \sec^2 A) + \tan^2 A + \sec^2 A = 0$.

141. (b) Consider
$$\tan (105^\circ) = \tan (60 + 45^\circ)$$

$$= \frac{\tan 60^\circ + \tan 45^\circ}{1 - \tan 60^\circ \tan 45^\circ}$$

$$= \frac{\sqrt{3} + 1}{1 - \sqrt{3}} \qquad (\because \tan 60^\circ = \sqrt{3} \text{ and } \tan 45^\circ = 1)$$
142. (d) $x^2 \tan (A - B)$

$$= x^{2} \left(\frac{\tan A - \tan B}{1 + \tan A \tan B} \right) = x^{2} \left(\frac{(x+1) - (x-1)}{1 + (x^{2} - 1)} \right)$$
$$= x^{2} \left(\frac{2}{x^{2}} \right) = 2$$

143. (d) Consider
$$(\sin^4\theta - \cos^4\theta + 1) \csc^2\theta$$
.

$$= \left[\left(\sin^2 \theta \right)^2 - \left(\cos^2 \theta \right)^2 + 1 \right] \csc^2\theta$$

$$= \left[\left(\sin^2 \theta - \cos^2 \theta \right) \left(\sin^2 \theta + \cos^2 \theta \right) + 1 \right] \csc^2\theta$$

$$= \left[1 - \cos^2 \theta + \sin^2 \theta \right] \csc^2\theta$$

$$= \left(\sin^2 \theta + \sin^2 \theta \right) \csc^2\theta$$

$$= 2\sin^2 \theta \times \frac{1}{\sin^2 \theta} = 2$$
144. (c)
$$\frac{\cot x + \csc x - \left(\csc^2 x - \cot^2 x \right)}{\cot x - \csc x + 1}$$

$$= \frac{\cot x + \csc x - \left[(\csc x - \cot x) (\csc x + \cot x) \right]}{\cot x - \csc x + 1}$$

$$= \frac{(\cot x + \csc x)(1 + \cot x - \csc x)}{(\cot x - \csc x + 1)}$$

= $\cot x + \csc x$
= $\frac{\cos x}{\sin x} + \frac{1}{\sin x} = \frac{1 + \cos x}{\sin x}$
145. (d) $\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2}}$
= $\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} = \cos x$
($\because \cos 2x = \cos^2 x - \sin^2 x$)
146. (c) $\frac{\cot 54}{\tan 36} \frac{\tan 20}{\cot 70} = \frac{\cot (90^\circ - 36^\circ)}{\tan 36^\circ} + \frac{\tan (90^\circ - 70^\circ)}{\cot 70^\circ}$
= $\frac{\tan 36}{\tan 36} \frac{\cot 70}{\cot 70} = 1 + 1 = 2$
147. (a) $\sin^2 20^\circ + \sin^2 70^\circ = \sin^2 20^\circ + \sin^2 (90^\circ - 20^\circ)$
= $\sin^2 20^\circ + \cos^2 20^\circ = 1$
148. (d) $(1 - \sin^2 \theta)(1 + \tan^2 \theta) = \cos^2 \theta \cdot \sec^2 \theta$
= $\cos^2 \theta \cdot \frac{1}{\cos^2 \theta} = 1$

149. (a)
$$\tan 15^{\circ} = \sqrt{\frac{1-\cos 30}{1 \cos 30}} = \sqrt{\frac{1-\frac{\sqrt{3}}{2}}{1 \frac{\sqrt{3}}{2}}} \sqrt{\frac{2-\sqrt{3}}{2 \sqrt{3}}}$$

$$= \sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}} \sqrt{\frac{(2-\sqrt{3})^2}{1}} = 2-\sqrt{3}$$
150. (b) 1. $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$ 2. $\tan\left(\frac{3\pi}{4}\right) = -1$
3. $\tan\left(\frac{5\pi}{4}\right) = 1$ 4. $\tan\left(\frac{2\pi}{3}\right) = -\sqrt{3}$
 $-\sqrt{3} < -1 \frac{1}{\sqrt{3}}$ 1
Hence, $4 < 2 < 1 < 3$
151. (d) $\sin x. \cot x. \csc x. \tan x$
 $= (\sin x. \csc x). (\cot x. \tan x)$
 $= 1 \times 1 = 1$
152. (c) $3\tan^2 x = 1$
 $\tan x = \frac{1}{\sqrt{3}}$
 $\tan x = \tan\left(-\frac{\pi}{6}\right)$
 $x = n\pi - \frac{\pi}{6}$

154. (a) $\sin \theta \in [-1, 1]; Q \in R$, the value of $\sin \theta$ lies between -1 to 1. $\cos \theta \in [-1, 1]; Q \in R$, the value of $\sin \theta$ lies between -

1 to 1. 155. (a) **Statement 1 :**

Given
$$n\left(\sin^2 67 \frac{1^\circ}{2} - \sin^2 22 \frac{1^\circ}{2}\right)$$

or $n\left(\sin^2 \frac{135^\circ}{2} - \sin^2 \frac{45^\circ}{2}\right)$
 $= n\left(\sin\frac{135^\circ}{2} + \sin\frac{45^\circ}{2}\right)\left(\sin\frac{135^\circ}{2} - \sin\frac{45^\circ}{2}\right)$
 $= n\left[2\sin\left(\frac{135^\circ + 45^\circ}{2}\right) \cdot \cos\left(\frac{135^\circ - 45^\circ}{2}\right)\right]$
 $\left[2.\cos\left(\frac{135^\circ + 45^\circ}{2}\right) \cdot \sin\left(\frac{135^\circ - 45^\circ}{2}\right)\right]$
 $= n\left[2.\sin\left(\frac{90^\circ}{2}\right) \cdot \cos\left(\frac{45^\circ}{2}\right)\right]$
 $\left[2.\cos\left(\frac{90^\circ}{2}\right) \cdot \sin\left(\frac{45^\circ}{2}\right)\right]$
 $= 2n\left(2\sin\frac{45^\circ}{2} \cdot \cos\frac{45^\circ}{2}\right)(\sin 45^\circ \cdot \cos 45^\circ)$
 $= 2n \cdot \sin\left(2 \times \frac{45^\circ}{2}\right)\left(\frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}\right)$
 $= 2n \sin 45 \times \frac{1}{2} = n \cdot \frac{1}{\sqrt{2}} = \frac{n}{\sqrt{2}}$
 $\therefore \text{ Statement 1 is true }$
Statement 2
 $nx > 1, \forall n \ge 2$

 $\Rightarrow n > \frac{1}{x}, \forall n \ge 2$ x \equiv (0, \infty), then we take x = 1 n > 1, but n is always greater or equal to 2 for all x 161. positive real number. \therefore Statement 2 is false.

 $\sin 3\theta = \cos 2\theta$

$$\sin 3\theta = \sin\left(\frac{\pi}{2} - 2\theta\right)$$
$$3\theta = \frac{\pi}{2} - 2\theta$$

$$5\theta = \frac{\pi}{2} \Longrightarrow \theta = \frac{\pi}{10}$$

Statement: 2

One radian is the angle subtended at the centre of a circle by an arc of the same circle whose length is equal to radius of that circle. Hence, statement 1 is correct.

157. (d) Statement 1: $f_1(x) = \sin |x| + \cos |x|$, the value of $|\sin x|$ and $|\cos x|$ depends on its angles. $\sin |x| + \cos |x|$ is not always positive. Statement 2: $f_2(x) = \sin (x^2) + \cos (x^2)$, the value of x^2

between any value which lies in the interval $\left(\pi, \frac{3\pi}{2}\right)$,

then value of $f_2(x) = \sin(x^2) + \cos(x^2)$ is always negative.

158. (c)
$$\frac{1+\sin A}{1-\sin A} - \frac{1-\sin A}{1+\sin A}$$
$$= \frac{(1+\sin A)^2 - (1-\sin A)^2}{(1-\sin A)(1+\sin A)} = \frac{4\sin A}{\cos^2 A}$$
$$= \frac{4\sin A}{\cos A} \cdot \frac{1}{\cos A} = 4 \sec A \cdot \tan A$$

159. (b)
$$\frac{\cot 224^\circ - \cot 134^\circ}{\cot 226^\circ + \cot 316^\circ}$$

$$= \frac{\cot (180^\circ + 44^\circ) - \cot (180^\circ - 46^\circ)}{\cot (180 + 46^\circ) + \cot (270^\circ + 46)^\circ}$$
$$= \frac{\cot 44^\circ + \cot 46^\circ}{\cot 46^\circ - \tan 46^\circ} = \frac{\tan 46^\circ + \tan 44^\circ}{\tan 44^\circ - \tan 46^\circ}$$
$$= \frac{\sin (46^\circ + 44^\circ)}{\sin (46^\circ + 44^\circ)}$$

$$= \frac{\sin(46^\circ + 44^\circ)}{\sin(44^\circ - 46^\circ)} = -\csc 2^\circ$$

160. (d) $\cos 20^\circ + \cos 100^\circ + \cos 140^\circ$ = $(\cos 140^\circ + \cos 20^\circ) + \cos 100^\circ$ = $2\cos\left(\frac{160^\circ}{2}\right) \cos\left(\frac{120^\circ}{2}\right) + \cos 100^\circ$

$$= 2\cos\left(\frac{1}{2}\right) \cdot \cos\left(\frac{1}{2}\right) + \cos$$

$$= 2\cos\left(\frac{1}{2}\right) \cdot \cos\left(\frac{1}{2}\right)$$
$$= 2\cos 90^{\circ} \cdot \cos 10^{\circ}$$

$$= 2 \times 0 \times \cos 10^{\circ} = 0$$

(b) $\sin^{2}(3\pi) + \cos^{2}(4\pi) + \tan^{2}(5\pi)$
 $= \sin^{2}(3\pi) + \cos^{2}(\pi + 3\pi) + \tan^{2}(5\pi)$
 $= (\sin^{2}(3\pi) + \cos^{2}(3\pi)) + \tan^{2}(2 \times 2\pi + \pi)$
 $= 1 + \tan^{2}\pi = \sec^{2}\pi = 1$

162. (b) Consider,
$$\sqrt{1+\sin 2\theta}$$

 $= \sqrt{\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta}$ $= \sqrt{(\sin \theta + \cos \theta)^2} = \sin \theta + \cos \theta$

163. (d)
$$\cot A = 2 \text{ and } \cot B = 3$$

 $\cot (A + B) = \frac{\cot A \cot B - 1}{\cot A + \cot B} = \frac{6 - 1}{2 + 3} = \frac{5}{5} = 1$
 $\Rightarrow \cot (A + B) = \cot \left(\frac{\pi}{4}\right) \Rightarrow A + B = \frac{\pi}{4}$
164. (b) $\sin^2 66\frac{1^\circ}{2} - \sin^2 23\frac{1^\circ}{2}$
 $= \left[\sin\left(90^\circ - 23\frac{1^\circ}{2}\right)\right]^2 - \sin^2 23\frac{1^\circ}{2}$
 $= \cos^2 23\frac{1^\circ}{2} - \sin^2 23\frac{1^\circ}{2}$
 $= \cos^2 \left(23\frac{1^\circ}{2}\right) = \cos 47^\circ$
 $(\because \cos 2A = \cos^2 A - \sin^2 A)$
 $= \cos\left[2x\left(\frac{47}{2}\right)\right] = \cos 47^\circ$
165. (b) $\frac{\cos 7x - \cos 3x}{\sin 7x - 2\sin 5x + \sin 3x}$
 $= \frac{-2\sin \frac{7x + 3x}{2} \cdot \sin \frac{7x - 3x}{2}}{2\sin \frac{7x + 3x}{2} \cdot \cos \frac{7x - 3x}{2} - 2\sin 5x}$
 $\left(\because \sin C + \sin D = 2\sin\left(\frac{C + D}{2}\right) \cdot \cos\left(\frac{C - D}{2}\right)\right)$
 $= \frac{-2\sin 5x \cdot \sin 2x}{2\sin 5x \cos 2x - 2\sin 5x}$
 $= \frac{-2\sin 5x \sin 2x}{-2\sin 5x [1 - \cos 2x]}$
 $= \frac{\sin 2x}{2\sin^2 x}$ $(\because \cos 2x = 1 - 2\sin^2 x)$
 $= \frac{2\sin x \cos x}{2\sin^2 x} = \cot x$
166. (b) $\frac{\sin(x + y)}{\sin(x - y)} = \frac{a + b}{a - b}$
Applying componendo and dividendo, we get $\frac{\sin(x + y) + \sin(x - y)}{\sin(x + y) - \sin(x - y)} = \frac{(a + b) + (a - b)}{(a + b) - (a - b)}$
 $\Rightarrow \frac{2\sin x \cos y}{2\cos x \sin y} = \frac{2a}{2b} \Rightarrow \tan x \cdot \cot y = \frac{a}{b}$
 $\therefore \frac{\tan x}{\tan y} = \frac{a}{b}$

167. (a)
$$\sin A \cdot \sin (60^\circ - A) \sin (60^\circ + A) = k \sin 3A$$

 $\Rightarrow \sin A \cdot \frac{\sin 3A}{4 \sin A} = k \cdot \sin 3A$
 $\left[\because \sin(60^\circ + A) \cdot \sin(60^\circ - A) = \frac{\sin 3A}{4 \sin A} \right]$
 $\Rightarrow \frac{\sin 3A}{4} = k \cdot \sin 3A$
 $\therefore k = \frac{1}{4}$

168. (a) Line $y = \sqrt{3}$ and graph $y = \tan x$

Now, we have
$$\sqrt{3} = \tan x$$

 $\Rightarrow \tan x = \tan 60^{\circ}$

$$\mathbf{x} = 60^{\circ} \qquad \qquad \left[\because \mathbf{x} \in \left(0, \frac{\pi}{2}\right) \right]$$

Hence, one intersecting point is possible in the given domain i.e., k = 1. tan 2 θ . tan $\theta = 1$

169. (b)
$$\tan 2\theta . \tan \theta = 1$$

 \Rightarrow

$$\Rightarrow \frac{2 \tan \theta}{1 - \tan^2 \theta} \cdot \tan \theta = 1$$

$$\Rightarrow 2 \tan^2 \theta = 1 - \tan^2 \theta \Rightarrow 3 \tan^2 \theta = 1$$

$$\Rightarrow \tan^2 \theta = \frac{1}{3} = \left(\frac{1}{\sqrt{3}}\right)^2$$

$$\Rightarrow \tan^2 \theta = \tan^2 (30^\circ) = \tan^2 \left(\frac{\pi}{6}\right) \left[\because \theta = n\pi \pm \frac{\pi}{6}\right]$$

$$\therefore \theta = \frac{\pi}{6}$$

Sol. (Qs. 170-172)

 $16\sin^5 x = 16(\sin^2 x)^2 \cdot \sin x$

$$= 16 \left(\frac{1 - \cos 2x}{2}\right)^{2} . \sin x$$

= 4 (1 + cos² 2x - 2 cos 2x). sin x
= 4 $\left(1 + \frac{1 + \cos 4x}{2} - 2 \cos 2x\right)$. sin x
= $\frac{4}{2}(3 + \cos 4x - 4 \cos 2x)$. sin x
= (6 + 2 cos 4x - 4 cos 2x). sin x
= 6 sin x + 2 sin x cos 4x - 8 cos 2x. sin x
= 6 sin x + sin 5x - sin 3x - 4 (sin 3x - sin x)
[\because 2 sin A cos B = sin (A + B) + sin (A - B)]
= 6 sin x + sin 5x - sin 3x - 4 sin 3x + 4 sin x
= sin 5x - 5 sin 3x + 10 sin x.
(a) Clearly p = 1, hence option (a) is correct.

170. (a) 170. (a) Clearly, p = 1, hence option (a) is correct. 171. (d) Clearly, q = -5, hence option (d) is correct.

172. (c) Clearly, r = 10, hence option (c) is correct.

173. (c) From going by the options, option (a), $\theta = 30^\circ$, as we know that $180^\circ = \pi$ radian

$$\therefore \quad 30^\circ = \frac{30\,\pi}{180} \text{ radian}$$

Now according to question,

$$\frac{30^{\circ} \times 180^{\circ}}{30^{\circ} \pi} = \frac{180}{\pi}$$

π Now number of degree in θ is multiplied by number of radians in θ .

$$\therefore \quad 30^{\circ} \times \frac{30\pi}{180} = \frac{900\pi}{180} = \frac{10\pi}{2} = 5\pi \neq \frac{125\pi}{9}$$

From option (b),
 $\theta = 45^{\circ}$

$$\therefore \quad 45^\circ = \frac{45^\circ \pi}{180} \text{ radian}$$

Now according to question,

$$\frac{45^{\circ} \times 180}{45^{\circ} \pi} = \frac{180}{\pi}$$

Now number of degree in θ is multiplied by number of radian in θ .

$$\therefore \quad 45^{\circ} \times \frac{45^{\circ} \pi}{180^{\circ}} = \frac{45\pi}{4} \neq \frac{125\pi}{9}$$

From option (c),
 $\theta = 50^{\circ}$
As we know that $180^{\circ} = \pi$ radian
 $\therefore \quad 50^{\circ} = \frac{50\pi}{180}$ radian

Now according to question

$$\frac{50^\circ \times 180^\circ}{50^\circ \pi} = \frac{180}{\pi}$$

Now number of degree in ' θ ' is multiplied by number of radian in θ .

$$\therefore \quad 50^{\circ} \times \frac{50 \pi}{180} = \frac{2500 \pi}{180} = \frac{125 \pi}{9}$$

$$\therefore \quad \text{Option (c) is correct.}$$

Sol. (174-175):
$$174. \text{ (a)} \quad \text{Here } \alpha \text{ is the root of equation}$$

$$25 \cos^2 \theta + 5 \cos \theta - 12 = 0$$

$$\implies 25 \cos^2 \alpha + 5 \cos \alpha - 12 = 0$$

174. (a)

 $\Rightarrow 25 \cos^2 \alpha + 5 \cos \alpha - 12 = 0$ $\Rightarrow 25 \cos^2 \alpha + 20 \cos \alpha - 15 \cos \alpha - 12 = 0$ \Rightarrow 5 cos α (5 cos α + 4) - 3(5 cos α + 4) = 0 $(5\cos\alpha - 3)(5\cos\alpha + 4) = 0$ $\cos \alpha = \frac{3}{5}$ or $\cos \alpha = \frac{-4}{5}$ Here, $\frac{\pi}{2} < \alpha < \pi$ $\therefore \quad \cos \alpha = \frac{-4}{5}$ (:: In 2nd quadrant, cos α value is negative)

Now,
$$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \frac{16}{25}}$$

 $\therefore \sin \alpha = \frac{3}{5}$
 $\therefore \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{3}{5} \times \frac{-5}{4} = \frac{-3}{4}$
 \therefore Option (a) is correct.
175. (b) $\sin 2\alpha = 2 \sin \alpha \cdot \cos \alpha$
 $= 2\left(\frac{3}{5}\right)\left(\frac{-4}{5}\right)$
 $= \frac{6}{5} \times \frac{-4}{5} = \frac{-24}{25}$
 \therefore Option (b) is correct.
176. (b) $(1 - \sin A + \cos A)^2$
 $= 1 + \sin^2 A + \cos^2 A - 2 \sin A$
 $-2 \sin A \cdot \cos A + 2 \cos A$
 $= 2 - 2 \sin A - 2 \sin A \cos A + 2 \cos A$
 $= 2 - 2 \sin A - 2 \sin A \cos A + 2 \cos A$
 $= 2 - 2 \sin A - 2 \sin A \cos A + 2 \cos A$
 $= 2 - 2 \sin A - 2 \sin A \cos A + 2 \cos A$
 $= 2 (1 - \sin A) + 2 \cos A (1 - \sin A)$
 \therefore Option (b) is correct.
177. (b) $\frac{\cos \theta}{1 - \tan \theta} + \frac{\sin \theta}{1 - \cot \theta}$
 $= \frac{\cos^2 \theta}{\cos \theta - \sin \theta} + \frac{\sin^2 \theta}{\sin \theta - \cos \theta}$
 $= \frac{\cos^2 \theta}{\cos \theta - \sin \theta} - \frac{\sin^2 \theta}{\cos \theta - \sin \theta}$
 $= \frac{\cos^2 \theta - \sin^2 \theta}{\cos \theta - \sin \theta} = \frac{(\cos \theta - \sin \theta)(\cos \theta + \sin \theta)}{\cos \theta - \sin \theta}$
 $= \cos \theta + \sin \theta$
 \therefore Option (b) is correct.
178. (d) $\frac{\sin^2 5 + \sin^2 10^{\circ} + \sin^2 15^{\circ} + \dots + \sin^2 75^{\circ} + \sin^2 80^{\circ} + \sin^2 10^{\circ} + \sin^2 15^{\circ} + \dots + \sin^2 75^{\circ} + \sin^2 10^{\circ} + \sin^2 15^{\circ} + \dots + \sin^2 10^{\circ} + \sin^2 15^{\circ} + \dots + \cos^2 15^{\circ} + \cos^2 10^{\circ} + \cos^2 5^{\circ} + 1$
 $\Rightarrow \sin^2 5 + \sin^2 10^{\circ} + \sin^2 15^{\circ} + \dots + \cos^2 15^{\circ} + \cos^2 10^{\circ} + \cos^2 5^{\circ} + 1$
 $\Rightarrow \sin^2 5 + \sin^2 10^{\circ} + \sin^2 15^{\circ} + \dots + \cos^2 15^{\circ} + \cos^2 10^{\circ} + \cos^2 5^{\circ} + 1$
 $\Rightarrow (1 + 1 + 1 + \dots + 3 \tan 8) + \sin^2 45^{\circ} + 1$
 $\Rightarrow 8 + \frac{1}{2} + 1 = \frac{19}{2}$
179. (d) $\frac{\sin^3 A + \sin 3A}{\sin A} + \frac{\cos^3 A - \cos 3A}{\cos A}$

sin A

 $b \neq 0$

 $= b(c-1)^{-1}$

...(1)

$$\therefore \left[1 \quad \cos\frac{\pi}{8}\right] \left[1 \quad \cos\frac{3\pi}{8}\right] \left[1 - \cos\frac{\pi}{8}\right] \left[1 - \cos\frac{3\pi}{8}\right]$$
$$= \left[1 - \cos^2\frac{\pi}{8}\right] \left[1 - \cos^2\frac{3\pi}{8}\right] \quad \sin^2\frac{\pi}{8} \sin^2\frac{3\pi}{8}$$
$$\frac{1}{4} \left[2\sin^2\frac{\pi}{8} \ 2\sin^2\frac{3\pi}{8}\right]$$
$$= \frac{1}{4} \left[\left(1 - \cos\frac{\pi}{4}\right)\left(1 - \cos\frac{3\pi}{4}\right)\right]$$
$$\left(\because 1 - \cos\theta = 2\sin^2\frac{\theta}{2}\right)$$
$$= \frac{1}{4} \left[\left(1 - \frac{1}{\sqrt{2}}\right)\left(1 \quad \frac{1}{\sqrt{2}}\right)\right] \quad \frac{1}{8}$$
(a) Here, $z = x\cos\theta + y\sin\theta$

191. (a) Here,
$$z = x \cos \theta + y \sin \theta$$

 $z^2 = x^2 \cos^2 \theta + y^2 \sin^2 \theta + 2xy \sin \theta \cos \theta$
 $\Rightarrow 2xy \sin \theta \cos \theta = z^2 - x^2 \cos^2 \theta - y^2 \sin^2 \theta$
Let, $L = (x \sin \theta - y \cos \theta)^2$
 $\Rightarrow L = x^2 \sin^2 \theta + y^2 \cos^2 \theta - 2xy \sin \theta \cos \theta$
 $\Rightarrow L = x^2 \sin^2 \theta + y^2 \cos^2 \theta - [z^2 - x^2 \cos^2 \theta - y^2 \sin^2 \theta]$
 $\Rightarrow L = x^2 [\sin^2 \theta + \cos^2 \theta] + y^2 [\sin^2 \theta + \cos^2 \theta] - z^2$
 $\Rightarrow L = x^2 + y^2 - z^2$

$$\frac{4}{\sqrt{5}-1}$$

$$\frac{4}{\sqrt{5}-1}$$

$$\frac{4}{\sqrt{5}-1}$$

$$\frac{\sqrt{5}-1}{4}$$

$$x^{2} = 4^{2} - (\sqrt{5}-1)^{2}$$

$$\Rightarrow x = \sqrt{10+2\sqrt{5}}$$

$$\Rightarrow \cos 18 \quad \frac{\sqrt{10-2\sqrt{5}}}{4}$$

$$\Rightarrow 2\cos^{2}9 - 1 = \frac{\sqrt{10+2\sqrt{5}}}{4}$$

$$\cos^{2}9 \quad \frac{\sqrt{10-2\sqrt{5}}-4}{8}$$

$$\Rightarrow \sin^{2}81 \quad \frac{4-\sqrt{10-2\sqrt{5}}}{8}$$

 $\Rightarrow \sin 81 \frac{8}{8}$ After squaring all the options available, we come to a conclusion that option (a) is correct.

$$(\because 2\cos^{2}A = 1 + \cos 2A)$$
Now, 4 sin 2A cos² $\left(\frac{A}{2}\right) = 2 \sin 2A [1 + \cos A]$

$$= 2 \sin 60^{\circ} [1 + \cos 30^{\circ}] = \frac{2\sqrt{3}}{2}$$
Also, sin 2A = 2 sin A cos A & sin²A + cos²A = 1
2 sin 2A $\left[\sin \frac{A}{2} + \cos \frac{A}{2}\right]^{2}$

$$= 2 \sin 2A \left[\sin^{2} \frac{A}{2} + \cos^{2} \frac{A}{2} - 2 \sin \frac{A}{2} \cos \frac{A}{2}\right]$$

$$= 2 \sin 2A \left[\sin^{2} \frac{A}{2} + \cos^{2} \frac{A}{2} - 2 \sin \frac{A}{2} \cos \frac{A}{2}\right]$$

$$= 2 \sin 2A \left[\sin^{2} \frac{A}{2} + \cos^{2} \frac{A}{2} - 2 \sin \frac{A}{2} \cos \frac{A}{2}\right]$$

$$= 2 \sin 2A \left[\sin^{2} \frac{A}{2} + \cos^{2} \frac{A}{2} - 2 \sin \frac{A}{2} \cos \frac{A}{2}\right]$$

$$= 2 \sin 2A \left[1 + \sin A = 2 \sin 60^{\circ} 1 + \sin 30^{\circ}\right]$$

$$= \frac{3\sqrt{3}}{2}$$
& 8 sin A cos A cos² $\left(\frac{A}{2}\right)$

$$= 4 \sin 30^{\circ} \cos 30^{\circ} [1 + \cos 30^{\circ}]$$

$$= \frac{2\sqrt{3}}{2}$$

$$\frac{3}{2}$$
188. (a) $x = \sin 70^{\circ} .\sin 50^{\circ} \text{ and } y = \cos 60^{\circ} .\cos 80^{\circ}$

$$\Rightarrow xy = \cos 60^{\circ} .\sin 70^{\circ} .\sin 50^{\circ} .\cos 80^{\circ}$$

$$xy = \frac{1}{2} \cdot \sin(90 - 20) \cdot \sin(90 - 40) \cdot \cos 80$$

$$\Rightarrow xy = \frac{1}{2} \cdot \cos 20^{\circ} \cos(60 - 20)^{\circ} \cdot \cos(60 + 20)^{\circ}$$

$$\Rightarrow xy = \frac{1}{2} \cdot \cos 20^{\circ} \cos(60 - 20)^{\circ} \cdot \cos(60 + 20)^{\circ}$$

$$\Rightarrow xy = \frac{1}{2} \left[\frac{1}{4} \cos 3(20^{\circ})\right] = \frac{1}{2} \times \frac{1}{4} \times \cos 60^{\circ} = \frac{1}{16}$$

$$\left[\because \cos \theta \cdot \cos(60 - \theta) \cdot \cos(60 + \theta) = \frac{1}{4} \cos 3\theta\right]$$
189. (a) $\sin \theta_{1} + \sin \theta_{2} + \sin \theta_{3} + \sin \theta_{4} = 4$...(1)
Since max. value of $\sin \theta = 1$

$$\Rightarrow \sin \theta_{1} = \sin \theta_{2} = \sin \theta_{3} = \sin \theta_{4} = 1$$

$$\Rightarrow \theta_{1} = \theta_{2} = \theta_{3} = \theta_{4} = 90^{\circ}$$
Now,

$$\cos \theta_{1} + \cos \theta_{2} + \cos \theta_{3} + \cos \theta_{4} = (\cos 90^{\circ}) \times 4 = 0$$
190. (d) $\left[1 \cos \frac{\pi}{8}\right] \left[1 \cos \frac{3\pi}{8}\right] \left[1 \cos \frac{5\pi}{8}\right] \left[1 \frac{\cos 7\pi}{8}\right]$

$$and \cos \frac{5\pi}{8} = \cos\left[\pi - \frac{\pi}{8}\right] = -\cos \frac{\pi}{8}$$

$$and \cos \frac{5\pi}{8} = \cos\left[\pi - \frac{3\pi}{8}\right] = -\cos \frac{3\pi}{8}$$

193. (b)
$$L = \frac{1 - \tan 2^{\circ} \cot 62^{\circ}}{\tan 152^{\circ} - \cot 88^{\circ}} = \frac{1 - \tan 2^{\circ} \cot(90 - 28)^{\circ}}{\tan(180 - 28)^{\circ} - \cot(90 - 2)^{\circ}}$$
$$\Rightarrow L = \frac{1 - \tan 2^{\circ} \tan 28^{\circ}}{-\tan 28^{\circ} - \tan 2^{\circ}} = -\left[\frac{1 - \tan 2^{\circ} \tan 28^{\circ}}{\tan 2^{\circ} + \tan 28^{\circ}}\right]$$
$$\Rightarrow L = -\frac{1}{\tan(2 + 28)^{\circ}} = -\frac{1}{\tan 30^{\circ}} = -\sqrt{3}$$
$$\left[\because \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}\right]$$

194. (d) Sin A
$$\frac{3}{5}$$
; 450 A 540
 $\Rightarrow 225 \quad \frac{A}{2} \quad 270$
 $\cos A = \frac{-4}{5}$ (:: A lies in Q2)
 $450^{\circ} \quad 4 \quad 10^{\circ} \quad 10^{\circ} \quad 10^{\circ}$
 $540^{\circ} \quad 4 \quad 10^{\circ} \quad 10^{\circ} \quad 10^{\circ}$
 $\therefore \cos^{2} \frac{A}{2} = \frac{1 + \cos A}{2} = \frac{1}{10}$
 $\Rightarrow \cos \frac{A}{2} \quad \frac{-1}{\sqrt{10}} \quad (:: \frac{A}{2} \text{ lies in Q3})$
195. (d) $\frac{1}{\sin 10^{\circ}} - \frac{\sqrt{3}}{\cos 10^{\circ}} = \frac{\cos 10^{\circ} - \sqrt{3} \sin 10^{\circ}}{\sin 10^{\circ} \cos 10^{\circ}}$
 $= \frac{2 \times 2 \left[\frac{1}{2} \cos 10^{\circ} - \frac{\sqrt{3}}{2} \sin 10^{\circ} \right]}{2 \sin 10^{\circ} \cos 10^{\circ}}$
 $= \frac{4 (\cos 60^{\circ} \cos 10^{\circ} - \sin 60^{\circ} \sin 10^{\circ})}{\sin 20^{\circ}}$
 $= \frac{4 (\cos (60^{\circ} + 10^{\circ}))}{\sin 20^{\circ}} = 4 \cdot \frac{\cos 70^{\circ}}{\sin 20^{\circ}} = 4 \cdot \frac{\sin 20^{\circ}}{\sin 20^{\circ}} = 4$
196. (c) $K = \sin \left(\frac{\pi}{18}\right) \sin \left(\frac{5\pi}{18}\right) \sin \left(\frac{7\pi}{18}\right)$
We know, 2 sin A sin B = cos (A - B) - cos (A + B)
 $K = \frac{1}{2} \cdot \sin \frac{\pi}{18} \left[2 \sin \frac{5\pi}{18} \sin \frac{7\pi}{18} \right]$

$$= \frac{1}{2} \cdot \sin \frac{\pi}{18} \left[\cos \frac{2\pi}{18} - \cos \frac{2\pi}{18} \right]$$

$$= \frac{1}{2} \cdot \frac{1}{2} \left[2 \sin \frac{\pi}{18} \cos \frac{2\pi}{18} - 2 \sin \frac{\pi}{18} \cos \frac{2\pi}{3} \right]$$

$$= \frac{1}{4} \left[\sin \left(\frac{3\pi}{18} \right) + \sin \left(\frac{-\pi}{18} \right) - 2 \sin \frac{\pi}{18} \cos \left(\pi - \frac{\pi}{3} \right) \right]$$

$$= \frac{1}{4} \left[\sin \frac{\pi}{6} - \sin \frac{\pi}{18} + 2 \sin \frac{\pi}{18} \cdot \cos \frac{\pi}{3} \right]$$

$$= \frac{1}{4} \left[\sin \frac{\pi}{6} - \sin \frac{\pi}{18} + 2 \sin \frac{\pi}{18} \cdot \cos \frac{\pi}{3} \right]$$

$$= \frac{1}{4} \left[\sin \frac{\pi}{6} - \sin \frac{\pi}{18} + 2 \sin \frac{\pi}{18} \cdot \frac{1}{2} \right]$$

$$= \frac{1}{4} \sin \frac{\pi}{6} = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$$
197. (a)
$$\frac{\sin \alpha + \sin \beta}{\cos \alpha + \cos \beta} = \frac{2 \sin \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)}{2 \cos \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)}$$

$$= \tan \left(\frac{\alpha + \beta}{2} \right)$$
198. (b) Given, $\sin \theta = 3 \sin (\theta + 2\alpha)$

$$\Rightarrow \frac{\sin \theta + 2\alpha}{\sin \theta} = \frac{1}{3}$$
Apply componendo and divide do rule

$$\Rightarrow \frac{\sin(\theta + 2\alpha) + \sin \theta}{\sin(\theta + 2\alpha) - \sin \theta} = \frac{1 + 3}{1 - 3}$$
$$\Rightarrow \frac{2\sin(\theta + \alpha)\cos\alpha}{2\cos(\theta + \alpha)\sin\alpha} = \frac{4}{-2} = -2$$
$$\Rightarrow \frac{\tan(\theta + \alpha)}{\tan\alpha} = -2$$
$$\Rightarrow \tan(\theta + \alpha) = -2\tan\alpha \Rightarrow \tan(\theta + \alpha) + 2\tan\alpha = 0$$

199. (a)
$$\tan 18 \quad \frac{\sin 18^{\circ}}{\cos 18} \quad \frac{\frac{\sqrt{5}-1}{4}}{\frac{\sqrt{10} \quad 2\sqrt{5}}{4}} \quad \frac{\sqrt{5}-1}{\sqrt{10} \quad 2\sqrt{5}}$$

200. (a)
$$\tan (\alpha + \beta) = 2$$
$$\tan (\alpha - \beta) = 1$$
$$\tan 2\alpha = \tan [(\alpha + \beta) + (\alpha - \beta)]$$
$$= \frac{\tan (\alpha + \beta) + \tan (\alpha - \beta)}{1 - \tan (\alpha + \beta) \cdot \tan (\alpha - \beta)}$$
$$= \frac{2 + 1}{1 - 2 \cdot 1} = \frac{3}{-1} = -3$$

201. (b)
$$\sec \theta - \csc \theta = \frac{4}{3} \Rightarrow \frac{1}{\cos \theta} - \frac{1}{\sin \theta} = \frac{4}{3}$$

$$\Rightarrow \frac{\sin \theta - \cos \theta}{\sin \theta \cos \theta} = \frac{4}{3} \qquad ...(i)$$

$$\Rightarrow \frac{(\sin \theta - \cos \theta)^2}{(\sin \theta \cos \theta)^2} = \frac{16}{9}$$

$$\Rightarrow \frac{\sin^2 \theta + \cos^2 \theta - 2\sin \theta \cos \theta}{\sin^2 \theta \cos^2 \theta} = \frac{16}{9}$$
Let $\sin \theta \cos \theta = x \Rightarrow \frac{1-2x}{x^2} = \frac{16}{9}$

$$\Rightarrow \frac{1-2\sin \theta \cos \theta}{\sin^2 \theta \cos^2 \theta} = \frac{16}{9}$$
Let $\sin \theta \cos \theta = x \Rightarrow \frac{1-2x}{x^2} = \frac{16}{9}$

$$\Rightarrow 16x^2 + 18x - 9 = 0$$

$$\Rightarrow (8x - 3)(2x + 3) = 0$$

$$\Rightarrow x = \frac{3}{8} \cdot x = \frac{-3}{2}$$

$$\therefore \sin \theta \cos \theta = \frac{3}{8}$$
from (i), $\sin \theta - \cos \theta = \frac{4}{3} \times \frac{3}{8} = \frac{4}{8} = \frac{1}{2}$
202. (d) $\tan \theta^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ$

$$= \tan 9^\circ - \tan 27^\circ - \cot 63^\circ + \tan 81^\circ$$

$$= \tan 9^\circ - \tan 27^\circ - \cot 63^\circ + \tan 81^\circ$$

$$= \tan 9^\circ - \tan 27^\circ - \cot 27^\circ + \cot 27^\circ$$
We know,

$$\tan \theta + \cot \theta = \frac{1}{\sin \theta \cos \theta} = \frac{2}{2\sin \theta \cos \theta} = \frac{2}{\sin 2\theta}$$

$$\therefore \tan 9^\circ + \cot 9^\circ - (\tan 27^\circ + \cot 27^\circ)$$
We know,

$$\tan \theta + \cot \theta = \frac{1}{\sin \theta \cos \theta} = \frac{2}{2\sin \theta \cos \theta} = \frac{2}{\sin 2\theta}$$

$$\therefore \tan 9^\circ + \cot 9^\circ - (\tan 27^\circ + \cot 27^\circ)$$

$$= \frac{2}{\sin 18^\circ} - \frac{2}{\sin 54^\circ} = 2\left(\frac{\sin 54^\circ - \sin 18}{\sin 18 \sin 54}\right)$$
We also know, sin C - sin D

$$= 2\cos \frac{(C+D)}{2} \sin \left(\frac{C-D}{2}\right)$$

$$\therefore 2\left(\frac{\sin 54^\circ - \sin 18}{\sin 18 \sin 54}\right) = 2 \cdot 2 \cdot \frac{\sin 54^\circ - \sin 18}{\sin 18 \sin 54} = 2 \cdot 2 \cdot \frac{\sin 54^\circ - \sin 18}{\sin 18^\circ \sin 54^\circ} = 4$$
203. (a) $\sqrt{3} \csc 20^\circ - \sec 20^\circ = \frac{\sqrt{3}}{\sin 20^\circ} - \frac{1}{\cos 20^\circ}$

$$= \frac{2\left(\frac{\sqrt{3}}{2}\cos 20^\circ - \frac{1}{2}\sin 20^\circ}{\sin 20^\circ \cos 20^\circ}$$

$$= \frac{2(\cos 30^{\circ}\cos 20^{\circ} - \sin 30^{\circ}\sin 20^{\circ})}{\left(\frac{2\sin 20^{\circ}\cos 20^{\circ}}{2}\right)}$$

$$= \frac{4[\cos 30 - 20]}{\sin 40}$$

$$= \frac{4\cos 50}{\sin 40} = \frac{4\cos 90^{\circ} - 40}{\sin 40} = \frac{4\sin 40}{\sin 40} = 4.$$
204. (d) $A = B = x$ and $\tan A : \tan B = p : q$
Also, given $\alpha = A + B$
 $\Rightarrow A = \frac{x + \alpha}{2}$ and $B = \frac{\alpha - x}{2}$
 $Now, \tan B = \frac{\tan\left(\frac{x + \alpha}{2}\right)}{\tan\left(\frac{\alpha - x}{2}\right)} = \frac{p}{q}$ (Given)
 $\Rightarrow \frac{2\sin\left(\frac{\alpha + x}{2}\right)\cos\left(\frac{\alpha - x}{2}\right)}{2\cos\left(\frac{\alpha + x}{2}\right)\sin\left(\frac{\alpha - x}{2}\right)} = \frac{p}{q}$
 $\Rightarrow \frac{\sin \alpha - \sin x}{\sin \alpha - \sin x} = \frac{p}{q}$
 $\Rightarrow \frac{\sin \alpha - \sin x}{\sin \alpha - \sin x} = \frac{p + q}{p - q}$
 $\Rightarrow \frac{\sin \alpha - \sin x}{\sin \alpha - \sin \alpha + \sin \alpha} = \frac{p + q}{p - q}$
 $\Rightarrow \frac{\sin \alpha}{\sin x} = \frac{p}{p - q} \Rightarrow \sin x = \frac{\sin \alpha}{p - q}$
 $205.$ (c) $\sqrt{1 - \sin A} = \left(\cos \frac{A}{2} - \sin \frac{A}{2}\right)$
 $We know, 1 + \sin A = \left(\cos \frac{A}{2} + \sin \frac{A}{2}\right)^{2}$
 $\therefore \sqrt{1 - \sin A} = \left|\cos \frac{A}{2} - \sin \frac{A}{2}\right|$
 $We know, |x| = \left\{x \text{ if } x \ge 0 \\ -x \text{ if } x = 0\right\}$
 $We know, |x| = \left\{\sin \frac{A}{2} + \cos \frac{A}{2}\right\}, \text{ if } 2n\pi - \frac{\pi}{4} \le \frac{A}{2} \le 2n\pi + \frac{3\pi}{4}$
 $\frac{3\pi}{4} < \frac{A}{2} < \frac{7\pi}{4}$
 $\Rightarrow \frac{3\pi}{2} < A < \frac{7\pi}{2}.$

206. (c)
$$\sin x = \frac{1}{\sqrt{5}}, \sin y = \frac{1}{\sqrt{10}}, 0 < x < \frac{\pi}{2}, 0 < y < \frac{\pi}{2}$$

 $\cos x = \sqrt{1 - \sin^2 x}$ $\cos y = \sqrt{1 - \sin^2 y}$
 $= \sqrt{1 - \frac{1}{5}}$ $= \sqrt{1 - \frac{1}{10}}$
 $= \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}}$ $= \sqrt{\frac{9}{10}} = \frac{3}{\sqrt{10}}$.
 $\sin (x + y) = \sin x \cos y + \cos x \sin y$
 $= \frac{1}{\sqrt{5}} \cdot \frac{3}{\sqrt{10}} + \frac{2}{\sqrt{5}} \cdot \frac{1}{\sqrt{10}}$
 $= \frac{5}{\sqrt{5} \cdot \sqrt{10}} = \frac{\sqrt{5} \cdot \sqrt{5}}{\sqrt{5} \cdot \sqrt{10}} = \sqrt{\frac{5}{10}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}$.
 $\therefore x + y = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$.

207. (c) $\frac{\sin 5x - \sin 3x}{\cos 5x + \cos 3x}$ $\sin c - \sin d = 2\cos\left(\frac{c+d}{2}\right)\sin\left(\frac{c-d}{2}\right)$ $\cos c - \cos d = 2\cos\left(\frac{c+d}{2}\right)\cos\left(\frac{c-d}{2}\right)$ $\therefore \frac{\sin 5x - \sin 3x}{\cos 5x + \cos 3x} = \frac{2\cos\left(\frac{5x + 3x}{2}\right)\sin\left(\frac{5x - 3x}{2}\right)}{2\cos\left(\frac{5x + 3x}{2}\right)\cos\left(\frac{5x - 3x}{2}\right)}$

$$=\frac{\sin\left(\frac{2x}{2}\right)}{\cos\left(\frac{2x}{2}\right)}=\frac{\sin x}{\cos x}=\tan x.$$

208. (c) $\sin 105^\circ + \cos 105^\circ$ = $\sin (60^\circ + 45^\circ) + \cos (60^\circ + 45^\circ)$ = $(\sin 60^\circ . \sin 45^\circ + \cos 60^\circ . \cos 45^\circ) + (\cos 60^\circ \cos 45^\circ)$ - $\sin 60^\circ \sin 45^\circ)$ = $\frac{\sqrt{3}}{10^\circ} \frac{1}{10^\circ} + \frac{1}{10^\circ} \frac{1}{10^\circ} - \frac{\sqrt{3}}{10^\circ} \frac{1}{10^\circ}$

$$= \frac{\sqrt{5}}{2} \cdot \frac{1}{\sqrt{2}} + \frac{1}{2} \cdot \frac{1}{\sqrt{2}} + \frac{1}{2} \cdot \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$
$$= \frac{2}{2\sqrt{2}} = \frac{1}{\sqrt{2}}$$

209. (a) $\frac{\sin(x+y)}{\sin(x-y)} = \frac{a+b}{a-b}$

Applying componendo and dividendo, we get

$$\frac{\sin(x+y) + \sin(x-y)}{\sin(x+y) - \sin(x-y)} = \frac{a+b+a-b}{a+b-a+b}$$

$$\Rightarrow \frac{2\sin\left(\frac{x+y+x-y}{2}\right)\cos\left(\frac{x+y-x+y}{2}\right)}{2\cos\left(\frac{x+y+x-y}{2}\right)\sin\left(\frac{x+y-x+y}{2}\right)} = \frac{2a}{2b}$$

$$\Rightarrow \frac{\sin x \cdot \cos y}{\cos x \cdot \sin y} = \frac{a}{b}$$

$$\Rightarrow \frac{\tan x}{\cos x \cdot \sin y} = \frac{a}{b}$$
210. (b) $\sin \alpha + \sin \beta = 0 = \cos \alpha + \cos \beta$
 $\sin \alpha + \sin \beta = 0$
 $\Rightarrow \sin \alpha = -\sin \beta$
 $\Rightarrow \sin \alpha = -\sin \beta$
 $\Rightarrow \sin \alpha = \sin (\pi + \beta)$
 $\Rightarrow \alpha = \pi + \beta$
211. (c) Given, $\cos \frac{A}{2}$ has only one value.
We know, $\cos A = 2\cos^2 \frac{A}{2} - 1$
 $\Rightarrow 2\cos^2 \frac{A}{2} = \cos A + 1 \Rightarrow \cos \frac{A}{2} = \sqrt{\frac{\cos A + 1}{2}} = 0$
 $\Rightarrow \cos A = -1$
Since, $\cos \frac{A}{2}$ is single value, $\frac{\cos A + 1}{2} = 0$
 $\Rightarrow \cos A = -1$
So, A is an odd multiple of 180°.
212. (b) $\cos \alpha + \cos \beta + \cos \gamma = 0$ (1)
Given, $0 < \alpha \le \frac{\pi}{2}, 0 < \beta \le \frac{\pi}{2}, 0 < \gamma \le \frac{\pi}{2}$.
(1) is satisfied when $\alpha = \frac{\pi}{2}, \beta = \frac{\pi}{2}$ and $\gamma = \frac{\pi}{2}$.
 $\therefore \sin \alpha + \sin \beta + \sin \gamma = \sin \frac{\pi}{2} + \sin \frac{\pi}{2} + \sin \frac{\pi}{2}$.
 $= 1 + 1 + 1 = 3$.
213. (d) Period of the function, $\sin x \sin 2\pi$.
214. (c) $\frac{2\tan \theta}{1 + \tan^2 \theta} = \frac{2\tan \theta}{\sec^2 \theta}$
 $= 2 \sin \theta \cos \theta = \sin 2\theta$
215. (a) $\frac{2}{\cos \theta} = \frac{\cos(\theta + \alpha) + \cos(\theta - \alpha)}{\cos(\theta + \alpha)\cos(\theta - \alpha)} = \frac{2\cos \theta \cos \alpha}{\cos^2 \theta - \sin^2 \alpha}$
 $\Rightarrow \sin^2 \alpha = \cos^2 \theta (1 - \cos \alpha)$
 $\Rightarrow \cos^2 \theta = \frac{\sin^2 \alpha}{1 - \cos \alpha} = 1 + \cos \alpha$
 $\Rightarrow 1 - \sin^2 \theta = 1 + \cos \alpha$

$$\Rightarrow \sin^2\theta + \cos\alpha = 0$$

216. (a) Checking through options

$$300^\circ = -60^\circ$$

So, $3[3 - \tan^2(-60^\circ) - \cot(-60^\circ)]^2$
 $= 3\left[3 - 3 + \frac{1}{\sqrt{3}}\right]^2 = 3 \times \frac{1}{3} = 1$

222. (a)
$$\frac{\sin 34^{\circ} \cos 236^{\circ} - \sin 56^{\circ} \sin 124^{\circ}}{\cos 28^{\circ} \cos 88^{\circ} + \cos 178^{\circ} \sin 208^{\circ}} \\ = \frac{\sin 34^{\circ} (-\cos 56^{\circ}) - \sin 56^{\circ} \cos 34^{\circ}}{\sin (28^{\circ} + 2^{\circ})} \\ = \frac{-\sin 34^{\circ} \cos 56^{\circ} - \sin 56^{\circ} \cos 34^{\circ}}{\sin 30^{\circ}} = \frac{-1}{\frac{1}{2}} = -2 \\ 223. (c) \tan 54^{\circ} = \tan (45^{\circ} + 9^{\circ}) \\ = \frac{\tan 45^{\circ} + \tan 9^{\circ}}{1 - \tan 45^{\circ} \cdot \tan 9^{\circ}} = \frac{1 + \tan 9^{\circ}}{1 - \tan 9^{\circ}} \\ = \frac{1 + \frac{\sin 9^{\circ}}{\cos 9^{\circ}}}{1 - \frac{\sin 9^{\circ}}{\cos 9^{\circ}}} = \frac{\cos 9^{\circ} + \sin 9^{\circ}}{\cos 9^{\circ} - \sin 9^{\circ}} \\ 224. (c) p = x \cos \theta - y \sin \theta \\ q = x \sin \theta + y \cos \theta \\ \text{Given}, p^{2} + 4pq + q^{2} = Ax^{2} + By^{2} \\ \text{Let us take } \theta = \frac{\pi}{4} . \\ p = x \cos \frac{\pi}{4} - y \cos \frac{\pi}{4} = \frac{x - y}{\sqrt{2}} \\ q = x \sin \frac{\pi}{4} + y \cos \frac{\pi}{4} = \frac{x - y}{\sqrt{2}} \\ pq = \frac{x^{2} - y^{2}}{2} \Rightarrow 2pq = x^{2} - y^{2} \\ \Rightarrow 4pq = 2x^{2} - 2y^{2} \qquad \dots (1) \\ \text{Now, } p^{2} + q^{2} = x^{2} \cos^{2} \theta + y^{2} \sin^{2} \theta - 2xy \cos \theta \sin \theta \\ + x^{2} \sin^{2} \theta + y^{2} \cos^{2} \theta + 2x \sin \theta \cos \theta = x^{2} + y^{2} \\ \text{From } (1), (2), p^{2} + q^{2} + 4pq = x^{2} + y^{2} + 2x^{2} - 2y^{2} \\ = 3x^{2} - y^{2} \\ \text{Comparing this with the given form, we get} \\ \theta = \frac{\pi}{4}, A = 3, B = -1 \\ 225. (b) 226. (a) \\ 227. (a) Given, \cos(\theta - \alpha) = a \Rightarrow \sin(\theta - \alpha) = \sqrt{1 - a^{2}} \\ \cos(\theta - \beta) = b \Rightarrow \sin(\theta - \beta) = \sqrt{1 - b^{2}} \\ \therefore \cos(\alpha - \beta) = \cos(\theta - \beta - \sin(\theta - \alpha)) = (0 - \alpha) = \sqrt{1 - a^{2}} \\ \cos(\theta - \beta) = b \Rightarrow \sin(\theta - \beta) = \sqrt{1 - b^{2}} \\ \therefore \cos(\alpha - \beta) = \cos(\theta - \alpha) + \sin(\theta - \beta) \sin(\theta - \alpha) = \sqrt{1 - a^{2}} \\ \cos(\theta - \beta) = b \Rightarrow \sin(\theta - \beta) = \sqrt{1 - b^{2}} \\ \therefore \cos(\alpha - \beta) = \cos(\theta - \alpha) + \sin(\theta - \beta) \sin(\theta - \alpha) = \sqrt{1 - a^{2}} \\ \cos(\theta - \beta) = b \Rightarrow \sin(\theta - \beta) = \sqrt{1 - b^{2}} \\ \therefore \cos(\alpha - \beta) = \cos(\theta - \alpha) + \sin(\theta - \beta) \sin(\theta - \alpha) = \sqrt{1 - a^{2}} \\ \cos(\theta - \beta) = b \Rightarrow \sin(\theta - \beta) = \sqrt{1 - b^{2}} \\ \therefore \cos(\alpha - \beta) = \cos(\theta - \alpha) + \sin(\theta - \beta) \sin(\theta - \alpha) = \sqrt{1 - a^{2}} \\ \cos(\theta - \beta) = b \Rightarrow \sin(\theta - \beta) = \sqrt{1 - b^{2}} \\ \therefore \cos(\alpha - \beta) = \cos(\theta - \alpha) + \sin(\theta - \beta) \sin(\theta - \alpha) = \sqrt{1 - a^{2}} \\ \cos(\theta - \beta) = \cos(\theta - \alpha) + \sin(\theta - \beta) \sin(\theta - \alpha) = \sqrt{1 - a^{2}} \\ \cos(\theta - \beta) = \cos(\theta - \alpha) + \sin(\theta - \beta) \sin(\theta - \alpha) = \sqrt{1 - a^{2}} \\ \cos(\theta - \beta) = \cos(\theta - \alpha) + \sin(\theta - \beta) \sin(\theta - \alpha) = \sqrt{1 - a^{2}} \\ \cos(\theta - \beta) = \cos(\theta - \alpha) + \sin(\theta - \beta) \sin(\theta - \alpha) = \sqrt{1 - a^{2}} \\ \cos(\theta - \beta) = \cos(\theta - \beta) + \sin(\theta - \beta) \sin(\theta - \alpha)$$

$$= \cos (\theta - \beta) \cos (\theta - \alpha) + \sin (\theta - \beta) \sin \theta$$
$$= (b)(a) + \sqrt{1 - b^2} \sqrt{1 - a^2}$$
$$= ab + \sqrt{1 - a^2} \sqrt{1 - b^2}$$

...(2)

$$\cos x + \cot x = \sqrt{3}$$

$$\cos x - \cot x = \frac{1}{\sqrt{3}}$$

$$\Rightarrow 2 \csc x = \sqrt{3} + \frac{1}{\sqrt{3}} = \frac{4}{\sqrt{3}}$$

$$\Rightarrow \csc x = \frac{2}{\sqrt{3}}$$

$$\Rightarrow \sin x = \frac{\sqrt{3}}{2}$$

Possible values of $x = \frac{\pi}{3}, \frac{2\pi}{3}$ \therefore Option (b) is correct.

218. (b)

$$[(2\cos\theta + 1)(2\cos\theta - 1)]^{10}[2\cos 2\theta - 1]^{10}[2\cos 4\theta - 1]^{10}$$

when, $\theta = \frac{\pi}{8}$ (given)

$$= \left(4\cos^2\frac{\pi}{8} - 1\right)^{10} \left(2 \times \frac{1}{\sqrt{2}} - 1\right)^{10} (-1)^{10}$$

$$= \left[(\sqrt{2} + 1)(\sqrt{2} - 1)\right]^{10} = 1^{10} = 1$$

219. (a) Product of roots $= \frac{c}{a}$
 $\Rightarrow \cos \alpha . \cos \beta = -\frac{3}{4}$
 $\Rightarrow \frac{1}{\cos \alpha . \cos \beta} = \sec \alpha . \sec \beta = -\frac{4}{3}$
220. (b) $A = \sin^2\theta + \cos^4\theta$
 $= \sin^2\theta + (1 - \sin^2\theta)^2$
 $= 1 + \sin^4\theta - \sin^2\theta$
 $= 1 - \sin^2\theta (1 - \sin^2\theta)$
 $= 1 - \sin^2\theta . \cos^2\theta$
 $= \frac{4 - 4\sin^2 \theta . \cos^2 \theta}{4} = \frac{4 - \sin^2(2\theta)}{4}$
As, we know, $0 \le \sin^2 2\theta \le 1$
 $\therefore A = \frac{4 - 0}{4}$ or $\frac{4 - 1}{4} \Rightarrow \frac{3}{4} \le A \le 1$
221. (d) 25 $\csc^2x + 36 \sec^2x$.
Minimum value $= (\sqrt{25} + \sqrt{36})^2$
 $= (5 + 6)^2 = (11)^2 = 121$

228. (a)
$$\sin^{2}(\alpha-\beta) + 2ab \cos(\alpha-\beta) = 1 - \cos^{2}(\alpha-\beta) + 2ab \cos(\alpha-\beta) = 1 - \cos(\alpha-\beta) [\cos(\alpha-\beta) - 2ab]$$

 $= 1 - (ab + \sqrt{1-a^{2}}\sqrt{1-b^{2}})$
 $\left[ab + \sqrt{1-a^{2}}\sqrt{1-b^{2}} - 2ab\right]$
 $= 1 - \left[(\sqrt{1-a^{2}}\sqrt{1-b^{2}})^{2} - (ab)^{2}\right]$
 $= 1 - \left[(\sqrt{1-a^{2}}\sqrt{1-b^{2}})^{2} - (ab)^{2}\right]$
 $= 1 - \left[(1-a^{2})(1-b^{2}) - a^{2}b^{2}\right]$
 $= 1 - 1 + b^{2} + a^{2}b^{2} - a^{2}b^{2}$
 $= 1 - 1 + b^{2} + a^{2}b^{2} - a^{2}b^{2}$
 $= 1 - 1 + b^{2} + a^{2} + a^{2} + b^{2}$
229. (c) $\sin\alpha + \cos\alpha = p$
 $\Rightarrow (\sin\alpha + \cos\alpha)^{2} = p^{2}$
 $\Rightarrow \sin^{2}\alpha + \cos^{2}\alpha + 2\sin\alpha \cos\alpha = p^{2}$
 $\Rightarrow 1 + \sin^{2}\alpha = p^{2} - 1$
 $\cos^{2}\alpha = 1 - \sin^{2}2\alpha = 1 - (p^{2} - 1)^{2}$
 $= 1 - (p^{4} + 1 - 2p^{2}) = -p^{4} + 2p^{2}$
 $= p^{2}(2 - p^{2})$
230. (c) $\tan \theta = \frac{1}{2}$
 $\tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi}$
 $= \frac{\frac{1}{2} + \frac{1}{3}}{1 - \left(\frac{1}{2}\right)\left(\frac{1}{3}\right)} = \frac{\frac{5}{6}}{6} = 1$
 $\therefore \theta + \phi = \tan^{-1}(1) = \frac{\pi}{4}$
231. (b) $\cos A = \frac{3}{4}$
 $\sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{3A}{2}\right) = \frac{1}{2}\left[2\sin\frac{A}{2}\sin\frac{3A}{2}\right]$
 $= \frac{1}{2}\left[\cos(A - \cos 2A)\right] = \frac{1}{2}[\cos A - (2\cos^{2}A - 1)]$
 $= \frac{1}{2}[\cos A - 2\cos^{2}A + 1]$
 $= \frac{1}{2}\left[\frac{3}{4} - \frac{18}{16} + 1\right] = \frac{1}{2}\left[\frac{12 - 18 + 16}{16}\right]$
 $= \frac{1}{2}\left[\frac{10}{16}\right] = \frac{5}{16}$

232. (b)
$$\tan 75^\circ + \cot 75^\circ = 2 + \sqrt{3} + 2 - \sqrt{3} = 4$$

233. (b) $\cos 46^\circ \cos 47^\circ \cos 48^\circ \cos 49^\circ \dots \cos 135^\circ$
We know, $\cos 90^\circ = 0$
 \therefore Given expression has $\cos 90^\circ$ and so it's value is 0.
234. (b) $\sin 2\theta = \cos 3\theta$
 $\Rightarrow \sin 2\theta = \sin (90^\circ - 3\theta)$
 $2\theta = 90^\circ - 3\theta$ $\therefore \sin \theta = \sin 18^\circ = \frac{\sqrt{5} - 1}{4}$
 $\Rightarrow 5\theta = 90^\circ$
 $\Rightarrow \theta = 18^\circ$
235. (a) $(1 + \tan \alpha \tan \beta)^2 + (\tan \alpha - \tan \beta)^2 - \sec^2 \alpha \sec^2 \beta$
 $= 1 + \tan^2 \alpha \tan^2 \beta + 2 \tan \alpha \tan \beta + \tan^2 \alpha + \tan^2 \beta$
 $-2 \tan \alpha \tan \beta - \sec^2 \alpha \sec^2 \beta$
 $= 1 + \tan^2 \alpha \tan^2 \beta + \tan^2 \alpha + \tan^2 \beta - \sec^2 \alpha \sec^2 \beta$
 $= (1 + \tan^2 \alpha)(1 + \tan^2 \beta) - \sec^2 \alpha \sec^2 \beta$
 $= \sec^2 \alpha \sec^2 \beta - \sec^2 \alpha \sec^2 \beta$
 $= \cos^2 \alpha \sec^2 \beta - \sec^2 \alpha \sec^2 \beta$
 $= 0$
236. (b) $p = \csc \theta - \cot \theta$
 $q = (\csc \theta + \cot \theta)^{-1}$
 $\Rightarrow \frac{1}{q} = \csc \theta + \cot \theta$
We know, $\csc^2 \theta - \cot^2 \theta = 1$
 $\Rightarrow (\csc \theta + \cot \theta) (\csc \theta - \cot \theta) = 1$
 $\Rightarrow (\csc \theta + \cot \theta) (\csc \theta - \cot \theta) = 1$
 $\Rightarrow (\csc \theta + \cot \theta) (\csc \theta - \cot \theta) = 1$
 $\Rightarrow (\frac{1}{q})(p) = 1$
 $\Rightarrow p = q$
237. (c) $\sin \theta + \cos \theta = \sqrt{2} \cos \theta$...(1)
Let $\cos \theta - \sin \theta = P$

$$(1)^{2} + (2)^{2} \Rightarrow \sin^{2}\theta + \cos^{2}\theta + 2\sin\theta\cos\theta + \cos^{2}\theta + \sin^{2}\theta$$
$$-2\sin\theta\cos\theta = 2\cos^{2}\theta + p^{2}$$
$$\Rightarrow 2 = 2\cos^{2}\theta + p^{2}$$
$$\Rightarrow p^{2} = 2(1 - \cos^{2}\theta) = 2\sin^{2}\theta$$
$$\Rightarrow p = \sqrt{2}\sin\theta$$
$$238. (c) \quad \sin\theta = \frac{-1}{2}, \tan\theta = \frac{1}{\sqrt{3}}$$

$$\begin{array}{c|c} & & & \\ Second & & \\ (Q_2) & & \\ (Q_1) \\ \hline \\ \hline \\ Third \\ (Q_3) & & \\ \end{array} \begin{array}{c} First \\ (Q_1) \\ Fourth \\ (Q_4) \end{array}$$

 $\begin{array}{l} \sin\theta \text{ is negative, } \tan\theta \ \text{ is positive} \\ \theta \text{ lies in third quadrant.} \end{array}$

Properties of Triangle, Inverse Trigonometric Function

7.

8.

9.

10.

11.

- In a triangle ABC, a = 2b and $\angle A = 3 \angle B$. Which one of the 1. following is correct?
 - (a) The triangle is isosceles
 - (b) The triangle is equilateral
 - (c) The triangle is right-angled
 - (d) Such triangle does not exist [2006-I]
- 2. What is the value of $\tan(\tan^{-1}x + \tan^{-1}y + \tan^{-1}z) - \cot(\cot^{-1}x + \cot^{-1}y + \cot^{-1}z)?$

(a) 0 (b)
$$2(x+y+z)$$

(c)
$$\frac{3\pi}{2}$$
 (d) $\frac{3\pi}{2} + x + y + z$ [2006-I]

- What is the value of x that satisfies the equation 3. $\cos^{-1} x = 2 \sin^{-1} x$?
 - (a) (b) -1
 - (d) $-\frac{1}{2}$ [2006-1] (c) 1
- The median AD of a triangle ABC is bisected at F, and BF is 4. produced to meet the side AC in P. If $AP = \lambda AC$, then what is the value of λ ?

(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{2}$
(c) $\frac{2}{3}$ (d) $\frac{1}{3}$ [2006-I]

What is the value of $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$? 5.

(a)
$$-\frac{\pi}{3}$$
 (b) $\frac{2\pi}{3}$
(c) $-\frac{2\pi}{3}$ (d) $\frac{\pi}{3}$ [2006-1]

What are the values of (x, y) satisfying the simultaneous 6.

equations
$$\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$$
 and $\cos^{-1} x - \cos^{-1} y = \frac{\pi}{3}$?

(a) (0,1)	(b)	$(\frac{1}{2}, 1)$	
(c) $(1, \frac{1}{2})$	(d)	$(\frac{\sqrt{3}}{2}, 1)$	[2006-II]
If the perimeter of a trian the value of $a \cos^2(C/2)$	ngleABC	C is 30 cm, then	n what is
(a) 15 cm	(b)	10 cm	
(c) $\frac{15}{2}$ cm	(d)	13 cm	[2006-II]
In \triangle ABC, if \angle A : \angle B : \angle AB?	$\angle C = 1:2$	2:3, then what	is BC : CA :
(a) 1:2:3	(b)	$1:\sqrt{3}:2$	
(c) $2:\sqrt{3}:1$	(d)	$\sqrt{3}:1:2$	[2006-II]
The angles A, B, C of a t What is the value of tan	riangle a B tan C	re in the ratio?	2:5:5.
(a) $4 + \sqrt{3}$	(b)	$4 + 2\sqrt{3}$	
(c) $7 + 4\sqrt{3}$	(d)	$3 + 3\sqrt{3}$	[2006-II]
If A, B and C are angle $\tan B = 2$, then what is t	s of a tria he value	angle such tha of tan C?	at $\tan A = 1$,
(a) 0	(b)	1	
(c) 2	(d)	3	[2007-I]
What is sin $[\cot^{-1} \{\cos(ta)\}]$	an ⁻¹ x)] w	where $x > 0$, eq	ual to?
(a) $\sqrt{\frac{(x^2 - 1)}{(x^2 - 2)}}$	(b)	$\sqrt{\frac{(x^2 2)}{(x^2 1)}}$	
(c) $\frac{(x^2+1)}{(x^2+2)}$	(d)	$\frac{(x^2+2)}{(x^2+1)}$	[2007-1]

In a triangle ABC, if a = 2b and A = 3B then which one of the 12. following is correct?

- (a) The triangle is obtuse-angled
- (b) The triangle is acute-angled but not right-angled
- (c) The triangle is right-angled
- (d) The triangle is isosceles but not obtuse-angled [2007-I]

EBD 7346
13. If
$$\sin^{-1} x = \tan^{-1} y$$
, what is the value of $\frac{1}{x^2} - \frac{1}{y^2}$?
(a) 1 (b) -1
(c) 0 (d) 2 [2007-II]
14. What is the value of :
 $\cos\left[\tan^{-1}\left\{\tan\left(\frac{15\pi}{4}\right)\right\}\right]$?

1

(a)
$$-\frac{1}{\sqrt{2}}$$
 (b) 0

(c)
$$\frac{1}{\sqrt{2}}$$
 (d) $\frac{1}{2\sqrt{2}}$ [2007-II]

Two angles of a triangle are $\tan^{-1} \frac{1}{2}$ and $\tan^{-1} \frac{1}{3}$. What is 15.

the third angle?

(a) 30° (b) 45° () 000 10.50

- 16. If median of the \triangle ABC through A is perpendicular to BC, then which one of the following is correct?
 - (a) $\tan A + \tan B = 0$ (b) $\tan B - \tan C = 0$ (c) $\tan C + 2 \tan A = 0$ (d) $\tan B + \tan C = 0$ [2007-II]

17. If
$$\cos^{-1}\left(\frac{1}{\sqrt{5}}\right) = \theta$$
, then what is the value of $\csc^{-1}(\sqrt{5})$?

(a)
$$\left(\frac{\pi}{2}\right) + \theta$$
 (b) $\left(\frac{\pi}{2}\right) - \theta$

(c)
$$\frac{\pi}{2}$$
 (d) $-\theta$ [2007-II]

What is the value of 18.

$$\tan^{-1}\left(\frac{m}{n}\right) - \tan^{-1}\left(\frac{m-n}{m+n}\right)?$$
(a) π (b) $\frac{\pi}{2}$
(c) $\frac{\pi}{4}$ (d) $\frac{\pi}{3}$

19. What is
$$\tan(\cos^{-1} x)$$
 equal to ?

(a)
$$\frac{\sqrt{1-x^2}}{x}$$
 (b) $\frac{x}{1-x^2}$
(c) $\frac{\sqrt{1-x^2}}{x}$ (d) $\sqrt{1-x^2}$ [2008-1]

[2007-II]

20. If
$$\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6}$$
, then what is the value of x?

(a)
$$x = -\frac{1}{2}$$
 (b) $x = 1$

(c)
$$x = \frac{1}{2}$$
 (d) $x = \frac{\sqrt{3}}{2}$ [2008-1]

In a triangle ABC, $b = \sqrt{3}$ cm, c = 1 cm, $\angle A = 30^{\circ}$, what is 21. the value of a?

(a)
$$\sqrt{2} \, \text{cm}$$
 (b) $2 \, \text{cm}$

(c) 1 cm (d)
$$\frac{1}{2}$$
 cm [2008-1]

22. Let $-1 \le x \le 1$. If $\cos(\sin^{-1} x) = \frac{1}{2}$, then how many value does tan $(\cos^{-1} x)$ assume?

- (a) One (b) Two
- (c) Four (d) Infinite
- [2008-I] The equation $\sin^{-1}(3x - 4x^3) = 3 \sin^{-1}(x)$ is true for all 23. values of x lying in which one of the following intervals?

(a)
$$\left[-\frac{1}{2},\frac{1}{2}\right]$$
 (b) $\left[\frac{1}{2},1\right]$
(c) $\left[-1,-\frac{1}{2}\right]$ (d) $\left[-1,1\right]$ [2008-1]

24. Which one of the following is not correct? [2008-II]

- (a) $\sin^{-1} \{ \sin(5\pi/4) \} = -\pi/4$
- (b) $\sec^{-1} \left\{ \sec(5\pi/4) \right\} = 3\pi/4$
- (c) $\tan^{-1} \{ \tan(5\pi/4) \} = \pi/4$
- (d) $\cos ec^{-1} \{\cos ec(7\pi/4)\} = \pi/4$
- 25. If $\sin^{-1}x + \sin^{-1}y = \pi/2$ and $\cos^{-1}x \cos^{-1}y = 0$, then values x and y are respectively 1[2008-II]

(a)
$$\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$$
 (b) $\frac{1}{2}, \frac{1}{2}$
(c) $\frac{1}{2}, -\frac{1}{2}$ (d) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

ABC is a triangle in which AB = 6 cm, BC = 8 cm and 26. CA = 10 cm. What is the value of $\cot(A/4)$? [2008-11] (a) $\sqrt{5}-2$ (b) $\sqrt{5}+2$

(c)
$$\sqrt{3}-1$$
 (d) $\sqrt{3}+1$

- 27. If the sides of a triangle are 6cm, 10cm and 14 cm, then what is the largest angle included by the sides? [2009-1] (a) 90° (b) 120°
 - (c) 135° (d) 150°

- 28. For finding the area of a triangle ABC, which of the following 37 entities are required? [2009-1] (a) Angles A, B and side a (b) Angles A, B and side b (c) Angles A, B and side c (d) Either (a) or (b) or (c) The formula $\sin^{-1}\left\{2x(1-x^2)\right\} = 2\sin^{-1}x$ is true for all 29. values of x lying in the interval [2009-I] (a) [-1, 1](b) [0,1] (d) $\left[-1/\sqrt{2}, 1/\sqrt{2} \right]$ (c) [-1,0]If sin $A = 1/\sqrt{5}$, cos $B = 3/\sqrt{10}$; A, B being positive acute 30. [2009-1] angles, then what is (A + B) equal to? (a) $\pi/6$ (b) $\pi/4$ 38 (c) $\pi/3$ (d) $\pi/2$ 31. If $\sin^{-1}\left(\frac{2a}{1+a^2}\right) - \cos^{-1}\left(\frac{1-b^2}{1+b^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, then what is the value of *x*? [2009-I] (a) a/b(b) *ab* (d) $\frac{a-b}{1+ab}$ (c) b/aIf in a $\triangle ABC$, cos $B = (\sin A)/(2 \sin C)$, then the triangle is 32. [2009-II] (a) Isosceles triangle (b) Equilateral triangle (c) Right angled triangle 39. (d) Scalene triangle 33. If $\sin^{-1} x + \cot^{-1}(1/2) = \pi/2$, then what is the value of x? [2009-II] (a) 0 (b) $1/\sqrt{5}$ (c) $2/\sqrt{5}$ (d) $\sqrt{3}/2$ 40. 34. In a $\triangle ABC$, $a + b = 3(1 + \sqrt{3})$ cm and $a - b = 3(1 - \sqrt{3})$ cm. If angle A is 30° , then what is the angle B? [2009-II] (a) 120° (b) 90°
 - (c) 75° (d) 60°
- What is the principle value of $cosec^{-1}$ $(-\sqrt{2})$? [2010-I] 35.

(a)
$$\frac{\pi}{4}$$
 (b) $\frac{\pi}{2}$
(c) $-\frac{\pi}{4}$ (d) 0

36. If
$$\sin^{-1} \frac{5}{x} + \sin^{-1} \frac{12}{x} = \frac{\pi}{2}$$
, then what is the value of x?
(a) 1 (b) 7 [2010-I]
(c) 13 (d) 17

7. If angles A, B and C are in AP, then what is

$$\sin A + 2 \sin B + \sin C$$
 equal to? [2010-I]

(a)
$$4 \sin B \cos^2\left(\frac{A-C}{2}\right)$$

(b) $4 \sin B \cos^2\left(\frac{A-C}{4}\right)$
(c) $4 \sin (2B) \cos^2\left(\frac{A-C}{2}\right)$
(d) $4 \sin (2B) \cos^2\left(\frac{A-C}{4}\right)$

8. **Statement I**: If
$$-1 \le x < 0$$
, then $\cos(\sin^{-1} x) = -\sqrt{1 - x^2}$

Statement II : If $-1 \le x \le 0$, then sin $(\cos^{-1} x) = \sqrt{1-x^2}$ Which one of the following is correct in respect of the aobve statements? [2010-I]

- (a) Both statements I and II are independently correct and statement II is the correct explanation of statement I
- Both statements I and II are independently correct but (b) statement II is not the correct explanation of statement Ι
- (c) Statement I is correct but statement II is false.
- (d) Statement I is false but statement II is correct.
- In a triangle ABC, $BC = \sqrt{39}$, AC = 5 and AB = 7. What is the measure of the angle *A*? [2010-I]
 - (b) $\frac{\pi}{3}$ (a) 4

(c)
$$\frac{\pi}{2}$$
 (d) $\frac{\pi}{6}$

What is the value of $\sin^{-1}\frac{4}{5} + 2\tan^{-1}\frac{1}{3}$? [2010-II]

(a)
$$\frac{\pi}{3}$$
 (b) $\frac{\pi}{2}$

(c)
$$\frac{\pi}{4}$$
 (d) $\frac{\pi}{6}$

- ABC is a triangle in which BC = 10 cm, CA = 6 cm and 41. AB = 8 cm. Which one of the following is correct?
 - (a) ABC is an acute angled triangle [2010-II]
 - (b) ABC is an obtuse angled triangle
 - (c) ABC is a right angled triangle
 - (d) None of these

42. In a $\triangle ABC$, if c = 2, $A = 120^\circ$, $a = \sqrt{6}$, then what is C equal to? [2011-I] (a) 30° (b) 45°

(a)
$$50^{\circ}$$
 (b) 45° (c) 60° (d) 75°

Properties of Triangle, Inverse Trigonometric Function

DIR care	ECT	IONS (Qs. 43-46) : R and give the answer.	ead i	the following in	formation
ABC time and A	C is a t s the p AD <	riangle right-angled at perpendicular (<i>BD</i>) dra DC.	<i>B</i> . T wn to	he hypotenuse (A b it from the oppo	1 <i>C</i>) is four site vertex
43.	Wha	at is one of the acute ar	ngle o	of the triangle?	[2011-I]
	(a)	15°	(b)	30°	
	(c)	45°	(d)	None of these	
44.	Wha	at is $\angle ABD$?			[2011-I]
	(a)	15°	(b)	30°	LJ
	(c)	45°	(d)	None of these	
45.	Wha	at is AD:DC equal to?			[2011-I]
	(a)	$\left(7-2\sqrt{3}\right)$:1	(b)	$\left(7-4\sqrt{3}\right)$: 1	
	(c)	1:2	(d)	None of these	
46.	Wha	at is $\tan(A - C)$ equal t	o?		[2011-I]
	(a)	0	(b)	1	
	(c)	2	(d)	None of these	
47.	Con	sider the following			[2011-I]
	I.	$\operatorname{cosec}^{-1}\left(-\frac{2}{\sqrt{3}}\right) = -\frac{2}{\sqrt{3}}$	$\frac{\pi}{3}$		
	II.	$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = \frac{\pi}{6}$			
	Whi	ch of the above is/are	corre	ect?	
	(a)	Only I	(b)	Only II	
	(c)	Both I and II	(d)	Neither I nor II	
48.	If si	$n\left(\sin^{-1}\frac{1}{5}+\cos^{-1}x\right)$	=1,t	then what is $x = x$	ual to?
	(a)	0	(b)	1	[2011-I]
	(c)	$\frac{4}{5}$	(d)	$\frac{1}{5}$	
49.	Wha	at is the principal value	of se	$e^{-1}\left(\frac{2}{\sqrt{3}}\right)?$	[2011-II]
	(a)	$\frac{\pi}{2}$		(b) $\frac{\pi}{3}$	
	(c)	$\frac{\pi}{4}$		(d) $\frac{\pi}{6}$	
50.	In a 14 c obtu	ny triangle <i>ABC</i> , the cm. Then the triangle se angle equal to	e side le is	es are 6 cm, 10 obtuse angled	0 cm and with the [2011-II]
	(a)	150°		(b) 135°	

· /			
(c)	120°	(d)	105°

51.	In a equa	triangle <i>ABC</i> , if <i>A</i> = tar ll to	n ⁻¹ 2 a	and	l B =	= tan ⁻¹	3, then C is [2011-II]
	(a)	$\frac{\pi}{3}$	(t))	$\frac{\pi}{4}$		
	(c)	$\frac{\pi}{6}$	(0	ł)	$\frac{\pi}{2}$		
52.	Ifthe	e sides of a triangle are i	in the	rat	io 2	$:\sqrt{6}:$	$1+\sqrt{3}$, then
	what	t is the smallest angle o	f the t	ria	ngle	?	[2011-II]
	(a)	75°	(t)	60°		
	(c)	45°	(0	1)	30°		
53.	In a t C eq	triangle ABC, $a = 8, b =$ ual to?	10 an	d c	= 12	2. Wha	t is the angle <i>[2011-II]</i>
	(a)	A/2	(t))	2A		
	(c)	3A	(0	ł)	3A/	2	
54.	The sion cos 2	sides <i>a</i> , <i>b</i> , <i>c</i> of a triangle and 'a' is the 4 equal to?	sma	are lle	e in a st	arithm side.	etic progres- What is [2011-II]
	(a)	$\frac{3c-4b}{2c}$	(t))	$\frac{3c}{2}$	$\frac{-4b}{2b}$	
	(c)	$\frac{4c-3b}{2c}$	(0	ł)	$\frac{3b}{2}$	$\frac{-4c}{2c}$	
55.	What	t is the value of $\cos\left\{ \cos\left\{ \cos\left\{ \cos\left(-\frac{1}{2}\right) \right\} \right\} \right\}$	$\cos^{-1}\frac{4}{5}$	1 	cos	$-1\frac{12}{13}$? [2012-I]
	(a)	63/65	(b)	33/	65		
	(c)	22/65	(d)	11/	65		
56.	In a t one c	riangle ABC if the angle of the following is corre	es A, l ct?	B, C	Care	e in AP	, then which [2012-I]
	(a)	c = a + b	(b)	c ²	$=a^{2}$	$^{2} + b^{2} -$	– ab
	(c)	$a^2 = b^2 + c^2 - bc$	(d)	b ²	$=a^{2}$	$^{2} + c^{2} -$	- ac
57.	Ifsin	$-11 + \sin^{-1}\frac{4}{5} = \sin^{-1}x,$	then	wh	at is	x equa	al to?
	(a)	3/5	(b)	4/5	5		[2012-I]
	(c)	1	(d)	0			
58.	If tan	$n^{-1}2$, tan ⁻¹ 3 are two an	gles o	of a	tria	angle, t	then what is
	the th	nird angle?	-			-	[2012-I]
	(a)	tan ⁻¹ 2	(b)	tar	$n^{-1}4$		
	(c)	π/4	(d)	π/3	;		
59.	What	t is the value of sec ² tar	$n^{-1}\left(\frac{3}{1}\right)$	$\left(\frac{5}{1}\right)$?		[2012-I]
	(a)	121/96	(b)	21	1/92	1	
	(c)	146/121	(d)	26	7/12	1	
60.	What	t is $\sin\left[\sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{3}{5}\right)\right]$	$n^{-1}\left(\frac{2}{5}\right)$	$\left[\frac{1}{5}\right]$	equ	ual to ?	? [2012-II]
	(a)	0	(b)	1	/2		
	(c)	1	(d)	2			

61.	In any triangle ABC, $a = 18$, $b = 24$ and $c = 30$. Then what is sin C equal to : [2013-I]	68.	If $A + B + C = \pi$, then what is	$s\cos(A+B)+\cos(A+B)$	C equal to ?
	(a) $\frac{1}{4}$ (b) $\frac{1}{3}$		(a) 0 (c) $\cos C - \sin C$	(b) $2 \cos C$ (d) $2 \sin C$	[=0111]
	(c) $\frac{1}{2}$ (d) 1	69.	What is $\sin^{-1} \sin \frac{3\pi}{5}$ equal	to?	[2014-I]
62.	If $\sin^{-1}\left(\frac{2a}{1-a^2}\right) \sin^{-1}\left(\frac{2b}{1-b^2}\right) = 2 \tan^{-1} x$, then x is equal		(a) $\frac{3\pi}{5}$	(b) $\frac{2\pi}{5}$	
	to [2013-1]		(c) $\frac{\pi}{5}$	(d) None of the	ese
	(a) $\frac{a-b}{1+ab}$ (b) $\frac{a-b}{1-ab}$	70.	What is $\sin^{-1}\frac{3}{5} - \sin^{-1}\frac{4}{5}$ ex	qual to ?	[2014-II]
	(c) $\frac{2ab}{1+ab}$ (d) $\frac{a+b}{1-ab}$		(a) $\pi/2$	(b) π/3	
63.	If the angles of a triangle are 30° and 45° and the included		(c) $\pi/4$	(d) $\pi/6$	
	side is $(\sqrt{3} \ 1)$, then what is the area of the tringle ?	71.	In a triangle ABC, $c = 2$, A =	$=45^{\circ}, a = 2\sqrt{2}, that$	in what is C
	$\sqrt{2}$ 1		(a) 30°	(b) 15°	[2014-11]
	(a) $\frac{\sqrt{3}}{2}$ (b) $2(\sqrt{3} \ 1)$	70	(c) 45°	(d) None of the $\mathbf{D} = \cos C$ then wh	ese
		12.	to ?	$S D = \cos C$, then with	<i>2014-II]</i>
	(c) $\frac{\sqrt{3}-1}{3}$ (d) $\frac{\sqrt{3}-1}{2}$		(a) π	(b) π/3	
	(1)		(c) $\pi/2$	(d) $\pi/4$	
64.	What is $\tan^{-1}\left(\frac{1}{2}\right)$ $\tan^{-1}\left(\frac{1}{3}\right)$ equal to ? [2013-II]	73.	In a triangle <i>ABC</i> , $a = (1 +$	$\sqrt{3}$) cm, $b = 2$ cm	n and angle
			$C = 60^{\circ}$. Then the other two	angles are	[2015-I]
	(a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$		(a) 45° and 75° (c) 105° and 15°	(b) 30° and 90° (d) 100° and 20°	0
	π π			(a) 100 ana 20	
	(c) $\frac{\pi}{4}$ (d) $\frac{\pi}{6}$	74.	The equation $\tan^{-1}(1+x) + \frac{1}{2}$	$\tan^{-1}(1-x) = \frac{1}{2}$ is	satisfied by
65.	If x and y are positive and $xy > 1$, then what is $\tan^{-1}x + \tan^{-1}y$ equal to ? [2014-I]		(a) $x = 1$	(b) $x = -1$	[2015-1]
	(a) $\tan^{-1}\left(\frac{x-y}{y}\right)$ (b) $\pi \tan^{-1}\left(\frac{x-y}{y}\right)$		(c) $x=0$	(d) $x = \frac{1}{2}$	
	(a) $(1-xy)$ (b) $(1-xy)$	DIF	RECTIONS (Os. 75-77) : Fa	$\frac{2}{2}$ or the next three (3)) items that
	$(x - \pi) - \tan^{-1} \left(x - y \right) $	foll	ow.	(,	<u></u>
66.	(c) $k = \tan \left(\frac{1-xy}{1-xy}\right)$ (d) $\tan \left(\frac{1+xy}{1+xy}\right)$ Consider the following statements : [2014-1]	Cor	nsider $x = 4 \tan^{-1}\left(\frac{1}{5}\right)$, $y = \tan^{-1}\left(\frac{1}{5}\right)$	$\ln^{-1}\left(\frac{1}{70}\right)$ and $z = 1$	$\tan^{-1}\left(\frac{1}{99}\right).$
	1. There exists no triangle <i>ABC</i> for which $\sin A + \sin B = $				[2015-I]
	 If the angle of a triangle are in the ratio 1 : 2 : 3, then its 	75.	What is <i>x</i> equal to?		,
	sides will be in the ratio 1 : $\sqrt{3}$: 2.		(a) $\tan^{-1}\left(\frac{60}{110}\right)$	(b) $\tan^{-1}\left(\frac{120}{110}\right)$	
	Which of the above statements is/are correct ?		(119)	(119))
	(a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2		(c) $\tan^{-1}\left(\frac{90}{160}\right)$	(d) $\tan^{-1} \left(\frac{170}{160} \right)$	
67.	Consider the following statements : [2014-1]	76.	What is $x - y$ equal to?	(109)	/
	1. $\tan^{-1} 1 + \tan^{-1} (0.5) = \pi/2$ 2. $\sin^{-1} (1/3) + \cos^{-1} (1/3) - \pi/2$		_1(828)	_1(828	7)
	Which of the above statements is/are correct ?		(a) $\tan \left(\frac{1}{845}\right)$	(b) $\tan^{-1}\left(\frac{323}{8450}\right)$	ō
	(a) 1 only (b) 2 only		-1(8281)	_1(828	7)
	(a) Dath 1 and 2 (d) North on $1 \mod 2$		(c) $\tan \left(-\frac{1}{2} \right)$	(d) \tan^{-1}	- 1

Properties of Triangle, Inverse Trigonometric Function

	,, 11	x = y + 2 equal to			[2013 1]
	(a)	$\frac{\pi}{2}$	(b)	$\frac{\pi}{3}$	
	(c)	<u>π</u>	(d)	<u>π</u>	
	(0)	6	(u)	4	
78.	The	value of $\tan\left(2\tan^{-1}\frac{1}{5}\right)$	$-\frac{\pi}{4}$ i	S	[2015-II]
		7		5	
	(a)	17	(b)	16	
	(c)	5	(d)	7	
79	Con	4 sider the following ·		17	[2015-11]
	1.	$\sin^{-1}\frac{4}{5} \sin^{-1}\frac{3}{5} \frac{\pi}{2}$			
	C	$\tan^{-1} \sqrt{3} \tan^{-1} 1$ -ta	$m^{-1}(2)$.3	
	2. whi	ch of the above is/are co	rect?	N 3)	
	(a)	1 only	(b)	2 only	
	(c)	Both 1 and 2	(d)	Neither 1 r	nor 2
20	If a	h a anotha aidaa af a tuia		DC than	$\frac{1}{p}$ $\frac{1}{p}$ $\frac{1}{p}$ $\frac{1}{p}$
<i>s</i> 0.	ma, whe	b, c are the sides of a tria re $n > 1$ is	ingle P	ABC, then a	$1^{r} + 0^{r} - 0^{r}$ [2015-]]
	(a)	always negative			[2010 11]
	(b)	always positive			
	(c)	always zero			
	(d)	positive if $1 and p < 2$	negati	ve if $p > 2$	(
DII	REC	FIONS (Qs. 81-82) :	For t	he next tw	vo (2) items
ha	t foli	OW:	- 1 -		
_01	isiae	r a tiangle ABC in whi	cn		
			UII		
cos	A+c	$\cos B + \cos C = \sqrt{3} \sin \frac{\pi}{3}$	CII		[2016-I]
cos	A + c What	$\cos B + \cos C = \sqrt{3} \sin \frac{\pi}{3}$ at is the value of $\sin \frac{A}{2}s$	$in\frac{B}{2}si$	$n\frac{C}{2}?$	[2016-I]
cos	A + c What	$\cos B + \cos C = \sqrt{3} \sin \frac{\pi}{3}$ at is the value of $\sin \frac{A}{2} s$	$in\frac{B}{2}si$	$n\frac{C}{2}?$	[2016-I]
cos 1.	A + c What (a)	$\cos B + \cos C = \sqrt{3} \sin \frac{\pi}{3}$ at is the value of $\sin \frac{A}{2}s$ $\frac{1}{2}$	$in \frac{B}{2}si$ (b)	$n\frac{C}{2}?$ $\frac{1}{4}$	[2016-I]
cos	A + c What (a)	os B + cos C = $\sqrt{3} \sin \frac{\pi}{3}$ at is the value of $\sin \frac{A}{2}s$ $\frac{1}{2}$	$in \frac{B}{2}si$ (b)	$n\frac{C}{2}?$ $\frac{1}{4}$	[2016-I]
cos 1.	A + c Wha (a) (c)	os B + cos C = $\sqrt{3} \sin \frac{\pi}{3}$ at is the value of $\sin \frac{A}{2}$ s $\frac{1}{2}$ $\frac{1}{8}$	$\frac{B}{2}si$ (b) (d)	$n\frac{C}{2}?$ $\frac{1}{4}$ $\frac{1}{16}$	[2016-I]
2.	A + c What (a) (c) What	os B + cos C = $\sqrt{3} \sin \frac{\pi}{3}$ at is the value of $\sin \frac{A}{2}$ s $\frac{1}{2}$ $\frac{1}{8}$ at is the value of	in $\frac{B}{2}$ si (b) (d)	$n\frac{C}{2}?$ $\frac{1}{4}$ $\frac{1}{16}$	[2016-I]
cos 61.	A + c Wh: (a) (c) Wh:	os B + cos C = $\sqrt{3} \sin \frac{\pi}{3}$ at is the value of $\sin \frac{A}{2}$ s $\frac{1}{2}$ $\frac{1}{8}$ at is the value of $\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{B+C}{2}\right)$	$\frac{\ln \frac{B}{2} \sin \frac{B}{2} \sin \frac{B}{2}}{(b)}$ (d)	$n\frac{C}{2}?$ $\frac{1}{4}$ $\frac{1}{16}$ $\left(\frac{C+A}{2}\right)?$	[2016-1]
2008 1. 22.	A + c Wha (a) (c) Wha (a)	os B + cos C = $\sqrt{3} \sin \frac{\pi}{3}$ at is the value of $\sin \frac{A}{2}$ s $\frac{1}{2}$ $\frac{1}{8}$ at is the value of $\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{B+C}{2}\right)$	in $\frac{B}{2}$ si (b) (d) $\frac{C}{2}$ cos (b)	$n\frac{C}{2}?$ $\frac{1}{4}$ $\frac{1}{16}$ $\left(\frac{C+A}{2}\right)?$ $\frac{1}{2}$	[2016-1]
2.	A + c Wha (a) (c) Wha (a) (c)	os B + cos C = $\sqrt{3} \sin \frac{\pi}{3}$ at is the value of $\sin \frac{A}{2}$ s $\frac{1}{2}$ $\frac{1}{8}$ at is the value of $\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{B+C}{2}\right)$ $\frac{1}{4}$	in $\frac{B}{2}$ si (b) (d) $\frac{C}{2}$ cos (b) (d)	$n\frac{C}{2}?$ $\frac{1}{4}$ $\frac{1}{16}$ $\left(\frac{C+A}{2}\right)?$ $\frac{1}{2}$ None of the second	[2016-I]
2. 22.	A + c Wha (a) (c) Wha (a) (c) Com	os B + cos C = $\sqrt{3} \sin \frac{\pi}{3}$ at is the value of $\sin \frac{A}{2}$ s $\frac{1}{2}$ $\frac{1}{8}$ at is the value of $\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{B+C}{2}\right)$ $\frac{1}{4}$ $\frac{1}{16}$	in $\frac{B}{2}$ si (b) (d) $\frac{C}{2}$ cos (b) (d)	$n\frac{C}{2}?$ $\frac{1}{4}$ $\frac{1}{16}$ $\left(\frac{C+A}{2}\right)?$ $\frac{1}{2}$ None of the	[2016-I] ne above
2008 31. 32.	A + c What (a) (c) What (a) (c) Con	os B + cos C = $\sqrt{3} \sin \frac{\pi}{3}$ at is the value of $\sin \frac{A}{2}$ s $\frac{1}{2}$ $\frac{1}{8}$ at is the value of $\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{B+C}{2}\right)$ $\frac{1}{4}$ $\frac{1}{16}$ sider the following state	in $\frac{B}{2}$ si (b) (d) $\frac{C}{2}$ cos (b) (d) ments	$n\frac{C}{2}?$ $\frac{1}{4}$ $\frac{1}{16}$ $\left(\frac{C+A}{2}\right)?$ $\frac{1}{2}$ None of the	[2016-I] ne above [2016-I]
cos 31. 32.	 A + c What (a) (c) What (a) (c) Contained 1. 	os B + cos C = $\sqrt{3} \sin \frac{\pi}{3}$ at is the value of $\sin \frac{A}{2}$ s $\frac{1}{2}$ $\frac{1}{8}$ at is the value of $\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{B+C}{2}\right)$ $\frac{1}{4}$ $\frac{1}{16}$ sider the following state There exists $\theta \in \left(-\frac{\pi}{2}, -\frac{\pi}{2}\right)$	$in \frac{B}{2}si$ (b) (d) (c) (c) (b) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	$n\frac{C}{2}?$ $\frac{1}{4}$ $\frac{1}{16}$ $\left(\frac{C+A}{2}\right)?$ $\frac{1}{2}$ None of the second	[2016-I] the above [2016-I] $f^{-1}(\tan \theta) \neq \theta.$
cos 31. 32.	A + c What (a) (c) What (a) (c) Com 1. 2.	os B + cos C = $\sqrt{3} \sin \frac{\pi}{3}$ at is the value of $\sin \frac{A}{2}$ s $\frac{1}{2}$ $\frac{1}{8}$ at is the value of $\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{B+C}{2}\right)$ $\frac{1}{4}$ $\frac{1}{16}$ sider the following state There exists $\theta \in \left(-\frac{\pi}{2}, -\frac{\pi}{2}\right)$	in $\frac{B}{2}$ si (b) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	$n\frac{C}{2}?$ $\frac{1}{4}$ $\frac{1}{16}$ $\left(\frac{C+A}{2}\right)?$ $\frac{1}{2}$ None of the second	[2016-I] the above [2016-I] the interval of the equation
2005 1. 1. 22. 33.	A + c What (a) (c) What (a) (c) Com 1. 2.	os B + cos C = $\sqrt{3} \sin \frac{\pi}{3}$ at is the value of $\sin \frac{A}{2}$ s $\frac{1}{2}$ $\frac{1}{8}$ at is the value of $\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{B+C}{2}\right)$ $\frac{1}{4}$ $\frac{1}{16}$ sider the following state There exists $\theta \in \left(-\frac{\pi}{2}, -\frac{\pi}{3}\right)$	$\frac{B}{2} \sin \frac{B}{2} \sin \frac{B}{2} \sin \frac{B}{2} \sin \frac{B}{2} \sin \frac{B}{2} \sin^{-1}$	$n\frac{C}{2}?$ $\frac{1}{4}$ $\frac{1}{16}$ $\left(\frac{C+A}{2}\right)?$ $\frac{1}{2}$ None of the tangent term is the tangent term	[2016-I] the above [2016-I] the interval of the interval

	Which of the above statem	ents is/are correct?
	(a) 1 only	(b) 2 only
~ .	(c) Both 1 and 2	(d) Neither 1 nor 2
84.	Consider the following stat	tements: [2016-I]
	1. $\tan^{-1} x + \tan^{-1} \left(\frac{1}{x}\right) = \frac{1}{2}$	π
	2. There exist $x, y \in [-\infty, -\infty, -\infty, -\infty, -\infty, -\infty, -\infty, -\infty, -\infty, -\infty, $	$-1, 1$], where $x \neq y$ such that
	$\sin^{-1} x + \cos^{-1} y = \frac{\pi}{2}.$	
	Which of the above statem	ents is/are correct ?
	(a) 1 only	(b) 2 only
	(c) Both 1 and 2	(d) Neither 1 nor 2
85.	Consider the following stat	tements: [2016-I]
	I. If ABC is an equilaterative $2 \tan (A + B) \tan C = 1$	al triangle, then
	2 If ABC is a triangle in	which $A = 78^{\circ} B = 66^{\circ}$ then
	$\begin{array}{c} 2. \end{array} \text{In the is a dual given in} \\ \left(A \right) \\ \end{array}$	
	$\tan\left(\frac{-}{2}+C\right) < \tan A$	
	3. If ABC is any triangle	e, then
	$\tan\left(\frac{A - B}{2}\right)\sin\left(\frac{C}{2}\right)$	$\cos\left(\frac{C}{2}\right)$
	Which of the above statem	nents is/are correct?
	(a) 1 only	(b) 2 only
96	(c) $1 \text{ and } 2$ What is the value of $\cos(2\pi)$	(d) $2 \text{ and } 3$
80.	what is the value of $\cos(2)$	(0.8)? [2010-11]
	(a) 0.01 (c) 0.48	(0) 0.30 (d) 0.28
87	Consider the following for	triangle ABC · [2017-]]
07.	$(\mathbf{D} + \mathbf{C}) = (\mathbf{A}$	
	1. $\sin\left(\frac{B+C}{2}\right) = \cos\left(\frac{A}{2}\right)$	
	2. $\tan\left(\frac{B+C}{2}\right) = \cot\left(\frac{A}{2}\right)$	
	3. $\sin(B+C) = \cos A$	
	4. $\tan(B+C) = -\cot A$ Which of the above are co	orrect?
	(a) 1 and 3	(b) $1 \text{ and } 2$
	(c) 1 and 4	(d) 2 and 3
88.	The value of $\sin^{-1}\left(\frac{3}{5}\right) + t$	$an^{-1}\left(\frac{1}{7}\right)$ is equal to [2017-II]
	(a) 0	(b) $\frac{\pi}{4}$
	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$
89.	In a triangle ABC, a -	-2b + c = 0. The value of
	$\cot\left(\frac{A}{2}\right)\cot\left(\frac{C}{2}\right)$ is	[2017-11]
	9	
	(a) $\frac{1}{2}$	(b) 3
	(c) $\frac{3}{2}$	(d) 1

(c) $1:\sqrt{3}:2$ (d) $1:\sqrt{3}:\sqrt{2}$ 103. What is the derivative of $\sec^2(\tan^{-1}x)$ with respect to x?

(a) 2x(c) x+1 (b) x^2+1 (d) x^2 [2019-I]

90. In triangle ABC, if
$$\frac{\sin^2 A + \sin^2 B + \sin^2 C}{\cos^2 A + \cos^2 B + \cos^2 C} = 2$$
 then the triangle is
(a) right-angled (b) equilateral
(c) isosceles (d) obtuse-angled
91. The principal value of $\sin^{-1} x \ln s$ in the interval [2017-11]
(a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (c) $\left[0, \frac{\pi}{2}\right]$ (d) $\left[0, \pi\right]$
92. In a triangle ABC if $a = 2, b = 3$ and $\sin A = \frac{2}{3}$, then what is
angle B equal to? [2018-17]
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ [2018-17]
(b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (c) $\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$ (d) $\left[0, \pi\right]$
92. In a triangle ABC if $a = 2, b = 3$ and $\sin A = \frac{2}{3}$, then what is
angle B equal to? [2018-17]
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ [2018-17]
(c) $\frac{\pi}{3}$ (d) $\frac{\pi}{6}$ (a) $\frac{\pi}{2}$ [2018-17]
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ [2018-17]
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ [2018-17]
(b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{6}$ (a) $\frac{\pi}{6}$ (b) $\frac{3\pi}{4}$
93. What is the principal value of $\sin^{-1}\left(\sin\frac{2\pi}{3}\right)$? [2018-17]
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ [2018-17]
(b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{2\pi}{3}$ [2018-17]
(c) $\frac{\pi}{3}$ (d) $\frac{2\pi}{3}$ [2018-17]
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ [2018-17]
(b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ [2019-17]
(c) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$ [2019-17]
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ [2018-17]
(b) $\frac{\pi}{4}$ [co $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ [2019-17]
(c) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ [2019-17]
(d) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ [2018-17]
(e) $\frac{\pi}{4}$ (f) $\frac{\pi}{2}$ [2019-17]
(f) $x + y$ are the angles of a triangle (not an equilateral triangle) such that $\tan (x - y)$, $\tan x$ and $\tan (x + y)$ are in GP, then what is x equal to? [2019-17]
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{3}$ [2018-17]
(b) $\frac{\pi}{1 + \tan^2 \alpha}$ (c) $\cos \beta = \frac{1 + \tan^2 \alpha}{1 - \tan^2 \alpha}$ (d) $\frac{\pi}{4}$ (e) $\frac{\pi}{2}$
(f) $\frac{P+q}{1 + pq}$ (f) $\frac{P+q}{1 - pq}$
(h) $\frac{P+q}{1 + pq}$ (h) $\frac{P+q}{1 - pq}$
(h) $(2) - \frac{P(q)}{1 + pq}$ (h) $\frac{P+q}{1 - pq}$
(c) $\frac{R^2}{1 + \ln^2 \alpha}$ (d) $\sin \beta = 2 \sin^2 \alpha$
(c) $\frac{R^2}{1 + pq}$ (d) $\frac{P+q}{1 - pq}$
(d) $\frac{P+q}{1 + pq}$ (e) $\frac{P+q}{1 - pq}$
(e) $1 : 2 : 3$ (b) $3 : 2 : 1$]

- 96. What is $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{3}{5}\right)$ equal to? [2018-1]
 - (a) 0 (b) $\frac{\pi}{4}$
 - (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$

Properties of Triangle, Inverse Trigonometric Function

	ANSWER KEY																				
1	(c)	11	(a)	21	(c)	31	(d)	41	(c)	51	(b)	61	(d)	71	(a)	81	(c)	91	(b)	101	(b)
2	(a)	12	(c)	22	(b)	32	(a)	42	(b)	52	(c)	62	(d)	72	(c)	82	(d)	92	(b)	102	(c)
3	(a)	13	(a)	23	(d)	33	(b)	43	(a)	53	(b)	63	(a)	73	(a)	83	(b)	93	(c)	103	(a)
4	(d)	14	(c)	24	(d)	34	(d)	44	(a)	54	(c)	64	(c)	74	(c)	84	(d)	94	(b)		
5	(d)	15	(d)	25	(d)	35	(c)	45	(b)	55	(b)	65	(b)	75	(b)	85	(b)	95	(a)		
6	(b)	16	(b)	26	(b)	36	(c)	46	(d)	56	(d)	66	(c)	76	(c)	86	(d)	96	(b)		
7	(a)	17	(b)	27	(b)	37	(b)	47	(c)	57	(a)	67	(b)	77	(d)	87	(b)	97	(d)		
8	(b)	18	(c)	28	(c)	38	(d)	48	(d)	58	(c)	68	(a)	78	(a)	88	(b)	98	(a)		
9	(c)	19	(a)	29	(d)	39	(b)	49	(d)	59	(c)	69	(b)	79	(a)	89	(b)	99	(b)		
10	(c)	20	(d)	30	(b)	40	(b)	50	(c)	60	(c)	70	(a)	80	(b)	90	(a)	100	(d)		

HINTS & SOLUTIONS

1. (c) From properties of triangle we know that

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$ Given that a = 2b and A = 3B.

We get
$$\frac{2b}{\sin 3B} = \frac{b}{\sin B}$$
.
 $\Rightarrow \frac{\sin 3B}{\sin B} = 2 \Rightarrow \frac{3\sin B - 4\sin^3 B}{\sin B} = 2$
 $\Rightarrow 3 - 4\sin^2 B = 2$
 $\Rightarrow \sin^2 B = \left(\frac{1}{2}\right)^2 \Rightarrow \sin B = \frac{1}{2} = \sin\frac{\pi}{6}$
 $\Rightarrow B = \frac{\pi}{6} \operatorname{since} A = 3 B$

So,
$$\angle A = \frac{\pi}{2}$$

2.

Thus, triangle is right angled triangle.

(a)
$$\tan(\tan^{-1}x + \tan^{-1}y + \tan^{-1}z)$$

 $-\cot(\cot^{-1}x + \cot^{-1}y + \cot^{-1}z)$
 $= \tan(\tan^{-1}x + \tan^{-1}y + \tan^{-1}z)$
 $-\cot\left(\frac{\pi}{2} - \tan^{-1}x + \frac{\pi}{2} - \tan^{-1}y + \frac{\pi}{2} - \tan^{-1}z\right)$
 $\left(\because \tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}\right)$
 $= \tan(\tan^{-1}x + \tan^{-1}y + \tan^{-1}z)$
 $-\cot\{3\pi/2 - (\tan^{-1}x + \tan^{-1}y + \tan^{-1}z) - \tan(\tan^{-1}x + \tan^{-1}y + \tan^{-1}z) = 0$
(a) Given that $\cos^{-1}x = 2\sin^{-1}x$

3. (a) Given that $\cos^{-1} x = 2 \sin^{-1} x$

$$\Rightarrow \frac{\pi}{2} - \sin^{-1} x = 2 \sin^{-1} x$$
$$\Rightarrow \frac{\pi}{2} = 3 \sin^{-1} x$$

$$\Rightarrow \sin^{-1} x = \frac{\pi}{6}$$

So, x = sin $\frac{\pi}{6} = \frac{1}{2}$

4. (d) Given, AD is the median of \triangle ABC. F is mid-point of AD and BF is produced to meet the side AC in P.

Draw DQ || FP In \triangle ADQ, F is mid-point of AD and FP || DQ. : P is mid-point of AQ (converse of mid-point theorem) \Rightarrow AP = PQ ...(1) In \triangle BCP, D is mid-point of BC and DQ || BP. \therefore Q is midpoint of PC. \Rightarrow PQ=QC ...(2) From (1), (2) we get, AP = PQ = QCFrom figure, AP + PQ + QC = AC \Rightarrow AP+AP+AP=AC \Rightarrow 3 × AP = AC $\Rightarrow AP = \frac{1}{3} \times AC \quad \therefore \quad \lambda = \frac{1}{3}$ 5. (d) $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left[\sin\left(\pi - \frac{2\pi}{3}\right)\right] = \sin^{-1}\left(\sin\frac{\pi}{3}\right)$ $=\frac{\pi}{3} \qquad \qquad \left[\text{Since, } \sin\frac{2\pi}{3} = \sin\left(\pi - \frac{\pi}{3}\right) \right]$

м-233

(b) Given that

$$\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3} \qquad ...(i)$$
and $\cos^{-1} x - \cos^{-1} y = \frac{\pi}{3}$

$$\Rightarrow \frac{\pi}{2} - \sin^{-1} x - \frac{\pi}{2} + \sin^{-1} y = \frac{\pi}{3}$$
[since $\cos^{-1} x + \sin^{-1} x = \frac{\pi}{2}$]

$$\Rightarrow -\sin^{-1} x + \sin^{-1} y = \frac{\pi}{3} \qquad ...(ii)$$
On solving eq. (i) and (ii), we get

$$2 \sin^{-1} y = \pi \text{ and } 2 \sin^{-1} x = \frac{\pi}{3}$$

$$\Rightarrow \sin^{-1} y = \frac{\pi}{2} \text{ and } \sin^{-1} x = \frac{\pi}{6} \qquad 9. \quad (c)$$
Hence, $y = \sin \frac{\pi}{2}$ and $x = \sin \frac{\pi}{6}$

$$\Rightarrow x = \frac{1}{2} \text{ and } y = 1$$
(a) We know from properties of triangle that
 $\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}} \Rightarrow \cos^{2} \frac{A}{2} = \frac{s(s-a)}{bc}$
 \therefore
and $\cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}} \Rightarrow \cos^{2} \frac{C}{2} = \frac{s(s-c)}{ab}$
So, $a \cos^{2} \frac{C}{2} + c \cos^{2} \frac{A}{2}$

$$=\frac{s(2s-a-c)}{b} = \frac{s(a+b+c-a-c)}{b} = \frac{s.b}{b} = s$$

$$=\frac{30}{2}=15 \,\mathrm{cm} \, [\text{given that } 2\text{s}=30]$$

(b) Ratio of angles is given by $\angle A : \angle B : \angle C = 1 : 2 : 3$ Let $\angle A = x$, $\angle B = 2x$ and $\angle C = 3x$

 $\angle A + \angle B + \angle C = 180^{\circ}$

$$\Rightarrow x+2x+3x=180^{\circ}$$

$$\Rightarrow x = \frac{180^{\circ}}{6} = 30^{\circ}$$
So, $\angle A = 30^{\circ}$, $\angle B = 60^{\circ}$ and $\angle C = 90^{\circ}$
From sin law
$$\frac{BC}{sinA} = \frac{CA}{sinB} = \frac{AB}{sinC} = K$$

$$\frac{BC}{sin30^{\circ}} = \frac{CA}{sin60^{\circ}} = \frac{AB}{sin90^{\circ}} = K$$
BC = K sin 30°
CA = K sin 60°
AB = K sin 90°
BC : CA : AB

= sin 30°: sin 60° : sin 90° =
$$\frac{1}{2}$$
 : $\frac{\sqrt{3}}{2}$: 1 = 1 : $\sqrt{3}$: 2

(c) Let the angles A, B and C of a triangle are 2x, 5x and 5x, respectively
 So, 2x+5x+5x=180°

$$\Rightarrow x = \frac{180^{\circ}}{12} = 15^{\circ}$$
Angles are 30°, 75°, 75°

$$\angle B = 75^{\circ} \text{ and } \angle C = 75^{\circ}$$

$$\therefore \text{ tan B tan } C = (\tan 75^{\circ})^{2} = (\tan(45^{\circ} + 30^{\circ}))^{2}$$

$$= \left(\frac{\tan 45^\circ + \tan 30^\circ}{1 - \tan 45^\circ \tan 30^\circ}\right)^2 = \left(\frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}}\right)^2 = \left(\frac{\sqrt{3} + 1}{\sqrt{3} - 1}\right)^2$$
$$= \left(\frac{(\sqrt{3} + 1)^2}{3 - 1}\right)^2 = \frac{1}{4}[3 + 1 + 2\sqrt{3}]^2$$
$$= \frac{1}{4}[4 + 2\sqrt{3}]^2 = \frac{1}{4}[16 + 12 + 16\sqrt{3}]$$
$$= \frac{1}{4}[28 + 16\sqrt{3}] = 7 + 4\sqrt{3}$$

10. (c) In any triangle ABC, $A + B + C = \pi$ or, $A + B = \pi - C$ so, $\tan (A + B) = \tan (\pi - C)$ or, $-\tan C = \tan (A + B)$ so, $\tan C = -\tan (A + B)$ $= -\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B}$

> As given, $\tan A = 1$, and $\tan B = 2$ putting these values,

$$\tan C = -\frac{1+3}{1-1\times 3} = \frac{4}{2} = 2$$

6.

7.

8.

Properties of Triangle, Inverse Trigonometric Function

11. (a) Let
$$\alpha = \tan^{-1} x \Rightarrow \tan \alpha = x$$

then $\cos \alpha = \frac{1}{\sqrt{1 + \tan^2 \alpha}} \frac{1}{\sqrt{1 - x^2}}$
 $\Rightarrow \cos (\tan^{-1} x) = \left\{ \frac{1}{\sqrt{1 + x^2}} \right\}$
so, $\cot^{-1} \left\{ \cos(\tan^{-1} x) \right\} = \cot^{-1} \left\{ \frac{1}{\sqrt{1 - x^2}} \right\}$
Let $\cot^{-1} \left(\frac{1}{\sqrt{1 - x^2}} \right) = \beta$
 $\Rightarrow \cot \beta = \frac{1}{\sqrt{1 + x^2}}$
and $\sin \beta = \frac{1}{\sqrt{1 + \cot^2 \beta}} \frac{\sqrt{1 - x^2}}{\sqrt{x^2 - 1} - 1} \sqrt{\frac{x^2 - 1}{x^2 - 2}}$
 $\Rightarrow \sin [\cot^{-1} \left\{ \cos(\tan^{-1}) \right\} \right] = \sqrt{\frac{x^2 + 1}{x^2 + 2}}$
12. (c) We know from the Sine law that
 $\frac{a}{\sin A} = \frac{b}{\sin B}$
 $\Rightarrow \frac{2b}{\sin 3B} = \frac{b}{\sin B}$
 $\Rightarrow 2 \sin B = 3 \sin B - 4 \sin^3 B$
 $\Rightarrow \sin B - 4 \sin^3 B = 0$
 $\Rightarrow \sin B(1 - 4 \sin^2 B) = 0$
 $\Rightarrow \sin B = 0 \text{ or } 1 - 4 \sin^2 B = 0$
 $\Rightarrow B = 30^{\circ} \text{ and } A = 3 \times 30^{\circ} = 90^{\circ}$
 $\Rightarrow B = 0 \text{ is not possible so, B = 30^{\circ} \text{ and } A = 3 \times 30^{\circ} = 90^{\circ}$
 $\Rightarrow The triangle is right angled triangle.$
13. (a) Let, $\sin^{-1} x = \tan^{-1} y = 0$
 $\Rightarrow x = \sin \theta$ and $y = \tan \theta$
 $\frac{1}{x^2} - \frac{1}{\sin^2 \theta} - \csc^2 \theta$
and $\frac{1}{y^2} - \frac{1}{2y^2} = \cos \csc^2 \theta - \cot^2 \theta - 1$
14. (c) The given trigonometric expression is :
 $\cos\left[\tan^{-1}\left\{\tan\left(\frac{15\pi}{4}\right)\right\}\right]$

$$= \cos\left[\tan^{-1}\left\{\tan\left(4\pi - \frac{\pi}{4}\right)\right\}\right]$$

$$= \cos\left[\tan^{-1}\left\{-\tan\left(\frac{\pi}{4} - \frac{\pi}{4}\right)\right] \quad \cos\left[\tan^{-1}\tan\left(\frac{-\pi}{4}\right)\right]$$

$$\left(\operatorname{Since} \tan^{-1}\theta \operatorname{is} \operatorname{defined} \operatorname{for} \frac{-\pi}{2} < \theta < \frac{-\pi}{2}\right)$$

$$= \cos\left(\frac{-\pi}{4}\right)$$

$$\left(\operatorname{di} \operatorname{In} \operatorname{any} \Delta \operatorname{ABC} \\ \angle A + \angle B + \angle C = \pi \\ \Rightarrow \operatorname{let} A \quad \tan^{-1}\frac{1}{2} \quad \operatorname{and} B \quad \tan^{-1}\frac{1}{3} \\ \Rightarrow \quad \tan^{-1}\frac{1}{2} \quad \tan^{-1}\frac{1}{3} \quad \angle C = \pi \\ \Rightarrow \quad \tan^{-1}\left(\frac{12}{2} - \frac{1}{3}\right) + \angle C = \pi \\ \exists \tan^{-1}\left(\frac{12}{2} - \frac{1}{3}\right) + \angle C = \pi \\ \vdots \quad \tan^{-1}\left(\frac{5/6}{5/6}\right) + \angle C = \pi \Rightarrow \frac{\pi}{4} + \angle C = \pi \\ \Rightarrow \quad \tan^{-1}\left(\frac{5/6}{5/6}\right) + \angle C = \pi \Rightarrow \frac{\pi}{4} + \angle C = \pi \\ \Rightarrow \quad \angle C = \pi - \frac{\pi}{4} \quad \frac{3\pi}{4} \quad 135$$

$$\left(\operatorname{bb} \operatorname{In the given} \Delta \operatorname{ABC} \\ \operatorname{Iet} BC = a \\ \therefore \quad BD \quad CD \quad \frac{a}{2} \\ \operatorname{In} \Delta \operatorname{ADB}, \\ \tan B \quad \frac{AD}{BD} \quad \frac{AD}{a/2} \\ \Rightarrow \quad \tan B \quad \frac{2AD}{a} \\ \operatorname{In} \Delta \operatorname{ADC}, \\ \tan C \quad \frac{AD}{a} \\ \operatorname{In} \Delta C, \\ \tan C \quad \frac{2AD}{a} \\ \operatorname{In} C = 0 \\ \end{array}\right)$$

15.

16.

17. (b) Let,
$$\cos^{-1}\left(\frac{1}{\sqrt{5}}\right) = \theta \implies \cos \theta = \frac{1}{\sqrt{5}}$$

 $\Rightarrow \sec \theta = \sqrt{5} \implies \sec^{-1}(\sqrt{5}) = \theta$
 $\Rightarrow \frac{\pi}{2} - \csc^{-1}(\sqrt{5}) = \theta \quad (\because \sec^{-1} x + \csc^{-1} x = \frac{\pi}{2})$
 $\Rightarrow \csc^{-1}(\sqrt{5}) = \frac{\pi}{2} - \theta$
18. (c) The given expression is :
 $\tan^{-1}\left(\frac{m}{n}\right) - \tan^{-1}\left(\frac{m-n}{m+n}\right)$

$$= \tan^{-1}\left(\frac{m}{n}\right) - \tan^{-1}\left(\frac{1-\frac{n}{m}}{1+\frac{n}{m}}\right)$$
$$= \tan^{-1}\left(\frac{m}{n}\right) - \tan^{-1}(1) + \tan^{-1}\left(\frac{n}{m}\right)$$
$$= \tan^{-1}\left(\frac{m}{n}\right) + \cot^{-1}\left(\frac{m}{n}\right) - \frac{\pi}{4} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

19. (a) Let $\cos^{-1} x = \theta$

$$\Rightarrow \tan \theta = \frac{\sqrt{1-x^2}}{x} \text{ and } \theta = \cos^{-1} x$$

This can be represented by a triangle with hypotenuous

= 1 and sides x and
$$\sqrt{1-x^2}$$
.
 $\Rightarrow \tan(\cos^{-1} x) = \frac{\sqrt{1-x^2}}{x}$

20. (d) As given :

$$\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6} \qquad \dots (1)$$

and we know that $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$...(2) On adding Eqs. (1) and (2) we get

$$2\sin^{-1} x = \frac{\pi}{6} + \frac{\pi}{2} = \frac{2\pi}{3}$$
$$\Rightarrow \sin^{-1} x = \frac{\pi}{3} \Rightarrow x = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$

21. (c) As given : In a triangle ABC, $AC = b = \sqrt{3}$ cm, AB = c = 1m and $\angle A = 30^{\circ}$ From cosine formulae

$$\cos A = \frac{b^2 + c^2 - a^2}{2 b c} = \frac{(\sqrt{3})^2 + 1^2 - a^2}{2\sqrt{3} \cdot 1}$$
$$\Rightarrow \frac{\sqrt{3}}{2} = \frac{3 + 1 - a^2}{2\sqrt{3}} \Rightarrow 3 = 4 - a^2$$
$$\Rightarrow a^2 = 4 - 3 = 1 \Rightarrow a = 1 \text{ cm}$$

22. (b) As given :

$$\cos\left(\sin^{-1} x\right) = \frac{1}{2}$$
$$\Rightarrow \sin^{-1} x = \cos^{-1}\left(\frac{1}{2}\right)$$
$$\Rightarrow \sin^{-1} x = \frac{\pi}{3} \Rightarrow x = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$
$$\therefore \tan(\cos^{-1} x) = \tan\left(\cos^{-1}\frac{\sqrt{3}}{2}\right)$$
$$= \tan\left(\pm\frac{\pi}{6}\right) = \pm\frac{1}{\sqrt{3}}$$

Hence, $\tan(\cos^{-1}x)$ have two values.

23. (d) Let $\sin^{-1}x = \theta \Rightarrow x = \sin \theta$

 $\sin^{-1}(3\sin\theta - 4\sin^3\theta) = \sin^{-1}\sin 3\theta = 3\theta = 3\sin^{-1}x$ Equaion $\sin^{-1}(3x - 4x^3) = 3\sin^{-1}x$ is true for all values of x lying in the interval [-1, 1].

24. (d) **Option** (a)

$$\sin^{-1}\left(\sin\frac{5\pi}{4}\right) = \frac{-\pi}{4}$$
$$\Rightarrow \sin\frac{5\pi}{4} = \sin\left(\frac{-\pi}{4}\right)$$
$$\Rightarrow \sin\left(\pi + \frac{\pi}{4}\right) = -\sin\frac{\pi}{4}$$
$$\Rightarrow -\sin\left(\frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right)$$

Hence it is correct **Option** (b)

$$\sec^{-1}\left(\sec\frac{5\pi}{4}\right) = \frac{3\pi}{4}$$
$$\Rightarrow \quad \sec\frac{5\pi}{4} = \sec\frac{3\pi}{4}$$
$$\Rightarrow \quad \sec\left(2\pi - \frac{3\pi}{4}\right) = \sec\frac{3\pi}{4}$$
$$\Rightarrow \quad \sec\left(\frac{3\pi}{4}\right) = \sec\frac{3\pi}{4}$$
$$\Rightarrow \quad \sec\frac{3\pi}{4} = \sec\frac{3\pi}{4}$$
Hence, it is correct

Option (c)

 $\tan^{-1}\left(\tan\frac{5\pi}{4}\right) = \frac{\pi}{4}$ $\Rightarrow \tan \frac{5\pi}{4} = \tan \frac{\pi}{4}$ $\Rightarrow \tan\left(\pi \quad \frac{\pi}{4}\right) \quad \tan\frac{\pi}{4}$ $\Rightarrow \tan \frac{\pi}{4} = \tan \frac{\pi}{4}$ Hence it is correct Option (d). $\csc^{-1}\left(\csc\frac{7\pi}{4}\right) = \frac{\pi}{4}$ $\Rightarrow \operatorname{cosec} \frac{7\pi}{4} = \operatorname{cosec} \frac{\pi}{4}$ $\Rightarrow \operatorname{cosec}\left(2\pi - \frac{\pi}{4}\right) = \operatorname{cosec}\frac{\pi}{4}$ $\Rightarrow -\operatorname{cosec} \frac{\pi}{4} = \operatorname{cosec} \frac{\pi}{4}$ Hence it is not correct. 25. (d) Given, $\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$...(i) and $\cos^{-1} x - \cos^{-1} y = 0$ $\Rightarrow \left(\frac{\pi}{2} - \sin^{-1}x\right) - \left(\frac{\pi}{2} - \sin^{-1}y\right) = 0$ $\Rightarrow \sin^{-1} y - \sin^{-1} x = 0$ $\Rightarrow \sin^{-1} y \sin^{-1} x$...(ii) From equations (i) and (ii), we get

> $2\sin^{-1} x = \frac{\pi}{2}$ $\Rightarrow \sin^{-1} x = \frac{\pi}{4}$ $\Rightarrow x = \frac{1}{\sqrt{2}}$ From equation (ii)

$$y = \frac{1}{\sqrt{2}}$$

26. (b) Here, AB = 6 cm, BC = 8 cm and CA = 10 cmSo, c = 6 cm, a = 8 cm, b = 10 cm

$$S = \frac{a+b+c}{2} = \frac{24}{2} = 12$$

$$\therefore \tan \frac{A}{2} = \sqrt{\frac{(12-10)(12-6)}{12(12-8)}}$$

$$\left(\because \tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}\right)$$

 $=\sqrt{\frac{1}{4}}=\frac{1}{2}$ 6 cm 10 cm С 8 cm В $\therefore \cot \frac{A}{2} = 2$ Now, $\cot\left(\frac{A}{4} + \frac{A}{4}\right) = \frac{\cot^2\frac{A}{4} - 1}{2\cot\frac{A}{2}}$ $\cot\left(\frac{A}{2}\right) = \frac{\cot^2\frac{A}{4} - 1}{2\cot\frac{A}{4}}$ Let $\cot\left(\frac{A}{4}\right) = x$ $\therefore 2 = \frac{x^2 - 1}{2x}$ $\Rightarrow x^2 - 4x - 1 = 0$ $\Rightarrow x = \frac{4 \pm \sqrt{16 + 4}}{2}$ $\Rightarrow x = \frac{4 \pm 2\sqrt{5}}{2} = 2 \pm \sqrt{5}$ So, $\cot\left(\frac{A}{4}\right) = \sqrt{5} + 2$ or $2 - \sqrt{5}$

27. (b) We know that largest side has greatest angle opposite it. $\therefore a = 14 \text{ cm}, b = 10 \text{ cm} \text{ and } c = 6 \text{ cm}$

$$a = 14 \text{ cm}, b = 10 \text{ cm} \text{ and } c = 6 \text{ cm}$$

(c) For finding the area of a triangle *ABC*, $\angle A$, $\angle B$ and 28. side c are required. $\sin^{-1} \{2x(1-x^2)\}=2 \sin^{-1} x$ is true 29. (d) $\forall x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$ 30. (b) Given, $\sin A = \frac{1}{\sqrt{5}}$ and $\cos B = \frac{3}{\sqrt{10}}$ $\therefore \sin (A+B) = \sin A \cos B + \cos A \sin B$ $=\frac{1}{\sqrt{5}}\times\frac{3}{\sqrt{10}}+\sqrt{1-\frac{1}{5}}\times\sqrt{1-\frac{9}{10}}$ $=\frac{3}{\sqrt{50}}+\frac{2}{\sqrt{5}}\times\frac{1}{\sqrt{10}}=\frac{3+2}{\sqrt{50}}=\frac{1}{\sqrt{2}}=\sin\frac{\pi}{4}$ $\Rightarrow A + B = \frac{\pi}{4}$ 34. 31. (d) Given $\sin^{-1}\left(\frac{2a}{1+a^2}\right) - \cos^{-1}\left(\frac{1-b^2}{1+b^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ $\therefore \quad 2\tan^{-1}a - 2\tan^{-1}b = 2\tan^{-1}x$ $\implies \tan^{-1}a - \tan^{-1}b = \tan^{-1}x$ $\Rightarrow \tan^{-1}\left(\frac{a-b}{1+ab}\right) = \tan^{-1}x$ $\Rightarrow x = \frac{a-b}{1+ab}$ 32. (a) Consider $\cos B = \frac{\sin A}{2\sin C}$ $\Rightarrow \frac{c^2 + a^2 - b^2}{2ac} = \frac{a}{2c}$ $\left(::\frac{a}{\sin A} = \frac{c}{\sin C} \Longrightarrow \frac{\sin A}{\sin C} = \frac{a}{c}\right)$ 35. $\Rightarrow c^{2} + a^{2} - b^{2} = \frac{2a^{2}c}{2c}$ $\Rightarrow c^{2} + a^{2} - b^{2} = a^{2}$ $\Rightarrow c^{2} - b^{2} = 0$ $\Rightarrow c = b$ Hence, Δ ABC is isosceles triangle. 33. (b) Let $\sin^{-1}x + \cot^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{2}$ As we know $\cot^{-1} x = \sin^{-1} \left(\frac{1}{\sqrt{1+x^2}} \right)$ 36.

 $\therefore \sin^{-1} x + \cot^{-1} \left(\frac{1}{2}\right) = \frac{\pi}{2}$

 $\Rightarrow \sin^{-1} x + \sin^{-1} \left(\frac{1}{\sqrt{1 + \frac{1}{4}}} \right) = \frac{\pi}{2}$

$$\Rightarrow \sin^{-1} x + \sin^{-1} \left(\frac{2}{\sqrt{5}}\right) = \frac{\pi}{2} \qquad ...(1)$$
Now, $\sin^{-1} x = \cos^{-1} \sqrt{1 - x^2}$

$$\therefore \sin^{-1} \left(\frac{2}{\sqrt{5}}\right) = \cos^{-1} \sqrt{1 - \frac{4}{5}} = \cos^{-1} \left(\frac{1}{\sqrt{5}}\right)$$

$$\therefore \text{ From equation (1), we have}$$

$$\sin^{-1} x + \cos^{-1} \left(\frac{1}{\sqrt{5}}\right) = \frac{\pi}{2}$$
since, $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$

$$\therefore x = \frac{1}{\sqrt{5}}$$
(d) Given, $a + b = 3 \left(1 + \sqrt{3}\right) \dots \left(2\right)$
By adding (1) and (2) we get
$$(a + b) + (a - b) = 3 + 3\sqrt{3} + 3 - 3\sqrt{3}$$

$$\Rightarrow 2a = 6 \Rightarrow a = 3$$

$$\therefore b = 3 - 3 + 3\sqrt{3} = 3\sqrt{3}$$
By using sine rule, $\Rightarrow \frac{a}{\sin A} = \frac{b}{\sin B}$
Given $\angle A = 30$

$$\Rightarrow \frac{3}{\sin 30^{\circ}} = \frac{3\sqrt{3}}{\sin B}$$

$$\Rightarrow \sin B = \sqrt{3} \times \frac{1}{2} \Rightarrow \sin B = \sin 60^{\circ}$$

$$\Rightarrow B = 60^{\circ}$$
(c) Let the principal value of $\csc^{-1} \left(-\sqrt{2}\right) = \theta$

$$\Rightarrow -\sqrt{2} = \csc \theta \Rightarrow -\sqrt{2} = \frac{1}{\sin \theta}$$

$$\Rightarrow \sin \theta = -\frac{1}{\sqrt{2}} \Rightarrow \theta = -\frac{\pi}{4}$$
Principal value of $\csc^{-1} \left(-\sqrt{2}\right) = -\frac{\pi}{4}$
(c) $\sin^{-1} \frac{5}{x} + \sin^{-1} \frac{12}{x} = \frac{\pi}{2}$

$$\left(\because \sin^{-1} \frac{5}{x} + \cos^{-1} \frac{\sqrt{x^2 - 144}}{x} = \frac{\pi}{2}$$

$$\left(\because \sin^{-1} \frac{5}{x} + \cos^{-1} \frac{\sqrt{x^2 - 144}}{x} = \frac{\pi}{2}$$

$$\left(\because \sin^{-1} \frac{5}{x} + \cos^{-1} \frac{\sqrt{x^2 - 144}}{x} = \frac{\pi}{2}$$

$$\left(\because \sin^{-1} \frac{5}{x} + \cos^{-1} \frac{\sqrt{x^2 - 144}}{x} = \frac{\pi}{2}$$

$$\therefore \quad \frac{5}{x} = \frac{\sqrt{x^2 - 144}}{x}$$

$$\Rightarrow \quad 5 = \sqrt{x^2 - 144}$$

$$\Rightarrow \quad 25 = x^2 - 144 \Rightarrow x^2 = 169$$

$$\Rightarrow \quad x = 13$$
37. (b) Since, *A*, *B*, *C* are in *AP*.

$$\therefore B - A = C - B$$

$$\Rightarrow \quad 2B = A + C$$
But we know $A + B + C = 180^{\circ}$

$$\Rightarrow \quad 3B = 180^{\circ} \Rightarrow B = 60^{\circ}$$
Consider sin $A + 2\sin B + \sin C$

$$= 2\sin \frac{A + C}{2} \cos \frac{A - C}{2} + 2\sin B$$

$$= 2\sin B \left[\cos \frac{A - C}{2} + 1 \right] \qquad (\because A + C = 2B)$$

$$= 2\sin B \left[2\cos^2 \left(\frac{A - C}{4} \right) \right]$$

$$= 4 \sin B \cos^2 \left(\frac{A - C}{4} \right)$$
38. (d) $(1) \cos(\sin^{-1} x) = \cos(\cos^{-1} \sqrt{1 - x^2}) = \sqrt{1 - x^2}$

$$(II)\sin(\cos^{-1}x) = \sin(\sin^{-1}\sqrt{1-x^2}) = \sqrt{1-x^2}$$

Hence, statement I is false and II is true.

39. (b) Let a, b, c be the sides of $\triangle ABC$ and $\angle A = \theta$

$$\therefore$$
 $a = \sqrt{39}, b = 5 \text{ and } c = 7$

and
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{25 + 49 - 39}{2 \times 5 \times 7}$$
$$= \frac{1}{2} = \cos \frac{\pi}{3}$$
$$\Rightarrow A = \frac{\pi}{3}$$

(b) Consider
$$\sin^{-1}\frac{4}{5} + 2\tan^{-1}\frac{1}{3}$$

$$= \tan^{-1}\left(\frac{4/5}{\sqrt{1-16/25}}\right) + \tan^{-1}\left(\frac{2/3}{1-1/9}\right)$$

$$\left[\because \sin^{-1}x = \tan^{-1}\frac{x}{\sqrt{1-x^2}} \text{ and } 2\tan^{-1}x = \tan^{-1}\left(\frac{2x}{1-x^2}\right)\right]$$

$$= \tan^{-1}\left(\frac{4/5}{3/5}\right) + \tan^{-1}\left(\frac{2/3}{8/9}\right)$$

$$= \tan^{-1}\left(\frac{4}{3}\right) + \tan^{-1}\left(\frac{3}{4}\right)$$

$$= \tan^{-1}\left(\frac{4}{3}\right) + \cot^{-1}\left(\frac{4}{3}\right) = \frac{\pi}{2}$$

$$\left(\because \tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}\right)$$

40.

41. (c) Given a $\triangle ABC$ in which BC = 10 cm, CA = 6cm and AB = 8cm. Since, $CA^2 + AB^2 = 36 + 64 = 100 = BC^2$ $\therefore \triangle ABC$ is a right angled triangle.

42. (b) Let
$$c=2$$
, $\angle A = 120^{\circ}$ and $a = \sqrt{6}$ in $\triangle ABC$,

: By Sine rule, we have

$$\frac{a}{\sin A} = \frac{c}{\sin C} \implies \frac{\sqrt{6}}{\sin 120^\circ} = \frac{2}{\sin C}$$

$$\Rightarrow \sin C = \frac{2 \times \sqrt{3}}{\sqrt{6} \times 2} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \sin C = \sin 45^{\circ} \Rightarrow \angle C = 45^{\circ}$$

43. (a) Let
$$BD = P$$
 and $DE = x$
 $\Rightarrow AC = 4P$

Let E be mid-point of AC. Then, AE = EC = BE = 2P In \triangle BDE, (BE)² = (BD)² + (ED)² \Rightarrow (2P)² = (P)² + x² \Rightarrow 4P² = P² + x²

$$\Rightarrow 3P^{2} = x^{2} \Rightarrow x = \sqrt{3}P$$
Now, AD = 2P - x = 2P - $\sqrt{3}P = P(2-\sqrt{3})$
DC = 2P + x = 2P + $\sqrt{3}P = P(2+\sqrt{3})$
In ΔBAD , tan A = $\frac{BD}{AD} = \frac{P}{P(2-\sqrt{3})}$

$$= \frac{1}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2-\sqrt{3}} = 2+\sqrt{3} = \tan 75^{\circ}$$
tan $\alpha = \frac{AD}{BD} = \frac{P(2-\sqrt{3})}{P} = 2-\sqrt{3} = \tan 15^{\circ}$
 $\Rightarrow \alpha = 15^{\circ}$
As, ΔABC is right angled at B, from figure $\alpha + \beta = 90^{\circ}$
 $\Rightarrow 15+\beta = 90^{\circ} \Rightarrow \beta = 75^{\circ}$
In ΔABC , $\angle A + \angle B + \angle C = 180^{\circ}$
 $\Rightarrow \angle C = 180^{\circ} - 165^{\circ} = 15^{\circ}$
 \therefore One of the a cute angle is 15^{\circ}
44. (a) $\angle ABD = \alpha = 15^{\circ}$

45. (b) AD: DC =
$$\frac{AD}{DC} = \frac{P(2-\sqrt{3})}{P(2+\sqrt{3})} = \frac{2-\sqrt{3}}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$$

= $\frac{4+3-4\sqrt{3}}{1} = \frac{7-4\sqrt{3}}{1}$

$$\therefore$$
 AD : DC = 7 - 4 $\sqrt{3}$: 1

46. (d)
$$\tan (A - C) = \tan(75^\circ - 15^\circ) = \tan 60^\circ = \sqrt{3}$$

47. (c) Consider (I):

$$\csc^{-1}\left(\frac{-2}{\sqrt{3}}\right) = \frac{-\pi}{3}$$

Let $\csc^{-1}\left(\frac{-2}{\sqrt{3}}\right) = \theta$
$$\Rightarrow \frac{-2}{\sqrt{3}} = \csc \theta \Rightarrow \frac{-\sqrt{3}}{2} = \frac{1}{\csc \theta}$$
$$\Rightarrow \frac{-\sqrt{3}}{2} = \sin \theta \Rightarrow \theta = \frac{-\pi}{3}$$

Now, consider (II) :

 $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = \frac{\pi}{6}$ Let $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right) = \theta$

$$\Rightarrow \frac{2}{\sqrt{3}} = \sec \theta \quad \Rightarrow \frac{\sqrt{3}}{2} = \frac{1}{\sec \theta}$$

$$\Rightarrow \frac{\sqrt{3}}{2} = \cos \theta \quad \Rightarrow \theta = \frac{\pi}{6}$$
Hence, both statements I and II are correct.
48. (d) Let $\sin \left[\sin^{-1} \left(\frac{1}{5} \right) + \cos^{-1} x \right] = 1$

$$\Rightarrow \sin^{-1} \left(\frac{1}{5} \right) + \cos^{-1} x = \sin^{-1} 1$$

$$\Rightarrow \sin^{-1} \left(\frac{1}{5} \right) + \cos^{-1} x = \frac{\pi}{2}$$

$$\Rightarrow x = \frac{1}{5} \qquad \left(\because \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \right)$$
49. (d) Let $\sec^{-1} \left(\frac{2}{\sqrt{3}} \right) = y$ where $0 < y \le \frac{\pi}{2}$

$$\Rightarrow \sec y = \frac{2}{\sqrt{3}}$$

$$\Rightarrow \sec y = \sec \frac{\pi}{6} \Rightarrow y = \frac{\pi}{6}$$

$$\therefore$$
 The principal value of $\sec^{-1} \left(\frac{2}{\sqrt{3}} \right) = \frac{\pi}{6}$

50. (c)

Since, c = 14 is the largest side \therefore Angle C will be obtuse

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{(6)^2 + (10)^2 - (14)^2}{2(6)(10)}$$

$$=\frac{36+100-196}{2\times6\times10}=\frac{-1}{2}$$

$$\Rightarrow C = \cos^{-1}\left(\frac{-1}{2}\right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3} = \frac{2 \times 180}{3} = 120$$

51. (b) We have
$$A = \tan^{-1} 2 \Rightarrow \tan A = 2$$

and $B = \tan^{-1} 3 \Rightarrow \tan B = 3$.
Since, A, B, C are angles of a triangle
 $\therefore A + B + C = \pi$
 $\Rightarrow C = \pi - (A + B)$...(1)
Now, $A + B = \tan^{-1} 2 + \tan^{-1} 3$

$$= \pi + \tan^{-1} \left(\frac{2+3}{1-2.3} \right)$$

$$\left[\because \tan^{-1} x + \tan^{-1} y = \pi + \tan^{-1} \frac{x+y}{1-xy} \right]$$

$$= \pi + \tan^{-1} (-1) = \pi - \tan^{-1} (1)$$

$$= \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$

$$\therefore \text{ from (1), } C = \pi - \frac{3\pi}{4} = \frac{\pi}{4}.$$
52. (c)
$$A$$

$$2$$

$$A$$

$$1 + \sqrt{3}$$

$$C$$

Let ABC be a triangle with sides $a = 1 + \sqrt{3}$, b = 2 and $c = \sqrt{6}$

So,
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{\left(1 + \sqrt{3}\right)^2 + \left(\sqrt{6}\right)^2 - 4}{2\left(1 + \sqrt{3}\right)\left(\sqrt{6}\right)}$$

$$= \frac{2\sqrt{3} + 6}{2\sqrt{6} + \sqrt{18}} = \frac{3 + \sqrt{3}}{\sqrt{6} + 3\sqrt{2}}$$
$$= \frac{\sqrt{3}\sqrt{3} + \sqrt{3}}{\left(\sqrt{3} + \sqrt{3}\sqrt{3}\right)\sqrt{2}} = \frac{1}{\sqrt{2}}$$
$$\Rightarrow B = 45^\circ \text{ is the smallest angle.}$$

(: smallest side is $b = 2$)

53. (b)

$$\frac{\cos C}{\cos A} = \frac{1}{6} < 1 \Rightarrow \cos C < \cos A \Rightarrow C > A$$

$$\cos (C - A) = \cos C \cos A + \sin C \sin A$$

$$= \frac{1}{8} \times \frac{3}{4} + \frac{3\sqrt{7}}{8} \times \frac{\sqrt{7}}{4} = \frac{3}{4} = \cos A$$

$$\Rightarrow C - A = A \Rightarrow C = 2A$$
54. (c) Given a, b, c are in arithmetic progression.

$$\therefore 2b = a + c$$
Now, we know

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$= \frac{b^2 + c^2 - (2b - c)^2}{2bc} \text{ (from 1)}$$

$$= \frac{b^2 + c^2 - 4b^2 - c^2 + 4bc}{2bc}$$

$$= -\frac{-3b^2 + 4bc}{2bc} = \frac{4c - 3b}{2c}$$
55. (b) Let $\cos^{-1}\frac{4}{5} = A \Rightarrow \cos A = \frac{4}{5} \Rightarrow \sin A = \frac{3}{5}$
Let $\cos^{-1}\frac{12}{13} = B \Rightarrow \cos B = \frac{12}{13} \Rightarrow \sin B = \frac{5}{13}$
Now, $\cos\left(\cos^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13}\right) = \cos(A + B)$

$$= \cos A \cos B - \sin A \sin B$$

$$= \left(\frac{4}{5}\right) \left(\frac{12}{13}\right) - \left(\frac{3}{5}\right) \left(\frac{5}{13}\right) = \frac{33}{65}$$
56. (d) Since A, B, C are in A.P.

$$\therefore 2B = A + C$$
Also, A = B + C = 180° $\Rightarrow 2B + B = 180°$

$$\Rightarrow 3B = 180° \Rightarrow B = 60°$$
Now, we know
 $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$

$$\Rightarrow \cos 60° = \frac{a^2 + c^2 - b^2}{2ac}$$

$$\Rightarrow 1\frac{1}{2} = \frac{a^2 + c^2 - b^2}{2ac}$$

$$\Rightarrow \frac{1}{2} = \frac{a^2 + c^2 - b^2}{2ac}$$

$$\Rightarrow \frac{1}{2} = \frac{a^2 + c^2 - b^2}{2ac}$$

$$\Rightarrow 12 + c^2 - ac$$
57. (a) Let $\sin^{-1}(1) + \sin^{-1}(\frac{4}{5}) = \sin^{-1}x$
Let $\sin^{-1}(1) = \theta \Rightarrow \sin \theta = 1 \Rightarrow \cos \theta = 0$
and $\sin^{-1}\left(\frac{4}{5}\right) = \phi \Rightarrow \sin \phi = \left(\frac{4}{5}\right) \Rightarrow \cos \phi = \sqrt{1 - \frac{16}{25}}$

$$=\sqrt{\frac{9}{25}}=\frac{3}{5}$$

$$\therefore \sin^{-1}x = \theta + \phi$$

 $\Rightarrow x = \sin(\theta + \phi) = \sin \theta \cos \phi + \cos \theta \sin \phi$

$$= 1 \times \frac{3}{5} + 0 \times \frac{4}{5}$$
$$\implies x = \frac{3}{5}$$

58. (c) Let $A = \tan^{-1}2$, $B = \tan^{-1}3$ and C be the angles of a triangle.

By angle sum property, we have

$$\tan^{-1} 2 + \tan^{-1} 3 + C = 180^{\circ}$$
$$\Rightarrow \tan^{-1} \left(\frac{5}{-5}\right) = 180^{\circ} - C$$
$$\Rightarrow \tan^{-1} (-1) = 180^{\circ} - C$$
$$\Rightarrow \frac{3\pi}{4} = \pi - C \Rightarrow C = \pi - \frac{3\pi}{4} = \frac{\pi}{4}$$

Hence, third angle is $\frac{\pi}{4}$.

59. (c) Let
$$\sec^2\left(\tan^{-1}\left(\frac{5}{11}\right)\right)$$

$$= 1 + \tan^2\left(\tan^{-1}\left(\frac{5}{11}\right)\right) \qquad (\because \sec^2\theta - \tan^2\theta = 1)$$

$$= 1 + \left[\tan\left(\tan^{-1}\left(\frac{5}{11}\right)\right)\right]^2 = 1 + \left(\frac{5}{11}\right)^2$$

$$= 1 + \frac{25}{121} = \frac{146}{121}$$
60. (c) $\sin\left[\sin^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{4}{5}\right)\right]$

$$= \sin\left[\sin^{-1}\left\{\frac{3}{5}\sqrt{1 - \frac{16}{25}} + \frac{4}{5}\sqrt{1 - \frac{9}{25}}\right\}\right]$$

$$= \sin\left[\sin^{-1}\left\{\frac{3}{5}\times\frac{3}{5} + \frac{4}{5}\times\frac{4}{5}\right\}\right]$$

$$= \sin\left[\sin^{-1}\left\{\frac{9}{25} + \frac{16}{25}\right\}\right] = \sin\left[\sin^{-1}(1)\right]$$

$$= \sin\frac{\pi}{2} = 1$$

61. (d)
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

 $\Rightarrow \cos C = \frac{(18)^2 + (24)^2 - (30)^2}{2 \times 18 \times 24} = \frac{9 + 16 - 5^2}{2 \times 3 \times 4} = 0$
Now, $\sin C = \sqrt{1 - \cos^2 C} = \sqrt{1 - 0} = 1$
Hence $\sin C = 1$
62. (d) Since $a > 0, b > 0$ and $2 \tan^{-1} x = \sin^{-1} \left(\frac{2x}{1 + x^2}\right)$

 \therefore Given expression is $2 \tan^{-1} a + 2 \tan^{-1} b = 2 \tan^{-1} x$

$$\Rightarrow 2 \tan^{-1} \left(\frac{a+b}{1-ab} \right) = 2 \tan^{-1} x$$
$$\Rightarrow x = \frac{a+b}{1-ab}$$

From $\triangle ADB$, AD = BD = xIn $\triangle ADC$,

$$\tan 30^{\circ} = \frac{x}{\sqrt{3} + 1 - x}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{x}{\sqrt{3} + 1 - x} \Rightarrow \sqrt{3}x \quad \sqrt{3} \quad 1 - x$$

$$\Rightarrow (\sqrt{3} \quad 1)x = \sqrt{3} \quad 1$$

$$x = \frac{\sqrt{3}}{\sqrt{3} \quad 1} = 1.$$
Area of $\triangle ABC = \frac{1}{2} \times (\sqrt{3} + 1) \times 1 \quad \frac{\sqrt{3}}{2} = 1$
64. (c) $\tan^{-1}\left(\frac{1}{2}\right) \quad \tan^{-1}\left(\frac{1}{3}\right) = \tan^{-1}\left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \times \frac{1}{3}}\right)$

$$= \tan^{-1}\left(\frac{\frac{5}{6}}{\frac{5}{6}}\right) = \tan^{-1}(1) \quad \frac{\pi}{4}$$

Properties of Triangle, Inverse Trigonometric Function

65. (b)
$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left[\frac{x \ y}{1 - xy} \right]$$
, when $xy < 1$.
And if $x < 0$, $y < 0$ and $xy > 1$, then
 $\tan^{-1} x + \tan^{-1} y = \pi \tan^{-1} \left(\frac{x \ y}{1 - xy} \right)$

66. (c) 1. Given, $\sin A + \sin B = \sin C$

$$a + b = c$$
 $\left(\because By sine law, \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = K \right)$

Here, the sum of two sides of $\triangle ABC$ is equal to the third side, but it is not possible

(Because by triangle inequality, the sum of the length of two sides of a triangle is always greater than the length of the third side)

$$\begin{vmatrix} a & b & c \end{vmatrix}$$
2. Ratio of angles of a triangle
A : B : C = 1 : 2 : 3
A + B + C = 180°
∴ A = 30°
B = 60°
C = 90°
the ratio in sides according to sine rule
a : b : c = sin A : sin B : sin C
= sin 30° : sin 60° : sin 90°

$$=\frac{1}{2}, \frac{\sqrt{3}}{2}, 1=\frac{1}{2}: \frac{\sqrt{3}}{2}: 1 \implies 1: \sqrt{3}: 2$$

67. (b) 1. L.H.S.

$$\tan^{-1} 1 \quad \tan^{-1}\left(\frac{1}{2}\right)$$

= $\tan^{-1} 1 \quad \cot^{-1}\left(\frac{1}{\frac{1}{2}}\right) = \tan^{-1} + \cot^{-1} 2 \neq \frac{\pi}{2}$
So, L.H.S. \neq R.H.S.
2. $\sin^{-1} \frac{1}{3} + \cos^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{2}$
 $\left\{\sin^{-1} x \quad \cos^{-1} x \quad \frac{\pi}{2}\right\}$

68. (a)
$$A + B + C = \pi$$

 $A + B = \pi - C$
 $\cos (A + B) = \cos (\pi - C)$
 $\cos (A + B) = -\cos C$
or $\cos (A + B) + \cos C = 0$
69. (b) $\sin^{-1} \sin \frac{3\pi}{5} = \sin^{-1} \sin \left(\pi - \frac{2\pi}{5} \right)$
 $= \sin^{-1} \sin \frac{2\pi}{5} - \frac{2\pi}{5}$
70. (a) $\sin^{-1} \frac{3}{5} - \sin^{-1} \frac{4}{5} = \sin^{-1} \frac{3}{5} - \cos^{-1} \frac{3}{5}$
 $\left(\operatorname{let} \sin^{-1} \frac{4}{5} = \theta \Rightarrow \sin \theta = \frac{4}{5} \Rightarrow \cos \theta - \frac{3}{5} \right)$
 $= \frac{\pi}{2}$

71. (a) According to sine rule,

$$\frac{a}{\sin A} \frac{b}{\sin B} \frac{c}{\sin C}$$

$$\therefore \frac{a}{\sin A} \frac{c}{\sin C}$$

$$\Rightarrow \sin C = \frac{c \sin A}{a} \frac{2 \sin 45}{2\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{2} = \sin 30^{\circ}$$

$$\therefore C = 30^{\circ}$$
72. (c) In a AABC, we have

$$\sin A - \cos B = \cos C \Rightarrow \sin A = \cos B + \cos C$$

$$\Rightarrow 2 \sin \frac{A}{2} \cdot \cos \frac{A}{2} = 2 \cos \left(\frac{B+C}{2}\right) \cdot \cos \left(\frac{B-C}{2}\right)$$

$$[\because \sin 2A = 2 \sin A \cdot \cos A]$$
and $\cos B \cos C 2 \cos \left(\frac{B+C}{2}\right) \cdot \cos \left(\frac{B-C}{2}\right)$

$$\Rightarrow 2 \sin \frac{A}{2} \cdot \cos \frac{A}{2} = 2 \cos \left(90^{\circ} - \frac{A}{2}\right) \cdot \cos \left(\frac{B-C}{2}\right)$$

$$\left[\because A \quad B \quad C \quad 180 \Rightarrow \left(\frac{B+C}{2}\right) \quad 90 \quad -\frac{A}{2}\right]$$

$$\Rightarrow 2 \sin \frac{A}{2} \cdot \cos \frac{A}{2} \quad 2 \sin \frac{A}{2} \cdot \cos \left(\frac{B-C}{2}\right)$$

$$\left[\because \cos (90^{\circ} - \theta) = \sin \theta\right]$$

$$\Rightarrow \cos \frac{A}{2} = \cos \left(\frac{B-C}{2}\right)$$

$$\Rightarrow A + C = B \qquad ...(i)$$
Also, $A + C = 180^{\circ} - B \qquad ...(i)$
Also, $A + C = 180^{\circ} - B \qquad ...(i)$
Also, $A + C = 180^{\circ} - B \qquad ...(i)$
Now as $a > b$

$$\therefore A = 2B = 180^{\circ}$$

$$\therefore B = 90^{\circ}$$
73. (a)
$$A = \frac{A}{2} = \frac{B-C}{2}$$

$$B = 10^{\circ} + C = B = \frac{A}{2} = \frac{A}{2} = \frac{A}{2} = \frac{A}{2} = \frac{B-C}{2} = \frac{A}{2} = \frac{A}{2} = \frac{B-C}{2} = \frac{B-C}{2} = \frac{A}{2} = \frac{B}{2} = 180^{\circ}$$

$$\therefore B = 90^{\circ}$$
73. (a)
$$A = \frac{A}{2} = \frac{B-C}{2} = \frac{B}{2} = \frac{$$

From option (a),
$$\frac{\sin 75}{1+\sqrt{3}} = \frac{\sin 45}{2}$$

 $\frac{\sqrt{6} + \sqrt{2}}{4(1+\sqrt{3})} = \frac{1}{2\sqrt{2}}$
 $2\sqrt{12} + 4 = 4 + 4\sqrt{3}$
 $4 + 4\sqrt{3} = 4 + 4\sqrt{3}$
 $4 + 4\sqrt{3} = 4 + 4\sqrt{3}$
 \therefore Option (a) is correct.
74. (c) $\tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2}$
 $\tan^{-1}\left[\frac{(1+x) + (1-x)}{1-(1+x)(1-x)}\right] = \frac{\pi}{2}$
 $\Rightarrow \frac{1+x+1-x}{1-(1+x)(1-x)} = \tan \frac{\pi}{2}$
 $\Rightarrow \frac{2}{1-(1+x)(1-x)} = \frac{1}{0}$
 $\Rightarrow 1-(1+x)(1-x) = 0$
 $\Rightarrow (1+x)(1-x) = 0$
 $\Rightarrow (1+x)(1-x) = 1$
 $1-x^2 = 1$
 $x^2 = 0$
 $x = 0$
 \therefore Option (c) is correct.
75. (b) $x = 4\tan^{-1}\left(\frac{1}{5}\right)$
 $= 2\left[2\tan^{-1}\frac{1}{5}\right] = 2\left[\tan^{-1}\frac{2}{5}{1-(\frac{1}{5})^2}\right]$
 $= 2\tan^{-1}\left(\frac{2\times\frac{5}{12}}{24}\right) = 2\tan^{-1}\frac{10}{24} = 2\tan^{-1}\frac{5}{12}$
 $= \tan^{-1}\left(\frac{2\times\frac{5}{12}}{1-\frac{25}{144}}\right) = \tan^{-1}\frac{120}{119}.$
76. (c) $x - y = \tan^{-1}\left(\frac{120}{119} - \frac{1}{70}\right]$

$$= \tan^{-1} \left| \frac{\frac{8400 - 119}{8330}}{1 + \frac{120}{8330}} \right|$$

$$= \tan^{-1} \left| \frac{\frac{8281}{8330}}{\frac{8450}{8330}} \right| = \tan^{-1} \frac{8281}{8450}$$

 \therefore Option (c) is correct.
(d) $x - y = \tan^{-1} \frac{8281}{8450} \Rightarrow \tan^{-1} \left| \frac{8281}{8450} \right| + \tan^{-1} \left(\frac{1}{99} \right)$

$$= \tan^{-1} \left| \frac{8281}{8450} + \frac{1}{99} \right| = \tan^{-1} \left| \frac{828269}{836550} \right| = 1$$

 $\tan^{-1} = (1) = \frac{\pi}{4}$
 \therefore Option (d) is correct.
(a) $2\tan^{-1} \left(\frac{1}{5} \right) = \tan^{-1} \left[\frac{2 \times \frac{1}{5}}{1 - \left(\frac{1}{5} \right)^2} \right]$

$$= \tan^{-1} \left[\frac{10}{24} \right]$$

$$= \tan^{-1} \left[\frac{5}{12} \right]$$

Let $\tan \left[\tan^{-1} \left(\frac{5}{12} \right) - \frac{\pi}{4} \right] = x$
 $\Rightarrow \tan^{-1} \left(\frac{5}{12} \right) - \frac{\pi}{4} = \tan^{-1} x$
 $\Rightarrow \tan^{-1} \left(\frac{5}{12} \right) - \tan^{-1} (1) = \tan^{-1} x$
 $\Rightarrow \tan^{-1} \left[\frac{\left(\frac{5}{12} - 1 \right)}{1 + \left(\frac{5}{12} \right)(1)} \right] = \tan^{-1} x$
 $\Rightarrow x = \frac{-7712}{17712} = -7717$

77.

78.

79. (a)
$$\sin^{-1}x + \sin^{-1}y = \sin^{-1}(x\sqrt{1-y^{2}} + y\sqrt{1-x^{2}})$$

If $(-1 \le x, y \le 1) \& (x^{2} + y^{2} \le 1)$
 $\Rightarrow \sin^{-1}\left[\frac{4}{5}\sqrt{1-(\frac{3}{5})^{2}} + \frac{3}{5}\sqrt{1-(\frac{4}{5})^{2}}\right]$
 $= \sin^{-1}\left[\frac{16}{25} + \frac{9}{25}\right] = \sin^{-1}(1) = \frac{\pi}{2}$
 \therefore Statement (1) is correct
Again, $\tan^{-1}x + \tan^{-1}y = \pi + \tan^{-1}\left[\frac{x+y}{1-xy}\right]$
If; $(x > 0), (y > 0)$ and $(xy > 1)$
 $\tan^{-1}(\sqrt{3}) + \tan^{-1}(1) = \pi + \tan^{-1}\left[\frac{\sqrt{3} + 1}{1-\sqrt{3}}\right]$
 $= \pi + \tan^{-1}\left[\frac{(\sqrt{3} + 1)(1+\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})}\right]$
 $= \pi + \tan^{-1}\left[\frac{(4+2\sqrt{3})}{(2-\sqrt{3})}\right] = \pi + \tan^{-1}\left[-(2+\sqrt{3})\right]$
 $= \pi - \tan^{-1}(2+\sqrt{3}) \qquad \because \tan^{-1}(-x) = -\tan^{-1}x$ 83.
(b) Consider any equilateral triangle:
 $c = b = a = 1$ unit
Take value of p between $1 \& 2 i.e., \frac{3}{2}$
 $\therefore a^{1/p} + b^{1/p} - c^{1/p} = (1)^{2/3} + (1)^{2/3} - (1)^{2/3} = 1 > 0.$
 $\therefore By considering all the options carefully, we came to
a conclusion that opton (b) is correct.
81. (c) Given $\cos A + \cos B + \cos C = \sqrt{3} \sin \frac{\pi}{3}$
 $\cos A + \cos B + \cos C$
 $= 2\cos \frac{A+B}{2} \cdot \cos \frac{A-B}{2} + (1-2\sin^{2}\frac{C}{2})$ 84.
 $= 2\sin \frac{C}{2} \left[\cos \frac{A-B}{2} + \sin \frac{C}{2}\right]$$

$$=1+2\sin\frac{C}{2}\left[\cos\frac{A-B}{2}-\cos\frac{A+B}{2}\right]$$

$$=1+4\sin\frac{C}{2}\sin\frac{A}{2}\sin\frac{B}{2}$$

$$\cos A + \cos B + \cos C = \sqrt{3}\sin\frac{\pi}{3}$$

$$1+4\sin\frac{C}{2}\sin\frac{A}{2}\sin\frac{B}{2} = \sqrt{3}\sin\frac{\pi}{3}$$

$$\Rightarrow 1+4\sin\frac{C}{2}\sin\frac{A}{2}\sin\frac{B}{2} = \sqrt{3} \times \frac{\sqrt{3}}{2}$$

$$\Rightarrow 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{3}{2} - 1$$

$$\boxed{\frac{\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{1}{8}}{\frac{1}{2}}$$
(d) As we know that
$$\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \frac{1}{8}$$

$$\because \left(\frac{A+B}{2} = \frac{\pi}{2} - \frac{C}{2}\right)$$

$$\therefore \boxed{\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{B+C}{2}\right)\cos\left(\frac{C+A}{2}\right) = \frac{1}{8}}$$
(b) $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for which $\tan^{-1}(\tan\theta) = \theta$.
Hence, statement (1) is incorrect.
if $x \le 1; y \le 1 \& x^2 + y^2 \le 1$

$$\therefore \sin^{-1}(x) - \sin^{-1}y = \sin^{-1}\left[x\sqrt{1-y^2} - y\sqrt{1-x^2}\right]$$

$$\Rightarrow \sin^{-1}\left[\frac{1}{3}\sqrt{1-\frac{1}{25}} - \frac{1}{5}\sqrt{1-\frac{1}{9}}\right]$$

$$= \sin^{-1}\left[\frac{1}{3}\sqrt{1-\frac{1}{25}} - \frac{1}{5}\sqrt{3}\sqrt{8}\right]$$

$$= \sin^{-1}\left[\frac{\sqrt{8\times3} - \sqrt{8}}{15}\right] = \sin^{-1}\left[\frac{2\sqrt{2}(\sqrt{3}-1)}{15}\right]$$
Hence, statement (2) is correct.

84. (d) Statement-1

$$\therefore \left(\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy} \right)$$
$$\tan^{-1} x + \tan^{-1} \frac{1}{x} = \tan^{-1} \frac{x+\frac{1}{x}}{1-x.\frac{1}{x}}$$

$$= \tan^{-1} \frac{x^2 + 1}{0}$$

$$= \tan^{-1} \infty = \tan^{-1} \tan \frac{\pi}{2}$$

$$\boxed{\tan^{-1} x \tan^{-1} \frac{1}{x} \frac{\pi}{2}}$$
Statement (1) is wrong.
Statement 2,
 $\sin^{-1} x + \cos^{-1} y = \frac{\pi}{2}$ (x, y) $\in (-1, 1)$
Only when $x = y$
Here $x \neq y$.
Statement (2) is also wrong.
85. (b) $\therefore ABC$ is an equilateral triangle.
 $\therefore A = B = C = 60^{\circ}$
L.H.S. = 3 tan ($A + B$) tan C
 $= 3 \tan 120^{\circ} \tan 60^{\circ}$
 $= 3(-\sqrt{3})(\sqrt{3})$
 $= -9 \neq 1$
Hence statement (1) is incorrect.
Statement-2
ABC is a triangle such that $A = 78^{\circ}$ and $B = 66^{\circ}$
 $C = 180 - (78 + 66) = 180 - 144 = 36^{\circ}$
 $\frac{4}{2}$ C $\frac{78}{2}$ 36
 $= 39 + 36 = 75^{\circ}$
 $\tan\left(\frac{A}{2} + C\right) < \tan A$
 $\Rightarrow \tan 75^{\circ} < \tan 78^{\circ}$
Hence statement (2) is correct.
Statement (3)
In a triangle ABC
 $A + B + C = 180^{\circ}$
 $A + B = 180^{\circ} - C$
 $\frac{A + B}{2} = \frac{180^{\circ} - C}{2}$
 $\Rightarrow \tan\left(\frac{A + B}{2}\right) = \tan\left(90 - \frac{C}{2}\right)$
 $\Rightarrow \tan\left(\frac{A + B}{2}\right) = \cot\frac{C}{2}$...(1)
 $\therefore \tan\left(\frac{A + B}{2}\right) = \cot\frac{C}{2}$...(1)
 $\therefore \tan\left(\frac{A + B}{2}\right) .\sin\frac{C}{2} = \cot\frac{C}{2}$
 $\Rightarrow \tan\left(\frac{A + B}{2}\right) .\sin\frac{C}{2} = \cos\frac{C}{2}$
We can see that statement (3) is not correct.

Hence only 2nd statement (3) is not correct.

86. (d) We know that

$$2\cos^{-1}x \cos^{-1}(2x^2 - 1)$$

here, $x = 0.8$
 $\therefore 2\cos^{-1}(0.8) \cos^{-1}(2(0.8)^2 - 1)$
 $\cos^{-1}(0.28)$
Now, $\cos(\cos^{-1}(x)) x$.
 $\therefore \cos(\cos^{-1}(0.28)) 0.28$
87. (b) In triangle ABC, $A + B + C = \pi$
 $\Rightarrow \frac{A + B + C}{2} = \frac{\pi}{2} \Rightarrow \frac{A}{2} + \frac{B}{2} + \frac{C}{2} = \frac{\pi}{2}$
 $\Rightarrow \frac{B}{2} + \frac{C}{2} = \frac{\pi}{2} - \frac{A}{2}$...(i)
 $\Rightarrow \sin\left(\frac{B + C}{2}\right) = \sin\left(\frac{\pi}{2} - \frac{A}{2}\right) = \cos\frac{A}{2}$
Also, from (i), $\tan\left(\frac{B + C}{2}\right) = \tan\left(\frac{\pi}{2} - \frac{A}{2}\right) = \cot\frac{A}{2}$
88. (b) $\sin^{-1}\left(\frac{3}{5}\right) \tan^{-1}\left(\frac{1}{7}\right)$
 $3 \int \frac{6}{4}$
 $\sin\theta = \frac{3}{4}$
 $= \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{1}{7}\right)$
 $= \tan^{-1}\left(\frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} \cdot \frac{1}{7}}\right)$
 $= \tan^{-1}\left(\frac{\frac{21 + 4}{28 - 3}}{28}\right)$
 $= \tan^{-1}\left(\frac{25}{25}\right) = \tan^{-1}(1) = \frac{\pi}{4}$.

89. (b) Given,
$$a - 2b + c = 0 \Rightarrow a + c = 2b \cot\left(\frac{A}{2}\right) \cot\left(\frac{C}{2}\right)$$

$$= \sqrt{\frac{s(s-a)}{(s-b)(s-c)}} \times \frac{s(s-c)}{(s-a)(s-b)} = \sqrt{\frac{s^2}{(s-b)^2}} = \frac{s}{s-b}$$

$$= \frac{2s}{2s-2b} = \frac{a+b+c}{a+b+c-2b} = \frac{2b+b}{2b-b} = \frac{3b}{b} = 3.$$
90. (a) Given, $\frac{\sin^2 A + \sin^2 B + \sin^2 C}{\cos^2 A + \cos^2 B + \cos^2 C} = 2.$
Let us take $A = 30^\circ$, $B = 60^\circ$, $C = 90^\circ$
 $\frac{\sin^2 30^\circ + \sin^2 60^\circ + \sin^2 90^\circ}{\cos^2 30^\circ + \cos^2 60^\circ + \cos^2 90^\circ}$

$$= \frac{\frac{1}{4} + \frac{3}{4} + 1}{\frac{3}{4} + \frac{1}{4} + 0} = \frac{1+1}{1} = \frac{2}{1} = 2.$$
So, the given triangle is right-angled triangle.
91. (b) The principal value of $\sin^{-1} x \log in$ it's range.
The range of $\sin^{-1} x is \left[\frac{-\pi}{2}, \frac{\pi}{2}\right].$
92. (b) In $\triangle ABC$, $a = 2, b = 3$ and $\sin A = \frac{2}{3}$.
We know, $\frac{\sin A}{a} = \frac{\sin B}{b}$
 $\Rightarrow \frac{2}{3} = \frac{\sin B}{3}$
 $\Rightarrow 2\frac{c}{6} = \frac{\sin B}{3} \Rightarrow \sin B = \frac{6}{6} = 1$
 $\Rightarrow B = \sin^{-1}(1)$ (1)
 $= \frac{\pi}{2}.$
93. (c) $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left(\sin\left(\pi - \frac{\pi}{3}\right)\right)$

 $= \sin^{-1} \left(\sin \frac{\pi}{3} \right) = \frac{\pi}{3}.$ 94. (b) x, x - y, x + y are angles of a triangle. $\tan (x - y), \tan x, \tan (x + y)$ are in G.P. Now, $x + x - y + x + y = \pi$ (Sum of angles in triangle $= 180^\circ = \pi$) $\Rightarrow 3x = \pi$ $\Rightarrow x = \frac{\pi}{3}.$

95. (a)
$$\angle BAC = \alpha, \angle BOC = \beta$$

A
A
We know, from figure,
 $\beta = 2\alpha$
 $\therefore \cos \beta = \cos 2\alpha$
 $= \frac{1-\tan^2 \alpha}{1+\tan^2 \alpha}$.
96. (b) $\tan^{-1}(\frac{1}{4}) + \tan^{-1}(\frac{3}{5})$
We know, $\tan^{-1} x + \tan^{-1} y = \tan^{-1}(\frac{x+y}{1-xy})$
So, $\tan^{-1}(\frac{1}{4}) + \tan^{-1}(\frac{3}{5}) = \tan^{-1}\left(\frac{\frac{1}{4}+\frac{3}{5}}{1-(\frac{1}{4})(\frac{3}{5})}\right)$
 $= \tan^{-1}\left(\frac{\frac{5+12}{20}}{1-\frac{2}{20}}\right)$
 $= \tan^{-1}\left(\frac{17}{20}\right) = \tan^{-1}(1) = \frac{\pi}{4}$.
97. (d) $\sin 2A - \sin 2B - \sin 2C$
 $= 2\cos(A + B)\sin(A - B) + \sin(2A + 2B)$
 $= 2\cos(A + B)\sin(A - B) + \sin(2A + B)\cos(A + B)$
 $= 2\cos(A + B)\sin(A - B) + \sin(A + B)\cos(A + B)$
 $= -2\cos(2)\sin A \cos B$
 $= -4\sin A \cos B \cos C$
98. (a) $\tan^{-1}\left(\frac{2x+3x}{1-2x,3x}\right) = \frac{\pi}{4}$
 $\tan^{-1}\frac{5x}{1-6x^2} = 1$
 $1-6x^2 = 5x$
 $6x^2 + 5x - 1 = 0$
 $(6x - 1)(x + 1) = 0$
 $\Rightarrow x = \frac{1}{6}$
Here $x = -1$ rejected.

3

99. (b) $y = \cos^{-1} (\sin x)$ $= \cos^{-1} \cos \left(\frac{\pi}{2} - x\right)$ $= \frac{\pi}{2} - x$ From question, slope of the curve $m = \tan \theta$ $\therefore \tan \theta = -1 \Rightarrow \theta = \frac{3\pi}{4}$ 100. (d) $\sin^{-1} \frac{4}{5} + \sec^{-1} \frac{5}{4} - \frac{\pi}{2} = \sin^{-1} \frac{4}{5} + \cos^{-1} \frac{4}{5} - \frac{\pi}{2}$ $= \frac{\pi}{2} - \frac{\pi}{2} = 0$ 101. (b) $\sin^{-1} \frac{2p}{1+p^2} - \cos^{-1} \frac{1-q^2}{1+q^2} = \tan^{-1} \frac{2x}{1-x^2}$ $\Rightarrow 2 \tan^{-1} p - 2 \tan^{-1} q = 2\tan^{-1} x$ $\Rightarrow \tan^{-1} p - \tan^{-1} q = \tan^{-1} x$ $\Rightarrow \tan^{-1} \frac{p-q}{1+pq} = \tan^{-1} x$ $\Rightarrow x = \frac{p-q}{1+pq}$

м-248

102. (c) Given, angles of triangle are in ratio 1 : 2 :
Consider,
$$A = 30^{\circ}$$
, $B = 60^{\circ}$ and $C = 90^{\circ}$
We know, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
 $\Rightarrow \frac{a}{\sin 30^{\circ}} = \frac{b}{\sin 60^{\circ}} = \frac{c}{\sin 90^{\circ}}$
 $\Rightarrow \frac{a}{\frac{1}{2}} = \frac{b}{\frac{\sqrt{3}}{2}} = \frac{c}{1}$
 $\Rightarrow a : b : c = \frac{1}{2} : \frac{\sqrt{3}}{2} : 1 = 1 : \sqrt{3} : 2$
103. (a) Let $y = \sec^{2} (\tan^{-1} x)$
Let $\tan^{-1} x = \theta \Rightarrow x = \tan \theta$
 $y = \sec^{2}\theta = 1 + \tan^{2}\theta = 1 + x^{2}$
 $\therefore \frac{dy}{dx} = \frac{d}{dx}(1 + x^{2}) = 2x$

Height & Distance

6.

7.

8.

13

1. A vertical pole with height more than 100 m consists of two parts, the lower being one-third of the whole. At a point on a horizontal plane through the foot and 40 m from it, the upper

part subtends an angle whose tangent is $\frac{1}{2}$. What is the

height of the pole?

- (a) 110m (b) 200m
- (c) 120 m (d) 150 m *[2006-I]*
- 2. The angle of elevation of the top of a pillar of height h at a point on the ground at a distance x from the pillar is 30°. On walking a distance 'd' towards the pillar the angle of elevation becomes 60°. Then, which one of the following is correct ?

(a)
$$x = d + h$$
 (b) $x = \frac{3d}{2}$
(c) $x = \frac{5d}{4}$ (d) $x = 2d$ [2006-II]

(c) x = dx (d) x=2d [2006-II]
3. The angle of elevation of the top of a tower EF (F being the foot of the tower) as seen from a point A which is on the same level as F, is α. On advancing towards the foot of the

tower the angle of elevation of the top of the tower as seen from a point B such that AB = x, is β . If BF = y, h is the height of the tower and $\alpha + \beta = \frac{\pi}{2}$, then which one of the following

is correct?

- (a) $h^2 = x^2 + xy$ (b) $h = y^2 + xy^2$ (c) $h^2 = y^2 + xy$ (d) $h = y + x^2y$ [2006-II]
- 4. The lower 24 m portion of a 50 m tall tower is painted green and the remaining portion red. What is the distance of a point on the ground from the base of the tower where the two different portions of the tower subtend equal angles?
 - (a) 60 m (b) 72 m
 - (c) 90m (d) 120m [2007-I]
- 5. What should be the height of a flag where a 20 feet long ladder reaches 20 feet below the flag (The angle of elevation of the top of the flag at the foot of the ladder is 60°)?
 - (a) 20 feet (b) 30 feet
 - (c) 40 feet (d) $20\sqrt{2}$ feet [2007-II]

- PT, a tower of height 2^x metre, P being the foot, T being the top of the tower. A, B are points on the same line with P. If $AP = 2^{x+1}$ m, BP = 192 m and if the angle of elevation of the tower as seen from b is double the angle of the elevation of the tower as seen from A, then what is the value of x?
 - (a) 6 (b) 7 (c) 8 (d) 9 [2008-1]
- The foot of a tower of height *h* m is in a direct line between two observers *A* and *B*. If the angles of elevation of the top of the tower as seen from *A* and *B* are α and β respectively and if AB = d m, then what is h/d equal to? [2008-II]

(a)
$$\frac{\tan(\alpha + \beta)}{(\cot \alpha \cot \beta - 1)}$$
 (b) $\frac{\cot(\alpha + \beta)}{(\cot \alpha \cot \beta - 1)}$
(c) $\frac{\tan(\alpha + \beta)}{(\cot \alpha \cot \beta + 1)}$ (d) $\frac{\cot(\alpha + \beta)}{(\cot \alpha \cot \beta + 1)}$

A man observes the elevation of a balloon to be 30° . He, then walks 1 km towards the balloon and finds that the elevation is 60° . What is the height of the balloon?

[2009-I]

(a)	1/2 km	(b)	$\sqrt{3}/2$ km
(c)	1/3 km	(d)	1 km

- 9. The angle of elevation from a point on the bank of a river of the top of a temple on the other bank is 45°. Retreating 50m, the observer finds the new angle of elevation as 30°. What is the width of the river? [2009-1]
 - (a) 50 m (b) $50\sqrt{3}$ m
 - (c) $50/(\sqrt{3}-1)$ m (d) 100 m
- 10. Looking from the top of a 20 *m* high building, the angle of elevation of the top of a tower is 60° and the angle of depression of its bottom is 30°. What is the height of the tower? [2009-II]

(a)	50 m	(b)	60 m
(c)	70 m	(d)	80 m

11. The angle of elevation of the top of a flag post from a point 5 m away from its base is 75°. What is the approximate height of the flag post? [2010-I]

(a) 15m (b) 17m	l
-----------------	---

(c) 19m (d) 21m

м-250

NDA Topicwise Solved Papers - MATHEMATICS

- 12. Two poles are 10 m and 20 m high. The line joining their tops makes an angle of 15° with the horizontal. What is the approximate distance between the poles? [2010-II] (a) 35.3 m (b) 37.3 m
 - (c) 41 m (d) 44m
- From the top of a lighthouse 120 m above the sea, the angle 13 of depression of a boat is 15°. What is the distance of the boat from the lighthouse? [2010-II]
 - (a) 400 m (b) 421 m
- (c) 444m (d) 460m 14. A man standing on the bank of a river observes that the
- angle of elevation of the top of a tree just on the opposite bank is 60°. The angle of elevation is 30° from a point at a distance y m from the bank of the river. What is the height of the tree? [2011-I]
 - (a) ym (b) 2ym

(c)
$$\frac{\sqrt{3}y}{2}m$$
 (d) $\frac{y}{2}m$

- 15. At a point 15 m away from the base of a 15 m high house, the angle of elevation of the top is [2011-II] (a) 90° (b) 60° (d) 30°
 - (c) 45°
- A tower of height 15 m stands vertically on the ground. 16. From a point on the ground the angle of elevation of the top of the tower is found to be 30°. What is the distance of the point from the foot of the tower? [2011-II]
 - (b) $10\sqrt{3} m$ (a) $15\sqrt{3} m$

(c)
$$5\sqrt{3} m$$
 (d) $30 m$

A vertical tower stands on a horizontal plane and is 17. surmounted by a vertical flag staff of height h. At a point Pon the plane, the angle of elevation of the bottom of the flag staff is β and that of the top is α . What is the height of the [2011-II] tower?

(a)
$$\frac{h \tan \beta}{\tan \alpha - \tan \beta}$$
 (b) $\frac{h \tan \beta}{\tan \alpha + \tan \beta}$
(c) $\frac{h \cos \beta}{\cos \alpha - \cos \beta}$ (d) $\frac{h}{\cos (\alpha - \beta)}$

- An aeroplane flying at a height of 300 m above the ground 18. passes vertically above another plane at an instant when the angles of elevation of two planes from the same point on the ground are 60° and 45° respectively. What is the height of the lower plane from the ground? [2011-II]
 - (b) $\frac{100}{\sqrt{3}}$ m 50 m (a) (d) $150(\sqrt{3}+1)$ m (c) $100\sqrt{3}$ m
- 19. The angle of elevation of the tip of a flag staff from a point 10 m due South of its base is 60°. What is the height of the flag staff correct to the nearest meter? [2012-I]

(d) 18m (c) 17m

20. Two poles are 10 m and 20 m high. The line joining their tips makes an angle of 15° with the horizontal. What is the distance between the poles? [2012-I]

(a)
$$10(\sqrt{3}-1)m$$
 (b) $5(4+2\sqrt{3})m$

(c)
$$20(\sqrt{3}+1)m$$
 (d) $10(\sqrt{3}+1)m$

- 21. The angle of elevation of a tower at a level ground is 30° . The angle of elevation becomes θ when 10 m moved towards the tower. If the height of tower is $5\sqrt{3}$ m, then what is θ equal to? [2012-I]
 - (b) 60° (a)
- (d) None of the above (c) From the top of a building of height h meter, the angle of 22. depression of an object on the ground is θ . What is the distance (in meter) of the object from the foot of the building? [2012-I]
 - (b) $h \tan \theta$ h cotθ (a)
 - h cosθ (d) $h \sin \theta$ (c)
- The top of a hill observed from the top and bottom of a 23. building of height h is at angles of elevation α and β respectively. The height of the hill is : [2012-II]

(a)
$$\frac{h \cot \beta}{\cot \beta - \cot \alpha}$$
 (b) $\frac{h \cot \alpha}{\cot \alpha - \cot \beta}$
h tan α

(c)
$$\frac{1}{\tan \alpha - \tan \beta}$$
 (d) None of the above

24. From the top of a lighthouse 70 m high with its base at sea level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the lighthouse is: [2012-II]

(a)
$$70(2-\sqrt{3})$$
 m (b) $70(2+\sqrt{3})$ m
(c) $70(3-\sqrt{3})$ m (d) $70(3+\sqrt{3})$ m

- The angle of elevation of the top of a tower of height H from 25. the foot of another tower in the same plane is 60° and the angle of elevation of the top of the second tower from the foot of the first tower is 30°. If h is the height of the other tower, then which one of the following is correct?
 - H = 2h(b) $H = \sqrt{3}h$ (a) [2013-I]

(c)
$$H=3h$$

- (d) None of the above A man walks 10 m towards a lamp post and notices that the 26. angle of elevation of the top of the post increases from 30° to 45°. The height of the lamp posts is : [2013-I]
 - (b) $(5\sqrt{3}+5)m$ 10 m (a)

(c)
$$(5\sqrt{3}-5)m$$
 (d) $(10\sqrt{3}+10)m$

- 27. The shadow of a tower standing on a level plane is found to be 50 m longer when the Sun's elevation is 30° than when it is 60° . The height of the tower is: [2013-I]
 - (b) $25\sqrt{3}$ m 25 m (a)
 - (d) None of these 50 m (c)

- 45°
- 75°

- 28. The angle of elevation of the top of a tower from two places situated at distances 21m. and x m. from the base of the tower are 45° and 60° respectively. What is the value of x ? [2013-II]
 - (a) $7\sqrt{3}$ (b) $7-\sqrt{3}$
 - (c) $7 + \sqrt{3}$ (d) 14
- 29. A person standing on the bank of a river observes that the angle subtended by a tree on the opposite of bank is 60°. When he retires 40 m. from the bank, he finds the angle to be 30°. What is the breadth of the river ? [2013-II]
 (a) 60m
 (b) 40m
 - (c) 30m (d) 20m
- 30. From an aeroplane above a straight road the angle of depression of two positions at a distance 20 m apart on the road are observed to be 30° and 45°. The height of the aeroplane above the ground is : [2014-1]
 - (a) $10\sqrt{3}m$ (b) $10(\sqrt{3}-1)m$
 - (c) $10(\sqrt{3}+1)m$ (d) 20m
- 31. A lamp post stands on a horizontal plane. From a point situated at a distance 150 m from its foot, the angle of elevation of the top is 30°. What is the height of the lamp post ? [2014-II]
 - (a) 50m (b) $50\sqrt{3}$ m

(c) $\frac{50}{\sqrt{3}}$ m (d) 100 m

32. The angle of elevation of the top of a tower from a point 20 m away from its base is 45°. What is the height of the tower? [2015-I]

(a)	10 m	(b)	20 m
(c)	30 m	(d)	40 m

- 33. The angles of elevation of the top of a tower standing on a horizontal plane from two points on a line passing through the foot of the tower at distances 49 m and 36 m are 43° and 47° respectively. What is the height of the tower? [2015-I] (a) 40 m (b) 42 m
 - (c) 45m (d) 47m
- 34. Two poles are 10 m and 20 m high. The line joining their tops makes an angle of 15° with the horizontal. The distance between the poles is approximately equal to [2015-II]
 (a) 36.3 m
 (b) 37.3 in

35. A vertical tower standing on a levelled field is mounted with a vertical flag staff of length 3 m. From a point on the field, the angles of elevation of the bottom and tip of the flag staff are 30° and 45° respectively. Which one of the following gives the best approximation to the height of the tower ? [2015-II]

(a)	3.90m	(b)	4.00m
1	4.10	(1)	105

- (c) 4.10m (d) 4.25m
- 36. The top of a hill when observed from the top and bottom of a building of height h is at angles of elevation p and q respectively. What is the height of the hill? [2016-II]

37. A moving boat is observed from the top of a cliff of 150 m height. The angle of depression of the boat changes from 60° to 45° in 2 minutes. What is the speed of the boat in metres per hour? [2016-II]

(a)
$$\frac{4500}{\sqrt{3}}$$
 (b) $\frac{4500(\sqrt{3}-1)}{\sqrt{3}}$

(c)
$$4500\sqrt{3}$$
 (d) $\frac{4500(\sqrt{3}+1)}{\sqrt{3}}$

38. From the top of a lighthouse, 100 m high, the angle of

depression of a boat is	$\tan^{-1}\left(\frac{5}{12}\right)$. What is	the distance					
between the boat and th	e lighthouse?	[2017 - I]					
(a) 120 m	(b) 180 m						
(c) 240 m	(d) 360 m						
The angle of elevation	of a stationary cloud	from a point					
25 m above a lake is 15° and the angle of depression of its							

39. The angle of elevation of a stationary cloud from a point 25 m above a lake is 15° and the angle of depression of its image in the lake is 45°. The height of the cloud above the lake level is [2017-II]

(a)
$$25 \text{ m}$$
 (b) $25 \sqrt{3} \text{ m}$

(c)
$$50 \text{ m}$$
 (d) $50\sqrt{3} \text{ m}$

40. The angles of elevation of the top of a tower from the top and foot of a pole are respectively 30° and 45° . If h_T is the height of the tower and h_P is the height of the pole, then which of the following are correct? [2017-II]

1.
$$\frac{2h_Ph_T}{3+\sqrt{3}} = h_P^2$$

2. $\frac{h_T - h_P}{\sqrt{3}+1} = \frac{h_P}{2}$
3. $\frac{2(h_P + h_T)}{h_P} = 4 + \sqrt{3}$

Select the correct answer using the code given below.

- (a) 1 and 3 only (b) 2 and 3 only
- (c) 1 and 2 only (d) 1, 2 and 3
- 41. If a flag-staff of 6 m height placed on the top of a tower throws a shadow of $2\sqrt{3}$ m along the ground, then what is the angle that the sun makes with the ground? [2018-I] (a) 60° (b) 45° (c) 30° (d) 15°
- 42. A spherical balloon of radius r subtends an angle α at the eye of an observer, while the angle of elevation of its centre is β . What is the height of the centre of the balloon (neglecting the height of the observer)? [2018-I]

(a)
$$\frac{r \sin \beta}{\sin\left(\frac{\alpha}{2}\right)}$$
 (b) $\frac{r \sin \beta}{\sin\left(\frac{\alpha}{4}\right)}$
(c) $\frac{r \sin\left(\frac{\beta}{2}\right)}{\sin \alpha}$ (d) $\frac{r \sin \alpha}{\sin\left(\frac{\beta}{2}\right)}$

- 43. A balloon is directly above one end of a bridge. The angle of depression of the other end of the bridge from the balloon is 48°. If the height of the balloon above the bridge is 122 m, then what is the length of the bridge? [2018-II]
 - (a) $122 \sin 48^{\circ} m$ (b) $122 \tan 42^{\circ} m$
 - (c) $122 \cos 48^{\circ}$ m (d) 122 tan 48° m
- 44. The top of a hill observed from the top and bottom of a
 - building of height h is at angles of elevation $\frac{\pi}{6}$ and $\frac{\pi}{3}$ respectively. What is the height of the hill? [2018-II]

(a) 2h (b)
$$\frac{3h}{2}$$
 (c) h (d) $\frac{h}{2}$

- The angle of elevation of a tower of height h from a point A 45. due South of it is x and from a point B due East of A is y. If AB = z, then which one of the following is correct? [2019-I]
 - (a) $h^{2} (\cot^{2} y \cot^{2} x) = z^{2}$ (b) $z^{2} (\cot^{2} y \cot^{2} x) = h^{2}$ (c) $h^{2} (\tan^{2} y \tan^{2} x) = z^{2}$ (d) $z^{2} (\tan^{2} y \tan^{2} x) = h^{2}$

ANSWER KEY																	
1	(c)	6	(c)	11	(c)	16	(a)	21	(b)	26	(b)	31	(b)	36	(b)	41	(a)
2	(b)	7	(b)	12	(b)	17	(a)	22	(a)	27	(b)	32	(b)	37	(b)	42	(a)
3	(c)	8	(b)	13	(c)	18	(c)	23	(b)	28	(a)	33	(b)	38	(c)	43	(a)
4	(d)	9	(c)	14	(c)	19	(c)	24	(b)	29	(d)	34	(b)	39	(b)	44	(b)
5	(b)	10	(d)	15	(c)	20	(b)	25	(c)	30	(c)	35	(c)	40	(c)	45	(a)

HINTS & SOLUTIONS

(c) Let h be the height of pole, upper portion CD subtend 1. angle θ at A.

Then, $\tan \theta = \frac{1}{2}$

Let lower part BC subtend angle ϕ at A then $In \Delta ABC$,

 $\tan\phi = \frac{BC}{AB} = \frac{h/3}{40} = \frac{h}{120}$ In \triangle ABD,

$$\tan(\theta + \phi) = \frac{BD}{AB}$$

 $\frac{\tan\theta + \tan\phi}{1 - \tan\theta\tan\phi} = \frac{h}{40}$

$$\Rightarrow \quad \frac{\frac{1}{2} + \frac{h}{120}}{1 - \frac{h}{240}} = \frac{h}{40}$$

$$\Rightarrow \frac{2(60+h)}{(240-h)} = \frac{h}{40}$$

- $\Rightarrow 80(60+h) = 240 h h^2 \Rightarrow 4800 + 80 h = 240 h h^2$
- $\Rightarrow h^2 160 h + 4800 = 0 \Rightarrow (h 120) (h 40) = 0$

$$\Rightarrow$$
 h=120

2.

[h = 40 is discarded, since h > 100 is given]

(b) Let DC be the pillar of height h and A be the point at a distance x from pillar such that $\angle CAD = 30^{\circ}$. On walking a distance d towards pillar (point B) ∠CBD = 60°. So, in \triangle BCD,

$$\tan 60^{\circ} = \frac{\text{CD}}{\text{BC}}$$

$$\Rightarrow \sqrt{3} = \frac{\text{h}}{\text{x} - \text{d}}$$

$$\Rightarrow \text{h} = \sqrt{3} (\text{x} - \text{d}) \qquad \dots (i)$$

3. (c) Let EF be the height of the tower, and FB = Y, AB = xand EF = h. In ∆BEF,

EF

$$\tan \beta = \frac{EF}{BF}$$

$$\tan \beta = \frac{h}{y} \qquad ...(i)$$

$$A \xrightarrow{A} \xrightarrow{\alpha} x \xrightarrow{B} y \xrightarrow{\beta} F$$
and in ΔAFE ,

$$\tan \alpha = \frac{EF}{AF}$$

$$\Rightarrow \tan \alpha = \frac{h}{x+y},$$

$$\Rightarrow \tan\left(\frac{\pi}{2} - \beta\right) = \frac{h}{x+y} \qquad \left(\text{Given that } \alpha + \beta = \frac{\pi}{2}\right)$$

$$\Rightarrow \cot \beta = \frac{h}{x + y} \qquad \dots (ii)$$

From Eqs. (i) and (ii), we get

$$\tan \beta . \cot \beta = \frac{h}{y} . \frac{h}{(x+y)} \qquad (\because \tan \beta \cdot \cot \beta = 1)$$
$$\Rightarrow xy + y^2 = h^2$$

Let the distance, be x, and angle APB = θ , then \angle BPC = \angle APC = $\theta/2$ In triangle Δ APB,

$$\tan \theta = \frac{AB}{x} = \frac{50}{x} \qquad \dots (1)$$

and in triangle APC

4.

$$\tan \frac{\theta}{2} = \frac{AC}{x} = \frac{24}{x} \qquad \dots (2)$$

$$\tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}} \qquad \dots (3)$$

Putting the value of tan θ and tan $\frac{\theta}{2}$ From equation (1) and (2) in equation (3),

$$\frac{50}{x} = \frac{2 \times \frac{24}{x}}{1 - \left(\frac{24}{x}\right)^2}$$

or, $\frac{50}{x} = \frac{48}{x} \times \frac{x^2}{x^2 - (24)^2}$
or, $50 \{x^2 - (24)^2\} = 48x^2$
or, $50x^2 - 50 \times (24)^2 = 48x^2$
or, $2x^2 = (24)^2 \times 50$
 $x = 25 \times (24)^2$
 $x = |5 \times 24| = 120$ m

5.

Such a point can exist on the either side of the tower.

$$\Rightarrow AB = \frac{h}{3}\sqrt{3}$$
Now, in $\triangle ABC$

$$AC^{2} = AB^{2} + BC^{2}$$

$$\Rightarrow 20^{2} = \left(\frac{h}{\sqrt{3}}\right)^{2} + (h - 20)^{2}$$

$$\Rightarrow h^{2} + 3h^{2} - 120h = 0$$

$$\Rightarrow 4h^{2} - 120h = 0$$

$$\Rightarrow h (h - 30) = 0$$

$$h = 0 \text{ or } 30$$

$$h = 0 \text{ not possible}$$

$$\Rightarrow h = 30 \text{ ft}$$
(c) Let PT be the tower such that
$$PT = 2^{x} \text{ m}, AP = 2^{x+1} \text{ m}$$
A and B are two points joining foot of

the tower. T is top of the tower.

Also, given BP = 192 m, $\angle TAP = \theta$ and $\angle TBP = 2\theta$ $In\,\Delta PTA$

$$\tan \theta = \frac{PT}{AP} \implies \tan \theta = \frac{2^x}{2^{x+1}} = \frac{1}{2}$$

Now, in ΔPTB

$$\tan 2\theta = \frac{PT}{PB} = \frac{2^{x}}{192}$$
$$2\left(\frac{1}{2}\right) = 2^{x} = 1$$

$$\Rightarrow \frac{1}{1-\frac{1}{4}} = \frac{2^{x}}{192} \Rightarrow \frac{1}{3/4} = \frac{2^{x}}{192} \Rightarrow \frac{4}{3} \times 192 = 2^{x}$$

$$2^{x} = 256$$

$$\Rightarrow 2^{x} = 2^{8} \Rightarrow$$

7. (b) Let $AD = x$

 $\therefore DB = d - x$ In ΔADC ,

$$\tan \alpha = \frac{h}{x}$$

$$\Rightarrow x = h \cot \alpha$$

$$\ln \Delta CDB,$$

$$\tan \beta = \frac{h}{d - x}$$

$$\Rightarrow d - x = h \cot \beta$$
From equations (i) and (ii), we get
$$d = h(\cot \alpha + \cot \beta)$$
We know,
$$\cot(\alpha + \beta) = \frac{\cot \alpha \cot \beta - 1}{\cot \beta + \cot \alpha}$$

$$\Rightarrow \cot \beta + \cot \alpha = \frac{\cot \alpha \cot \beta - 1}{\cot(\alpha + \beta)}$$

$$\therefore \quad d = h \left[\frac{\cot \alpha \cot \beta - 1}{\cot(\alpha + \beta)} \right]$$

$$\Rightarrow \quad \frac{h}{d} = \frac{\cot(\alpha + \beta)}{\cot \alpha \cot \beta - 1}$$

8. (b) Let the height of the balloon be h and new distance between BC be y as shown in figure given below,

$$A \xrightarrow{30^{\circ}} 60^{\circ} \xrightarrow{60^{\circ}} C$$

$$\tan 60^{\circ} = \frac{CD}{BC}$$

$$\Rightarrow \sqrt{3} = \frac{h}{y} \Rightarrow h = \sqrt{3}y$$
and now in $\triangle ADC$, $\tan 30^{\circ} = \frac{CD}{AC}$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{1+y}$$

$$\Rightarrow 1+y = h\sqrt{3} \Rightarrow 1+y = 3y$$

$$\Rightarrow y = \frac{1}{2}$$

$$\therefore h = \frac{\sqrt{3}}{2}$$

6.

$$(\because \tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B})$$

$$\Rightarrow \frac{\sqrt{3}+1}{\sqrt{3}-1} = \frac{h}{5} \Rightarrow h = \frac{(\sqrt{3}+1)^2}{(\sqrt{3})^2 - (1)^2} \times 5$$

$$\Rightarrow h = 5\left(\frac{3+1+2\sqrt{3}}{3-1}\right) = 5\left(2+\sqrt{3}\right)$$

$$= 5 \times 3.732 = 18.660$$

$$= 19 \text{ m (approx.)}$$
Let AC and ED be two poles of height 20m and 10m

12. (b) Let AC and ED be two poles of height 20m and 10m respectively.

Let $\angle AEB = 15^{\circ}$

Now,
$$AB = AC - BC = AC - ED = 20 - 10 = 10 \text{ m.}$$

Now in $\triangle ABE$, ($\therefore BC = ED$)

$$\tan 15^\circ = \frac{AB}{BE}$$

$$\Rightarrow \tan (45^\circ - 30^\circ) = \frac{10}{BE}$$

$$\Rightarrow \quad \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} = \frac{10}{\text{BE}}$$

$$\left(\because \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \right)$$

$$\Rightarrow \quad \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{10}{\text{BE}}$$

$$\Rightarrow BE = 10\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right) = \frac{10 \times (\sqrt{3}+1)^2}{2}$$

(By rationalizing)

$$5(3+1+2\sqrt{3}) = 5(4+2\times1.73) = 5(4+3.46)$$

 $\Rightarrow CD = BE = 5 \times 7.46 = 37.3 \text{ m}$

15.

(c)

13. (c) Let AB be the light house of 120 m. and c be the boat. Let \angle DAC = 15° (Angle of depression)

$$BC$$

tan 45° – tan 30° 120

$$\Rightarrow \quad \frac{\tan 10^{\circ} \tan 30^{\circ}}{1 + \tan 45^{\circ} \tan 30^{\circ}} = \frac{120}{BC}$$

$$\sqrt{3} - 1 \quad 120$$

$$\Rightarrow \frac{\sqrt{3}}{\sqrt{3}+1} = \frac{120}{BC}$$

$$\Rightarrow BC = 120 \left(\frac{(\sqrt{3}+1)^2}{3-1} \right) = 60(3+1+2\sqrt{3})$$

$$= 60(4+2 \times 1.73)$$

$$= 60 \times 7.46 = 447.6 \text{ m} \simeq 444 \text{ m}$$

14. (c) Let DC be the tree of height *h* metre. Let a man is standing on the point B (bank of a river). Let BC = x and angle of elevation i.e. \angle DBC = 60°. Also, let AB = y and \angle DAC = 30°. In \triangle ACD,

Let *AB* be the house of height 15 m. Let *B* be the base of house and *C* be the point 15 m away from the base of a house. Let ' θ ' be the angle of elevation. So, in ΔABC ,

we have
$$\tan \theta = \frac{AB}{BC} = \frac{15}{15} = 1$$

 $\Rightarrow \tan \theta = \tan 45^\circ \quad (\because \tan 45^\circ = 1)$
 $\Rightarrow \theta = 45^\circ$

Hence, the angle of elevation of the top is 45°

16. (a) Let AB be a tower of height 15 m. Let B be the point on the ground. Let $\angle ACB = 30^{\circ}$ be the angle of elevation. To find BC.

In
$$\triangle ABC$$
, $\tan 30^\circ = \frac{AB}{BC} = \frac{15}{x}$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{15}{x} \Rightarrow x = 15\sqrt{3} \,\mathrm{m}$$

Let BC be the vertical tower and CD be the flagstaff so that CD = h

Let P be the point of observation on the plane. Then, $\angle BPC = \beta$ and $\angle BPD = \alpha$ Let BC = x

Now,
$$\frac{PB}{x} = \cot \beta \Rightarrow PB = x \cot \beta$$
 ...(1)

and
$$\frac{PB}{x+h} = \cot \alpha \Rightarrow PB = (x+h) \cot \alpha$$
 ...(2)

From (1) and (2), we get $x \cot \beta = (x + h) \cot \alpha \Rightarrow x(\cot \beta - \cot \alpha) = h \cot \alpha$ \therefore Height of the tower,

$$x = \frac{h \cot \alpha}{\cot \beta - \cot \alpha} = \frac{h \tan \beta}{\tan \alpha - \tan \beta}$$

18. (c)

Let P and Q be the positions of two aeroplanes when Q is vertically below P and OP = 300 m

Let the angles of elevation of P and Q at a point A on the ground be 60° and 45° respectively.

$$\therefore$$
 In \triangle AOQ,

$$\tan 45^\circ = \frac{OQ}{OA} \Rightarrow OA = OQ$$

In $\triangle AOP$,

$$\tan 60^\circ = \frac{OP}{OA} = \frac{300}{OA} = \sqrt{3}$$

$$\Rightarrow$$
 OA = $\frac{300}{\sqrt{3}} = 100\sqrt{3}$

Hence, OQ = $100\sqrt{3}$ m

19. (c) Let 'A' be the top of the flag staff. Let 'x' be the height of the flag staff.

In
$$\triangle ABC$$
, $\tan 60^\circ = \frac{x}{10}$
 $\sqrt{3} = \frac{x}{10}$
 $x = 10\sqrt{3} = 10 \times 1.732$
 $= 17.32 \le 17$
C 10 m

20. (b) Let AB and CD be two poles of height 10 m and 20 m respectively. In ΔAEC ,

$$\frac{CE}{AE} = \tan 15^{\circ}$$
$$\frac{10}{AE} = \tan (45^{\circ} - 30^{\circ})$$

$$AE = \frac{(1-1)^{2}}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} = 5(4+2\sqrt{3})$$

21. (b) Let BC be the tower of height $5\sqrt{3}$ m Let AD = 10 m

In \triangle ABC,

$$\frac{BC}{AB} = \tan 30^{\circ}$$

$$\Rightarrow AB = \frac{BC}{\tan 30^\circ} = \frac{5\sqrt{3}}{1/\sqrt{3}} = 15$$

Given AD = 10 m $\therefore DB = (15 - 10)\text{m} = 5 \text{ m}$ In \triangle BCD,

$$\frac{BC}{BD} = \tan \theta$$

Х

В

$$\frac{5\sqrt{3}}{5} = \tan\theta \Longrightarrow \tan\theta = \sqrt{3}$$
$$\Rightarrow \theta = 60^{\circ}$$

Let AB be the building of height h meter. Let '
$$\theta$$
 ' be the angle of depression. To find: BC

In $\triangle ABC$, $\frac{AB}{BC} = \tan \theta$ $\Rightarrow \frac{h}{BC} = \tan \theta \Rightarrow BC = h \cot \theta$

23. (b)

$$\begin{array}{c} & & & \\ & & &$$

$$\tan \alpha = \frac{CL}{AL} = \frac{H-h}{BD}$$
$$BD = (H-h) \cot \alpha$$
from (i) & (ii),
(H-h) \cot \alpha = H \cot \beta.
H \cot \alpha - h \cot \alpha = H \cot \beta.
H [\cot \alpha - \cot \beta] = h \cot \alpha.

$$H = \frac{h \cot \alpha}{\cot \alpha - \cot \beta}$$

24. (b)

Let AB = lighthouse = 70 mLet BC = distance of boat from lighthouse i.e. BC = x m

$$\tan 15^\circ = \frac{70}{x} \qquad ...(i)$$

$$\tan 15^\circ = \tan [45^\circ - 30^\circ]$$

$$=\frac{\tan 45^{\circ} - \tan 30^{\circ}}{1 + \tan 45^{\circ} \tan 30^{\circ}} = \frac{1 - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}}$$

$$= \frac{\sqrt{3} - 1}{\sqrt{3} + 1} = \frac{\left(\sqrt{3} - 1\right)^2}{2} = \frac{4 - 2\sqrt{3}}{2}$$

tan 15° = 2 - $\sqrt{3}$
From (i)
 $x = \frac{70}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}} = 70\left(2 + \sqrt{3}\right)$ m
25. (c) Let AB be the tower of height H.
Let CD be the tower of height h.

$$\Rightarrow \frac{H}{h} = 3 \Rightarrow H = 3h.$$

...(ii)

Let AB be the lamp post of height 'h'. Let BC = x meter In $\triangle ABC$,

$$\tan 45^\circ = \frac{h}{x} \implies 1 = \frac{h}{x} \implies x = h$$

and in $\triangle ABD$,

$$\tan 30^{\circ} = \frac{h}{x+10}$$
$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{h+10} \qquad (\because x = h)$$
$$\Rightarrow h+10 = \sqrt{3}h$$
$$\Rightarrow h = \left(\frac{10}{\sqrt{3}-1}\right)m = \frac{10\sqrt{3}+10}{2}$$

Let AB be the tower and AC & AD be the shadows of the tower. Let h be the height of the tower.

In
$$\triangle$$
 ABC, $\tan 60^\circ = \frac{h}{x}$...(i)

In
$$\triangle ABD$$
, $\tan 30^\circ = \frac{h}{x+50}$...(ii)

$$(i) \div (ii) \Rightarrow \frac{\sqrt{3}}{\frac{1}{\sqrt{3}}} = \frac{x+50}{x}$$
$$\Rightarrow 3x = x+50$$
$$\Rightarrow x = 25^{\circ}$$
$$\Rightarrow 1 = \sqrt{2} = 25\sqrt{2}$$

28. (a)

In
$$\triangle ABC$$
, $\tan 60^\circ = \frac{h}{x}$

$$\Rightarrow \sqrt{3} = \frac{h}{x} \Rightarrow h = \sqrt{3}x \qquad \dots (1)$$

In $\triangle ABD$, $\tan 30^\circ = \frac{h}{x+40}$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{x+40} \Rightarrow x+40 = \sqrt{3}h \qquad \dots(2)$$

Putting value of h from equation (1), we get x+40=3xx=20 m

$$\tan 30^\circ = \frac{AB}{BD}$$
$$\frac{1}{\sqrt{3}} = \frac{h}{x+20}$$
$$x+20 = \sqrt{3}h$$
$$h+20 = \sqrt{3}h$$

$$20 = (\sqrt{3} - 1) h$$

$$h = \frac{20}{\sqrt{3} - 1}$$

$$= \frac{20}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$$

$$=\frac{20(\sqrt{3}+1)}{2}=10(\sqrt{3}+1)\,\mathrm{m}$$

Hence the height is $10(\sqrt{3}+1)$ m

$$x + 3 = \sqrt{3}x$$

$$x = \frac{3}{\sqrt{3} - 1} \times \frac{(\sqrt{3} + 1)}{(\sqrt{3} + 1)}$$

$$x = \frac{3 \times 2.73}{2} = \frac{8.19}{2} = 4.095 \text{m} \approx 4.1\text{m}$$

36. (b)

Let height of hill = H & horizontal distance between building & hill = d

$$\tan q = \frac{H}{d} \Rightarrow d = \frac{H}{\tan q} = H \cot q$$
$$\tan p = \frac{(H-h)}{d} \Rightarrow d = (H-h) \cot p$$
$$\Rightarrow H \cot q = (H-h) \cot p$$
$$H = \frac{h \cot p}{\cot p - \cot q}$$

$$cot p -$$

37. (b)

$$\tan 60^\circ = \frac{150}{x} \Rightarrow x = \frac{150}{\sqrt{3}}$$

Also,
$$\tan 45^\circ = \frac{150}{x+y}$$
$$\Rightarrow x+y=150$$
$$\Rightarrow y=150-x=150-\frac{150}{\sqrt{3}}$$
$$\Rightarrow y=150\left(\frac{\sqrt{3}-1}{\sqrt{3}}\right) = \text{distance travelled}$$

Speed (in m/hr) = $\frac{150(\sqrt{3}-1)}{\sqrt{3}} \times \frac{60}{2} = 4500\frac{(\sqrt{3}-1)}{\sqrt{3}}$

38. (c) Given, angle of depression,
$$\theta = \tan^{-1}\left(\frac{5}{12}\right)$$

Top
Top
 100
 x Boat
 $\Rightarrow \tan \theta = \frac{5}{12}$
 $\Rightarrow \frac{100}{x} = \frac{5}{12}$
 $\Rightarrow x = \frac{100 \times 12}{5} = 240 \text{ m}$
39. (b) PQ is the lake and A is the point of observation.
Given, AP = 25m, $\angle BAD = 15^{\circ} \text{ and } \angle DAC = 45^{\circ}$
B(Cloud)
 x
 $25m$
 $225m$
 $25m$
 $25m$

$$\Rightarrow \frac{h_t + h_p}{h_p} = \frac{5 + \sqrt{3}}{2} \qquad \dots (2)$$

So, statement '3' is incorrect.

AB is the tower. BC is flag staff. The angles made by the shadows of tower and flag staff are same.

In
$$\triangle ABE$$
, $\tan \theta = \frac{h}{x}$...(1)

In
$$\triangle ACD$$
, $\tan \theta = \frac{h+6}{x+2\sqrt{3}}$...(2)
from (1), (2), $\frac{h}{x} = \frac{h+6}{x+2\sqrt{3}} \Longrightarrow hx + 2\sqrt{3}h = hx + 6x$
 $\Rightarrow \frac{h}{x} = \frac{6}{2\sqrt{3}} = \frac{3}{\sqrt{3}} = \frac{\sqrt{3} \cdot \sqrt{3}}{\sqrt{3}} = \sqrt{3}.$

from (1), $\tan \theta = \frac{h}{x} = \sqrt{3} \implies \theta = 60^{\circ}$.

42.

(a) Let 'A' be the position of eye. Let 'O' be the centre of spherical balloon. Let 'h' be the height of centre of balloon.

From figure, in
$$\triangle OAD$$
, $\sin \frac{\alpha}{2} = \frac{OD}{OA} = \frac{r}{OA}$

$$\Rightarrow OA = \frac{r}{\sin\frac{\alpha}{2}} \qquad \dots (1)$$

In
$$\triangle OAB$$
, $\sin \beta = \frac{OB}{OA} = \frac{h}{OA}$
 $\Rightarrow h = OA \cdot \sin \beta$
 $= \frac{r \cdot \sin \beta}{\sin \frac{\alpha}{2}}$ (from (1))

43. (a) Let the bridge is BC and height above the bridge AB = 122 m.

From DABC,
В

 $h \cot y$

fig. (ii)

EBD_7346

Functions, Limit, Continuity and Differentiability

1.	Let R be the set of real	numbers and let f :	$R \rightarrow R$ be a	0	
	function such that $f(x)$ =	$=\frac{x^2}{1-x^2}$. What is the	erange of f?	8.	What is
	(a) D	$l + x^2$			(a) 0
	(a) \mathbf{K} (c) [0, 1]	(b) $K = \{1\}$ (d) [0, 1)	[2006-1]		5
		(u) [0, 1)	[2000 1]		(c) $\frac{3}{16}$
2.	Let $f(x) = \frac{1}{\sqrt{18 - x^2}}$.			9.	If f (x) = value of
	With a triangle and the second	f(x) - f(3)			(a) 0
	what is the value of $\lim_{x \to x} x \to x$	$x^{n} = \frac{x^{n}}{x^{n} - 3}$		10.	$(c) \propto$ Conside
		1			1. The
	(a) 0	(b) $-\frac{1}{9}$			con
					2. All
	(c) $\frac{1}{2}$	(d) $\frac{1}{2}$	[2006-1]		Which of the second sec
2		9			(a) = 101 (c) Bot
3.	Let $f(x+y) = f(x)$. $f(y)$ are is continuous function	$(1) = 2$ for all x, y \in What is f'(1) equal to	$\mathbf{R}, \text{where } \mathbf{I}(\mathbf{x})$		(•) 200
	(a) $2 \ln 2$	(b) $\ln 2$			Γ
	(c) 1	(d) 0	[2006-I]	11.	If $\lim_{x \to a} -$
	$\left[(1+\mathbf{x}) \right]$	(3x + x)	³)		2
4.	Given $f(x) = \log \left\lfloor \frac{(1+x)}{(1-x)} \right\rfloor$	and g (x) = $\frac{(1+3x^2)}{(1+3x^2)}$	$\frac{1}{2}$, then what		(a) Bot
	is f [g (x)] equal to?	$(1_{-}) = 2[C({-})]$			(b) lim
	(a) $-I(x)$ (c) $[f(x)]^3$	(b) $3[I(X)]$ (d) $-3[f(X)]$	[2006-1]		(0) III $x \rightarrow x$
	$(\mathbf{c}) \begin{bmatrix} \mathbf{r}(\mathbf{x}) \end{bmatrix}$		[2000 1]		(c) Bot
5.	What is the value of lin	$n \frac{\sin x }{x}$?			(1) 1
	(a) 1	(b) -1			(d) $\lim_{x \to a}$
	(a) (c) ∞	(d) Limit does r	not exist		
			[2006-I]		
6.	What is the equivalent of	lefinition of the funct	ion given by	10	166() -
	$(2x, x \ge 0)$			12.	II I (X) =
	$f(x) = \begin{cases} 0, x < 0 \end{cases}$				
	(a) $f(x) = x $	(b) $f(x)=2x$			whi
	(c) $f(x) = x + x$	(d) $f(x)=2 x $	[2006-II]		
7.	If f: $R \rightarrow R^+$ such that f ($(\mathbf{x}) = (1/3)^{\mathbf{x}}$, then what	t is the value		(a) m=
	(a) $(1/3)^x$	(b) 3 ^x			
	(c) $\log_{1/2} x$	(d) $\log(1/3)$	[2006-11]		(c) $n =$
	(-) -ODI/3	$(\neg) \rightarrow \mathcal{D}_X (\neg \mathcal{D})$	L=00011		

Wh	hat is the value of $\lim_{x \to 0} \frac{x \sin}{\sin^2}$	$\frac{5x}{4x}$	[2006-11]			
(a)	0 (b)	$\frac{5}{4}$				
(c)	$\frac{5}{16}$ (d)	$\frac{25}{4}$				
Iff	$f(x) = (1 + x)^{5/x}$ is continuo	us at $x =$	0, then what is the			
valu	ue of $f(0)$?					
(a)	0 (b)		5300 C 111			
(c)	∞ (d)) e ³	[2006-11]			
	nsider the following statem	ents:	_ :			
I.	The function $f(x) = greater f(x)$	itest inte	ger $\leq x, x \in \mathbb{R}$ is a			
2. Wh (a) (c)	continuous function. All trigonometric function ich of the statements giver 1 only (b) Both 1 and 2 (d)	ns are con above is 2 only Neithe	tinuous on R. are correct ? r 1 nor 2 [2006-II]			
If $\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right]$ exists, then which one of the following correct						
(a)	Both $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$	x) must e	xist			
(b)	$\lim_{x \to a} f(x) \text{ need not exist bu}$	$\lim_{x\to a} g(x)$	x) must exist			
(c)	(c) Both $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ need not exist					
(d)	$\lim_{x \to a} f(x) \text{ must exist but } \lim_{x}$	$\lim_{a} g(x)$	need not exist			
			[2006-II]			
Iff	$F(\mathbf{x}) = \begin{cases} m\mathbf{x} + 1 & \mathbf{x} \le \frac{\pi}{2} \\ \sin \mathbf{x} + n & \mathbf{x} > \frac{\pi}{2} \end{cases} $ is	s continu	bus at $x = \frac{\pi}{2}$, then			

which one of the following is correct?

(a)
$$m=1, n=0$$
 (b) $m=\frac{n\pi}{2}+1$

(c)
$$n = m\left(\frac{\pi}{2}\right)$$
 (d) $m = n = \frac{\pi}{2}$ [2006-II]

v cin 5v

The above curve shows the graph of a^x under which one of the following conditions?

(a) $a \ge 1$ (b) a > 1

(c)
$$0 < a \le 1$$
 (d) $0 < a < 1$ [2006-II]

14. If
$$f(x) = \log\left(\frac{1+x}{1-x}\right)$$
, then what is $f\left(\frac{2x}{1-x^2}\right)$ equal to?
(a) $(f(x))^2$ (b) 1

(c)
$$2f(x)$$
 (d) $f\left(\frac{1-x}{1+x}\right)$ [2006-II]

15. If $f(x) = (x+1)^{\text{cotx}}$ is continuous at x = 0, then what is f(0)equal to? (a) 1 (b) e

1

(c)
$$\frac{1}{e}$$
 (d) e^2 [2007-I]

16. What is the value of
$$\lim_{x \to \infty} \left(\frac{x-2}{x-2}\right)^{x-2}$$
?
(a) 0 (b) e^4
(c) e^{-2} (d) e^{-4} [2007-I]

17. If the derivative of the function

$$f(x) \quad \begin{cases} ax^2 \ b & x \ -1 \\ bx^2 \ ax \ 4 & x \ge -1 \end{cases}$$

is every where continuous, then what are the values of a and b?

(a)
$$a=2, b=3$$

(b) $a=3, b=2$
(c) $a=-2, b=-3$
(d) $a=-3, b=-2$ [2007-I]

- 18. If f(x) is differentiable everywhere, then which one of the following is correct?
 - (a) |f| is differentiable everywhere
 - (b) $|f|^2$ is differentiable everywhere
 - (c) f | f | is not differentiable at some points
 - (d) None of the above
- 19. Let f:R \rightarrow R be defined as f(x) = ax² + bx + c, a, b, c being fixed non-zero real numbers. Which one of the following statements is correct, in general?

[2007-I]

- (a) If $b^2 4ac > 0$, then $f^{-1}(0)$ does not contain 0
- (b) If $b^2 4ac < 0$, then $f^{-1}(0)$ must contain 0
- (c) If $b^2 4ac > 0$, then $f^{-1}(0)$ may contain 0
- (d) If $b^2 4ac < 0$, then $f^{-1}(0)$ may contain 0 [2007-I]

20. If
$$\frac{x-a}{b-c} = \frac{x-b}{c-a} = \frac{x-c}{c-b} = 3$$
, then what is the value of x?
(a) 0 (b) 1

(c)
$$a + b + c$$
 (d) abc [2007-I]

- 21. If $-x^2 + 3x + 4 > 0$, then which one of the following is correct? (a) $x \in (-1, 4)$
 - (b) $x \in [-1, 4]$ (c)

$$\mathbf{x} \in (\infty, -1) \cup (4, \infty)$$

(d)
$$x \in (-\infty, -1] \cup [4, \infty)$$
 [2007-I]

22. Given,
$$f(x) = x + \frac{1}{x}$$
, then what is $f^2(x)$ equal to?

(a)
$$\frac{x^2+1}{x} + \frac{x}{x^2+1}$$
 (b) $(x+1/x)^2$
(c) $x^4 + (1/x^4)$ (d) $x^2 + (1/x^2)$ [2007-II]

23. If
$$f(x) = \begin{cases} 1 & x \text{ is a rational number} \\ 0, & x \text{ is an irrational number,} \end{cases}$$
 what is/are the

value(s) of (f of)
$$(\sqrt{3})$$
 ?

- (a) 0 (b) 1
- (c) Both 0 and 1 (d) None of these [2007-II] A function f is defined as follows 24.

$$f(x) = x^p \cos\left(\frac{1}{x}\right), x \neq 0$$

$$f(0) = 0$$

What conditions should be imposed on p so that f may be continuous at x = 0?

(a)
$$p=0$$
 (b) $p>0$
(c) $p<0$ (d) No value of p [2007-II]

25. What is the value of
$$\lim_{x \to \infty} \frac{\sin x}{x}$$
?
(a) 1 (b) 0

(c)
$$\infty$$
 (d) -1 [2008-I]
What is $\lim_{x \to 0} \frac{a^x - b^x}{2}$?

26. What is
$$\lim_{x \to 0} \frac{a^x - b^2}{x}$$

(a)
$$\log\left(\frac{a}{b}\right)$$
 (b) $\log\left(\frac{b}{a}\right)$
(c) ab (d) $\log(ab)$ [2008-1]

27. Let
$$f(x) = \begin{cases} 3x - 4, & 0 \le x \le 2\\ 2x \ \ell, & 2 \ x \le 9 \end{cases}$$

If f is continuous at x = 2, then what is the value of ℓ ?

(a) 0 (b) 2 (c) -2 (d) -1 [2008-I] 28. If f(x) = x and g(x) = |x|, then what is (f + g)(x)equal to? [2008-1] (a) 0 for all $x \in R$ (b) 2x for all $x \in \mathbb{R}$ $\begin{cases} 0, & \text{for } x \ge 0 \\ 2x, & \text{for } x < 0 \end{cases}$ $\begin{cases} 2x, \text{ for } x \ge 0\\ 0, \text{ for } x < 0 \end{cases}$ (d) (c)

29. If
$$g(x) = \sin x, x \in R$$
 and $f(x) = \frac{1}{\sin x}, x \in \left(0, \frac{\pi}{2}\right)$ what is
(gof) (x) equal to ?

(c)
$$\frac{1}{\sin^2(x)}$$
 (d) $\sin\left(\frac{1}{\sin x}\right)$ [2008-1]

 $\frac{1}{\sin(\sin x)}$

30. Let f: R → R be defined as f(x) = sin (|x|)
Which one of the following is correct?
(a) f is not differentiable only at 0

- (a) I is not underentiable only a (b) fig differentiable $1 = 10^{-1}$
- (b) fis differentiable at 0 only
- (c) f is differentiable everywhere

(d) f is non-differentiable at many points [2008-I] 31. What is the inverse of the function $v = 5^{\log x}$?

1. What is the inverse of the function
$$y = 5^{\log x}$$
?
(a) $x = 5^{1/\log y}$ (b) $x = x^{1/\log 5}$

(a)
$$x = 5^{\log y}$$
 (b) $x = y^{\log 5}$ [2008-1]

DIRECTIONS (Qs. 32-33) : *The following questions consist of two statements, one labelled as the 'Assertion (A)' and the other* as 'Reason (R)'. You are to examine these two statements carefully and select the answers.

- (a) Both **A** and **R** are individually true, and **R** is the correct explanation of **A**.
- (b) Both **A** and **R** are individually true but **R** is not the correct explanation of **A**.
- (c) A is true but \mathbf{R} is false.
- (d) A is false but **R** is true. [2008-1]
- 32. Assertion (A): If $f(x) = \log x$, then f(x) > 0 for all x > 0. Reason (R): $f(x) = \log x$, is defined for all x > 0.
- 33. Assertion (A): $f(x) = x \sin\left(\frac{1}{x}\right)$ is differentiable at x = 0. Reason (R): f(x) is continuous at x = 0.

34. If
$$f(x) = \log |x|, x \neq 0$$
, then what is $f'(x)$ equal to?
[2008-II]

(a)
$$\frac{1}{|x|}$$
 (b) $\frac{1}{x}$

(c)
$$\frac{-1}{x}$$
 (d) None of these

35. $\lim_{x \to 0} e^{-1/x}$ is equal to [2008-II]

- (a) 0 (b) ∞ (c) e (d) does not exist
- 36. Let $g: R \to R$ be a function such that, g(x) = 2x + 5. Then, what is $g^{-1}(x)$ equal to? [2008-II]

(a)
$$\frac{x-5}{2}$$
 (b) $2x-5$
(c) $x-\frac{5}{2}$ (d) $\frac{x}{2}+\frac{5}{2}$

Consider the following statements: [2008-II]
1.
$$\lim_{x \to 0} \frac{x^2}{x}$$
 exists.
2. $\left(\frac{x^2}{x}\right)$ is not continuous at $x = 0$
3. $\lim_{x \to 0} \frac{|x|}{x}$ does not exist.
Which of the statements given above are correct?

- (a) 1, 2 and 3 (b) 1 and 2 only
- (c) 2 and 3 only (d) 1 and 3 only
- 38. Let $f(x) = \frac{1}{1 |1 x|}$. Then, what is $\lim_{x \to 0} f(x)$ equal to [2008-II]

37.

39. What is the value of
$$\lim_{x \to a} \frac{\sqrt{\alpha + 2x} - \sqrt{3x}}{\sqrt{3\alpha + x} - 2\sqrt{x}}$$
? [2008-II]

(a)
$$\frac{2}{\sqrt{3}}$$
 (b) $\frac{1}{(3\sqrt{3})}$
(c) $\frac{2}{(3\sqrt{3})}$ (d) $\frac{1}{\sqrt{3}}$

DIRECTIONS (Qs. 40-41) : *The following questions consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answers.*

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is not the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- 40. Assertion (A): The function [2008-II] $f:(1,2,3) \rightarrow (a,b,c,d)$ defined by $f=\{(1,a),(2,b),(3,c)\}$ has no inverse. Reason (R): f is not one-one.
- 41. Assertion (A): y = 2x + 3 is a one to one real valued function. Reason (R): $x_1 \neq x_2$ [2008-II] $\Rightarrow y_1 \neq y_2, y_1 = 2x_1 + 3, y_2 = 2x_2 + 3$, for any two real x_1 and x_2
- 42. The function $f: R \to R$ defined by $f(x) = (x^2 + 1)^{35}$ for all $x \in R$ is [2008-II]
 - (a) one-one but not onto
 - (b) onto but not one-one
 - (c) neither one-one nor onto
 - (d) both one-one and onto

Functions, Limit, Continuity and Differentiability

43. Let $f: R \to R$ be a function defined as f(x) = x |x|; for each $x \in R, R$ being the set of real numbers. Which one of the following is correct? [2009-I] (a) f is one-one but not onto (b) f is onto but not one-one (c) *f* is both one-one and onto (d) f is neither one-one nor onto 44. What is the set of all points, where the function $f(x) = \frac{x}{1+|x|}$ is differentiable? [2009-I] (a) $(-\infty,\infty)$ only (b) $(0,\infty)$ only (c) $(-\infty, 0) \cup (0, \infty)$ only (d) $(-\infty, 0)$ only 45. Let $y(x) = ax^n$ and δy denote small change in y. What is limit of $\frac{\delta y}{\delta r}$ as $\delta x \to 0$? [2009-I] (b) 1 (c) anx^{n-1} (d) $ax^n \log(ax)$ 46. What is $\lim_{x \to a} \frac{\sin^2 ax}{bx}$ (a, b are constants) equal to? [2009-I] (a) 0 (b) a (c) a/b (d) Does not exist 47. If $f(x) = \begin{cases} 3x - 4, 0 \le x \le 2\\ 2x + \lambda, 2 < x \le 3 \end{cases}$ [2009-I] is continuous at x = 2, then what is the value of λ ? (b) -1 (a) 1 (c) 2 (d) -2 A mapping $f: R \rightarrow R$ which is defined as 48. [2009-II] $f(x) = \cos x; x \in R$ is (a) One-one only (b) Onto only (c) One-one onto (d) Neither one-one nor onto What is $\lim_{x \to \infty} \left(\frac{x}{3+x}\right)^{3x}$ equal to? 49. [2009-II] (a) *e* (b) e^3 (c) e^{-9} (d) e^9 50. Consider the following function $f: R \to R$ such that f(x) = x if $x \ge 0$ and $f(x) = -x^2$ if x < 0. Then, which one of the following is correct? [2009-II] (a) f(x) is continuous at every $x \in R$ (b) f(x) is continuous at x = 0 only (c) f(x) is discontinuous at x = 0 only (d) f(x) is discontinuous at every $x \in R$

51. Which one of the following functions $f: R \rightarrow R$ is injective? [2009-II] (a) f(x) = |x| for all $x \in R$ (b) $f(x) = x^2$ for all $x \in R$ (c) f(x) = 11 for all $x \in R$ (d) f(x) = -x for all $x \in R$ The function $f(x) = e^x$, $x \in R$ is 52. [2010-1] (a) onto but not one-one (b) one-one onto (c) one-one but not onto (d) neither one-one nor onto What is the value of $\lim_{x \to \infty} \left(\frac{x+6}{x+1}\right)^{x+4}$ 53. [2010-I] (b) e^2 (a) *e* (c) e^4 (d) e^5 If $f: R \rightarrow R, g: R \rightarrow R$ and g(x) = x + 3 and $(fog)(x) = (x + 3)^2$, then 54. what is the value of f(-3)? [2010-1] (a) -9 (b) 0 (c) 9 (d) 3 What is the value of $\lim_{x \to 1} \frac{(x-1)^2}{|x-1|}$? 55. [2010-I] (a) 0 (b) 1 (c) -1 (d) The limit does not exist

DIRECTIONS (Qs. 56-58) : Each item under List I is associated with one or more items under List II.

	List I		List II
	(Function)		(Property)
A.	sin x	1.	Periodic function
B.	$\cos x$	2.	Non-periodic function
C.	tan x	3.	Continuous at every point on
			$(-\infty,\infty)$
		4.	Discontinuous function
		5.	Differentiable at every point on
			$(-\infty,\infty)$
		6.	Not differentiable at every point
			on $(-\infty, \infty)$
		7.	has period π
		8.	has period 2π
		9.	increases on $\left(0,\frac{\pi}{2}\right)$
		10.	decreases on $\left(0, \frac{\pi}{2}\right)$
		11.	increases on $\left(\frac{\pi}{2},\pi\right)$
		12.	decreases on $\left(\frac{\pi}{2},\pi\right)$

56	A is associated with		[2010-]]				
20.	(a) 1.3.5.8.9.12	(b) 2, 4, 6, 8, 10,	11		$a^x - b^x$	1	
	(c) 1, 3, 5, 7, 10, 11	(d) None of these	se	66.	What is $x \to 0$ x	equal to?	
57	B is associated with	(4) 110110 01 010	[2010-1]				
	(a) 2.3.5.8.9.12	(b) 1.3.5.8.10.	12		(a) ln (ab)	(b)	ln a
	(c) 1, 3, 5, 8, 9, 12	(d) None of the	above		(a) <i>I</i> II (a0)	(0)	$\ln b$
58.	C is associated with	(1)	[2010-1]				
	(a) 1.4.6.7.9.11	(b) 2, 4, 8, 9	[=•=•-]		(a)	(1)	(b)
	(c) 1, 4, 6, 7, 9	(d) None of thes	se		(c) $ln\left(\frac{-}{b}\right)$	(d)	$ln\left(\frac{-}{a}\right)$
		(1)	-	67	If the function		
59	Consider the following state	ements	[2010-1]	07.			
07.	1. Every function has a prim	itive.	[=0101]		$f(x) = \frac{x(x-2)}{x(x-2)}$	$r \neq \pm 2$	
	2. A primitive of a function i	s unique.			$f(x) = \frac{1}{x^2 - 4}, x$,	
	Which of the statements give	ven above is/are co	orrect?		i		<i>(</i> (2))
	(a) 1 only	(b) 2 only			is continuous at $x = 2$, th	en what is	f(2) equa
	(c) Both 1 and 2	(d) Neither 1 nor	- 2				1
	(0) 2000 1 0000 2	(4) 100001100	-		(a) 0	(b)	$\overline{2}$
60	The function $f(x) = \frac{x}{2}$	from R to R is	[2010_1]		(c) 1	(d)	2
00.	The function $y \neq y$ $x^2 + 1$	II OIII A to A 15	[2010-1]	(0		· (1	- :
	(a) one – one as well as or	nto		68.	At how many point	s is the	functio
	(b) onto but not one-one				discontinuous?		
	(c) neither one-one nor or	nto			(a) 1	(b)	2
	(d) one-one but not onto				(c) 3	(d)	Infinite
61.	The function $f(x) = x$ cosec.	x is	[2010-1]		2 3		
	(a) continuous for all valu	es of x	2 3	69.	If $f(x) = \frac{2}{2}x + \frac{3}{2}, x \in \mathbb{R}$	2,	
	(b) discontinuous everywl	here			3 2		
	(c) continuous for all $x \in X$	$\text{cept at } x = n\pi, \text{ w}$	here <i>n</i> is an		then what is $f^{-1}(x)$ equa	ıl to?	
	integer				3 2		3 9
	(d) continuous for all $x \exp(\frac{1}{x})$	$ept at x = n\pi / 2, w$	where <i>n</i> is an		(a) $\frac{-x+-3}{2}$	(b)	$\frac{1}{2}x - \frac{1}{4}$
	integer				2 5		2
62.	Consider the following state	ements :	[2010-II]		(a) $\frac{2}{r} - \frac{4}{r}$	(4)	$\frac{2}{r} = \frac{2}{r}$
	I. $f(x) = x - 3 $ is continue	ous at $x = 0$.			$\binom{0}{3}^{n} 9$	(u)	3 3
	II. $f(x) = x - 3 $ is different	tiable at $x = 0$.					
	Which of the statements give	ven above is/are co	orrect?	70.	What is $\lim \left(\sqrt{a^2 x^2} + \right)$	$ax+1-\sqrt{a}$	$x^2x^2 + 1$
	(a) I only	(b) II only			$x \rightarrow \infty$)
	(c) Both I and II	(d) Neither I r	nor II				
63.	Consider the function $f: R$ –	$\rightarrow \{0, 1\}$ such that	[2010-II]		1		
	(1) [1, if x is rational				(a) $\frac{1}{2}$	(b) 1	
	$f(x) = \begin{cases} 0, \text{ if } x \text{ is irrational} \end{cases}$				(z) 2	(1) 0	
	Which one of the following	is correct?		71	(c) 2 What is the value of	$(\mathbf{a}) = 0$	which t
	(a) The function is one-on	e into		/1.	what is the value of function $f(x)$ is continuous	1 K 101 V	vinch ti
	(b) The function is many-o	one into			f(x) is continuou	18 101 all x	<u>(</u>
	(c) The function is one-on	e onto			$\begin{bmatrix} x^3 - 3x & 2 \end{bmatrix}$		
	(d) The function is many-	one onto			$\left \frac{x-3x-2}{2}\right $, for	or $x \neq 1$	
	(a) The function is many ($f x = \begin{cases} x - 1^2 \end{cases}$		
64	What is the value of I im	$\cos(ax) - \cos(bx)$	$\underline{)}_{2}$		k, fo	or x 1	
04.	what is the value of $\lim_{x \to 0}$	x ²	1				
	(a) a b	(h) a h			(a) 3	(b) 2	
	(a) $a = 0$	(b) $a + b$		70		(d) – I	l , .
	$b^2 - a^2$	$b^2 + a^2$		72.	which one of the follow	wing is co	prrect in
	(c) $\frac{1}{2}$	(d) $\frac{1}{2}$			function $f(x) = x + x^2$	2	
65	$If f(x) = 2x \pm 7$ and $a(x) = -2$	$\pm 7 r = 0$ then $r = 1$	at are velves		f(x) = x + x	a a t = 0	
03.	$n_{f(x)} - 2x + i \operatorname{and} g(x) = x^{2}$	$1, x \in K$, then Wh			(a) $f(x)$ is not continuou (b) $f(x)$ is differential.	as at x = 0	
	of x for which $Jog(x) = 25$?	(h) 2.2	[2010-11]		(b) $f(x)$ is differentiable (c) $f(x)$ is continuous by	a x = 0	rontichla
	(a) -1, 1	(0) -2, 2			(c) $f(x)$ is continuous of (d) None of the above	at not unle	rentiable
	(c) $-\sqrt{2}, \sqrt{2}$	(d) None of t	hese		(u) mone of the above		

What is
$$\lim_{x \to 0} \frac{a^x - b^x}{x}$$
 equal to? [2010-II]

[2010-II]

is continuous at x = 2, then what is f(2) equal to?

(a)	0	(b)	$\frac{1}{2}$
(c)	1	(d)	2

At	how	many	points	is	the	function	f x	x
disc	contin	uous?					[2010)-II]
(a)	1				(b)	2		
(c)	3				(d)	Infinite		

- If $f(x) = \frac{2}{3}x + \frac{3}{2}, x \in R$, [2010-II] then what is $f^{-1}(x)$ equal to? (a) $\frac{3}{2}x + \frac{2}{3}$ (b) $\frac{3}{2}x - \frac{9}{4}$ (c) $\frac{2}{3}x - \frac{4}{9}$ (d) $\frac{2}{3}x - \frac{2}{3}$
- What is $\lim_{x\to\infty} \left(\sqrt{a^2x^2 + ax + 1} \sqrt{a^2x^2 + 1}\right)$ equal to? [2011-I]

(a)
$$\frac{1}{2}$$
 (b) 1
(c) 2 (d) 0

What is the value of k for which the following function f(x) is continuous for all x? [2011-I]

$$f x \begin{cases} \frac{x^3 - 3x - 2}{x - 1^2}, \text{ for } x \neq 1 \\ k & , \text{ for } x - 1 \end{cases}$$
(a) 3 (b) 2
(c) 1 (d) -1

Which one of the following is correct in respect of the

function
$$f(x) = |x| + x^2$$
 [2011-1]

- (a) f(x) is not continuous at x = 0
- (b) f(x) is differentiable at x = 0
- (c) f(x) is continuous but not differentiable at x = 0
- (d) None of the above

Functions, Limit, Continuity and Differentiability

73.	Con f(x)=	sider the following $= x-3 $:	in respect of t	he function
	1.	f(x) is continuous at x	= 3	
	2. Whi	f(x) is differentiable at x	x = 0.	
	(a)	1 only	(b) 2 only	[2012-1]
	(c)	Both 1 and 2	(d) Neither 1 no	or 2
74	Wha	t is $\lim x^2 \sin\left(\frac{1}{2}\right) e^{-1}$	ual to?	[2012-1]
,	(0)	$x \to 0 \qquad (x) = x$	(b) 1	[= • 1 = 1]
	(a) (c)	1/2	(d) Limit does i	not exist
75.	Wha	t is $\lim_{x \to 2} \left(\frac{x+2}{2} \right)$ eq	ual to?	[2012-I]
		$x \rightarrow -2(x^3 + 8)$		LJ
	(a)	1/4	(b) $-1/4$ (d) $-1/12$	
76.	Iff[z	f[x] = f[x] f[y], then f[t	[may be of the form	m:
	(a) ⁻	t+k	(b) $ct + k$	[2012-I]
	(c)	$t^{k} + c$	(d) t^k	
77	When	te k, c are constants	functions is differe	entiable for all
77.	real	values of x?		[2012-I]
		х		
	(a)	$\overline{ \mathbf{x} }$	(b) $\mathbf{x} \mathbf{x} $	
		1	1	
	(c)	x	(d) $\frac{-}{x}$	
78.	Wha	t is lim $\frac{\sqrt{1+x}-1}{x}$ equ	al to?	[2012-II]
		$x \rightarrow 0$ X		
	(a)	0	(b) $\frac{1}{2}$	
			2	
	(c)	1	(d) $-\frac{1}{2}$	
		$2 1 - \cos x$		
79.	Wha	t is $\lim_{x \to 0} \frac{1}{x^2}$ e	qual to ?	[2012-II]
	(a)	0	(b) 1/2	
80	(c)	1/4 sider the following :	(d) 1	
80.	Cons	i i i i i i i i i i i i i i i i i i i		
	1.	$\lim_{x \to 0} \frac{1}{x}$ exists.		
	2	$\frac{1}{1}$ lim e^{x} does not evid	st	
	<u>~</u> .	$x \rightarrow 0$		
	Whi	ch of the above is/are co	orrect?	[2012-II]
	(a) (c)	I only Both 1 and 2	(b) 2 only (d) Neither 1	nor 2
				101 2

(b) f(x) is continuous every where (c) f(x) is continuous at x = 0 only (d) f(x) is discontinuous at x = 0 only 82. What is $\lim_{x \to 2} \frac{x-2}{x^2-4}$ equal to ? [2012-II] (b) $\frac{1}{4}$ (a) 0 (c) (d) 1 83. Let $f: R \to R$ be a function whose inverse is $\frac{x+5}{3}$. What is (b) f(x) = 3x - 5(d) f(x) = 3x - 5f(x) equal to? (a) f(x) = 3x + 5(c) f(x) = 5x - 3(d) f(x) does not exist 84. Consider the following statements : [2012-II] If $f(x) = x^3$ and $g(y) = y^3$ then f = g. 1. Identity function is not always a bijection. 2. Which of the above statements is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 85. Let $A = \{x \in R \mid x \ge 0\}$. A function $f : A \rightarrow A$ is defined by $f(x) = x^2$. Which one of the following is correct? (a) The function does not have inverse [2012-II] (b) f is its own inverse The function has an inverse but f is not its own inverse (c) (d) None of the above 86. Consider the following statements in respect of a function f(x): [2013-I] f(x) is continuous at x = a iff $\lim_{x \to a} f(x)$ exists. 1. If f (x) is continuous at a point, then $\frac{1}{f(x)}$ is also 2. continuous at that point. Which of the above, statements is/are correct? (a) 1 only (b) 2 only (d) Neither 1 nor 2 Both 1 and 2 (c) 87. Consider the function $f(x) = \begin{cases} x^2, & x > 2\\ 3x - 2, & x \le 2 \end{cases}$ Which one

81. Which one of the following is correct in respect of the

function $f(x) = \frac{x^2}{|x|}$ for $x \neq 0$ and f(0) = 0?

(a) f(x) is discontinuous every where

of the following statements is correct in respect of the above function? [2013-I]

- (a) f(x) is derivable but not continuous at x = 2.
- (b) f(x) is continuous but not derivable at x = 2.
- (c) f(x) is neither continuous nor derivable at x = 2.
- (d) f(x) is continuous as well as derivable at x = 2.

[2012-II]

88.	Cons	ider the following staten	nents:		96.	A fu	unction $f: R \to R$ is	defined as	$f(x) = x^2$	for $x \ge 0$ and
	1.	$\lim_{x \to 0} \sin \frac{1}{x} \text{ does not exi}$	st.			f(x) Con	=-x for $x < 0$. sider the following	statements	s in respect	<i>[2013-II]</i> t of the above
	2.	$\lim_{x \to 0} \sin \frac{1}{x}$ exists.				1. T	tion : The function is cont The function is diffe	inuous at x rentiable at	= 0. x = 0	
	Whie	ch of the above statemen	ts correct?	[2013-1]		Whi	ch of the above stat	tements is/a	are correct	?
	(a)	1 only	(b) 2 only	[2015 1]		(a)	1 only	(b)	2 only	
	(c)	Both 1 and 2	(d) Neither 1 nor	2		(c)	Both 1 and 2	(d)	Neither 1	nor 2
00	1	$\sin x - \tan x$		[2012 I]	07	Whe	$1 - \cos x$	qual to 2		[2013 11]
89.	$x \rightarrow 0$	x equal to?		[2013-1]	<i>J</i> 1.	vv 11c	$\lim_{x \to 0} \frac{1}{x} c$	qual to ?		[2013-11]
	(a)	0	(b) 1 (d) $1/2$			(a)	0	(h)	1	
	(0)	- 1	(u) 1/2			(a)	0	(0)	$\overline{2}$	
90.	Wha	t is $\lim_{x \to 0} \frac{1 - \sqrt{1 + x}}{x}$ equal	l to?	[2013-I]		(c)	1	(d)	2	
	(a)	1/2	(b) $-1/2$		98.	Wha	at is $\lim_{x \to 0} \frac{\cos x}{\pi - x}$ equ	al to ?		[2013-II]
91.	Cons	tider the following statem	nents:			(a)	0	(b)	π	
	1.	The derivative where the	ne function attains	maxima or			1			
	•	minima be zero.	• • • • • • • • • • • • • • • • • • • •	·, ,1		(c)	$\frac{1}{\pi}$	(d)	1	
	2.	If a function is differenti	lable at a point, thei	n it must be			<i>.</i>			
	Whic	ch of the above statemen	ts is/are correct?	[2013-1]	99.	Wha	at is $\lim \frac{\sin 2x + 4x}{2}$	$\frac{x}{-}$ equal to	?	[2013-II]
	(a)	1 only	(b) 2 only				$x \rightarrow 0 \ 2x + \sin 4x$	r		
	(c)	Both 1 and 2	(d) Neither 1 nor	2		(-)	0	(1-)	1	
92.	Let I	N be the set of natural n tion given by $f(x) = x + f(x)$	sumbers and $f : N$	\rightarrow N, be a		(a)	0	(b)	$\overline{2}$	
	follo	wing is correct?	$-1, x \in \mathbb{N}$. which	[2013-I]		(c)	1	(d)	2	
	(a)	f is one-one and onto		[2010 1]	100.	Let <i>i</i>	V denote the set of a	ll non-nega	tive integer	s and Z denote
	(b)	f is one-one but not ont	0			the :	set of all integers.	The functi	on $f: Z \rightarrow$	$\rightarrow N$ given by
	(c)	f is only onto				f(x)	= x is:			[2014-I]
03	(d) Let f	I is neither one-one nor	Onto et of natural number	rs to the set		(a)	One-one but not	onto		
<i>))</i> .	ofev	en natural numbers giver	n by $f(x) = 2x$. The	n f is		(b)	Onto but not one	-one		
				[2013-II]		(c)	Both one-one and	onto		
	(a)	one to one but not onto	,	2 5		(u)	Neither one-one i			
	(b)	onto but not one-one			101	Wha	at is $\lim \frac{(1+x)^n-1}{2}$	l - equal to ?		[2014-1]
	(c)	both one-one and onto			101.	** 110	$x \to 0$ x	equui to :		[20171]
	(d)	neither one-one nor ont	0	50010 111		(a)	0	(b)	1	
94.	Cons	sider the following function $f(x) = x^2 + x^2 + x^2$	ons :	[2013-11]		(c)	n	(d)	n-1	
	1. 2	$f(x) = e^x, \text{ where } x > 0$ $g(x) = x - 3 $			102.	Wha	at is $\lim_{x \to 1} \frac{x}{\sqrt{1-x}}$	equal to?		[2014-I]
	Z.	g(x) = x - 5	i i alora continuoua	n			$x \rightarrow 0 \sqrt{1 - \cos x}$	1		L J
	(a)	1 only	(b) 2 only	1		(a)	$\sqrt{2}$	(b)	$-\sqrt{2}$	
	(a)	Both 1 and 2	(d) Neither 1 nor	· 2			1			
	(0)	2000 1 4004 2		-		(c)	$\sqrt{2}$	(d)	Limit does	s not exist
95.	Wha	t is $\lim_{x \to 2} \frac{2-x}{x^3-8}$ equal to	?	[2013-II]	DIF	RECT	TION (Qs. 103-104	4): For the	next two (02) items that
	(a)	1	(b) $-\frac{1}{2}$		<u>_</u>			$1 - \sin x$		
	(a)	8	8		Con	sider	the function $f(x)$	$=\frac{1}{(\pi-2x)^2}$	-	
	(c)	1	(d) $-\frac{1}{2}$					()		
		12	12		Wh	ere x	$\neq \frac{\pi}{2}$ and $f\left(\frac{\pi}{2}\right) = 1$	λ		[2014-I]

Cons	ider the following staten	nents	in respect of	the above			
funct	ion :						
1. Tł	ne function is continuous	at $x =$	= 0.				
2. Tł	ne function is differentiab	le at.	x=0.				
Whic	Which of the above statements is/are correct?						
(a)	1 only	(b)	2 only				
(c)	Both 1 and 2	(d)	Neither 1 nor	2			
What	t is $\lim_{x \to 0} \frac{1 - \cos x}{x}$ equal to	?		[2013-II]			
(a)	0	(b)	$\frac{1}{2}$				
(c)	1	(d)	2				
What	t is $\lim_{x \to 0} \frac{\cos x}{\pi - x}$ equal to ?			[2013-11]			
(a)	0	(b)	π				
(c)	$\frac{1}{\pi}$	(d)	1				
What	t is $\lim_{x \to 0} \frac{\sin 2x + 4x}{2x + \sin 4x}$ equa	l to ?)	[2013-11]			

(a) 0 (b)
$$\frac{1}{2}$$

(c) 1 (d) 2

$$f(x) = |x|$$
 is: [2014-I]

- Onto but not one-one (b)
- Both one-one and onto (c)
- (d) Neither one-one nor onto

101. What is
$$\lim_{x \to 0} \frac{(1+x)^n - 1}{x}$$
 equal to ? [2014-1]
(a) 0 (b) 1
(c) n (d) $n - 1$

102. What is
$$\lim_{x \to 0} \frac{x}{\sqrt{1 - \cos x}}$$
 equal to ? [2014-I]

(a)
$$\sqrt{2}$$
 (b) $-\sqrt{2}$
(c) $\frac{1}{\sqrt{2}}$ (d) Limit

Where
$$x \neq \frac{\pi}{2}$$
 and $f\left(\frac{\pi}{2}\right) = \lambda$ [2014-1]

NDA Topicwise Solved Papers - MATHEMATICS

103. Wł	hat is $x \rightarrow \frac{\pi}{2} f(x)$ equal to ?	
(a)	1	(b) 1/2
(c)	1/4	(d) 1/8
104. Wł	hat is the value of λ if	the function is continuous at
x	$\frac{\pi}{2}$?	
(a)	1/8	(b) 1/4
(c)	1/2	(d) 1
105. If <i>f</i>	(9) = 9 and $f'(9) = 4$ then w	what is $\lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3}$ equal to ?
	26	[2014-1]
(a)	36	(b) 9
(C)	4 naidantha fallanina atata	(d) None of these
106. Co	nsider the following state	ments : [2014-1]
1.	The function $f(x) = \sqrt[3]{x}$ x = 0.	is continuous at all x except at
2.	The function $f(x) = [x]$ [.] is the bracket function	is continuous at $x = 2.99$ where on.
Wł	nich of the above statement	nts is/are correct ?
(a)	1 only	(b) 2 only
(c)	Both 1 and 2	(d) Neither 1 nor 2
107. Co	nsider the following state	ments : [2014-I]
1.	The function $f(x) = x $	is not differentiable at $x = 1$.
2.	The function $f(x) = e^x i$	s not differentiable at $x = 0$.
Wł	nich of the above statement	nts is/are correct ?
(a)	1 only	(b) 2 only
(c)	1 only	(0) 2 only
	Both 1 and 2	(d) Neither 1 nor 2
DIREC	Both 1 and 2 TIONS (Qs. 108-110): F	(d) Neither 1 nor 2 for the next three (03) items that
DIREC follow.	Both 1 and 2 TIONS (Qs. 108-110): F	(d) Neither 1 nor 2 for the next three (03) items that
$\overline{\mathbf{DIREC}}$ $\underline{follow.}$ $\operatorname{Let} f(x)$	Both 1 and 2 TIONS (Qs. 108-110): F be a function defined in 1	(d) Neither 1 nor 2 for the next three (03) items that $\leq x < \infty \text{ by} \qquad [2014-I]$
$\frac{\textbf{DIREC}}{follow.}$ Let $f(x)$	Both 1 and 2 TIONS (Qs. 108-110): F be a function defined in 1 $x) = \begin{cases} 2-x & \text{for } 1 \le x \le 3x - x^2 & \text{for } x > 2 \end{cases}$	(d) Neither 1 nor 2 (d) Neither 1 nor 2 For the next three (03) items that $\leq x < \infty$ by [2014-I] ≤ 2 2.
DIREC follow. Let $f(x)$ f(108. Co	Both 1 and 2 TIONS (Qs. 108-110): F be a function defined in 1 $x) = \begin{cases} 2-x & \text{for } 1 \le x \le 3x - x^2 & \text{for } x > 2 \end{cases}$ Insider the following state The function is continue	(d) Neither 1 nor 2 (d) Neither 1 nor 2 For the next three (03) items that $\leq x < \infty$ by [2014-I] ≤ 2 2. ments : out at every point in the interval
DIREC <i>follow.</i> Let <i>f</i> (<i>x</i>) <i>f</i> (108. Co. 1.	Both 1 and 2 TIONS (Qs. 108-110): F be a function defined in 1 $x) = \begin{cases} 2-x & \text{for } 1 \le x \le 3x - x^2 & \text{for } x > 2 \end{cases}$ Insider the following state The function is continue (1, \infty).	(d) Neither 1 nor 2 for the next three (03) items that $\leq x < \infty$ by [2014-I] ≤ 2 2. ments : ous at every point in the interval
DIREC <i>follow.</i> Let <i>f</i> (<i>x</i>) <i>f</i> (108. Co 1. 2.	Both 1 and 2 TIONS (Qs. 108-110): F be a function defined in 1 $x) = \begin{cases} 2-x & \text{for } 1 \le x \le 2\\ 3x-x^2 & \text{for } x > 2 \end{cases}$ Insider the following state: The function is continu (1, \infty). The function is different	(d) Neither 1 nor 2 (d) Neither 1 nor 2 for the next three (03) items that $\leq x < \infty$ by [2014-I] ≤ 2 2. ments : ous at every point in the interval htiable at $x = 1.5$.
DIREC follow. Let f(x) f(108. Co 1. 2. Wh	Both 1 and 2 TIONS (Qs. 108-110): F be a function defined in 1 $x) = \begin{cases} 2-x & \text{for } 1 \le x \le$	(d) Neither 1 nor 2 (d) Neither 1 nor 2 For the next three (03) items that $\leq x < \infty$ by [2014-I] ≤ 2 2. ments : ous at every point in the interval ntiable at $x = 1.5$. nts is/are correct ?
DIREC follow. Let f(x) f(108. Co. 1. 2. Wh (a)	Both 1 and 2 TIONS (Qs. 108-110): F be a function defined in 1 $f(x) = \begin{cases} 2-x & \text{for } 1 \le x \le 3x - x^2 & \text{for } x > 2 \\ 3x - x^2 & \text{for } x > 2 \end{cases}$ Insider the following states The function is continu $(1, \infty)$. The function is different ich of the above statement 1 only	(d) Neither 1 nor 2 (d) Neither 1 nor 2 For the next three (03) items that $\leq x < \infty$ by [2014-I] ≤ 2 2. ments : ous at every point in the interval htiable at $x = 1.5$. nts is/are correct ? (b) 2 only
DIREC follow. Let f(x) 108. Co 1. 2. WH (a) (c)	Both 1 and 2 TIONS (Qs. 108-110): F be a function defined in 1 $f(x) = \begin{cases} 2-x & \text{for } 1 \le x \le$	(d) Neither 1 nor 2 (d) Neither 1 nor 2 for the next three (03) items that $\leq x < \infty$ by [2014-I] ≤ 2 2. ments : ous at every point in the interval ntiable at $x = 1.5$. nts is/are correct ? (b) 2 only (d) Neither 1 nor 2
DIREC <i>follow.</i> Let <i>f</i> (<i>x</i>) <i>f</i> (108. Co 1. 2. Wh (a) (c) 109. Wh	Both 1 and 2 TIONS (Qs. 108-110): F be a function defined in 1 $x) = \begin{cases} 2-x & \text{for } 1 \le x \le$	(d) Neither 1 nor 2 (d) Neither 1 nor 2 For the next three (03) items that $\leq x < \infty$ by [2014-I] ≤ 2 2. ments : ous at every point in the interval ntiable at $x = 1.5$. nts is/are correct ? (b) 2 only (d) Neither 1 nor 2 efficient of $f(x)$ at $x = 3$?
DIREC follow. Let f(x) f(108. Co 1. 2. Wh (a) (c) 109. Wh (a)	Both 1 and 2 TIONS (Qs. 108-110): F be a function defined in 1 $f(x) = \begin{cases} 2-x & \text{for } 1 \le x \le 3x - x^2 & \text{for } x > 2 \\ 3x - x^2 & \text{for } x > 2 \end{cases}$ Insider the following states The function is continu $(1, \infty)$. The function is differentiated 1 only Both 1 and 2 hat is the differentiable co 1	(d) Neither 1 nor 2 for the next three (03) items that arr (03) = 2014-17 arr (2014-17) arr (2014-
DIREC follow. Let f(x) 108. Co 1. 2. WH (a) (c) 109. WH (a) (c)	Both 1 and 2 TIONS (Qs. 108-110): <i>F</i> be a function defined in 1 x) = $\begin{cases} 2-x & \text{for } 1 \le x \le 2\\ 3x-x^2 & \text{for } x > 2 \end{cases}$ nsider the following state: The function is continu (1, ∞). The function is differentiable continue 1 only Both 1 and 2 hat is the differentiable continue 1 -1	(d) Neither 1 nor 2 (d) Neither 1 nor 2 for the next three (03) items that $x \le x \le \infty$ by [2014-I] ≤ 2 2. ments : ous at every point in the interval ntiable at $x = 1.5$. nts is/are correct ? (b) 2 only (d) Neither 1 nor 2 efficient of $f(x)$ at $x = 3$? (b) 2 (d) -3
DIREC follow. Let f(x) f(108. Co 1. 2. WH (a) (c) 109. WH (a) (c) 110. Co	Both 1 and 2 TIONS (Qs. 108-110): F be a function defined in 1 $x) = \begin{cases} 2-x & \text{for } 1 \le x \le 3x - x^2 & \text{for } x > 2 \end{cases}$ nsider the following state: The function is continu $(1, \infty)$. The function is differentiable continue 1 only Both 1 and 2 nat is the differentiable continue 1 only Both 1 and 2 The function is differentiable continue 1 only 1 only	(d) Neither 1 nor 2 (d) Neither 1 nor 2 for the next three (03) items that $4 \le x < \infty$ by [2014-1] ≤ 2 2. ments : ous at every point in the interval ntiable at $x = 1.5$. nts is/are correct ? (b) 2 only (d) Neither 1 nor 2 efficient of $f(x)$ at $x = 3$? (b) 2 (d) -3 ments :

1.) (2	0) 4000 1	01 0/101
2	CI()	(1) decar	at arrist

2. f'(2-0) does not exist.

	Which of the above statements is/are correct ?				
	(a)	1 only	(b)	2 only	
	(c)	Both 1 and 2	(d)	Neither 1 nor 2	
111.	Thef	function $f: N \to N, N$ being	g the	set of of natural numbers,	
	defin	hed by $f(x) = 2x + 3$ is		[2014-II]	
	(a)	injective and surjective			
	(b)	injective but not surject	ve		
	(c)	not injective but surjection	ve		
	(d)	neither injective nor surj	ectiv	ve	
112.	Iff(x whic	= ax + b and $g(x) = cx + dh one of the following is$	l such corre	that $f[g(x)] = g[f(x)]$ then bet? [2014-II]	
	(a)	f(c) = g(a)	(b)	f(a) = g(c)	
	(c)	f(c) = g(d)	(d)	f(d) = g(b)	
DIR	ECT	IONS (Qs. 113-115): Fo	r the	next three (03) items that	
folle	ow.				
Con	sider	the function $f(x) = \frac{x-1}{x-1}$		[2014-II]	
113.	Wha	t $\frac{f(x) - 1}{f(x) - 1}$ x is equal	to?		
	(a)	0	(b)	1	
	(c)	2x	(d)	4 <i>x</i>	
114.	Wha	t is $f(2x)$ equal to ?			
	(a)	$\frac{f(x) 1}{f(x) 3}$	(b)	$\frac{f(x) 1}{3f(x) 1}$	
	(c)	$\frac{3f(x)+1}{f(x)+3}$	(d)	$\frac{f(x)}{3f(x)} \frac{3}{1}$	
115.	Wha	t is $f(f(x))$ equal to ?			
	(a)	x	(b)	-x	
	(c)	$-\frac{1}{x}$	(d)	None of these	

DIRECTIONS (Qs. 116-118) : For the next three (03) items that follow.

Consider the function	$f(\mathbf{x}) = \int_{-\infty}^{\infty}$	$x^2 - 5$	$x \le 3$	[2014]111
Consider the function	$\int (x) - \int$	$\sqrt{x+13}$	<i>x</i> > 3	[2014-11]

al 116. What is $\lim_{x \to 3} f(x)$ equal to ?

(a)	2	(b)	4
(c)	5	(d)	13

117. Consider the following statements :

- 1. The function is discontinuous at x = 3.
- 2. The function is not differentiable at x = 0.
- What of the above statements is/are correct?
- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 118. What is the differential coefficient of f(x) at x = 12?

			2
(a)	5/2	(b)	5
(c)	1/5	(d)	1/10

м-272

119. Consider the function

$$f(x) \quad \begin{cases} \frac{\tan kx}{x}, & x = 0\\ 3x + 2k^2, & x \ge 0 \end{cases}$$

What is the non-zero value of k for which the function is continuous at x = 0?

- (a) 1/4 (b) 1/2
- (c) 1 (d) 2 120. Consider the following statements :

1. The function f(x) = [x], where [.] is the greatest integer function defined on *R*, is continuous at all points except at x=0. [2014-II]

2. The function $f(x) = \sin |x|$ is continuous for all $x \in R$.

- Which of the above statements is/are correct ?
- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 121. What is $\lim_{x \to 0} \frac{\log_5(1 x)}{x}$ equal to ? [2014-II]
 - (a) 1 (b) $\log_5 e$ (c) $\log_e 5$ (d) 5
- 122. What is $\lim_{x \to 0} \frac{5^x 1}{x}$ equal to ? [2014-II]
 - (a) $\log_e 5$ (b) $\log_5 e$ (c) 5 (d) 1
- 123. What is $\lim_{n \to \infty} \frac{1}{1^2} \frac{2}{2^2} \frac{3}{3^2} \dots \frac{n}{3^2}$ equal to ? [2014-II] (a) 5 (b) 2 (c) 1 (d) 0

DIRECTIONS (Qs. 124-125): For the next two (2) items that follow.

Given that $\lim_{x \to \infty} \left(\frac{2 + x^2}{1 + x} - Ax - \right)$	B) = 3.	
124. What is the value of A?		[2015-1]
(a) -1	(b) 1	L 5
(c) 2	(d) 3	
125. What is the value of B?		[2015-I]
(a) -1	(b) 3	
(c) -4	(d) -3	
126. If $G(x) = \sqrt{25 - x^2}$, then y	what is $\lim_{x \to 1} \frac{G(x)}{x}$	$\frac{-G(1)}{-1}$ equal to?
		[2015-I]

(a)
$$-\frac{1}{2\sqrt{6}}$$
 (b) $\frac{1}{5}$
(c) $-\frac{1}{\sqrt{6}}$ (d) $\frac{1}{\sqrt{6}}$

127. Consider the following statements: [2015-I]
1.
$$f(x) = [x]$$
, where [.] is the greatest integer function, is
discontinuous at $x = n$, where $n \in Z$.

2.
$$f(x) = \cot x$$
 is discontinuous at $x = n\pi$, where $n \in Z$.

NDA Topicwise Solved Papers - MATHEMATICS

	which of the above statements is/are correct?						
	(a)	1 only	(b)	2 only			
	(c)	Both 1 and 2	(d)	Neither 1 or 2	2		
128.	If f	$(x) = \log_e\left(\frac{1+x}{1-x}\right), g(x) =$	$\frac{3x+1}{1+3}$	$\frac{x^3}{x^2}$ and g of ($\mathbf{t}) = \mathbf{g}(\mathbf{f}(\mathbf{t})),$		
	then	what is $g \circ f\left(\frac{e-1}{e+1}\right)$ equ	al toʻ	?	[2015-I]		
	(a)	2	(b)	1			
	(c)	0	(d)	$\frac{1}{2}$			

DIRECTIONS (Qs. 129-130): For the next two (2) items that follow.

Given a function

$$f(x) = \begin{cases} -1 & \text{If } x \le 0\\ ax+b & \text{If } 0 < x < 1\\ 1 & \text{If } x \ge 1 \end{cases}$$

where a, b are constants. The function is continuous everywhere. 129. What is the value of a? [2015-1]

					[= • · • · ·]
	(a)	-1	(b)	0	
	(c)	1	(d)	2	
130.	Wha	at is the value of b?			[2015-1]
	(a)	-1	(b)	1	
	(c)	0	(d)	2	
131.	Con	sider the following function	ons:		[2015-I]
	1.	$f(x) = x^3, x \in \mathbb{R}$			
	2.	$f(x) = \sin x, 0 < x < 2\pi$			
	3.	$f(x) = e^x, x \in \mathbb{R}$			
	Whi	ch of the above functions	have	inverse defin	ed on their
	rang	ges?			[2015-I]
	(a)	1 and 2 only	(b)	2 and 3 only	
	(c)	1 and 3 only	(d)	1, 2 and 3	

DIRECTIONS (Qs. 132-133): For the next two (2) items that follow.

Consider the function

$$f(x) = \begin{cases} \frac{\alpha \cos x}{\pi - 2x} & \text{If } x \neq \frac{\pi}{2} \\ 3 & \text{If } x = \frac{\pi}{2} \end{cases}$$

Which is continuous at $x = \frac{\pi}{2}$, where α is a constant.

132. What is the value of α ? [2015-I] (a) 6 (b) 3

(c) 2

- (d) 1
- 133. What is $\lim_{x \to 0} f(x)$ equal to? [2015-1]
 - (a) 0 (b) 3

(c)
$$\frac{3}{\pi}$$
 (d) $\frac{6}{\pi}$

134. If $g(x) = \frac{1}{f(x)}$ and $f(x) = x, x \neq 0$, then which one of the following is correct [2015-II] (a) f(f(g(g(f(x))))) = g(g(f(g(f(x)))))(b) f(f(g(3(g(f(x)))))) = g(g(f(g(f(x))))))(c) f(g(f(g(g(f(g(x)))))) = g(g(f(g(f(x))))))(d) f(f(f(f(f(f(x)))))) = f(f(f(g(f(x)))))135. If $f(x) = \sqrt{25 - x^2}$, then what is $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$ equal to? [2015-II] (a) $\frac{1}{5}$ (b) $\frac{1}{24}$ (d) $-\frac{1}{\sqrt{24}}$ (c) $\sqrt{24}$ [2015-II] 136. Consider the function $f(x) = \begin{cases} ax - 2 & \text{for } -2 & x & -1 \\ -1 & \text{for } -1 \le x \le 1 \\ a + 2(x - 1)^2 & \text{for } 1 & x & 2 \end{cases}$ 14 What is the value of a for which f(x) is continuous at x = -1143 and x = 1?(a) -1 (b) 1 (c) 0 (d) 2 137. The function $f(x) = \frac{1 - \sin x \cos x}{1 \sin x \cos x}$ is not defined at $x = \pi$. The value of $f(\pi)$ so that f(x) is continuous at $x = \pi$ is [2015-II] (a) $-\frac{1}{2}$ (b) $\frac{1}{2}$ (c) -1(d) 1 138. Consider the following functions : [2015-II] 1. $f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$ 2. $f(x) = \begin{cases} 2x & 5 & \text{if } x & 0 \\ x^2 & 2x & 5 & \text{if } x \le 0 \end{cases}$ Which of the above functions is/are derivable at x = 0? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 139. The domain of the function $f(x) = \frac{1}{\sqrt{|x| - x}}$ is [2015-II] (b) (−∞, 0) (a) $[0,\infty)$ (c) $[1, \infty)$ (d) $(-\infty, 0]$ 140. Consider the following statements : [2015-II] 1. The function $f(x) = x^2 + 2\cos x$ is increasing in the

interval $(0, \pi)$

The function $f(x) = \ln (\sqrt{1 + x^2} - x)$ is decreasing in 2. the interval $(-\infty, \infty)$ Which of the above statements is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 141. If $f: IR \rightarrow IR$, $g: IR \rightarrow IR$ be two functions given by f(x) = 2x - 3 and $g(x) = x^3 + 5$, then $(fog)^{-1}(x)$ is equal to [2015-II] 1 $(-) \frac{1}{2}$

(a)
$$\left(\frac{x-7}{2}\right)^3$$
 (b) $\left(\frac{x-7}{2}\right)^3$
(c) $\left(x-\frac{7}{2}\right)^{\frac{1}{3}}$ (d) $\left(x-\frac{7}{2}\right)^{\frac{1}{3}}$

42. If
$$f(x) = \frac{\sin(e^{x-2} - 1)}{\ln(x-1)}$$
, then $\lim_{x \to 2} f(x)$ is equal to

(a)
$$-2$$
 (b) -1
(c) 0 (d) 1
3. Consider the following statements : [201
Statement 1 : The function f: IP \rightarrow IP such that f(x) =

43. Consider the following statements : [2015-II]
Statement 1 : The function f:
$$IR \rightarrow IR$$
 such that $f(x) = x^3$ for
all $x \in IR$ is one-one.

Statement 2 : $f(a) \Rightarrow f(b)$ for all $a, b \in IR$ if the function f is one-one

(h)

Which one of the following is correct in respect of the above statements ?

- Both the statements are true and Statement 2 is the (a) correct explanation of Statement 1.
- Both the statements are true and Statement 2 is not the (b) correct explanation of Statement 1.
- Statement 1 is true but Statement 2 is false. (c)
- (d) Statement 1 is false but Statement 2 is true.

DIRECTIONS (Qs. 144-145) : For the next two (02) items that follow.

Consider the function

(a)

$$f(x) = \begin{cases} -2\sin x & \text{if } x \le -\frac{\pi}{2} \\ A\sin x + B & \text{if } -\frac{\pi}{2} & x & \frac{\pi}{2} \\ \cos x & \text{if } x \ge \frac{\pi}{2} \end{cases}$$

which is continuous everywhere. 144. The value of A is [2015-II] (b) 0 (a) 1 (c) -1 (d) -2 145. The value of B is [2015-II] (h) 0(a) 1

DIRECTIONS (Qs. 146-147) : For the next two(2) items

that follow:

Consider the curves

$$f(x) = x |x| - 1 \text{ and } g(x) = \begin{cases} \frac{3x}{2}, & x > 0\\ 2x, & x \le 0 \end{cases}$$
[2016-1]

146. Where do the curves intersect?

- (a) At(2, 3) only
- (b) At (-1, -2) only
- (c) At (2, 3) and (-1, -2)
- (d) Neither at (2, 3) nor at (-1, -2)

147. What is the area bounded by the curves?

(a)
$$\frac{17}{6}$$
 square units (b) $\frac{8}{3}$ square units

(c) 2 square units (d)
$$\frac{1}{3}$$
 square unit

DIRECTIONS (Qs. 148-152) : For the next five (5) items that follow.

Consider the function $f(x) = |x-1| + x^2$, where $x \in \mathbf{R}$.

- [2016-I]
- 148. Which one of the following statements is correct?
 - (a) f(x) is continuous but not differentiable at x = 0
 - (b) f(x) is continuous but not differentiable at x = 1
 - (c) f(x) is differentiable at x = 1
 - (d) f(x) is not differentiable at x = 0 and x = 1
- 149. Which one of the following statements is correct?

(a) f(x) is increasing in
$$\left(-\infty, \frac{1}{2}\right)$$
 and decreasing in $\left(\frac{1}{2}, \infty\right)$

(b) f(x) is decreasing in
$$\left(-\infty, \frac{1}{2}\right)$$
 and increasing in $\left(\frac{1}{2}, \infty\right)$

(c) f(x) is increasing in $(-\infty, 1)$ and decreasing in $(1,\infty)$

- (d) f(x) is decreasing in $(-\infty, 1)$ and increasing in $(1,\infty)$
- 150. Which one of the following statements is correct?
 - (a) f(x) has local minima at more than one point in $(-\infty,\infty)$
 - (b) f(x) has local maxima at more than one point in $(-\infty,\infty)$
 - (c) f(x) has local minimum at one point only in $(-\infty,\infty)$
 - (d) f(x) has neither maxima nor minima in $(-\infty,\infty)$

151. What is the area of the region bounded by x-axis, the curve 14

y = f(x) and the two ordinates $x = \frac{1}{2}$ and x = 1? (a) $\frac{5}{12}$ square unit (b) $\frac{5}{6}$ square unit

(c) $\frac{7}{6}$ square units (d) 2 square units

152. What is the area of the region bounded by x-axis, the curve

y = f(x) and the two ordinates x = 1 and x =
$$\frac{3}{2}$$
?
(a) $\frac{5}{12}$ square unit
(b) $\frac{7}{12}$ square unit
(c) $\frac{2}{3}$ square unit
(d) $\frac{11}{12}$ square unit

DIRECTIONS (Qs. 153-154) : For the next two (2) items that follow.

	Con	sider the equation $x + y =$	= 2y.	[2016-1]		
153.	53. Which of the following statements are <i>not</i> correct?					
	1. y as a function of x is not defined for all real x.					
	2.	y as a function of x is no	t con	tinuous at $x = 0$.		
	3.	y as a function of x is dif	feren	tiable for all x.		
	Sele	ct the correct answer usir	ng th	e code given below.		
	(a)	1 and 2 only	(b)	2 and 3 only		
	(c)	1 and 3 only	(d)	1, 2 and 3		
154.	Wha	at is the derivative of y as	a fun	ction of x with respect to		
	x for	x < 0?				
	(a)	2	(b)	1		
		1		1		
	(c)	$\frac{1}{2}$	(d)	$\frac{1}{2}$		
		2		3		

DIRECTIONS (Qs. 155-156) : For the next two (2) items that follow

that	t foll	low.	a [[]	x]+ x	-1		
DIR	RECT	TIONS (Q	s. 157-158) : <i>F</i>	or	the next two (2) items		
	(c)	Two		(d)	Three		
	(a)	None		(b)	One		
	f(x)	?					
156. What is the number of points of local maxima of the fun					al maxima of the function		
	(c)	Two		(d)	Three		
	(a)	None		(b)	One		
	f(x)	?					
155.	Wha	What is the number of points of local minima of the function					
	Con	sider the fu	nction $f(x) = (x - x)$	-1)	$(x+1)(x-2)^{3}$ [2016-1]		

	Cons	siuci	The function $f(x) = -$	[x]+	x where [·] denotes the
	grea	test	integer function.		[2016-I]
157.	Wha	ıt is	$\lim_{x\to 0^+} f(x) \text{ equal to?}$		
	(a)	1		(b)	ln a
	(c)	1 –	a ⁻¹	(d)	Limit does not exist
158.	Wha	ıt is	$\lim_{x\to 0^-} f(x) \text{ equal to?}$		
	(a)	0		(b)	ln a

(c) $1 - a^{-1}$ (d) Limit does not exist

DIRECTIONS (Qs. 159-160) : For the next two (2) items that follow.

	A function $f(x)$ is defined as follows:					[2016-I]	
			x + π	for	x ∈	[-π, 0)	
		f(x) =	$\pi \cos x$	for	x∈	$\left[0,\frac{\pi}{2}\right]$	
			$\left(x-\frac{\pi}{2}\right)^2$	for	X ∈	$\left(\frac{\pi}{2}, \pi\right]$	
159.	Cons	sider the	followings	statem	nents	:	
	1.	The fun	ction $f(x)$ is	s cont	inuo	us at $x = 0$.	
	2.	The fun	ction f(x) i	s cont	inuo	us at $x = \frac{\pi}{2}$.	
	Whi	ch of the	above stat	emen	ts is/	are correct?	
	(a)	1 only			(b)	2 only	
	(c)	Both 1 a	nd 2		(d)	Neither 1 n	or 2
160.	Cons	sider the	followings	statem	nents	:	
	1.	The fund	ction $f(x)$ is	s diffe	rentia	able at $x = 0$.	
	2.	The fund	ction f(x) is	s diffe	renti	able at $x = \frac{2}{3}$	π.

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2

DIRECTIONS (Qs. 161-162) : For the next two (2) items that follow.

Let f(x) be the greatest integer function and g(x) be the modulus function. [2016-I]

161.	What	is $(g \circ f)\left(-\frac{5}{3}\right) - (f \circ g)$	$\left(-\frac{5}{3}\right)$ equal to?
	(a) - (c) 1	-1	(b) 0 (d) 2
162.	What	is $(\mathbf{f} \circ \mathbf{f}) \left(-\frac{9}{5} \right) + (\mathbf{g} \circ \mathbf{g})$	(-2) equal to?
	(a) - (c) 1	-1	(b) 0 (d) 2
163.	If $\lim_{x\to 0}$	$\phi(\mathbf{x}) = \mathbf{a}^2$, where $\mathbf{a} \neq 0$, then what is $\lim_{x\to 0} \phi \left(\frac{1}{2} \right)$

63. If
$$\lim_{x\to 0} \phi(x) = a^2$$
, where $a \neq 0$, then what is $\lim_{x\to 0} \phi\left(\frac{x}{a}\right)$ equal
to? [2016-I]
(a) a^2 (b) a^{-2}
(c) $-a^2$ (d) $-a$

(c)
$$-a^2$$
 (

164. What is lime x^2 equal to? [2016-I]

- 0 (a)
- (b) 1
- (c) -1
- (d) Limit does not exist

165. What is the domain of the function $f(x) = \frac{1}{\sqrt{|x| - x}}$?

(a)
$$-\infty, 0$$
 (b) $0, \infty$
(c) $0 < x < 1$ (d) $x > 1$

(c)
$$0 < x < 1$$
 (d) $x > 0$

166. Consider the following in respect of the function [2016-II]

$$f(x) = \begin{cases} 2 + x, x \ge 0\\ 2 - x, x < 0 \end{cases}$$
1.
$$\lim_{x \to 1} f(x) \text{ does not exist.}$$
2.
$$f(x) \text{ is differentiable at } x = 0$$
3.
$$f(x) \text{ is continuous at } x = 0$$
Which of the above statements is/are correct?
(a) 1 only
(b) 3 only
(c) 2 and 3 only
(d) 1 and 3 only
167. Let $f : A \to R$, where $A = R \setminus \{0\}$ is such that $f(x) = \frac{x + |x|}{x}$.
On which one of the following sets is $f(x)$ continuous?
[2016-II]
(a) A
(b) $B = x \in R : x \ge 0$

(b) B

(c) $C = x \in R : x \leq 0$ (d) D=R

DIRECTIONS (Qs. 168-169) : Consider the following function for the next two (02) items that follow.

$$f(\mathbf{x}) \begin{cases} 3x^2 + 12x - 1 & -1 \le x \le 2\\ 37 - x, & 2 < x \le 3 \end{cases}$$
[2016-11]

168. Which of the following statements is/are correct?

1. f(x) is increasing in the interval [-1, 2].

2. f(x) is decreasing in the interval (2, 3].

Select the correct answer using the code given below:

(a) 1 only (b) 2 only

- (c) Both 1 and 2 (d) Neither 1 nor 2
- 169. Which of the following statements are correct?
 - 1. f(x) is continuous at x = 2.
 - 2. f(x) attains greatest value at x = 2.
 - 3. f(x) is differentiable at x = 2.
 - Select the correct answer using the code given below:
 - (a) 1 and 2 only (b) 2 and 3 only
 - (c) 1 and 3 only (d) 1, 2 and 3

DIRECTIONS (Qs. 170-172) : Consider the following for the next three (03) items that follow.

Let f(x) = [x], where [.] is the greatest integer function and $g(x) = \sin x$ be two real valued functions over R. [2016-II]

- 170. Which of the following statements is correct?
 - (a) Both f(x) and g(x) are continuous at x = 0.
 - (b) f(x) is continuous at x = 0, but g(x) is not continuous at x=0.
 - (c) g(x) is continuous at x = 0, but f(x) is not continuous at x = 0.
 - (d) Both f(x) and g(x) are discontinuous at x = 0.
- 171. Which one of the following statements is correct?
 - $\lim_{x \to \infty} (fog)(x) exists$ (a) $x \rightarrow 0$
 - lim (gof)(x)exists (b) $x \rightarrow 0$
 - (c) $\lim_{x \to \infty} (\log(x)) = \lim_{x \to \infty} (\log(x))$ $x \rightarrow 0$ $x \rightarrow 0^+$
 - (d) $\lim_{x \to \infty} (fog)(x) = \lim_{x \to \infty} (gof)(x)$ $x \rightarrow 0+$ $x \rightarrow 0+$

[2017-I]

[2017-I]

NDA Topicwise Solved Papers - MATHEMATICS

1. (fof)(x) = f(x). 2. (gog)(x) = g(x) only when x = 0. 3. (go (fog))(x) can take only three values. Select the correct answer using the code given below: (a) 1 and 2 only (b) 2 and 3 only(c) 1 and 3 only (d) 1, 2 and 3 **DIRECTIONS (Qs. 173-174) :** Consider the following for the next two (02) items that follow. [2016-II] Let $f(x) = \begin{cases} \frac{e^x - 1}{x}, & x > 0\\ 0, & x = 0 \end{cases}$ be a real valued function.

172. Which of the following statements are correct?

173. Which one of the following statements is correct?

- (a) f(x) is a strictly decreasing function in (0, x),
- (b) f(x) is a strictly increasing function in (0, x),
- (c) f(x) is neither increasing nor decreasing in (0, x)
- (d) f(x) is not decreasing in (0, x).

174. Which of the following statements is/are correct?

- 1. f(x) is right continuous at x = 0.
- 2. f(x) is discontinuous at x = 1.

Select the correct answer using the code given below: (a) 1 only (b) 2 only

(c) Both 1 and 2 (d) Neither 1 nor 2

DIRECTIONS (Qs. 175-177) : Consider the following for the next three (03) items that follow.

Let
$$f(x) = \begin{cases} -2, & -3 \le x \le 0 \\ x - 2, & 0 < x \le 3 \end{cases}$$
 and $g(x) = f |x| + |f(x)|$

[2016-II]

- 175. Which of the following statements is/are correct?
 - 1. g(x) is differentiable at x = 0.
 - 2. g(x) is differentiable at x = 2.

Select the correct answer using the code given below:

(a) 1 only (b) 2 only

- (c) Both 1 and 2 (d) Neither 1 nor 2
- 176. What is the value of the differential coefficient of g(x) at x = -2?
 - (a) -1 (b) 0 (d) 2
 - (c) 1

177. Which of the following statements are correct?

- 1. g(x) is continuous at x = 0.
- 2. g(x) is continuous at x = 2.
- 3. g(x) is continuous at x = -1.

Select the correct answer using the code given below:

- (b) 2 and 3 only (a) 1 and 2 only
- (c) 1 and 3 only (d) 1, 2 and 3

178. What is $\lim_{x \to 0} \frac{e^x - (1 + x)}{x^2}$ equal to? [2017-I]

(b) $\frac{1}{2}$ (a) 0 (d) 2 (c) 1

179. The function $f: X \to Y$ defined by $f(x) = \cos x$, where $x \in X$, is one-one and onto if X and Y are respectively equal to [2017-1]

(b)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
 and $\left[-1, 1 \right]$
(c) $\left[0, \pi \right]$ and $\left(-1, 1 \right)$
(d) $\left[0, \pi \right]$ and $\left[0, 1 \right]$
180. If $f(\mathbf{x}) = \frac{\mathbf{x}}{\mathbf{x} - 1}$, then what is $\frac{f(\mathbf{a})}{f(\mathbf{a} + 1)}$ equal to?

(a) $[0, \pi]$ and [-1, 1]

(a)
$$f\left(-\frac{a}{a+1}\right)$$
 (b) $f\left(a^2\right)$
(c) $f\left(\frac{1}{a}\right)$ (d) $f\left(-a\right)$

181. Let $f: [-6, 6] \rightarrow R$ be defined by $f(x) = x^2 - 3$. Consider the following: [2017-I] 1. $(f^{\circ}f^{\circ}f)(-1) = (f^{\circ}f^{\circ}f)(1)$ 2. $(f \circ f \circ f)(-1) - 4(f \circ f \circ f)(1) = (f \circ f)(0)$ Which of the above is/are correct? (a) 1 only (b) 2 only(c) Both 1 and 2 (d) Neither 1 nor 2 182. Let f(x) = px + q and g(x) = mx + n. Then f(g(x)) = g(f(x)) is [2017-1] equivalent to

- (a) $f(\mathbf{p}) = g(\mathbf{m})$ (b) f(q) = g(n)(d) f(m) = g(p)(c) $f(\mathbf{n}) = g(\mathbf{q})$
- 183. If $F(x) = \sqrt{9 x^2}$, then what is $\lim_{x \to 1} \frac{F(x) F(1)}{x 1}$ equal to? [2017-1]

(a)
$$-\frac{1}{4\sqrt{2}}$$
 (b) $\frac{1}{8}$
(c) $-\frac{1}{2\sqrt{2}}$ (d) $\frac{1}{2\sqrt{2}}$

184. Let
$$f(\mathbf{x})$$
:
$$\begin{cases} \mathbf{x}, & \mathbf{x} \text{ is rational} \\ \mathbf{0}, & \mathbf{x} \text{ is irrational} \end{cases}$$
 [2017-I]

and

- $g(x): \begin{cases} 0, & x \text{ is rational} \\ x, & x \text{ is irrational} \end{cases}$
- If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$, then (f-g) is
- (a) one-one and into
- (b) neither one-one nor onto
- (c) many-one and onto
- (d) one-one and onto

185. Let $f(\mathbf{x})$ be defined as follows :

$$f(\mathbf{x}) = \begin{cases} 2\mathbf{x} + 1, & -3 < \mathbf{x} < -2\\ \mathbf{x} - 1, & -2 \le \mathbf{x} < 0\\ \mathbf{x} + 2, & 0 \le \mathbf{x} < 1 \end{cases}$$

Which one of the following statements is correct in respect of the above function?

- (a) It is discontinuous at x = -2 but continuous at every other point.
- (b) It is continuous only in the interval (-3, -2).
- (c) It is discontinuous at x = 0 but continuous at every other point.
- (d) It is discontinuous at every point.

Functions, Limit, Continuity and Differentiability

186. Consider the following statements : [2017-I] 1. If $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ both exist, then $\lim_{x \to a} {f(x)g}$ 2. If $\lim_{x \to a} \{f(x) g(x)\}$ exists, then both $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x) \text{ must exist.}$ Which of the above statements is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 187. Let $f(a) = \frac{a-1}{a+1}$. [2017-I] Consider the following : 1. f(2a) = f(a) + 1 2. $f\left(\frac{1}{a}\right) = -f(a)$ Which of the above is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 188. Suppose the function $f(x) = x^n$, $n \neq 0$ is differentiable for all x. Then n can be any element of the interval (a) $(1,\infty)$ (b) $(0,\infty)$ (c) $\left(\frac{1}{2},\infty\right)$ (d) None of the above 189. The inverse of the function $y = 5^{\ln x}$ is [2017-II] (a) $x = y^{\ln 5}, y > 0$ (b) $x = y^{\ln 5}, y > 0$ (c) $x = y^{\frac{1}{\ln 5}}, y < 0$ (d) $x = 5 \ln y, y > 0$ 190. A function is defined as follows : [2017-II] $f(\mathbf{x}) = \begin{cases} -\frac{\mathbf{x}}{\sqrt{\mathbf{x}^2}}, \ \mathbf{x} \neq \mathbf{0} \\ \frac{1}{\sqrt{\mathbf{x}^2}}, \ \mathbf{x} \neq \mathbf{0} \end{cases}$ 0, x = 0Which one of the following is correct in respect of the above function? (a) f(x) is continuous at x = 0 but not differentiable at x = 0(b) f(x) is continuous as well as differentiable at x = 0(c) f(x) is discontinuous at x = 0(d) None of the above [2017-II] 191. Consider the following : 1. $x + x^2$ is continuous at x = 02. $x + \cos \frac{1}{x}$ is discontinuous at x = 03 $x^2 + \cos \frac{1}{2}$ is continuous at x = 0

Which of the above are correct?

- (a) 1 and 2 only (b) 2 and 3 only
- (c) 1 and 3 only (d) 1, 2 and 3

192. A function is defined in $(0, \infty)$ by [2017-II] $f(\mathbf{x}) = \begin{cases} 1 - x^2 & \text{for } 0 < \mathbf{x} \le 1 \\ \text{In } \mathbf{x} & \text{for } 1 < \mathbf{x} \le 2 \\ \text{In } 2 - 1 + 0.5\mathbf{x} & \text{for } 2 < \mathbf{x} < \infty \end{cases}$ Which one of the following is correct in respect of the derivative of the function, i.e., $f'(\mathbf{x})$? (a) f'(x) = 2x for $0 < x \le 1$ (b) f'(x) = -2x for $0 < x \le 1$ (c) f'(x) = -2x for 0 < x < 1(d) f'(x) = 0 for $0 < x < \infty$ 193. Consider the following statements : [2017-II] 1. Derivative of f(x) may not exist at some point. 2. Derivative of f(x) may exist finitely at some point. 3. Derivative of f(x) may be infinite (geometrically) at some point. Which of the above statements are correct? (a) 1 and 2 only (b) 2 and 3 only(c) 1 and 3 only (d) 1, 2 and 3 194. The function $f(x) = |x| - x^3$ is [2017-II] (a) odd (b) even (c) both even and odd (d) neither even nor odd [2017-I] 195. If $l_1 = \frac{d}{dx} \left(e^{\sin x} \right)$ [2017-II] $l_2 = \lim_{h \to 0} \frac{e^{\sin(x+h)} - e^{\sin x}}{h}$ $l_3 = \int e^{\sin x} \cos x dx$ then which one of the following is correct? (b) $\frac{\mathrm{d}}{\mathrm{d}\mathbf{x}}(l_3) = l_2$ (a) $l_1 \neq l_2$ (c) $\int l_3 dx = l_2$ (d) $l_2 = l_3$ 196. If $\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{x} = l$ and $\lim_{x \to \infty} \frac{\cos x}{x} = m$, then which one of the following is correct? [2017-II] (a) l = 1, m = 1(b) $l = \frac{2}{\pi}, m = \infty$ (c) $l = \frac{2}{\pi}, m = 0$ (d) $l=1, m=\infty$ 197. If x is any real number, then $\frac{x^2}{1+x^4}$ belongs to which one of the following intervals? [2017-II] (b) $\left(0,\frac{1}{2}\right)$ (a) (0,1)(c) $\left(0,\frac{1}{2}\right)$ (d) [0,1]

- 198. The left-hand derivative of f (x) = [x] sin (πx) at x = k where k is an integer and [x] is the greatest integer function, is [2017-II]
 - (a) $(-1)^{k}(k-1)\pi$ (b) $(-1)^{k-1}(k-1)\pi$ (c) $(-1)^{k}k\pi$ (d) $(-1)^{k-1}k\pi$

м-277

- 199. If $f(x) = \frac{x}{2} 1$, then on the interval $[0, \pi]$ which one of the following is correct? [2017-II]
 - (a) $\tan [f(x)]$, where $[\cdot]$ is the greatest integer function, 1
 - and $\overline{f(\mathbf{x})}$ are both continuous.
 - (b) tan [f (x)], where [·] is the greatest integer functin, and f⁻¹ (x) are both continuous.
 - (c) tan [f(x)], where $[\cdot]$ is the greatest integer function, 1
 - and $\frac{1}{f(x)}$ are both discontinuous.
 - (d) $\tan [f(x)]$, where [·] is the greatest integer function, is discontinuous but $\frac{1}{f(x)}$ is continuous.
- 200. The set of all points, where the function $f(x) = \sqrt{1 e^{-x^2}}$ is differentiable, is [2017-II]
 - (a) $(0,\infty)$ (b) $(-\infty,\infty)$
 - (c) $(-\infty, 0) \cup (0, \infty)$ (d) $(-1, \infty)$
- 201. If $f(x) = x(\sqrt{x} \sqrt{x+1})$, then f(x) is [2017-II]
 - (a) continuous but not differentiable at x = 0
 - (b) differentiable at x = 0
 - (c) not continuous at x = 0
 - (d) None of the above
- 202. Which one of the following graph represents the function

$$f(\mathbf{x}) = \frac{\mathbf{x}}{\mathbf{x}}, \, \mathbf{x} \neq 0$$
? [2017-II]

- 203. Let g be the greatest integer function. Then the function $f(x) = (g(x))^2 g(x)$ is discontinuous at [2017-II]
 - (a) all integers
 - (b) all integers except 0 and 1
 - (c) all integers except 0
 - (d) all integers except 1
- 204. Consider the following statements : [2017-II] Statement I :
 - $x > \sin x$ for all x > 0
 - Statement II :
 - $f(\mathbf{x}) = \mathbf{x} \sin \mathbf{x}$ is an increasing function for all $\mathbf{x} > 0$
 - Which one of the following is correct in respect of the above statements?

- (a) Both Statement I and Statement II are true and Statement II is the correct explanation of Statement II.
- (b) Both Statement I and Statement II are true and Statement II is not the correct explanation of Statement I.
- (c) Statement I is true but Statement II is false
- (d) Statement I is false but Statement II is true

205. If
$$f(x) = \frac{4x + x^4}{1 + 4x^3}$$
 and $g(x) = In\left(\frac{1+x}{1-x}\right)$, then what is the value of $f \circ g\left(\frac{e-1}{e+1}\right)$ equal to? [2017-II]
(a) 2 (b) 1
(c) 0 (d) $\frac{1}{2}$

206. Which one of the following is correct in respect of the

- function $f: \mathbb{R} \to \mathbb{R}$ defined as f(x) = |x+1|? [2018-I] (a) $f(x^2) = [f(x)]^2$ (b) f(|x|) = |f(x)|
- (c) f(x+y) = f(x) + f(y) (d) None of the above
- 207. Suppose $f: \mathbb{R} \to \mathbb{R}$ is defined by $f = x \frac{x^2}{1 x^2}$. What is the range of the function? [2018-I]
 - (a) [0,1) (b) [0,1] (c) [0,1]
 - (c) (0,1] (d) (0,1)
- 208. If f(x) = |x| + |x 1|, then which one of the following is correct? [2018-I]
 - (a) f(x) is continuous at x = 0 and x = 1
 - (b) f(x) is continuous at x = 0 but not at x = 1
 - (c) f(x) is continuous at x = 1 but not at x = 0
 - (d) f(x) is neither continuous at x = 0 nor at x = 1

209. Consider the function f x $\begin{cases} x^2 ln \mid x \mid & x \neq 0 \\ 0 & x & 0 \end{cases}$. What is

- f'(0) equal to? [2018-I]
- (a) 0 (b) 1
- (c) -1 (d) It does not exist

210. If f x = $\frac{x^2 - 9}{x^2 - 2x - 3}$, x \neq 3 is continuous at x = 3, then which one of the following is correct? [2018-I]

(a)
$$f(3)=0$$
 (b) $f(3)=1.5$

(c)
$$f(3)=3$$
 (d) $f(3)=-1.5$

- 211. If $f : \mathbb{R} \to S$ defined by $f(x) = 4 \sin x 3 \cos x + 1$ is onto, then what is S equal to? [2018-I] (a) [-5, 5] (b) (-5, 5)
 - (a) $\begin{bmatrix} 0, 0 \\ -4, 6 \end{bmatrix}$ (b) $\begin{bmatrix} 0, 0 \\ -4, 6 \end{bmatrix}$ (c) $\begin{bmatrix} -4, 6 \\ -4, 6 \end{bmatrix}$

212. For f to be a function, what is the domain of f, if

f x
$$\frac{1}{\sqrt{|x|-x}}$$
? [2018-1]

(a)
$$(-\infty, 0)$$
 (b) $(0, \infty)$
(c) $(-\infty, \infty)$ (d) $(-\infty, 0]$

213. What is
$$\lim_{x \to 0} \frac{\tan x}{\sin 2x}$$
 equal to? [2018-1]
(a) $\frac{1}{2}$ (b) 1
(c) 2 (d) Limit does not exist

214. What is
$$\lim_{h \to 0} \frac{\sqrt{2x+3h} - \sqrt{2x}}{2h}$$
 equal to? [2018-1]

(a)
$$\frac{1}{2\sqrt{2x}}$$
 (b) $\frac{3}{\sqrt{2x}}$
(c) $\frac{3}{2\sqrt{2x}}$ (d) $\frac{3}{4\sqrt{2x}}$

- 215. If f(x) is an even function, where $f(x) \neq 0$, then which one of the following is correct? [2018-I]
 - (a) f'(x) is an even function
 - (b) f'(x) is an odd function
 - (c) f'(x) may be an even or odd function depending on the type of function
 - (d) f'(x) is a constant function

216. Let
$$A = x \in R : -1 \le x \le 1$$
 and S be the subset of $A \times B$,

defined by
$$S = \begin{bmatrix} x, y \in A \times B : x^2 & y^2 & 1 \end{bmatrix}$$
 [2018-II]

Which one of the following is correct?

- (a) S is a one-one function from A into B
- (b) S is a many-one function from A into B
- (c) S is a bijective mapping from A into B
- (d) S is not a function

217. If
$$f(x) = \frac{\sqrt{x-1}}{x-4}$$
 defines a function of R, then what is its domain? [2018-II]

(a)
$$-\infty, 4 \cup 4, \infty$$
 (b) $4, \infty$

(c)
$$1, 4 \cup 4, \infty$$
 (d) $1, 4 \cup 4, \infty$

218. Consider the function

$$f(x) \begin{cases} \frac{\sin 2x}{5x} \text{ if } x \neq 0\\ \frac{2}{15} \text{ if } x = 0 \end{cases}$$

Which one of the following is correct in respect of the function? [2018-II]

- (a) It is not continuous at x = 0
- (b) It is continuous at every x
- (c) It is not continuous at $x = \pi$
- (d) It is continuous at x = 0

219. For the function
$$f(x) = |x-3|$$
, which of the following is not correct? [2018-II]

- (a) The function is not continuous at x = -3
- (b) The function is continuous at x = 3

- (c) The function is differentiable at x = 0
- (d) The function is differentiable at x = -3

220. If the function $f(x) = \frac{2x - \sin^{-1} x}{2x \tan^{-1} x}$ is continuous at each point in its domain, then what is the value of f(0)? [2018-II]

(a)
$$-\frac{1}{3}$$
 (b) $\frac{1}{3}$
(c) $\frac{2}{3}$ (d) 2

221. If
$$f(x) = \sqrt{25 - x^2}$$
, then what is $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$ equal to
[2018-II]

(a)
$$-\frac{1}{\sqrt{24}}$$
 (b) $\frac{1}{\sqrt{24}}$
(c) $-\frac{1}{4\sqrt{3}}$ (d) $\frac{1}{4\sqrt{3}}$

- 222. What is $\lim_{\theta \to 0} \frac{\sqrt{1 \cos \theta}}{\theta}$ equal to? [2018-II] (a) $\sqrt{2}$ (b) $2\sqrt{2}$ (c) $\frac{1}{\sqrt{2}}$ (d) $-\frac{1}{2\sqrt{2}}$
- 223. A function $f: A \rightarrow R$ is defined by the equation $f(x) = x^2 4x + 5$ where A = (1, 4). What is the range of the function?

[2018-II]

- (a) (2,5)(b) (1,5)(c) [1,5)(d) [1,5]
- 224. In which one of the following intervals is the function $f(x) = x^2 5x + 6$ decreasing? [2018-II]

(a)	<i>−∞</i> ,2	(b)	3,∞
(c)	_∞,∞	(d)	2,3

225. Let f(x + y) = f(x) f(y) and $f(x) = 1 + xg(x) \phi(x)$, where $\lim_{x \to 0} g(x) = a$ and $\lim_{x \to 0} \phi(x) = b$. Then what is f(x)equal to? [2018-II] (a) 1 + ab f(x) (b) 1 + ab(c) ab (d) abf(x)

226. What is
$$\lim_{x \to \frac{\pi}{6}} \frac{2\sin^2 x + \sin x - 1}{2\sin^2 x - 3\sin x}$$
 to? [2018-11]

(a)
$$-\frac{1}{2}$$
 (b) $-\frac{1}{3}$
(c) -2 (d) -3

227.	A function f defined by $f(x)$	$= \ln(\sqrt{x^2 + 1} - x)$ is [2]	230. 2019-1]	If $f(x) = 3^{1+x}$, t (a) $f(x+y+z)$	$\begin{array}{c} \text{hen } f(x) f(y) f(z) \\ 0 \end{array} $) is equal to b) $f(x+y+z+1)$	[2019-I]
	(a) an even function(b) an odd function(c) Both even and odd function(d) Neither even nor odd function	nction	231.	(c) $f(x+y+z)$ The domain o	+2) (d) $f(x+y+z+3)$ (x) = $\sqrt{(2-x)(x-3)}$	is <i>[2019-]]</i>
228.	The domain of the function	f defined by $f(x) = \log_x 10$	0 is 2 <i>019-1]</i>	(a) $(0, \infty)$ (c) $[2, 3]$	(b) $[0, \infty]$ d) $(2, 3)$	
	(a) $x > 10$ (b) $x > 0$ excluding $x = 10$ (c) $x \ge 10$ (d) $x > 0$ excluding $x = 1$		232.	The value of k $f(x) = \begin{cases} \sin x \\ k \end{cases}$	which makes $x \neq 0$ x = 0 continue	bus at $x = 0$, is	[2019-I]
229.	$\lim_{x \to \infty} \frac{1 - \cos^3 4x}{x^2}$ is equal to	[2	2019-1]	(a) 2	(b) 1	
	(a) 0 (c) 24	(b) 12 (d) 36		(c) -1	(d) 0	

ANSWER KEY																					
1	(d)	22	(b)	43	(c)	64	(c)	85	(c)	106	(b)	127	(c)	148	(b)	170	(c)	191	(a)	212	(a)
2	(d)	23	(b)	44	(a)	65	(c)	86	(d)	107	(b)	128	(b)	149	(b)	171	(d)	192	(c)	213	(a)
3	(a)	24	(b)	45	(a)	66	(c)	87	(b)	108	(b)	129	(d)	150	(c)	172	(c)	193	(d)	214	(d)
4	(b)	25	(b)	46	(a)	67	(b)	88	(c)	109	(d)	130	(a)	151	(a)	173	(b)	194	(d)	215	(b)
5	(d)	26	(a)	47	(d)	68	(d)	89	(a)	110	(a)	131	(c)	152	(d)	174	(b)	195	(b)	216	(d)
6	(c)	27	(c)	48	(d)	69	(b)	90	(b)	111	(b)	132	(a)	153	(d)	175	(d)	196	(c)	217	(d)
7	(c)	28	(c)	49	(c)	70	(a)	91	(b)	112	(d)	133	(d)	154	(d)	176	(b)	197	(b)	218	(a)
8	(c)	29	(d)	50	(a)	71	(a)	92	(b)	113	(a)	134	(b)	155	(c)	177	(d)	198	(a)	219	(a)
9	(d)	30	(a)	51	(d)	72	(c)	93	(c)	114	(c)	135	(d)	157	(b)	178	(b)	199	(c)	220	(b)
10	(d)	31	(b)	52	(c)	73	(b)	94	(c)	115	(c)	136	(a)	158	(c)	179	(a)	200	(c)	221	(a)
11	(a)	32	(d)	53	(d)	74	(a)	95	(d)	116	(b)	137	(c)	159	(c)	180	(b)	201	(b)	222	(c)
12	(c)	33	(d)	54	(c)	75	(c)	96	(a)	117	(d)	138	(b)	160	(d)	181	(c)	202	(c)	223	(c)
13	(d)	34	(a)	55	(a)	76	(d)	97	(a)	118	(d)	139	(b)	161	(c)	182	(c)	203	(d)	224	(a)
14	(c)	35	(d)	56	(a)	77	(b)	98	(c)	119	(b)	140	(c)	162	(b)	183	(c)	204	(a)	225	(d)
15	(b)	36	(a)	57	(d)	78	(b)	99	(c)	120	(b)	141	(b)	163	(a)	184	(d)	205	(b)	226	(d)
16	(d)	37	(d)	58	(c)	79	(d)	100	(b)	121	(b)	142	(d)	164	(a)	185	(c)	206	(d)	227	(b)
17	(a)	38	(c)	59	(b)	80	(b)	101	(c)	122	(a)	143	(a)	165	(a)	186	(a)	207	(a)	228	(d)
18	(c)	39	(d)	60	(d)	81	(b)	102	(d)	123	(d)	144	(c)	166	(b)	187	(b)	208	(a)	229	(c)
19	(a)	40	(c)	61	(b)	82	(b)	103	(d)	124	(b)	145	(a)	167	(a)	188	(a)	209	(a)	230	(c)
20	(c)	41	(a)	62	(c)	83	(b)	104	(a)	125	(c)	146	(c)	168	(c)	189	(a)	210	(b)	231	(c)
21	(a)	42	(c)	63	(c)	84	(a)	105	(c)	126	(a)	147	(b)	169	(a)	190	(c)	211	(d)	232	(d)

HINTS & SOLUTIONS

6.

1. (d) \therefore $f(x) = \frac{x^2}{1+x^2}$ Since, numerator < denominator f(x) < 1 for all values of x (negative or positive) and f(x) = 0 for x = 0So, range of f is [0,1).

2. (d) The given functions is
$$f(x) = \frac{1}{\sqrt{18 - x^2}}$$

So,
$$f(3) = \frac{1}{\sqrt{18-9}} = \frac{1}{3}$$

$$\Rightarrow \lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} \lim_{x \to 3} \frac{\sqrt{18 - x^2} - \frac{1}{3}}{x - 3}$$
Putting x = 3 makes the that of $\frac{0}{0}$ form

$$\lim_{x\to 3} -\frac{1}{2}(18-x^2)^{-3/2}(-2x)$$
(Applying L' Hospital's Rule)

$$= -\frac{1}{2}(9)^{-3/2}(-2\times3) = \frac{1}{27}\times3 = \frac{1}{9}$$

3. (a) Given that f(1)=2 and f(x+y)=f(x) f(y)These are value for all values of x and y Puting x = 1 and y = 1, we get $f(2) = f(1) \cdot f(1) = 2 \cdot 2^2 = 2^2$ Similarly, $f(3) = f(1) \cdot f(2) = 2 \cdot 2^2 = 2^3$ $\Rightarrow f(x) = 2^x$ $\Rightarrow f(x) = 2^x \log_e 2$ Hence, $f(1) = 2\log_e 2$

4. (b) Given that,
$$f(x) = log\left(\frac{1+x}{1-x}\right)$$

and g (x) =
$$\left(\frac{3x + x^3}{1 + 3x^2}\right)$$

f[g(x)] $\log\left(\frac{1}{1 - g(x)}\right)$
= $\log\left(\frac{1 + 3x^2 + 3x + x^3}{1 + 3x^2 - 3x - x^3}\right)$
= $\log\left(\frac{1 + x}{1 - x}\right)^3 = 3\log\left(\frac{1 + x}{1 - x}\right) = 3[f(x)]$

5. (d) $\lim_{x \to 0} \frac{\sin |x|}{x}$, LHL is limit when x < 0

LHL = $\lim_{x \to 0} \frac{\sin(-x)}{x} = -\lim_{x \to 0} \frac{\sin x}{x} = -1$ RHL is limit when x > 0

$$RHL = \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

So, LHL \ne RHL
Hence, Limit does not exist.

(c) The given function is
$$f(x) = \begin{cases} 2x, x \ge 0\\ 0, x < 0 \end{cases}$$

The equation can be re-written as

$$f(x) = \begin{cases} x + x, & x \ge 0\\ -x + x, & x < 0 \end{cases}$$

Hence, equivalent definition of given function is f(x) = |x| + x

7. (c) Given function is
$$f(x) = \left(\frac{1}{3}\right)^x$$

Taking $\log_{1/3}$ on both sides

Let f(x) = y, so, $y = \left(\frac{1}{3}\right)^x$

$$\Rightarrow x \times \log_{1/3}\left(\frac{1}{3}\right) = \log_{(1/3)} y$$
$$x = \log_{(1/3)} y$$
$$\Rightarrow f^{-1}(x) = \log_{(1/3)} x$$

8. (c) $\lim_{x \to 0} \frac{x \sin 5x}{\sin^2 4x}$

[multiply denominator and number with x] We get,

$$\lim_{x \to 0} \frac{x^2 \sin 5x}{x \sin^2 4x} = \lim_{x \to 0} \frac{\sin 5x}{x} \cdot \frac{x^2}{\sin^2 4x}$$

Rearranging to bring a standard form, we get,

$$\lim_{x \to 0} \frac{5 \sin 5x}{5x} \cdot \frac{(4x)^2}{16 \sin^2 4x}$$
$$= \frac{5}{16} \left(\lim_{x \to 0} \frac{\sin 5x}{5x} \right) \cdot \frac{1}{\lim_{x \to 0} \left(\frac{\sin 4x}{4x} \right)^2} = \frac{5}{16}$$

9 (d) Given that $f(x) = (1 + x)^{5/x}$ and f(x) is continuous at x = 0. Value of function at x = 0 is same as limit of the function at x = 0.

$$f(0) = \lim_{x \to 0} (1+x)^{5/x} = \left\{ \lim_{x \to 0} (1+x)^{1/x} \right\}^5 = e^5$$

10. (d) Here, greatest integer function [x] is discontinuous at its integral value of x, cot x and cosec x are discontinuous at 0, π , 2π etc. and tan x and sec x are discontinuous at

> $x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$ etc. Therefore the greatest integer function and all trigonometric functions are not continuous for $x \in R$

Therefore, neither (1) nor (2) are true.

11. (a) For
$$\lim_{x \to a} \left\lfloor \frac{f(x)}{g(x)} \right\rfloor$$
 to exist, then both $\lim_{x \to a} f(x)$ and

 $\lim_{x \to \infty} g(x) \mod exist.$ x→a

_

12. (c) Given function is

$$f(x) = \begin{cases} mx+1, & x \le \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2} \end{cases}$$

As given this function is continuous at $x = \frac{\pi}{2}$.

So, limit of function when $x \rightarrow \frac{\pi}{2} = f\left(\frac{\pi}{2}\right)$

$$\Rightarrow \lim_{x \to \frac{\pi}{2}^{+}} (\sin x + n) = f\left(\frac{\pi}{2}\right)$$
$$\Rightarrow \lim_{h \to 0} \left(\sin\left(\frac{\pi}{2} + h\right) + n\right) = \frac{m\pi}{2} + 1$$
$$\Rightarrow \sin\frac{\pi}{2} + n = \frac{m\pi}{2} + 1$$
$$\Rightarrow 1 + n = \frac{m\pi}{2} + 1$$
$$\Rightarrow n = \frac{m\pi}{2}$$

2 13. (d) The given curve shows the graph of a^x which is decreasing when x is increasing. This happens when 0 < a < 1.

14. (c) Given that
$$f(x) = \log\left(\frac{1+x}{1-x}\right)$$

So, $f\left(\frac{2x}{1+x^2}\right) = \log\left(\frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1+x^2}}\right)$

$$= \log\left(\frac{1+x^2+2x}{1+x^2-2x}\right) = \log\left(\frac{(1-x)^2}{(1-x)^2}\right)$$
$$= \log\left(\frac{1+x}{1-x}\right)^2 = 2\log\left(\frac{1+x}{1-x}\right)$$
$$= 2f(x) \qquad [since f(x) = \log\left(\frac{1+x}{1-x}\right)]$$

(b) For a function to be continuous at a point the limit should exist and should be equal to the value of the function at that point. Here point is x = 0

and
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (x - 1)^{\cot x}$$

= $\lim_{x \to 0} (1 + x)^{\cot x} = \lim_{x \to 0} (1 + x)^{\frac{1}{x} \cdot x \cdot x}$

$$= \lim_{x \to 0} (1+x)^{\frac{1}{x}} \lim_{x \to 0} \frac{x}{\tan x} = e^{1} = e^{1}$$

Since limiting value of f(x) = e, when $x \rightarrow 0$, f(0)should also be equal to e.

16. (d)
$$\lim_{x \to 0} \left(\frac{x-2}{x+2} \right)^{x+2}$$

 $x \rightarrow 0$

15.

can be written as

$$\lim_{x \to 0} \left(\frac{x+2-4}{x+2} \right)^{x+2}$$

or,
$$\lim_{x \to \infty} \left\{ 1 - \frac{4}{(x+2)} \right\}^{x+2}$$

Putting
$$x + 2 = t$$

when $x \rightarrow \infty, t \rightarrow \infty$

So,
$$\lim_{t \to \infty} \left\{ 1 - \frac{4}{t} \right\}^t$$

or,
$$\lim_{t \to \infty} \left\{ 1 - \frac{4}{t} \right\}^{\frac{t}{4} \times 4}$$

or,
$$\lim_{x \to \infty} \left\{ \left(1 - \frac{4}{t} \right)^{\frac{t}{4}} \right\}^4 = (e^{-1})^4 = e^{-4}$$

.

17. (a) Derivative of
$$f(x) = \begin{cases} ax^2 + b & x < -1 \\ bx^2 + ax + a & x \ge -1 \end{cases}$$
 is

$$f'(x) = \begin{cases} 2ax & x < -1 \\ 2bx + a, & x \ge -1 \end{cases}$$
If f'(x) is continuous everywhere then it is also continuous at $x = -1$

$$f'(x)|_{x=-1} = -2a = -2b + a$$
or, $3a = 2b$...(i)
From the given choice
 $a = 2, b = 3$ satisfied this equation.
18. (c) If f(x) is differential everywhere then |f| is not differentiable at some point, so, f| f| is not differentiable at some point.
[Example: f(x) = x is differentiable everywhere but $|f(x)| = |x|$ is not differentiable at $x = 0$]
19. (a) As given f(x) = $ax^2 + bx + c$, Let $y = f(x)$. To get $f^{-1}(x)$ we express x is terms of y in equation $y = ax^2 + bx + c$.
 $\frac{y}{a} = x^2 + \frac{b}{a}x + \frac{c}{a} = \left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a}$
 $\Rightarrow x + \frac{b}{2a} = \sqrt{\frac{y}{a} + \frac{b^2}{4a^2} - \frac{c}{a}} = \frac{\pm \sqrt{4ay + b^2 - 4ac}}{2a}$
 $ax = \frac{-b \pm \sqrt{4ay + b^2 - 4ac}}{2a}$
 $ax = \frac{-b \pm \sqrt{4ay + b^2 - 4ac}}{2a}$
Putting $x = 0$
 $f^{-1}(0) = \frac{-b \pm \sqrt{0 + b^2 - 4ac}}{2a} \neq 0$ [if $b^2 - 4ac > 0$]
 $so, f^{-1}(0) \neq 0$. i.e. if $b^2 - 4ac > 0$
 $f^{-1}(0) does not contain 0, if $b^2 - 4ac > 0$.
20. (c) $\frac{x - a}{b + c} + \frac{x - b}{c + a} + \frac{x - c}{a + b} = 3$
Such an equation is possible only, if
 $\frac{x - a}{b + c} = \frac{x - b}{c + a} = \frac{x - c}{a + b} = 1$
 $\Rightarrow x = a + b + c$
21. (a) $-x^2 + 3x + 4 > 0$
 $\Rightarrow x^2 - 3x - 4 < 0 \Rightarrow (x - 4)(x + 1) < 0$$

Noting the sign of expression around -1 and 4, we use way curve method.

22. (b) Given function is.

$$f(x) \quad x \quad \frac{1}{x}$$

$$f^{2}(x) = \{f(x)\}^{2}$$

$$\Rightarrow f^{2}(x) \quad \left(x \quad \frac{1}{x}\right)^{2}$$

- 23. (b) From the given direction of function
 - $f(x) \begin{cases} 1, & x \text{ is a rational number} \\ 0, & x \text{ is an irrational number} \end{cases}$

$$(f 0 f) \sqrt{3} f\{f(\sqrt{3})\}$$

$$= f(0) \qquad (\because \sqrt{3} \text{ is an irrational number}) \\ = 1 \qquad (\because 0 \text{ is a rational number}) \\ 24. \quad (b) \quad \text{Given function is defined as :}$$

$$f(x) \quad \begin{cases} x^p \cos\left(\frac{1}{x}\right) & x \neq 0\\ 0, & x = 0 \end{cases}$$

For continuity :

LHS:
$$\lim_{x \to 0} f(x) = RHS \lim_{x \to 0} f(x)$$
 $f(0)$

$$\Rightarrow \lim_{x \to 0} f(x) \quad \lim_{x \to 0} x^p \cos\left(\frac{1}{x}\right) \quad 0$$

$$\Rightarrow \lim_{x \to 0} x^p \cos\left(\frac{1}{x}\right) \quad 0$$

$$\cos\left(\frac{1}{x}\right) \text{ is always a finite quantity if } x \to 0$$

$$\Rightarrow x^p = 0$$
which is possible only if $p > 0$.
25. (b) Given limit is: $\lim_{x \to \infty} \frac{\sin x}{x}$
Let, $x = \frac{1}{h}$ and as $x \to \infty, h \to 0$

$$\therefore \lim_{x \to \infty} \frac{\sin x}{x} \text{ change to : } \lim_{h \to 0} h \sin \frac{1}{h}$$
$$= 0 \text{ (value of sin } \frac{1}{h} \text{ is finite as it lies between } -1 \text{ and } 1$$

= 0 (value of
$$\sin \frac{1}{h}$$
 is finite as it lies between – 1 and 1)

26. (a) Let
$$L = \lim_{x \to 0} \frac{a^x - b^x}{x}$$

This is of $\frac{0}{0}$ form so, L'hospital's rule is applicable.

$$\Rightarrow L = \lim_{x \to 0} \frac{a^{x} \log a - b^{x} \log b}{1} \text{ (by L' Hospital's rule)}$$
$$= \log a - \log b = \log \frac{a}{b}$$

27. (c) Given function is :

 $f(x) \begin{cases} 3x - 4, & 0 \le x \le 2\\ 2x \quad \ell, & 2 \quad x \le 9 \end{cases}$ and also given that f(x) is continuous at x = 2 For a function to be continuous at a point LHL = RHL = V.F. at that point. f(2) = 2 = V.F. $\Rightarrow RHL : \lim_{x \to 2} (2x \quad \ell) \quad 3(2) - 4$ $\Rightarrow \lim_{h \to 0} 2(2 \quad h) \quad \ell \quad 6 - 4$ $\Rightarrow 4 \quad \ell \quad 2$ $\Rightarrow \ell \quad -2$ (c) Given functions are : f(x) = x and g(x) = |x|

 $\therefore \quad (f+g)(x) = f(x) + g(x) = x + |x|$ According to definition of modulus function,

$$(f+g)(x) = \begin{cases} x+x, & x \ge 0\\ x-x, & x < 0 \end{cases}$$
$$= \begin{cases} 2x, & x \ge 0\\ 0, & x < 0 \end{cases}$$

29. (d) Given function are:

$$g(x) = \sin x \text{ and } f(x) = \frac{1}{\sin x}$$
$$(gof)(x) = g[f(x)]$$

 $= \sin f(x)$

$$=\sin\left(\frac{1}{\sin x}\right)$$

30. (a) Given function is : $f(x) = \sin |x|$

$$=\begin{cases} \sin(x), & x \ge 0\\ \sin(-x), & x < 0 \end{cases}$$
$$=\begin{cases} \sin x, & x \ge 0\\ -\sin x, & x < 0 \end{cases}$$
$$LHD at x = 0 = \lim_{h \to 0} \frac{f(0-h) - f(0)}{0-h-0}$$
$$= \lim_{h \to 0} \frac{f(0-h) - f(0)}{-h} \quad \lim_{h \to 0} \frac{-\sin(-h) - 0}{-h}$$
$$RHD at x = 0 = \lim_{h \to 0} \frac{f(0+h) - f(0)}{0+h-0}$$
$$= \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} \quad \lim_{h \to 0} \frac{\sin(h-0)}{h} = 1$$
$$LHD \neq RHD$$
$$f(x) \text{ is not differentiable at } x = 0.$$

-1

To get the inverse, we express x in terms of y.
Taking log on both the sides,

$$\log y = \log x \cdot \log 5$$

 $\Rightarrow \log x \quad \frac{\log y}{\log 5} \quad \log y^{\frac{1}{\log 5}}$
 $\Rightarrow x \quad y^{\frac{1}{\log 5}}$
32. (d) (A): f(x) = log x for x = 1, f(x) = log 1 = 0
(R): f(x) = log x
and f(x) \ge 0 \forall x > 0
Thus, (A) is false but (R) is true.

33. (d) Given function :
$$f(x) = x \sin\left(\frac{1}{x}\right)$$

(b) Given equation is $y = 5 \log x$

31.

For differentiability at x = 0; LHD = RHD at x = 0

LHD
$$\lim_{h \to 0} \frac{f(0-h) - f(0)}{-h}$$
$$= \lim_{h \to 0} \frac{(-h)\sin\left(-\frac{1}{h}\right)}{-h} \quad \lim_{h \to 0} \frac{h\sin\left(\frac{1}{h}\right)}{-h}$$
$$= \lim_{h \to 0} \sin\left(\frac{1}{h}\right) = a \text{ finite value lies between } -1$$

 $= \min_{h \to 0} \sin\left(\frac{h}{h}\right) = a \quad \text{mine value hes between}$

and 1 which cannot be qualified exactly.

$$RHD = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$
$$= \lim_{h \to 0} \frac{h \sin\left(\frac{1}{h}\right)}{h} = \lim_{h \to 0} \sin\left(\frac{1}{h}\right)$$

= a finite value lies between - 1 and 1 which cannot be qualified exactly. LHD \neq RHD \neq a definite value. Hence, f(x) is not differentiable at x = 0. For continuity at x = 0 : $\lim_{x \to 0} LHL \quad \lim_{x \to 0} RHL \quad V.F. \text{ at } x = 0$ $LHL = \lim_{x \to 0} f(0-h) = \lim_{h \to 0} -h \sin\left(-\frac{1}{h}\right)$ $= \lim_{h \to 0} h \sin\frac{1}{h} = 0$

RHL = $\lim_{x\to 0'} f(0+h) = \lim_{h\to 0} h \sin \frac{1}{h} = 0$ f(0) = 0 \Rightarrow LHL = RHL = f(0)Hence, f(x) is continuous at x = 0Thus, (A) is false but (R) is true.

м-284

28.

34. (a)
$$f(x) = \log |x|$$

 $f'(x) = \frac{1}{|x|}$
35. (d) LHL = $\lim_{h \to 0^{-}} e^{\frac{-1}{(0-h)}}$ $\lim_{h \to 0} e^{\frac{1}{h}}$
 $= e^{\infty} = \infty$
RHL = $\lim_{h \to 0^{+}} e^{\frac{-1}{(0+h)}}$ $\lim_{h \to 0} e^{\frac{-1}{h}} = e^{-\infty} = 0$
 \therefore LHL \neq RHL
So, $\lim_{x \to 0} e^{\frac{-1}{x}}$ does not exist.
36. (a) Let $y = 2x + 5$
 $\Rightarrow y - 5 = 2x$
 $\Rightarrow x = \frac{y - 5}{2}$
 $\therefore g^{-1}(x) = \frac{x - 5}{2}$
37. (d) 1. $\lim_{x \to 0} \frac{x^{2}}{x} = \lim_{x \to 0} (x) = 0$
2. $\frac{x^{2}}{x} = x$,
since a polynomial is continuous everywhere, so it is continuous at $x = 0$
3. LHL = $\lim_{h \to 0} \frac{|0 - h|}{(0 - h)} = \lim_{h \to 0} \frac{h}{-h} = -1$

RHL =
$$\lim_{h \to 0} \frac{|0+h|}{(0+h)} = \lim_{h \to 0} \frac{h}{h} = 1$$

 $:: LHL \neq RHL$ So, it does not exist. Thus, the statements 1 and 3 are correct.

38. (c)
$$LHL = \lim_{h \to 0} \frac{1}{1 - |1 - (1 - h)|}$$

 $= \lim_{h \to 0} \frac{1}{1 - |h|} = \lim_{h \to 0} \frac{1}{1 - h} = 1$
 $RHL = \lim_{h \to 0} \frac{1}{1 - |1 - (1 + h)|}$
 $= \lim_{h \to 0} \frac{1}{1 - |-h|} \qquad \lim_{h \to 0} \frac{1}{1 - h} = 1$
 $\therefore \qquad \lim_{x \to 0} f(x) = 1$

39. (d)
$$\lim_{x \to \alpha} \frac{\sqrt{\alpha + 2x} - \sqrt{3x}}{\sqrt{3\alpha + x} - 2\sqrt{x}}$$
$$= \lim_{x \to \alpha} \frac{(\sqrt{\alpha + 2x})^2 - (\sqrt{3x})^2}{\sqrt{\alpha - 2x} - \sqrt{3x}} \times \frac{\sqrt{3\alpha - x}}{(\sqrt{3\alpha + x})^2 - (2\sqrt{x})^2}$$
$$= \lim_{x \to \alpha} \frac{\alpha + 2x - 3x}{\sqrt{\alpha + 2x} + \sqrt{3x}} \times \frac{\sqrt{3\alpha + x} + 2\sqrt{x}}{3\alpha + x - 4x}$$
$$= \lim_{x \to \alpha} \frac{\sqrt{3\alpha + x} + 2\sqrt{x}}{\sqrt{\alpha + 2x} + \sqrt{3x}} \times \frac{(\alpha - x)}{3(\alpha - x)}$$
$$= \frac{1}{3} \lim_{x \to \alpha} \frac{\sqrt{3\alpha - x}}{\sqrt{\alpha - 2x} - \sqrt{3x}} = \frac{1}{2} \left(\frac{4\sqrt{\alpha}}{2\sqrt{3\sqrt{\alpha}}}\right) = \frac{1}{\sqrt{3}}$$
40. (c)

Since, every element of A has only one image but d has no pre-image in A. So, it is one-one function. Hence, it has no inverse. (A) Given function is

41. (a) (A) Given function is

$$y=2x+3$$

Let $y_1 = y_2$ (To show $x_1 = x_2$)
 $\Rightarrow 2x_1+3=2x_2+3$
 $\Rightarrow 2x_1=2x_2$
 $\Rightarrow x_1=x_2$
Hence, $y=2x+3$ is one-one real valued function.
(R) Since $y_1 = y_2 \Rightarrow x_1 = x_2$
 $\therefore x_1 \neq x_2 \Rightarrow y_1 \neq y_2$
Thus, Both (A) and (R) are true and R is the con-
explanation of A.
42. (c) $f(-1)=f(1)=2^{35}$
Here, two real numbers 1 and -1 have the same im

same image. So, the function is not one-one and let $y = (x^2 + 1)^{35}$

$$\Rightarrow x = \sqrt{(y)^{1/35} - 1}$$

Thus, every real number has no pre image. So, the function is not onto.

Hence, the function is neither one-one nor onto.

43. (c) Given, f(x) = x |x|

If
$$f(x_1) \quad f(x_2)$$

 $\Rightarrow x_1 | x_1 | \quad x_2 | x_2 |$
 $\Rightarrow x_1 \quad x_2$
 $\therefore \quad f(x) \text{ is one-one.}$
Also, range of $f(x) = \text{ co-domain of } f(x)$
 $\therefore \quad f(x) \text{ is onto.}$
Hence, $f(x)$ is both one-one and onto.

the correct

44. (a) Given
$$f(x) = \frac{x}{1 |x|}$$

$$\begin{cases} \frac{x}{1-x}, x = 0 \\ \frac{x}{1-x}, x \ge 0 \end{cases} \quad \left(\because |x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x = 0 \end{cases} \right)$$

$$\therefore \quad \text{LHD} = f'(0^{-}) = \lim_{h \to 0} \frac{f(0-h) - f(0)}{-h}$$

$$\lim_{h \to 0} \frac{f(-h) - f(0)}{-h}$$

$$\lim_{h \to 0} \frac{\frac{-h}{1+|-h|} - 0}{-h} \quad \lim_{h \to 0} \frac{\frac{-h}{1-h} - 0}{-h} \quad \lim_{h \to 0} \frac{1}{1-h} = 1$$

and RHD = f'(0)

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$\lim_{h \to 0} \frac{\overline{1 \quad h} = 0}{h} \quad \lim_{h \to 0} \frac{1}{1 \quad h} \quad 1$$

Since, LHD = RHD

 \therefore f(x) is differentiable at x = 0

Hence, f(x) is differentiable in $(-\infty, \infty)$.

45. (a) We know
$$\lim_{\delta x \to 0} \frac{\delta y}{\delta x} \left(\frac{dy}{dx}\right)_{\text{at } x = 0}$$

= $\frac{d}{dx} (ax^n)_{\text{at } x=0} = (an x^{n-1})_{\text{at } x=0} = 0$

(a) Consider $\lim_{x\to 0} \frac{\sin^2 ax}{bx}$ Multiply and divide by a^2x^2 . 46.

$$\Rightarrow \lim_{x \to 0} \frac{\sin^2 ax}{bx} = \lim_{x \to 0} \left[\frac{\sin^2 ax}{bx} \times \frac{a^2 x^2}{a^2 x^2} \right]$$
$$= \lim_{x \to 0} \left[\frac{\sin^2 ax}{a x^2} \times \frac{a^2 x^2}{bx} \right]$$
$$= \lim_{x \to 0} \left[\left(\frac{\sin ax}{ax} \right)^2 \times \frac{a^2 x}{b} \right]$$
$$= \lim_{x \to 0} \left(\frac{\sin ax}{ax} \right)^2 \cdot \lim_{x \to 0} \frac{a^2 x}{b}$$
$$= 1 \times 0 = 0 \quad \left(\because \lim_{x \to 0} \frac{\sin x}{x} - 1 \right)$$

NDA Topicwise Solved Papers - MATHEMATICS

47. (d) Given
$$f(x) = \begin{cases} 3x - 4, 0 \le x \le 2\\ 2x + \lambda, 2 < x \le 3 \end{cases}$$

Also $f(x)$ is continuous at $x = 2$
 $\therefore \lim_{x \to 2} f(x) \quad f(2)$
Now, $f(2)=3 \times 2-4 = 6-4 = 2$
 $\Rightarrow \lim_{x \to 2} (2x + \lambda) \quad 2$
 $\Rightarrow 4 + \lambda = 2$
 $\Rightarrow \lambda = -2$
48. (d) Let $x_1, x_2 \in \mathbb{R}$
Then, $f(x_1) = f(x_2)$
 $\Rightarrow \cos x_1 = \cos x_2$
 $\Rightarrow x_1 = 2n\pi \pm x_2$
So, $x_1 \neq x_2$
Hence, $\cos x$ is not one-one function.
Now, let $y = \cos x$
We know, $-1 \le \cos x \le 1$
 $\therefore y \in [-1, 1]$
 $[-1, 1] \subset \mathbb{R}$. So, $\cos x$ is into function, not onto.
Hence, $f(x) = \cos x$ is neither one-one nor onto.

49. (c) Consider
$$\lim_{x \to \infty} \left(\frac{x}{3 x}\right)^{3x} \lim_{x \to \infty} \left(\frac{1}{1 \frac{3}{x}}\right)^{3x}$$
$$= \lim_{x \to \infty} \left(1 + \frac{3}{x}\right)^{-3x} = \lim_{x \to \infty} \left[\left(1 + \frac{3}{x}\right)^x\right]^{-3}$$
$$= [e^3]^{-3} = e^{-9} \qquad \left(\because \lim_{n \to \infty} \left(1 \frac{\lambda}{n}\right)^n e^{\lambda}\right)$$
$$\left[x, x \ge 0\right]$$

50. (a) Given,
$$f(x) =\begin{cases} x, & x \ge 0 \\ -x^2, & x = 0 \end{cases}$$

LHL = $\lim_{x \to 0^-} f(x) - \lim_{x \to 0} x^2 = 0$
RHL = $\lim_{x \to 0^-} f(x) - \lim_{x \to 0^+} x = 0$
and $f(0) = 0$
Since LHL = RHL = $f(0)$

$$\therefore$$
 $f(x)$ is continuous at $x = 0$.
Also, $f(x)$ is continuous in the given interval ie. R
Hence, $f(x)$ is continuous in every $x \in R$.

51. (d) A injective function means one-one.
Consider
$$f(x) = -x$$

Consider
$$f(x) = -x$$

Let $f(x) = f(y) \forall x, y \in R$

$$\Rightarrow -x = -v \Rightarrow x = v$$

For every values of *x*, we get a different values of *f*. Hence, it is injective.

Functions, Limit, Continuity and Differentiability

52. (c) Let f(x) = f(y)To show that f

To show that f(x) is one-one We have to show that x = yNow, f(x)=f(y)

$$\Rightarrow e^{x} = e^{y} \Rightarrow \frac{e^{x}}{e^{y}} = 1 \Rightarrow e^{x-y} = 1$$

Take log on both side $\log a^{x-y} = \log 1$

$$\log e^{x^{-y}} = \log 1$$

$$\Rightarrow x - y = 0 \Rightarrow x = y$$

Hence f(x) one-one $\forall x \in \mathbb{R}$

-2 is an element of the co-domain R. There does not exist any element X in the domain R such that $-2 = e^x = f(x)$.

Hence, by definition, f is not a onto function.

53. (d)

54.

$$\lim_{x \to \infty} \left(\frac{x+6}{x+1}\right)^{x+4} = \lim_{x \to \infty} \left(\frac{x+5+1}{x+1}\right)^{x+4} = \lim_{x \to \infty} \left(\frac{x+1}{x+1} + \frac{5}{x+1}\right)^{x+4}$$
$$= \lim_{x \to \infty} \left(1 + \frac{5}{x+1}\right)^{\frac{x+4}{5} \times \frac{5(x+1)}{x+1}}$$
$$= \lim_{x \to \infty} \left[\left(1 + \frac{5}{x+1}\right)^{\frac{x+1}{5}} \right]^{5\left(\frac{x+4}{x+1}\right)}$$
$$= e^{5} \lim_{x \to \infty} \frac{1 + \frac{4}{x}}{1 + \frac{1}{x}} = e^{5} \qquad \left(\because \lim_{x \to \infty} \frac{1 + \frac{4}{x}}{1 + \frac{1}{x}} = 1\right)$$
(c) Given fog (x) = (x+3)^2 and g(x) = x+3
$$fog(x) = (x+3)^2 \implies f[g(x)] = (x+3)^2$$

$$fog(x) = (x+3)^2 \implies f \lfloor g(x) \rfloor = (x+3)^2$$
$$\implies f [x+3] = (x+3)^2 (\because g(x) = x+3)$$
$$\implies f (x) = x^2$$

Hence, $f(-3) = (-3)^2 = 9$

55. (a) Let
$$f(x) = \frac{(x-1)^2}{|x-1|} = \begin{cases} (x-1), & x \ge 1 \\ -(x-1), & x < 1 \end{cases}$$

Now, LHL = $\lim_{h \to 0} f(1-h)$
= $\lim_{h \to 0} \left[-(1-h-1) \right] = \lim_{h \to 0} h = 0$

and RHL =
$$\lim_{h \to 0} f(1+h)$$

= $\lim_{h \to 0} (1+h-1) = \lim_{h \to 0} h = 0$
 \therefore LHL = RHL
 \therefore $\lim_{x \to 0} f(x) = LHL = RHL$
 $\Rightarrow \lim_{x \to 0} \frac{(x-1)^2}{|x-1|} = 0$

56. (a) sin x is periodic, continuous at every point on $(-\infty, \infty)$, differentiable at every point on $(-\infty, \infty)$, has a period

(d)
$$\cos x$$
 is periodic, continuous and differentiable at every point on $(-\infty, \infty)$ and has a period 2π , $\cos x$ decreases

on
$$\left(0, \frac{\pi}{2}\right)$$
 and increases on $\left(\frac{\pi}{2}, \pi\right)$

57.

58.

59.

(c) $\tan x$ is a periodic function with period π and is discontinuous at $x = \frac{m\pi}{2}$. Also, $\tan x$ is not differentiable at every point on $(-\infty, \infty)$ and increases

on
$$\left(0, \frac{\pi}{2}\right)$$
 and increases on $\left(\frac{\pi}{2}, \pi\right)$.
Hence, option (c) is correct.

(b) We know every function does not has a primitive but a primitive of a function is unique.

60. (d) Given
$$f: R \to R$$
 defined as $f(x) = \frac{x}{x^2 + 1}$
Which is a injective function

ie-
$$f(x) = \frac{x}{x^2 + 1}$$
 is one-one but not onto.

61. (b) The function f (x) = x cosec x is discontinuous everywhere.
62. (c) Let f(x) = |x-3|

. (c) Let
$$f(x) = |x-3|$$

L.H.L = $\lim_{h \to 0} f(0-h) = \lim_{h \to 0} |0-h-3|$
= $\lim_{h \to 0} (h+3) = 3$
R.H.L = $\lim_{h \to 0} f(0+h) = \lim_{h \to 0} |0+h-3|$
= $\lim_{h \to 0} |h-3| = 3$
Since, L.H.L = R.H.L at $x = 0$
 $\therefore f(x) = |x-3|$ is continuous at $x = 0$.
Now, LHD = $f'(0^-) = \lim_{h \to 0} \frac{f(0) - f(0-h)}{h}$
= $\lim_{h \to 0} \frac{3-(3-h)}{h} = 1$
and RHD = $f'(0^+) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$
= $\lim_{h \to 0} \frac{3+h-3}{h} = 1$
 \Rightarrow LHD = RHD
 $\therefore f(x)$ is differentiable

Hence, both statements (I) and (II) are correct.

63. (c) Since, on taking a straight line parallel to x-axis,
the group of given function intersect it at one point.

$$\therefore$$
 f(x) is one-one.
and as range of f(x) = Co-domain
 \therefore f(x) is onto.
Hence, f(x) is one-one onto.
64. (c) Consider $\lim_{x\to 0} \frac{\cos ax - \cos bx}{2x}$
 $= \lim_{x\to 0} \frac{-a\sin ax + b\sin bx}{2x}$
(using L' Hospital's rule)
 $= \lim_{x\to 0} \frac{-a^2 \cos ax + b^2 \cos bx}{2}$
(using L' Hospital's rule)
 $= \frac{b^2 - a^2}{2} (\because \cos 0 = 1)$
65. (c) Let, f(x) = 2x + 7 and g(x) = x^2 + 7, x \in \mathbb{R}
Now fog (x) = f[g(x)] = f(x^2 + 7)
 $= 2(x^2 + 7) + 7 = 2x^2 + 14 + 7$
But fog (x) = 25
 $\Rightarrow 2x^2 + 21 = 25$
 $\Rightarrow x^2 = 2$
 $\Rightarrow x = \pm \sqrt{2}$
66. (c) Consider
 $\lim_{x\to 0} \frac{a^x - b^x}{x} = \lim_{x\to 0} \frac{a^x \log a - b^x \log b}{1}$
(Using L' Hospital's rule)
 $= \log a - \log b = \log \frac{a}{b}$
67. (b) Let f(x) = $\frac{x(x-2)}{x^2 - 4} = \frac{x(x-2)}{(x-2)(x+2)} = \frac{x}{x+2}$
Since f(x) is continuous at $x = 2$
 $\therefore \lim_{x\to 2} f(x) = f(2)$
 $\Rightarrow \lim_{x\to 2} \frac{x}{x+2} = f(2)$
 $\Rightarrow \lim_{x\to 2} \frac{x}{x+2} = f(2)$
 $\Rightarrow f(2) = \frac{2}{4} = \frac{1}{2}$
68. (d) Given, $f(x) = [x]$
Let 'c' be any real number.
f is continuous at $x = c$ if L.H.L. = R.H.L. = $f(c)$
i.e., $\lim_{x\to c} f(x) = \lim_{x\to c'} f(x) = f(c)$

L.H.L. =
$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{-}} [x] = c^{-1}$$

R.H.L. = $\lim_{x \to c^{+}} f(x) = \lim_{x \to c^{-}} [x] = c$
Since, L.H.L \neq R.H.L.
f is discontinuous for all $x \in \mathbb{R}$.
So, $[x]$ is discontinuous at infinite points.
69. (b) Let $f(x) = \frac{2}{3}x + \frac{3}{2} = y(say) = \frac{4x + 9}{6} = y$
 $\Rightarrow 4x + 9 = 6y$
 $\Rightarrow x = \frac{6y - 9}{4}$
 $x = f^{-1}(y)$
 $\Rightarrow f^{-1}(x) = \frac{6x - 9}{4} = \frac{3x}{2} - \frac{9}{4}$
70. (a) Consider, $\lim_{x \to \infty} \left[\sqrt{a^{2}x^{2} + ax + 1} - \sqrt{a^{2}x^{2} + 1} \right]$
 $= \lim_{x \to \infty} \frac{(\sqrt{a^{2}x^{2} + ax + 1} - \sqrt{a^{2}x^{2} + 1})(\sqrt{a^{2}x^{2} + ax + 1} + \sqrt{a^{2}x^{2} + 1})}{(\sqrt{a^{2}x^{2} + ax + 1} + \sqrt{a^{2}x^{2} + 1})}$
 $= \lim_{x \to \infty} \left[\frac{a^{2}x^{2} + ax + 1 - a^{2}x^{2} - 1}{\sqrt{a^{2}x^{2} + ax + 1} + \sqrt{a^{2}x^{2} + 1}} \right]$
 $= \lim_{x \to \infty} \left[\frac{a^{2} + \frac{a}{x} + \frac{1}{x^{2}} + \sqrt{a^{2} + \frac{1}{x^{2}}}}{\sqrt{a^{2} + \frac{a}{x} + \frac{1}{x^{2}}} + \sqrt{a^{2} + \frac{1}{x^{2}}}} \right]$
 $= \lim_{x \to \infty} \frac{a}{\sqrt{a^{2} + \frac{a}{x} + \frac{1}{x^{2}}} + \sqrt{a^{2} + \frac{1}{x^{2}}}}$
 $= \frac{a}{\sqrt{a^{2} + \sqrt{a^{2}}}} = \frac{a}{2a} = \frac{1}{2}$
71. (a) Let $f(x) = \left\{ \frac{x^{3} - 3x + 2}{(x - 1)^{2}}, \quad \forall x \neq 1$
 $k, \quad \forall x = 1$
and $f(x)$ is continuous.
 $\therefore \lim_{x \to 1} f(x) = k$
 $\Rightarrow \lim_{x \to 1} \frac{x^{3} - 3x + 2}{(x - 1)^{2}} = k$
 $\Rightarrow k = \lim_{x \to 1} \frac{3x^{2} - 3}{2(x - 1)}$ [By L'Hospitals rule]
 $\Rightarrow k = \lim_{x \to 1} \frac{6x}{2}$ [By L'Hospitals rule]

 $\Rightarrow k=3$

(c)
$$\therefore f(x) = |x| + x^2$$

$$\Rightarrow f(x) = \begin{cases} x^2 + x, & x \ge 0 \\ x^2 - x, & x = 0 \end{cases}$$
LHL = $\lim_{h \to 0} f(x)$
= $\lim_{h \to 0} f(0 - h) = \lim_{h \to 0} 0 - h^2 - 0 - h$
= $\lim_{h \to 0} h^2 - h = 0$
and RHL = $\lim_{x \to 0} f(x) = \lim_{h \to 0} f(0 - h)$
= $\lim_{h \to 0} (0 - h)^2 - (0 - h) = \lim_{h \to 0} h^2 - h = 0$
 $\Rightarrow LHL = RHL = f(0)$
 $\Rightarrow f(x) \text{ is continuous at } x = 0$
Now, LHD = $\lim_{h \to 0} \frac{f(0 - h) - f(0)}{-h}$
= $\lim_{h \to 0} \frac{h^2 - h}{-h} = -\lim_{h \to 0} h - 1 = -1$
and, RHD = $\lim_{h \to 0} \frac{f(0 + h) - f(0)}{-h}$
= $\lim_{h \to 0} \frac{h^2 - h}{-h} = \lim_{h \to 0} h - 1 = 1$
Thus, LHD \neq RHD
Thus, LHD \neq RHD

 \Rightarrow f(x) is not differentiable at x = 0

73. (b) Given f(x) = |x - 3| is not continuous at x = 3 but it is differentiable at x = 0.

74. (a)
$$\lim_{x \to 0} \left(x^2 \right) \left[\sin\left(\frac{1}{x}\right) \right] = 0 \times \lim_{x \to 0} \sin\left(\frac{1}{x}\right)$$
$$= 0 \times \text{finite quantity} = 0$$

75. (c)
$$\lim_{x \to -2} \left(\frac{x+2}{x^3+8} \right) = \lim_{x \to -2} \frac{x+2}{(x)^3+(2)^3}$$
$$= \lim_{x \to -2} \frac{x+2}{(x+2)(x^2-2x+4)}$$
$$= \frac{1}{(-2)^2 - 2(-2) + 4} = \frac{1}{12}$$

76. (d) By observing the options Let $f(t) = t^k$ Suppose t = xy $f(x_k) = (x_k)^k - x^k + y^k = f(x_k) - f(y_k)$

$$f(xy) = (xy)^{k} = x^{k} \cdot y^{k} = f(x) \cdot f(y)$$

Hence, $f(t) = t^{k}$ where 'k' is a constant.

77. (b) Since $\frac{x}{|x|}$ is not continuous function \therefore it is not differentiable also. Also, L.H.D. and R.H.D. at x = 0 not equal. Thus, only function given in option 'b' gives differentiability for all real values of x.

78. (b)
$$\lim_{x \to 0} \frac{\sqrt{1+x}-1}{x}$$
$$= \lim_{x \to 0} \frac{\sqrt{1+x}-1}{x} \times \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1} = \lim_{x \to 0} \frac{1+x-1}{x\left[\sqrt{1+x}+1\right]}$$
$$= \lim_{x \to 0} \frac{1}{\sqrt{1-x}-1} = \frac{1}{\sqrt{1+0}+1} = \frac{1}{2}$$

79. (d)
$$\lim_{x \to 0} \frac{2(1-\cos x)}{x^2} = \lim_{x \to 0} \frac{2.2 \sin^2 \frac{x}{2}}{x^2}$$
$$= 4 \lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2} \times 2} \cdot \lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2} \times 2}$$
$$= \lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} \cdot \lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} = 1 \times 1 = 1$$

80. (b)
$$\lim_{x \to 0} \frac{1}{x} = \frac{1}{0} \quad \infty \text{ which does not exist.}$$
Hence, statement-1 is incorrect.
Now,
$$\lim_{x \to 0} e^{1/x} = e^{\infty} \text{ which also does not exist.}$$
Hence, statement-2 is correct.
81. (b) f x = $\int_{x}^{\frac{x^2}{x}} \frac{x \neq 0}{x}$

. (b) f x
$$\begin{cases} \frac{x^2}{x}, & x \neq 0\\ 0 & x & 0 \end{cases}$$
$$= \begin{cases} \frac{x^2}{x} & x, & x & 0\\ 0, & x & 0\\ \frac{x^2}{-x} = -x, & x & 0 \end{cases}$$
Now, $\lim_{x \to 0^-} f x = \lim_{x \to 0} -x & 0$
$$\lim_{x \to 0} f x \lim_{x \to 0} x & 0$$
and f(0) = 0

So, f(x) is continuous at x = 0

Also, f(x) is continuous for all other values of x.

Hence, f(x) is continuous everywhere.

82. (b) Let $\lim_{x \to 2} \frac{x-2}{x^2-4} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+2)}$ $= \lim_{x \to 2} \frac{1}{x - 2} - \frac{1}{2 - 2} - \frac{1}{4}$ 83. (b) Let $y = f^{-1}(x) = \frac{x+5}{3}$ $\Rightarrow 3y-5=x$ Now, $y = f^{-1}(x)$ $\Rightarrow x = f(y)$ $\Rightarrow x = 3y - 5$ Hence, f(x) = 3x - 5. 84. (a) (1) $f(x) = x^3$ and $g(y) = y^3$. \Rightarrow f = g is a correct statement. (2) Identify function is always a bijection. 85. (c) Let $f: A \to A$ defined as $f(x) = x^2$. Let $f(x) = y \therefore x = f^{-1}(y)$ Now $\Rightarrow x^2 = y$ $x = \sqrt{y}$ Thus, $f^{-1}(y) = \sqrt{y}$ Hence, the function has an inverse but f is not its own inverse. (d) f(x) is continuous if $\lim_{x\to a} f(x)$ exists and equals f(a). 86. So, statement -1 is not correct. Also, statement -2 is incorrect. 87. (b) First we check continuity at x = 2

L. H. L =
$$\lim_{h \to 0} f(2-h) = \lim_{h \to 0} 3(2-h) - 2$$

= $\lim_{h \to 0} 4 - 3h = 4$
R. H. L. = $\lim_{h \to 0} f(2+h) = \lim_{h \to 0} (2+h)^2 = 4$
Also $f(2) = (2)^2 - 4$

Also, $f(2) = (2)^2 = 4$ Since, L. H. L = R. H. L = f(2) \therefore f(x) is continuous at 2. Now, we check for differentiability L. H. D at x = 2 R. H. D at x = 2 f(x)=3x-2 f(x)=x^2. f'(x)=3 f'(x)=2x f'(x)|_{x=2} = 3 f'(x)|_{x=2} = 4 Since L. H. D \neq R. H. D \therefore f(x) is not derivable at x = 2

88. (c) Since
$$\sin \frac{1}{x}$$
 is an oscillatory function
 $\therefore \lim_{x \to 0} \sin \frac{1}{x}$ has a finite value between -1 and 1.
Now, At x = 0

NDA Topicwise Solved Papers - MATHEMATICS
L. H. L =
$$\lim_{h \to 0} f(0-h) = \lim_{h \to 0} (-h) \sin\left(-\frac{1}{h}\right)$$

$$= 0 \times \text{ a finite value between } -1 \text{ and } 1$$

$$= 0 \times \text{ a finite value between } -1 \text{ and } 1$$

$$= 0$$
Similarly R. H. L = $\lim_{h \to 0} f(0+h) = 0$
Also, $f(0) = 0$

$$\therefore \lim_{x \to 0} x \sin \frac{1}{x} \text{ exists.}$$
Hence Both statements are correct.
(a) Consider $\lim_{x \to 0} \frac{\sin x - \tan x}{x}$

$$= \lim_{x \to 0} \frac{\cos x - \sec^2 x}{1} \text{ (By L' Hospital Rule)}$$

$$\cos 0 - \sec^2 0 \quad 1 - 1$$

$$=\frac{1}{1}=\frac{1}{1}=0.$$

(b) Consider
$$\lim_{x \to 0} \frac{1 - \sqrt{1 + x}}{x}$$

89.

90.

$$= \lim_{x \to 0} \frac{1 - (1 + x)}{x(1 + \sqrt{1 + x})}$$
 (By Rationalizing)

$$= \lim_{x \to 0} \frac{-x}{x(1+\sqrt{1+x})} = \frac{-1}{2}$$

91. (b) 1. Not necessarily true

2. True (:: Differentiability \Rightarrow Continuity)

92. (b) To show f is one-one. Let f(x) = f(y) (To show: x = y) $\Rightarrow x + 1 = y + 1$ $\Rightarrow x = y$ Hence, f is one-one,

Now, 'f' is not onto because every element of codomain does not have it's pre-image in domain.

Functions, Limit, Continuity and Differentiability

93.

Domain (x) Co-domain (2x) For each element in the domain there is only one element in the therefore f(x) is one-one. No image in the co-domain which has no pre-image in the domain, therefore f(x) is onto

Hence f(x) both is one-one and onto.

94. (c) $f(x) = e^x$, where x > 0

According to graph, Graph of e^x is not breaking when x > 0Therefore, graph is continuous at x > 0**Statement II** g(x)=|x-3|

Graph of |x-3| is not breaking but have sharp turn at x = 3. So, it is continuous

95. (d)
$$\lim_{x \to 2} \frac{2-x}{x^3 - 8} = \lim_{x \to 2} \frac{2-x}{(x-2)(x^2 - 2x - 4)}$$
$$= \lim_{x \to 2} \frac{-1}{x^2 - 2x - 4}$$
Putting x = 2, we get
$$\frac{-1}{2^2 - 4 - 4} = -\frac{1}{12}$$

96. (a) $f: R \to R, f(x) = \begin{cases} x^2 & , x \ge 0 \\ -x & , x & 0 \end{cases}$ For continuity at x = 0 $f(0-0) = \lim_{h \to 0} f(0-h)$ $= \lim_{h \to \infty} [(0-h)] \lim_{h \to \infty} h$ 0 h→0 $f(0+0) = \lim_{h \to 0} f(0 h) \lim_{h \to 0} (0 h)^2$ 0 and f(0) = 0 $h \rightarrow 0$ $h \rightarrow 0$ f(x) is continuous at x = 0For differentiability at x = 0 $\lim_{h \to 0} \frac{-(-h) - 0}{-h} = \lim_{h \to 0} = \frac{h}{-h} = -1$ and $\lim_{h\to 0}\frac{f(0+h)-f(0)}{h}\quad \lim_{h\to 0}h=0$ f(x) is not differentiable at x - 0 $\lim_{x \to 0} \frac{1 - \cos x}{x} \quad \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x}$ 97. (a) $= 2 \left| \lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2} \times 2} \cdot \lim_{x \to 0} \sin \frac{x}{2} \right|$ $=2\left[\frac{1}{2}\times 0\right]=0$ $\lim_{x \to 0} \frac{\cos x}{\pi - x} = \frac{\cos 0}{\pi - 0} = \frac{1}{\pi}$ 98. (c) (c) $\lim_{x \to 0} \frac{\sin 2x \quad 4x}{2x \quad \sin 4x} = \lim_{x \to 0} \frac{\frac{\sin 2x}{x} \quad 4}{2 \quad \frac{\sin 4x}{2}}$ 99 $= \lim_{x \to 0} \frac{2\left(\frac{\sin 2x}{2x}\right) - 4}{2 - 4\left(\frac{\sin 4x}{4x}\right)}$ Applying limit, we get $\frac{2}{2} = \frac{4}{4} = 1$ 100. (b) $f: \mathbb{Z} \rightarrow \mathbb{N}$ and $f(\mathbf{x}) = |\mathbf{x}|$ When we draw a parallel line to x-axis. It cuts the curve into more than one point.

Therefore, f(x) = |x| is not one-one. but onto

101. (c)
$$\lim_{x \to 0} \frac{(1+x)^n - 1}{x}$$
$$= \lim_{x \to 0} \frac{{}^nC_0 + {}^nC_1 x + {}^nC_2 x^2 + \dots + {}^nC_n x^n - 1}{x}$$
$$= \lim_{x \to 0} \frac{x({}^nC_1 + {}^nC_2 x + \dots + {}^nC_n x^{n-1})}{x}$$
$$= \lim_{x \to 0} {}^nC_1 + {}^nC_2 x + \dots {}^nC_n x^{n-1}$$
Put x = 0 $\Rightarrow {}^nC_1 = n$

102. (d)
$$\lim_{x \to 0} \frac{x}{\sqrt{1 - \cos x}} = \lim_{x \to 0} \frac{x}{\sqrt{1 - \left(1 - 2\sin^2 \frac{x}{2}\right)}}$$

$$= \lim_{x \to 0} \frac{x}{\sqrt{2 \sin^2 \frac{x}{2}}} = \frac{1}{\sqrt{2}} \lim_{x \to 0} \frac{x}{\left|\sin \frac{x}{2}\right|}$$

L.H.L = f(0-0) = $\lim_{h \to 0} \frac{x}{\left|\sin \frac{x}{2}\right|}$

$$= -\frac{1}{\sqrt{2}} \lim_{x \to 0} \frac{2\left(\frac{h}{2}\right)}{\sin \frac{h}{2}}$$
$$= -\frac{1}{\sqrt{2}} \times 2 \times 1 \qquad \qquad \left(\because \lim_{\theta \to 0} \frac{\theta}{\sin \theta} = 1\right)$$
$$= -\sqrt{2}$$

$$\operatorname{R}\operatorname{H}\operatorname{L} = \operatorname{f}(0+0) = \lim_{h \to 0} \operatorname{f}(0 \quad h)$$

$$= \frac{1}{\sqrt{2}} \lim_{h \to 0} \frac{2\left(\frac{h}{2}\right)}{\sin\frac{h}{2}} = \frac{1}{\sqrt{2}} \times 2 \times 1$$

= LHL \neq RHL = $\sqrt{2}$ Therefore limit does not exist.

103. (d)
$$\lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(\pi - 2x)^2}$$
$$= \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{(\pi - 2x)(-2)}$$
$$= \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{4(\pi - 2x)}$$
and
$$= \lim_{x \to \frac{\pi}{2}} \frac{-\sin x}{4(-2)} = \lim_{x \to \frac{\pi}{2}} \frac{\sin x}{8}$$
$$= \frac{1}{8} \cdot \sin \frac{\pi}{2} = \frac{1}{8} \times 1 \quad \frac{1}{8}$$

104. (a) Function is continuous at
$$x = \frac{\pi}{2}$$

$$f\left(\frac{\pi}{2}\right) = \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(\pi - 2x)^2} = \frac{1}{8}$$

105. (c)
$$\lim_{x \to 0} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3} = \lim_{x \to 0} \frac{\frac{1}{2\sqrt{f(x)}} f'(x)}{\frac{1}{2\sqrt{x}} \cdot 1}$$

(By L' Hospital rule)

$$= \lim_{x \to 0} \frac{f'(x) \times \sqrt{x}}{\sqrt{f(x)}} = \frac{f'(9) \times \sqrt{9}}{\sqrt{f(9)}}$$
$$= \frac{4 \times 3}{\sqrt{9}} = \frac{4 \times 3}{3} = 4$$

106. (b) LHL f (2.99-0) =
$$\lim_{h\to 0} (2.99-h)$$

 $\lim_{h\to 0} (2.99-h) = \lim_{h\to 0} 2=2$
RHL f (2.99-0) = $\lim_{h\to 0} f(2.99+h)$
 $= \lim_{h\to 0} (2.99+h) = \lim_{h\to 0} 2=2$
LHL=RHL
 \therefore f(x) is continous at x = 2.99
107. (b) Statement 1 : f(x) = |x|

From the graph, the curve has sharp turn at x = 0. Therefore, the function f(x) = |x| is not differentiable only x = 0, it is differentiable at x = 1**Statement 2 :** $f(x) = e^x$

Rf'(0) =
$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$= \lim_{h \to 0} \frac{e^{(0+h)} - e^{\circ}}{h} = \lim_{h \to 0} \frac{e^{h} - 1}{h}$$

$$= \lim_{h \to 0} \frac{e^h - 0}{1} = e^o = 1$$

$$f'(0) = \lim_{h \to 0} \frac{1 - e^{-h}}{h}$$
Use L' Hospital rule

$$= \lim_{h \to 0} \frac{e^{-h}}{1} = e^{-0} = 1$$
Therefore $f(x) = e^{x}$ is differentiable at $x = 1$.
108. (b) Statement 1: Given $f(x) = \begin{cases} 2 - x & \text{for } 1 \le x \le 2 \\ 3x - x^{2} & \text{for } x > 2 \end{cases}$
function defined in $1 \le x < \infty$
the function is polynomial, so it is continous and
differentiable in its domain $[1, \infty] - \{2\}$
LHL $f(2-0) = \lim_{h \to 0} f(2-h)$

$$= \lim_{h \to 0} h = 0$$
RHL $f(2+0) = \lim_{h \to 0} (2+h)$

$$= 6-4=2$$
 $f(2)=2-2=0 \therefore LHL \neq RHL$
Statement 2:
Rf'''(1.5) = $\lim_{h \to 0} \frac{f(1.5+h)-f(1.5)}{h}$

$$= \lim_{h \to 0} \frac{(2-1.5+h)-(2-1.5)}{-h} = \lim_{h \to 0} \frac{-h}{h} = -1$$
Lf'(1.5) = $\lim_{h \to 0} \frac{f(1.5-h)-f(1.5)}{-h}$

$$= \lim_{h \to 0} \frac{(2-1.5-h)-(2-1.5)}{-h}$$

$$= \lim_{h \to 0} \frac{(2-1.5-h)-(2-1.5)}{-h}$$

$$= \lim_{h \to 0} \frac{1}{-1} = -1$$
Therefore, the function is differentiable at $x = 1.5$
109. (d) $f'(x) = \begin{cases} -1 & \text{for } 1 \le x \le 2 \\ 3-2x & \text{for } x > 2 \end{cases}$
 $f'(3) = 3-2(3) = 3-6 = -3$
110. (a) $f'(2+0) = \lim_{h \to 0} f'(2+h)$

$$= \lim_{h \to 0} 3 - 4 - 2h = -1$$

 $f(2-0) = \lim_{h \to 0} f'(2-h) = (3-4-2h) = -1$
So, $f'(x)$ exist at $x = 2$
111. (b) Given f: $N \to N$
 $\therefore f(x) = 2x + 3 \Rightarrow f'(x) = 2 > 0$

So, f(x) is increasing, $\forall x \in N$.

11

Let f(x) = y \Rightarrow y=2x+3 \Rightarrow x = $\frac{y-3}{2}$ This is injective $\therefore x = \frac{1}{2}$ and $y\in N$ but $x\not\in N$ Hence, f(x) is not surjective. 112. (d) f(x) = ax + b and g(x) = cx + df[(g(x))] = a(cx+d)+b= acx + ad + band g[f(x)] = c(ax+b)+d= acx + dc + dNow from f[(gx)] = g[f(d)] \Rightarrow ad + b = bc + d \Rightarrow f(d) = g(b) 113. (a) Given $f(x) = \frac{x-1}{x+1}$

Hence, f(x) is injective.

Applying componendo and dividendo, we get

$$\frac{f(x)+1}{f(x)-1} = \frac{x-1+x+1}{x-1-x-1}$$

$$\Rightarrow \frac{f(x)+1}{f(x)-1} = -x$$

Now, $\frac{f(x)+1}{f(x)-1} + x = -x + x = 0$
(c) $f(x) = \frac{x-1}{x+1} \Rightarrow x = \frac{1+f(x)}{1-f(x)}$

$$\Rightarrow f(2x) = \frac{2x-1}{2x+1} \Rightarrow f(2x) = \frac{2\left[\frac{[1+f(x)]}{1-f(x)}\right] - 1}{2\left[\frac{[1+f(x)]}{1-f(x)}\right] + 1}$$

114.

 $\Rightarrow \lim_{x \to 0-h} \left[\frac{\tan k(0-h)}{(0-h)} \right] = \lim_{x \to 0+h} [3(0+h)+2k^2] = 2k^2$

 $\left[\because \lim_{x \to 0} \frac{\tan x}{x} = 1 \right]$

 $\therefore \log_x y = \frac{\log_e y}{\log_e x}$

Therefore, $\lim_{h \to 0} \left(\frac{\tan kh}{h} \right) = 2k^2$

120. (b) The greatest integer function is continuous at all

Statement 2: Let $h(a) = \sin x$ and g(x) = |x|

Therefore, g(x) is continuous, $\forall x \in R$ and

statement points except integer. Hence, statement 1is

When both are continuous then hog (x) is also

 $k=2k^2$

Hence, $k = \frac{1}{2}$

incorrect.

hog(x) = sin |x|

continuous.

 \Rightarrow f(x) = hog (x) = sin |x|

h (x) is continous $\forall x \in R$

Thus, statement 2 is correct.

121. (b) Given equation $\lim_{x \to 0} \frac{\log_5(1 - x)}{x}$

116. (b)
$$f(x) = \begin{cases} x^2 - 5 & , x \le 3 \\ \sqrt{x - 13} & , x - 3 \end{cases}$$

To find $\lim_{x \to 3^-} f(x)$
 $LHL = \lim_{x \to 3^-} f(x)$
 $= \lim_{x \to 3^-} (x^2 - 5) = \lim_{x \to (3-h)} [(3-h)^2 - 5]$
 $= \lim_{h \to 0} (9 - 6h + h^2 - 5) = 4$
RHL $= \lim_{x \to 3^+} (\sqrt{x + 13})$
 $= \lim_{x \to (3-h)} (\sqrt{3 - h - 13}) = \lim_{h \to 0} (\sqrt{16 - h}) = 4$
 $\therefore \lim_{x \to 3^-} f(x) = \lim_{x \to 3} f(x) = 4$
 $\therefore \lim_{x \to 3^-} f(x) = \lim_{x \to 3} f(x) = f(3)$
 $\therefore \lim_{x \to 3^-} f(x) = \lim_{x \to 3} f(x) = f(3)$
 $\therefore \lim_{x \to 3^-} f(x) = \lim_{x \to 3} f(x) = 4$
Therefore f(x) is continuous at $x = 4$
2. Given $f(x) = x^2 - 5 \forall x \le 3$
 $f'(x) = 2x$

f'(0) = 0

118. (d) Given, $f(x) = \sqrt{x - 13}$, x > 3

 $f'(x) = \frac{1}{2\sqrt{x-13}}$

119. (b) Given, $f(x) = \begin{cases} \frac{\tan kx}{x}, & x = 0\\ 3x + 2k^2, & x \ge 0 \end{cases}$

 $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} f(x) = f(0)$

So, f(x) is differentiable at x = 0

 \Rightarrow f'(12) = $\frac{1}{2\sqrt{12-13}} = \frac{1}{2\times 5} - \frac{1}{10}$

When function is continuous at x = 0, then

 $\therefore \lim_{x \to 0-h} \left(\frac{\tan kx}{x} \right) = \lim_{x \to 0} (3x + 2k^2) = 3(0) + 2k^2$

Therefore, neither statement 1 nor 2 is correct.

$$= \lim_{x \to 0} \frac{\log_e(1+x)}{x \log_e 5} \qquad \left[\because \log_x y \quad \frac{\log_e y}{\log_e x} \right]$$
$$= \frac{1}{\log_e 5} \lim_{x \to 0} \frac{\log_e(1-x)}{x} = \log_5 e$$
$$\left[\because \lim_{x \to 0} \frac{\log_e(1+x)}{x} = 1, \log_x y = \frac{1}{\log_y x} \right]$$

122. (a)
$$\therefore \lim_{x \to 0} \frac{a^x - 1}{x} = \log_e a$$

 $\therefore \lim_{x \to 0} \frac{5^x - 1}{x} = \log_e 5$
Hence, option (a) is correct

123. (d)
$$\lim_{n \to \infty} \frac{1+2+3+...+n}{1^2+2^2+3^2+...+n^2} = \lim_{n \to \infty} \frac{\frac{n(n-1)}{2}}{\frac{n(n-1)(2n-1)}{6}}$$
$$\therefore \lim_{n \to \infty} \frac{3}{2n+1} = 0$$
Note: $1+2+3+...+n = \frac{n(n+1)}{2}$ $1^2+2^2+3^2+...+n^2 = \frac{n(n+1)(2n+1)}{6}$

Sol. (124-125): $\lim_{x \to \infty} \left(\frac{2 + x^2}{1 + x} - Ax - B \right) = 3$ $\Rightarrow \lim_{x \to \infty} \left(\frac{2 + x^2 - Ax - B - Ax^2 - Bx}{1 + x} \right) = 3$ $\Rightarrow \lim_{x \to \infty} \left[\frac{(1-A)x^2 - (A+B)x + 2 - B}{1+x} \right] = 3$ Applying L'Hospital rule, 2x(1-A) - (A+B) = 3Comparing coefficients 2(1-A) = 0 \therefore A = 1 and -(A+B)=3 \therefore B=-3-1=-4 A + B = -3A = 1, B = -4124. (b) 125. (c) 126. (a) $G(x) = \sqrt{25 - x^2}$ Now, $\lim_{x \to 1} \frac{G(x) - G(l)}{x - 1}$

 $\lim_{x \to 1} \frac{\sqrt{25 - x^2} - \sqrt{24}}{x - 1}$ (÷ form)

Applying L'Hospital rule,

$$\lim_{x \to 1} \frac{(-2x)}{2\sqrt{25 - x^2}} = \frac{-2}{2\sqrt{25 - x^2}}$$
$$= \frac{-2}{2\sqrt{24}} = \frac{-1}{\sqrt{24}} = \frac{-1}{2\sqrt{6}}$$

 ∴ Option (a) is correct.
 127. (c) From statement-1 From the definition of greatest integer function f(x) = [x] is discontinuous at x = n for any value of n∈Z
 ∴ Statement1 is correct From statement-2 f(x) = cot x for x = π = cot π = -∞ for x = 2π f(2π) = cot 2π = -∞

Hence the function $f(x) = \cot x$ is discontinuous at $x = n\pi$ where $n \in \mathbb{Z}$.

 \therefore Option (c) is correct.

Sol. (129-130):

 $F(x) = \begin{cases} -1 & , \quad x \leq 0 \\ ax + b & , \quad 0 < x < 1 \\ 1 & , \quad x \geq 1 \end{cases}$ At x = 0, L.H.L. = R.H.L. $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$ $-1 = \lim_{x \to 0} (ax + b)$ $x \rightarrow 0$ -1 = bSince the given function is also continuous at x = 1L.H.L. = R.H.L. $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x)$ a + b = 1a - 1 = 1a = 1 + 1 = 2. 129. (d) Function is continuous at x = 0 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$ $x \rightarrow 0^{-}$ $x \rightarrow 0^+$ $-1 = a(0) + b \Longrightarrow b = -1$ Now, f(x) is also continuous at x = 1 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x)$ $x \rightarrow 1^{-}$ $x \rightarrow 1^+$ a(1) + b = 1a = 1 - b = 1 + 1a = 2. 130. (a) From solution 82, b = -1.

132. (a)
$$f(x) = \begin{cases} \frac{\alpha \cos x}{\pi - 2x} & \text{if } x \neq \frac{\pi}{2} \\ 3 & \text{if } x = \frac{\pi}{2} \end{cases}$$

For continuity at $x = \frac{\pi}{2}$

:..

L.H.L. =
$$\lim_{x \to \frac{\pi^{-}}{2}} f(x) = \lim_{x \to \frac{\pi^{-}}{2}} \frac{\alpha \cos x}{\pi - 2x}$$

Put $x = \frac{\pi}{2} - h$ where $x \to \frac{\pi}{2}$, then $h \to 0$
L.H.L. = $\lim_{h \to 0} \frac{\alpha \cos\left(\frac{\pi}{2} - h\right)}{\pi - 2\left(\frac{\pi}{2} - h\right)} = \lim_{h \to 0} \frac{\alpha \sin h}{\pi - \pi + 2h}$

$$\left[\because \cos\left(\frac{\pi}{2} - \theta\right) = \sin \theta \right] \quad 135. \text{ (c}$$

$$= \lim_{h \to 0} \frac{2 \alpha \sin h}{2h} = \frac{\alpha}{2} \lim_{h \to 0} \frac{\sin h}{h}$$

$$= \frac{\alpha}{2} \cdot 1 = \frac{\alpha}{2} \quad \left[\because \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \right]$$
and R.H.L. = $\lim_{x \to \frac{\pi^{+}}{2}} f(x) \lim_{x \to \frac{\pi^{+}}{2}} \frac{\alpha \cos x}{\pi - 2\pi}$
Put $x = \frac{\pi}{2} + h$ when $x \to \frac{\pi}{2}$, then $h \to 0$

$$\therefore \quad \text{R.H.L.} = \lim_{h \to 0} \frac{\alpha \cos\left(\frac{\pi}{2} + h\right)}{\pi - 2\left(\frac{\pi}{2} + h\right)} = \lim_{h \to 0} \frac{\alpha(-\sin h)}{\pi - \pi - 2h}$$

$$= \lim_{h \to 0} -\frac{\alpha \sin h}{-2h} \qquad \left[\because \cos\left(\frac{\pi}{2} + \theta\right) = -\sin \theta \right]$$

$$= \frac{\alpha}{2} \lim_{h \to 0} \frac{\sin h}{h} = \frac{\alpha}{2} \qquad \left(\because \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \right)$$
Also, $f\left(\frac{\pi}{2}\right) = 3$
Since, f(x) is continuous at $x = \frac{\pi}{2}$

$$\therefore \quad \text{L.H.L.} = \text{R.H.L.} = f\left(\frac{\pi}{2}\right)$$

$$\frac{\alpha}{2} = \frac{\alpha}{2} = 3$$

$$\alpha = 6$$
Hence, for $\alpha = 6$, the given function (f) is continuous at
$$x = \frac{\pi}{2}.$$
137. (c)
133. (d) $\lim_{x \to 0} f(x) = \frac{\alpha \cos x}{\pi - 2x}$

$$= \frac{\alpha(\cos \theta)}{\pi - 2(\theta)} = \frac{6}{\pi}$$

$$\therefore \quad \text{Option (d) is correct.}$$
134. (b) f(x) = x
g(x) = 1/x
Putting these values in the options, only (b) is correct.

5. (d)
$$f(x) = \sqrt{25 - x^2}$$

 $f(1) = \sqrt{24}$
 $\Rightarrow \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1}$
 \therefore It is $\frac{0}{0}$ (undefined condition) so using L'hospital's rule
 $\Rightarrow \lim_{x \to 1} \frac{f'(x) - 0}{1} = \lim_{x \to 1} \left(\sqrt{25 - x^2}\right)'$
 $\Rightarrow \lim_{x \to 1} \frac{1}{2} \times \frac{1}{\sqrt{25 - x^2}} (-2x)$
 $= \frac{1}{2} \times \frac{1}{\sqrt{25 - (1)^2}} \times (-2)$
 $= -\frac{1}{\sqrt{24}}$
5. (a) $f(x) = \begin{cases} ax - 2 & -2 < x < -1 \\ -1 & -1 \le x \le 1 \\ a + 2(x - 1)^2 & 1 < x < 2 \end{cases}$
if f(x) is continuous at $x = -1$
then, $\lim_{x \to -1} (ax - 2) = \lim_{x \to -1} (-1)$
 $\Rightarrow a(-1) - 2 = -1$
 $\Rightarrow [a = -1]$
if f(x) is continuous at $x = 1$
then, $\lim_{x \to -1} a + 2(x - 1)^2 = \lim_{x \to -1} -1$
 $\Rightarrow a + 2(1 - 1)^2 = -1$
 $\Rightarrow [a = -1]$
7. (c) $\lim_{x \to \pi} \frac{1 - \sin x + \cos x}{1 + \sin x + \cos x}$
Using L'hospital's rule
 $\Rightarrow \lim_{x \to \pi} \frac{-\cos x - \sin x}{\cos x - \sin x}$
 $\Rightarrow \frac{-\cos \pi - \sin \pi}{\cos \pi - \sin \pi}$
 $\Rightarrow \frac{-(-1) - 0}{-1 - 0}$

138. (b)
$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
as there is a discontinuity at $x = 0$, so function is
differentiable at $x = 0$

$$f(x) = \begin{cases} 2x + 5 & x > 0 \\ x^2 + 2x + 5 & x \le 0 \end{cases}$$

$$f(0) = 5$$
LHD = $\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0}$

$$= \lim_{x \to 0^{+}} \frac{x^2 + 2x + 5 - 5}{x} = \lim_{x \to 0^{+}} x + 2 = 2$$
RHD = $\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0}$

$$= \lim_{x \to 0^{+}} \frac{2x + 5 - 5}{x} = 2$$

$$\therefore$$
 It is differentiable at $x = 0$

$$\therefore$$
 Only (2) is differentiable at $x = 0$
139. (b) $f(x) = \frac{1}{\sqrt{|x| - x|}}$

$$|x| - x \neq 0$$
So $[x < 0]$...(1)
 $x = (-\infty, 0)$
again $|x| - x > 0$
 $|x| > x$
it is possible only when x is negative.

$$[x = (-\infty, 0)]$$

$$\lim_{x \to 1^{-}} (2x - 2\sin x)$$

$$= 2[x - \sin x]$$

$$y = x$$

$$y = x$$

Between $(0, \pi)$; $(x - \sin x)$ is always +ve, so f'(x) is always +ve. Hence it is increasing.

$$f(x) = \ln\left(\sqrt{1+x^{2}} - x\right)$$
$$f'(x) = \frac{1}{\sqrt{1+x^{2}} - x} \times \left[\frac{2x}{2\sqrt{(1+x^{2})}} - 1\right]$$
$$f'(x) = \frac{1}{\sqrt{1+x^{2}} - x} \times \left(\frac{x}{\sqrt{1+x^{2}}} - 1\right)$$

not

As f'(x) is -ve always, so this function is decreasing always.

141. (b)
$$f(x) = 2x - 3$$

 $g(x) = x^3 + 5$
 $fog(x) = f[g(x)] = f(x^3 + 5)$
 $= 2(x^3 + 5) - 3$
 $fog(x) = 2x^3 + 7 = y(say)$
 $\Rightarrow 2x^3 = y - 7$
 $\Rightarrow x = \left[\frac{y - 7}{2}\right]^{\frac{1}{3}}$
 $\Rightarrow fog^{-1}(y) = \left[\frac{y - 7}{2}\right]^{\frac{1}{3}}$
 $\Rightarrow fog^{-1}(x) = \left[\frac{x - 7}{2}\right]^{\frac{1}{3}}$
142. (d) $f(x) = \frac{\sin(e^{x-2} - 1)}{\ln(x - 1)}$
 $\lim_{x \to 2} \frac{\sin(e^{x-2} - 1)}{\ln(x - 1)} = L$

It is $\frac{0}{0}$ (undefined) condition so using L'hospital's rule

$$\Rightarrow L = \lim_{x \to 2} \left[\frac{\left\{ \sin\left(e^{x-2} - 1\right) \right\}^{-}}{\left\{ \ln\left(x-1\right) \right\}^{-}} \right]$$
$$\Rightarrow L = \lim_{x \to 2} \frac{\cos\left(e^{x-2} - 1\right) \cdot e^{\left(x-2\right)}}{1/(x-1)}$$
$$\Rightarrow L = \lim_{x \to 2} \cos\left(e^{2-2} - 1\right) e^{2-2} \cdot (2-1)$$
$$\Rightarrow L = \cos(0) e^{0} \cdot 1$$
$$\Rightarrow L = 1$$

143. (a)
$$f(x) = x^{3}$$

 $f(x_{1}) = x_{1}^{3}$
 $f(x_{2}) = x_{2}^{3}$
 $if x_{1} = x_{2}$
then $f(x_{1}) = f(x_{2})$
So it is one-one function
Hence option (a) is correct.
144. (c) $\because f(x)$

$$\begin{cases}
-2 \sin x & \text{if } x \leq -\frac{\pi}{2} \\
A \sin x & B & \text{if } -\frac{\pi}{2} & x & \frac{\pi}{2} \\
\cos x & \text{if } x \geq \frac{\pi}{2}
\end{cases}$$
 $\therefore f(x)$ is continuous every where :
 $\therefore \lim_{x \to \frac{\pi}{2}} f(x) \lim_{x \to \frac{\pi}{2}} f(x)$
 $\Rightarrow \lim_{x \to \frac{\pi}{2}} \cos x \lim_{x \to \frac{\pi}{2}} A \sin x B$
 $\Rightarrow A + B = 0$...(1)
Also; $\lim_{x \to -\frac{\pi}{2}} f(x) \lim_{x \to -\frac{\pi}{2}} f(x)$
 $\Rightarrow \lim_{x \to -\frac{\pi}{2}} A \sin x B \lim_{x \to -\frac{\pi}{2}} -2 \sin x$
 $\Rightarrow -A + B = 2$...(2)
is from eq (1) & (2) we get;
 $A = -1$
145. (a) Put the value of A in eq. (2) we get :
 $\Rightarrow B = 1$
146. (c) $f(x) = x |x| - 1$

$$f(x) = \begin{cases} x^2 - 1 & x > 0 \\ -x^2 - 1 & x \le 0 \end{cases} \quad g(x) = \begin{cases} \frac{3x}{2} & x > 0 \\ 2x & x \le 0 \end{cases}$$

Hence f(x) and g(x) intersects at (-1, -2) and (2, 3).

147. (b) Area =
$$\int_{-1}^{2} [g(x) - f(x)] dx$$
$$= \int_{-1}^{0} [g(x) - f(x)] dx + \int_{0}^{2} [g(x) - f(x)] dx$$

$$= \int_{-1}^{0} (2x + x^{2} + 1) dx + \int_{0}^{2} \left[\frac{3x}{2} - x^{2} + 1 \right] dx$$

$$= I_{1} + I_{2}$$

$$I_{1} = \left(\frac{2x^{2}}{2} + \frac{1}{3}x^{3} + x \right)_{-1}^{0}$$

$$= (0 + 0 + 0) - \left((-1)^{2} + \frac{1}{3}(-1)^{3} + (-1) \right)$$

$$= -\left(1 - \frac{1}{3} - 1 \right) = \frac{1}{3}$$

$$I_{2} = \int_{0}^{2} \left[\frac{3x}{2} - x^{2} + 1 \right] dx$$

$$= \left[\frac{3}{2} \frac{x^{2}}{2} - \frac{1}{3}x^{3} + x \right]_{0}^{2}$$

$$= \left(\frac{3}{4} \times 4 - \frac{1}{3} \times 8 + 2 \right) - (0)$$

$$= 5 - \frac{8}{3} = \frac{7}{3}$$

Area = $I_{1} + I_{2} = \frac{1}{3} + \frac{7}{3}$
Area = $\frac{8}{3}$ square units.

148. (b)
$$f(x) = |x-1| + x^2 \quad \forall x \in R$$

 $f_1(x) = |x-1|, f_2(x) = x^2$ $f_1(x)$ and $f_2(x)$ both are continuous. Hence f(x) is continuous.

f(x) in differentiable at x = 0

 $f_1(x)$ is not differentiable at x = 1.

Hence f(x) is continuous but not differentiable at x = 1.

149. (b) As we know,

$$f(x) = |x-1| + x^2 \quad \forall \ x \in R$$
$$f(x) = \begin{cases} x - 1 + x^2 & x \ge 1\\ 1 - x + x^2 & x < 1 \end{cases}$$

$$\Rightarrow f'(x) = \begin{cases} 2x - 1 & ; x = 1 \end{cases}$$

f(x) is in quadratic form (parabola). Hence f(x) is

decreasing in
$$\left(-\infty, \frac{1}{2}\right)$$
 and increasing $\left(\frac{1}{2}, \infty\right)$.
150. (c) f(x) has local minimum at one point only in $(-\infty, \infty)$. $f'(x) = \begin{cases} 2x - 1 & ; x < 1 \\ 2x + 1 & ; x \ge 1 \end{cases}$ Clearly; for (x > 1); $f'(x) > 0 \ge \&$ for (x < 1) $x = \frac{1}{2}$ is the point of local minima

151. (a)
$$f(x) = \begin{cases} x^2 + x - 1 & x \ge 1 & \forall x \in R \\ x^2 - x + 1 & x < 1 \end{cases}$$

Hence area required for given region is

$$A_{1} = \int_{1/2}^{1} f(x) dx$$

= $\int_{1/2}^{1} (x^{2} - x + 1) dx$
= $\left[\frac{1}{3}x^{3} - \frac{x^{2}}{2} + x\right]_{1/2}^{1}$
= $\left(\frac{1}{3} \times 1 - \frac{1}{2} + 1\right) - \left(\frac{1}{3} \times \frac{1}{8} - \frac{1}{2} \times \frac{1}{4} + \frac{1}{2}\right)$
 $A_{1} = \frac{5}{12}$ square unit.

152. (d) Area required for given region is

$$A_{2} = \int_{1}^{3/2} f(x) dx$$

$$= \int_{1}^{3/2} [x^{2} + x - 1] dx$$

$$= \left[\frac{1}{3}x^{3} + \frac{1}{2}x^{2} - x\right]_{1}^{3/2}$$

$$A_{2} = \left(\frac{1}{3}\left(\frac{27}{8}\right) + \frac{1}{2}\left(\frac{9}{4}\right) - \frac{3}{2}\right) - \left(\frac{1}{3}(1) + \frac{1}{2}(1) - 1\right)$$

$$\boxed{A_{2} = \frac{11}{12}} \text{ square unit}$$
153. (d) $x + |y| = 2y$
 $x = 2y - |y|$
 $2y - |y| = x$
 $2y - y = x$ [for $y \ge 0$]
 $y = x$
 $2y + y = x$
 $3y = x$ [for $y < 0$]
 $y = \frac{1}{3}x$

 $y = \begin{cases} x & y \ge 0\\ \frac{1}{3}x & y < 0 \end{cases}$ function is defined for all value of x. or y = $\begin{cases} x & ; x \ge 0 \\ \frac{1}{3}x & ; x < 0 \end{cases}$.: by checking y as a function of x is continuous at x = 0, but not differentiable at x = 0. So all of the statements are not correct. 154. (d) $y = \frac{1}{3}x$ for x < 0. Hence $\frac{dy}{dx} = \frac{1}{3}$ Option (d) is correct. 155. (c) $f(x) = (x-1)^2(x+1)(x-2)^3$ $f'(x) = 2(x-1)(x+1)(x-2)^3 + (x-1)^2(x-2)^3$ $+(x-1)^{2}(x+1)3(x-2)^{2}$ $=(x-1)(x-2)^{2}[2(x+1)(x-2)+(x-1)(x-2)]$ +3(x-1)(x+1)] $f'(x) = (x-1)(x-2)^{2}[2x^{2}-2x-4+x^{2}-3x+2$ $+3x^{2}-3$] $=(x-1)(x-2)^{2}[6x^{2}-5x-5]$ For maxima and minima f'(x) = 0 $(x-1)(x-2)^{2}[6x^{2}-5x-5]=0$ $x = 1, 2, 2, \frac{5 \pm \sqrt{145}}{12}$ The change in signs of f'(x) for diffrent values of x is shown: : Local Minima are $x = \frac{5 - \sqrt{145}}{12} \& x = \frac{5 + \sqrt{145}}{12}$ 156. (b) Local maxima is [x=1]157. (b) Given $f(x) = \frac{a^{[x]+x} - 1}{[x]+x}$ $\therefore \lim_{x \to 0^+} f(x) = \lim_{h \to 0^+} \frac{a^{[0+h]+(0+h)} - 1}{[0+h]+(0+h)}$

$$\lim_{h \to 0} \frac{a^{[h] (h)} - 1}{[h] h}$$

$$\lim_{h \to 0} \frac{(a^{h} - 1)}{h}$$

$$= \log_{e} a$$
158. (c)
$$\lim_{x \to 0^{-}} f(x) \quad \lim_{h \to 0} \left[\frac{a^{[0-h] + (0-h)} - 1}{[0-h] + (0-h)} \right]$$

$$\lim_{h \to 0} \frac{a^{[-h] - h} - 1}{[-h] + (-h)}$$

$$\lim_{h \to 0^{-}} \frac{a^{-1-h} - 1}{-1-h}$$

$$\frac{a^{-1-0} - 1}{-1-h}$$

$$\lim_{h \to 0^{-}} f(x) \quad (1-a^{-1})$$
159. (c) Given

$$f(x) \begin{cases} (x+\pi) & \text{for } x \in [-\pi, 0) \\ \pi \cos x & \text{for } x \in \left[0, \frac{\pi}{2}\right] \\ \left(x - \frac{\pi}{2}\right)^2 & \text{for } x \in \left(\frac{\pi}{2}, \pi\right] \end{cases}$$

For continuity,

$$f(a) = L.H.L = R.H.L.$$
At $x = 0$

$$f(0) = \pi \cos 0 = \pi$$
L.H.L. = $\lim_{x \to 0^{-}} f(x - h)$

$$= \lim_{h \to 0} f(-h)$$

$$= \lim_{h \to 0} f(-h + \pi) = \pi$$
R.H.L. $\lim_{x \to 0} f(x - h)$

$$= \lim_{h \to 0} f(0 + h)$$

$$= \lim_{h \to 0} \pi \cos h$$

$$= \pi \cos 0 = \pi$$

$$f(0) = L.H.L = R.H.L.$$

f(0)=L.H.L.=R.H.L.Hence function is continuous at x = 0. Statement (1) is correct.

At
$$x = \frac{\pi}{2}$$

L.H.L. = $\lim_{x \to \frac{\pi}{2}} f(x-h)$
= $\lim_{h \to 0} f\left(\frac{\pi}{2} - h\right)$

$$= \lim_{h \to 0} \pi \cos\left(\frac{\pi}{2} - h\right)$$
$$= \pi \cos\frac{\pi}{2} = 0$$
RHL. = $\lim_{x \to \frac{\pi}{2}^{+}} f(x+h)$
$$= \lim_{h \to 0} f\left(\frac{\pi}{2} + h\right)$$
$$= \lim_{h \to 0} \left(\frac{\pi}{2} + h - \frac{\pi}{2}\right)^{2} = 0$$
$$f\left(\frac{\pi}{2}\right) = \pi \cos\frac{\pi}{2} = 0$$
L.H.L. = R.H.L. = $f\left(\frac{\pi}{2}\right)$

Hence function is continuous at $x = \frac{\pi}{2}$ Statement (2) is correct. 160. (d) For differentiability, L.H.D. = R.H.D. Thus at x = 0L.H.D. = $\lim_{h \to 0} \frac{f(0-h) - f(0)}{-h}$ $= \lim_{h \to 0} \frac{f(-h) - f(0)}{-h}$ $= \lim_{h \to 0} \frac{(-h+\pi) - (\pi \cos 0)}{-h} = 1$ L.H.D. = 1 R.H.D. = $\lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$ $= \lim_{h \to 0} \frac{f(0) - f(0)}{h}$ $= \lim_{h \to 0} \frac{\pi \cosh - \pi \cos 0}{h}$ $= \lim_{h \to 0} \frac{\pi [\cos h - \pi \cos 0]}{h}$ $= \lim_{h \to 0} \frac{\pi [1 - \frac{h^2}{2!} + \frac{h^4}{4!} \dots - 1]}{h}$ $= \lim_{h \to 0} \frac{\pi [1 - \frac{1}{2}h^2 + \frac{1}{24}h^4 \dots - 1]}{h}$

$$= \lim_{h \to 0} \frac{\pi \left[-\frac{1}{2}h^2 + \frac{1}{24}h^4 \dots \right]}{h} = 0$$

L.H.D. \neq R.H.D. So at x = 0 function is not differentiable. Statement (1) is not correct.

At
$$x = \frac{\pi}{2}$$

$$f\left(\frac{\pi}{2}\right) = \pi \cos \frac{\pi}{2} = 0$$
R.H.D. $= \lim_{h \to 0} \frac{f\left(\frac{\pi}{2} + h\right) - f\left(\frac{\pi}{2}\right)}{-h}$

$$= \lim_{h \to 0} \frac{\left(\frac{\pi}{2} + h - \frac{\pi}{2}\right)^2 - 0}{h}$$

$$= \lim_{h \to 0} \frac{h^2}{h} = 0$$
L.H.D. $= \lim_{h \to 0} \frac{f\left(\frac{\pi}{2} - h\right) - f\left(\frac{\pi}{2}\right)}{-h}$

$$= \lim_{h \to 0} \frac{\pi \cos\left(\frac{\pi}{2} - h\right) - 0}{-h}$$

$$= \lim_{h \to 0} \pi \left(\frac{\sin h}{-h}\right)$$

$$= -\pi \lim_{h \to 0} \left(\frac{\sin h}{h}\right) = -\pi (1) = -\pi$$
L.H.D. \neq R.H.D.

Hence function is not differentiable at $x = \frac{\pi}{2}$.

Statement (2) is not correct.

Sol. (161-162) :

$$f(x) \rightarrow \text{greatest integer function}$$

$$f(x) = [x]$$

$$g(x) \rightarrow \text{modulus function}$$

$$g(x) = |x|$$
161. (c) $gof(x) = g(f(x))$ $fog(x) = f(g(x))$

$$= g([x]) = f(|x|)$$

$$= |[x]| = [|x|]$$
 $gof\left(-\frac{5}{3}\right) = \left|\left[-\frac{5}{3}\right]\right|; fog\left(-\frac{5}{3}\right) = \left[\left|-\frac{5}{3}\right|\right]$

$$= |-2|; = \left[\frac{5}{3}\right]$$

$$= 2; = 1$$
 $gof\left(-\frac{5}{3}\right) - fog\left(-\frac{5}{3}\right) = 2 - 1 = 1$

162 (b)
$$fof(x) = f(f(x)) = f([x])$$

 $fof\left(-\frac{9}{5}\right) = f(-2)$
 $= [-2] = -2$
 $gog(x) = g([x])$
 $= ||x||$
 $gog(-2) = |-2| = 2$
 $(fof)\left(-\frac{9}{5}\right) + gog(-2) = -2 + 2 = 0$
163. (a) $\lim_{x\to 0} \phi(x) = a^2$ $a \neq 0$
 $\Rightarrow \lim_{x\to 0} \phi\left(\frac{x}{a}\right) = a^2$
[because function value is constant]
164. (a) $\lim_{x\to 0} e^{-\frac{1}{x^2}} = e^{-\frac{1}{0}} = e^{-\infty} = 0$
165. (a) We know that
 $|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$
For domain, $|x| - x > 0$
Case 2 : $x < 0$ Case 1: $x > 0 \Rightarrow x - x = 0$ (not possible)
 $\Rightarrow -2x > 0$
 $\Rightarrow -2x > 0$
 $\Rightarrow -2x > 0$
 $\Rightarrow x < 0$
166. (b) For $x \ge 1$
 $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} 2 + x = 2 + 1 = 3$
For $x < 1$
 $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} 2 + x = 2 + 1 = 3$
For $x < 1$
 $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^-} 2 + x = 2 + 1 = 3$
For $x < 1$
LHL $\lim_{h\to 0^+} f(0 - h) = \lim_{h\to 0^-} 2 - h = 2$
 $f(0) = 2 + 0 = 2$.
So, RHL = LHL = $f(0)$
 $\Rightarrow -f(x)$ is continuous at $x = 0$
Differentiability at $x = 0$
LHD: $\lim_{h\to 0^-} \frac{f(0 - h) - f(0)}{-h} = \lim_{h\to 0^+} \frac{2 + h - 2}{-h} = 1$
RHD: $\lim_{h\to 0^+} \frac{f(0 + h) - f(0)}{h} = \lim_{h\to 0^+} \frac{2 + h - 2}{h} = 1$
Since LHD \neq RHD
So, $f(x)$ is not differentiable at $x = 0$.

167. (a) For $x \ge 0$ $f(x) = \frac{x+x}{x} = 2$ For x < 0 $f(x) = \frac{x - x}{x} = 0$ $\lim f(x) = 2$ $x \rightarrow 0^{+}$ $\lim f(x) = 0$ $x \rightarrow 0^{-}$ f(0) = 2 \Rightarrow It is discontinuous at x = 0. Option (a) is correct. 168. (c) For $-1 \le x \le 2$ $f(x) = 3x^2 + 12x - 1$ f'(x) = 6x + 12If we take any point in the interval [-1, 2] then $f'(1) = 6 \times 1 + 12 = 18 > 0$ $\Rightarrow f(x)$ is increasing in the interval [-1, 2]. For $2 < x \le 3$ f(x) = 37 - xf'(x) = -1 < 0 $\Rightarrow f(x)$ is decreasing in the interval (2, 3] 169. (a) For continuity at x = 2. RHL $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} 37 - x = 37 - 2 = 3\sigma$ $x \rightarrow 2^+$ LHL $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} 3x^2 + 12x - 1$ $= 3(2)^{2} + 12 \times 2 - 1 = 12 + 24 - 1 = 35.$ $f(2) = 3 \times 4 + 12 \times 2 - 1 = 12 + 24 - 1 = 35$ So, RHL = LHL $\Rightarrow f(x)$ is continuous at x = 2. For differentiability at x = 2. LHD = $\lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = \lim_{h \to 0} \frac{f(2 - h) - f(2)}{2 - h - 2}$ $=\lim_{h\to 0}\frac{3(2-h)^2+12(2-h)-(12+24-1)}{-h}$ $= \lim_{h \to 0} \frac{3h^2 - 24h}{-h} = \lim_{h \to 0} 24 - 3h = 24$ RHD = $\lim_{x \to 2^+} \frac{f(x) - f(2)}{x - 2} = \lim_{h \to 0} \frac{f(2 + h) - f(2)}{2 + h - 2}$ $= \lim_{h \to 0} \frac{37 - 2 - h - 35}{h} = -1$ LHD ≠ RHD $\Rightarrow f(x)$ is not differentiable at x = 2.

To check 2. For x = 2. $f(x) = 3x^2 + 12x - 1$ $= 3\left(x^{2} + 4x - \frac{1}{3}\right) = 3\left((x+2)^{2} - \frac{13}{3}\right)$ On putting x = 2 $f(x) = 3\left(16 - \frac{13}{3}\right) = 35$ On putting x = 1 $f(1) = 3\left((1+2)^2 - \frac{13}{3}\right) = 3\left(9 - \frac{13}{3}\right) = 14$ So f(x) attains greatest value at x = 2. 170. (c) f(x) = [x] and $g(x) = \sin x$ $\lim f(x) = [0+h] = 0$ $x \rightarrow 0$ $\lim f(x) = [0-h] = -1$ $x \rightarrow 0$ f(0) = 0 $\Rightarrow f(x)$ is not continuous at x = 0 and also g(x) is continuous at x = 0. (every trignometric function is continuous). $(fog)(x) = [\sin x]$ 171. (d) $\lim (fog)(x) = \lim [\sin x] = [h]$ where h > 0 $x \rightarrow 0$ $x \rightarrow 0^+$ $\Rightarrow \lim (fog)(x) = 0$ $x \rightarrow 0^+$ $\lim (fog)(x) = \lim [\sin x] = [h]$ where h < 0 $x \rightarrow 0^{-}$ $\Rightarrow \lim (fog)(x) = -1$ $x \rightarrow 0^{-}$ $\Rightarrow \lim_{x \to 0} (fog)(x)$ does not exist. Now, $(gof)(x) = \sin[x]$ $\lim (gof)(x) = \lim \sin[x] = \sin 0 = 0$ $x \rightarrow 0^{-1}$ $x \rightarrow 0^+$ $\lim (gof)(x) = \lim \sin[x] = \sin(-1) = -0.01745$ $x \rightarrow 0^{-1}$ $\Rightarrow \lim_{x \to 0} (gof)(x)$ does not exist. $\Rightarrow \lim_{x \to 0^+} (fog)(x) = \lim_{x \to 0^+} (gof)(x)$ 172. (c) (fof)(x) = [[x]] and f(x) = [x]Suppose x = 0.2 \Rightarrow (fof)(x) = [[0.2]] = [0] = 0 f(x) = [0.2] = 0 \Rightarrow fof (x) = f(x)Now, $(gog)(x) = \sin \sin x$ and $g(x) = \sin x$ At x = 0 $(gog)(x) = \sin \sin 0 = \sin 0 = 0$ $g(x) = \sin 0 = 0$

$$\Rightarrow (gog)(x) = g(x) \text{ at } x = 0$$

and this is true for
 $x = n\pi$, where $n = 0, 1, 2, 3, 4$
 $\because (fog)(x) = [\sin x]$
 $(go(fog))(x) = \sin[\sin x]$
 $\because \sin x$ has value from -1 to 1
If $-1 \le \sin x < 0$.
 $(go(fog))(x) = \sin(-1) - \sin(-1)$
If $0 \le \sin x < 1$
 $\therefore (go(fog))(x) = \sin(0) = \sin 0$ and
If $\sin x = 1$
 $\therefore (go(fog))(x) = \sin(1) = \sin 1$

173. (b)
$$f(x) = \frac{e^x - 1}{x} > 0$$

$$\Rightarrow f'(x) = \frac{x e^{x} - (e^{x} - 1)}{x^{2}} = \frac{e^{x}(x - 1) + 1}{x^{2}}$$

 $=\left(\frac{e^{x}(x-1)}{x^{2}}+\frac{1}{x^{2}}\right)$, which is a strictly increasing function.

174. (b) For right hand continuity at
$$x = 0$$

RHL = $\lim_{h \to 0} f(x) = \lim_{h \to 0} f(0+h)$

$$= \lim_{h \to 0} \frac{e^{h} - 1}{h} = \lim_{h \to 0} \frac{\left(1 + h + \frac{h^{2}}{2!} + ...\right) - 1}{h}$$

$$= \lim_{h \to 0} \frac{h + \frac{h^{2}}{2!} + \frac{h^{3}}{3!} +}{h}$$

$$= \lim_{h \to 0} 1 + \frac{h}{2!} + \frac{h^{2}}{3!} + = 1$$
 $f(0) = 0$
 $\Rightarrow f(x)$ is not right continuous at $x = 0$.
For discontinuity at $x = 1$
RHL = $\lim_{x \to 1^{+}} f(x) = \lim_{h \to 0} f(1+h)$

$$= \lim_{h \to 0} \frac{e^{1+h} - 1}{1+h}$$

$$= \lim_{h \to 0} \frac{\left(1 + (1+h) + \frac{(1+h)^{2}}{2!} +\right) - 1}{1+h}$$

$$= \lim_{h \to 0} \frac{(1+h) + \frac{(1+h)^{2}}{2!} + \frac{(1+h)^{3}}{3!} +}{(1+h)}$$

$$= \lim_{h \to 0} 1 + \frac{(1+h)}{2!} + \frac{(1+h)^2}{3!} + \dots$$

$$= 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$
LHL = $\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1-h)$

$$= \lim_{h \to 0} \frac{e^{(1-h)} - 1}{1-h}$$

$$= \lim_{h \to 0} \frac{\left(1 + (1-h) + \frac{(1-h)^2}{2!} + \dots\right) - 1}{(1-h)}$$

$$= \lim_{h \to 0} 1 + \frac{(1-h)}{2!} + \frac{(1-h)^2}{3!} + \dots$$

$$= 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

$$f(1) = \frac{e^1 - 1}{1} = \left(1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots\right) - 1$$

$$= \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

 $\Rightarrow \text{RHL} \neq f(1), \text{LHL} \neq f(1)$ So f is discontinuous.

175. (d)
$$f(x) = \begin{cases} -2, & -3 \le x \le 0 \\ x-2, & 0 < x \le 3 \end{cases} \text{ and} \\ g(x) = f(|x|) + |f(x)| \\ \text{At } x = 0 \\ \text{For LHD} : g(x) = -2 + |-2| = -2 + 2 = 0 \Rightarrow g(x) = 0 \\ \text{LHD} = \lim_{x \to 0^{-}} \frac{g(x) - g(0)}{x - 0} = \lim_{h \to 0} \frac{g(-h) - g(0)}{-h} \\ = \lim_{h \to 0} \frac{0 - 0}{-h} = \lim_{h \to 0} 0 \\ \text{LHD} = 0 \\ \text{For RHD} : g(x) = |x| - 2 + |x - 2| \\ g(x) = x - 2 - (x - 2) \qquad x > 0 \text{ (and just greater} \\ \text{than zero)} \\ g(x) = x - 2 - x + 2 = 0 \\ \text{Now } g(x) \text{ is not continuous at } x = 0, \text{ hence } g(x) \text{ is not} \\ \text{differentiable at } x = 0 \\ \text{At } x = 2 \\ \text{For LHD} : \\ g(x) = |x| - 2 + |x - 2| = x - 2 - (x - 2) \\ = x - 2 - x + 2 = 0 \\ \therefore \text{ LHD} = \lim_{x \to 2^{-}} \frac{g(x) - g(2)}{x - 2} = \lim_{x \to 2^{-}} \frac{0}{x - 2} = 0 \\ \text{For RHD} : \\ g(x) = |x| - 2 + |x - 2| = x - 2 + x - 2 = 2x - 4 \end{cases}$$

$$\Rightarrow \text{RHD} = \lim_{x \to 2^{+}} \frac{g(x) - g(2)}{x - 2} = \lim_{x \to 2} \frac{2x - 4 - 2(2) + 4}{x - 2}$$

$$= \lim_{x \to 2} \frac{2(x - 2)}{x - 2} = 2$$

$$\Rightarrow \text{LHD} \neq \text{RHD}$$
Thus $g(x)$ is not differentiable at $x = 2$.
176. (b) For $x = -2$
 $g(x) = -2 + |-2| = -2 + 2$
 $\Rightarrow g(x) = 0$
 \Rightarrow differential coefficient at $x = -2$ is given as :
 $g'(x) = \lim_{h \to 0} \frac{g(x + h) - g(x)}{h} = \lim_{h \to 0} \frac{0 - 0}{4} = 0$.
177. (d) At $x = 0$
For RHL : $g(x) = |x| - 2 + |x - 2|$
 $g(x) = x - 2 - (x - 2) = 0$
 $g(x) = 0$
For $(x = 0) : g(x) = -2 + |-2| = 0$
LHL $= \lim_{x \to 0^{+}} g(x) = 0$
 $g(0) = 0$
 $\Rightarrow g(x)$ is continuous at $x = 0$
At $x = 2$
For LHL : $g(x) = |x| - 2 + |x - 2|$
 $g(x) = x - 2 - (x - 2)$
 $g(x) = 0$
For RHL : $g(x) = |x| - 2 + |x - 2|$
 $g(x) = x - 2 - (x - 2)$
 $g(x) = 0$
For RHL : $g(x) = |x| - 2 + |x - 2|$
 $g(x) = x - 2 - (x - 2)$
 $g(x) = 0$
For RHL : $g(x) = |x| - 2 + |x - 2|$
 $g(x) = 2x - 4$
For LHL : $g(x) = |x| - 2 + |x - 2|$
LHL $= \lim_{x \to 2^{+}} g(x) = 0$
RHL $= \lim_{x \to 2^{+}} g(x) = \lim_{x \to 2^{-}} 2x - 4 = 2(2) - 4 = 0$
 $g(2) = |2| - 2 + |2 - 2|$
 $g(2) = |2| - 2 + |2 - 2|$
 $g(2) = |2| - 2 + |2 - 2|$
 $g(2) = |2| - 2 + |2 - 2|$
 $g(2) = 2 - 2 + 2 - 2 = 0$
 $\Rightarrow g(x)$ is continuous at $x = 2$.
At $x = -1$
For LHL : $g(x) = -2 + |-2| = 0$
For $(x = -1)$: $g(x) = -2 + |-2| = 0$
For $(x = -1)$: $g(x) = -2 + |-2| = 0$
RHL $= \lim_{x \to -1^{-}} g(x) = 0$

178. (b)
$$\lim_{x \to 0} \frac{e^{x} - (1 + x)}{x^{2}}$$

If we keep $x = 0$, it is $\frac{0}{0}$.
So, applying L'Hospital role.

 $\lim_{x \to 0} \frac{e^{x} - (1 + x)}{x^{2}} = \frac{1}{2} \lim_{x \to 0} \frac{e^{x} - 1}{x} = \frac{1}{2} \times 1 = \frac{1}{2}.$

179. (a) Observe the cosx graph in the figure.

It is clear that, function is one – one and onto when x and y are $[0, \pi]$ and [-1, 1]

180. (b)
$$f(x) = \frac{x}{x-1}$$

 $f(a) = \frac{a}{a-1}$
 $f(a+1) = \frac{a+1}{a+1-1} = \frac{a+1}{a}$
 $\therefore \frac{f(a)}{f(a+1)} = \frac{\frac{a}{a-1}}{\frac{a+1}{a}} = \frac{a^2}{a^2-1}$
181. (c) $f(x) = x^2-3$
 $f(a^2) = \frac{a^2}{a^2-1}$
181. (c) $f(x) = x^2-3$
 $f(f(x)) = f(f(x)) = f(x^2-3) = (2^2-3)^2-3$
 $= 2^4 - 6x^2 + 9 - 3 = x^4 - 6x^2 + 6$
 $fof(0) = 0 - 0 + 6 = 6$
 $f(f(f(x))) = f(x^4 - 6x^2 + 6) = (x^4 - 6x^2 + 6)^2 - 3$
 $fofof(1) = ((-1)^4 - 6(-1)^2 + 6)^2 - 3$
 $= (1 - 6 + 6) - 3 = -2$
182. (c) $f(x) = px + q, g(x) = mx + n$
 $f(g(x)) = g(f(x))$
 $\Rightarrow f(mx + n) = g(px + q)$
 $\Rightarrow p(mx + n) + q = m(px + q) + n$
 $\Rightarrow pmx + pn + q = pmx + mq + n$
 $\Rightarrow pn + q = mq + n$
 $\Rightarrow f(n) = g(q)$

183. (c)
$$\lim_{x \to 1} \frac{F(x) - F(1)}{x - 1}$$

We know,
$$\lim_{x \to a} \frac{F(n) - F(a)}{x - a} = F'(a)$$

$$\therefore F'(x) = \frac{d}{dx} \left(\sqrt{9 - x^2}\right)$$

$$= \frac{1(0 - 2x)}{2\sqrt{9 - x^2}} = \frac{-x}{\sqrt{9 - x^2}}$$

F' 1 $\frac{-1}{\sqrt{9 - 1}} = \frac{-1}{\sqrt{8}} = \frac{-1}{2\sqrt{2}}$

184. (d) $(f-g)(x) = \begin{cases} x-0 = x, x \text{ is rational} \\ 0-x = -x, x \text{ is irrational} \end{cases}$ Clearly, f - g is one – one and onto.

85. (c)

$$f(x) = \begin{cases} 2x+1, & -3 < x < -2 \\ x-1, & -2 \le x < 0 \\ x+2, & 0 \le x < 1 \end{cases}$$

Here, $f(0^{-}) = -1$ and $f(0^{+}) = 2$ So, f(x) is discontinuous at x = 0 and continuous at other points.

If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exists, then 186. (a) $\lim_{x\to a} f \ x \ .g \ x \ \text{ exists. But if } \lim_{x\to a} f(x).g(x) \ \text{ exists, then}$

it is not necessary that both $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exists.

187. (b)
$$f(a) = \frac{a-1}{a+1}$$

 $f(2a) = \frac{2a-1}{2a+1}$
 $f(a)+1 = \frac{a-1}{a+1}+1 = \frac{2a}{a+1}$
So, $f(2a) \neq f(a)+1$
Now, $f(\frac{1}{a}) = \frac{\frac{1}{a}-1}{\frac{1}{a}-1} = \frac{1-a}{1-a} - \left(\frac{a-1}{a-1}\right) = -f(a)$

188. (a) $f(x) = x^n$, $n \neq 0$ This function is differentiable for all values of n, except 0. Hence $n \in (1, \infty)$

189. (a)
$$y = h^{\ell n x} = e^{\ell n 5 \times \ell n x}$$

 $\Rightarrow \ell n y = \ell n 5 \times \ell n x$
 $\Rightarrow \ell n x = \frac{1}{\ell n 5} \cdot \ell n y = \ell n y^{-\frac{1}{\ell n 5}}$
 $\Rightarrow x = y^{\frac{1}{\ell n 5}}, y > 0.$

190. (c)
$$f(x) =\begin{cases} \frac{-x}{\sqrt{x^2}}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

 $f(0) = \begin{cases} \frac{-x}{|x|}, & x \neq 0\\ 0, & x = 0. \end{cases}$
 $f(0) = h(-\frac{-h}{h}) = -1; & f(0) - h(-\frac{h}{h}) = 1$
So, $f(x)$ is discontinuous at $x = 0$.
191. (a) $x + x^2$ is continuous at $x = 0$.
191. (a) $x + x^2$ is continuous at $x = 0$.
 $x = \cos \frac{1}{x}$ is discontinuous at $x = 0$.
 $x^2 = \cos \frac{1}{x}$ is not continuous at $x = 0$.
192. (c) $f(x) =\begin{cases} 1 - x^2 \text{ for } 0 < x \le 1\\ \ln x \text{ for } 1 < x \le 2\\ \ln 2 - 1 + 0.5x \text{ for } 2 < x < \infty \end{cases}$

f'(x) = -2x for 0 < x < 1

193. (d) All statements are correct.

194. (d) $f(x) = |x| - x^3$

f x
$$\begin{cases} x - x^3, x \ge 0 \\ -x - x^3, x = 0 \end{cases}$$
 f -x
$$\begin{cases} x + x^3, x \ge 0 \\ x = x^3, x = 0 \end{cases}$$

Neither even nor odd.

195. (b)
$$l_{1} = \frac{d}{dx} \left(e^{\sin x} \right)$$
$$l_{2} = \lim_{h \to 0} \frac{e^{\sin(x+h)} - e^{\sin x}}{h}$$
$$l_{3} = \int e^{\sin x} \cdot \cos x \, dx$$
$$l_{2} = \lim_{h \to 0} \frac{e^{\sin(x+h)} - e^{\sin x}}{h} = \frac{d}{dx} \left(e^{\sin x} \right) = l_{1}$$
$$l_{3} = \int e^{\sin x} \cdot \cos x \, dx$$
Let sin x = t $\Rightarrow \cos x \, dx = dt$
$$l_{3} = \int e^{t} \cdot dt = e^{t} + c = e^{\sin x} + c.$$
$$\frac{d}{dx} \left(l_{3} \right) = \frac{d}{dx} \left(e^{\sin x} + c \right) = \frac{d}{dx} \left(e^{\sin x} \right) = l_{1} = l_{2}$$

196. (c)
$$\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{x} = l \text{ and } \lim_{x \to \infty} \frac{\cos x}{x} = m$$
$$\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{x} = \frac{1}{\pi} = \frac{2}{\pi}; \lim_{x \to \infty} \frac{\cos x}{x} = 0$$
$$\therefore l = \frac{2}{\pi}, m = 0$$
197. (b)
$$y = \frac{x^2}{1+x^4} \Rightarrow y \ge 0.$$
Also,
$$y = \frac{x^2}{1+x^4} = \frac{1}{x^2 + \frac{1}{x^2}}$$
$$\Rightarrow y \le \frac{1}{2}.$$
$$\therefore \frac{x^2}{1+x^4} \text{ belongs to } \left(0, \frac{1}{2}\right).$$
198. (a)
$$f(x) = [x] \sin(\pi x) \text{ at } x = k.$$
Left hand derivative,
$$\lim_{h \to 0} \frac{f(k) - f(k-h)}{h} \text{ (k-integer)}$$
$$= \lim_{h \to 0} \frac{-(k-1)\sin(k-h)\pi}{h}$$
$$\sin k\pi = 0 \text{ and } \sin(k\pi - \theta) = (-1)^{k-1}\sin \theta.$$
$$= \lim_{h \to 0} \frac{-(k-1)(-1)^{k-1}\sin \pi}{h\pi} \times \pi$$
$$= \lim_{h \to 0} \frac{-(k-1)(-1)^{k-1}\sin \pi}{h\pi} \times \pi$$
199. (c)
$$f(x) = \frac{x}{2} - 1, \quad [0, \pi]$$
$$\tan f(x) = \tan\left(\frac{x}{2} - 1\right)$$
$$\frac{1}{f(x)} = \frac{1}{x^2 - 1} \text{ is discontinuous at } x = 2$$
$$\tan f(x) \text{ is discontinuous for } x = 2 \text{ in } [0, \pi]$$
200. (c)
$$f(x) = \sqrt{1 - e^{-x^2}}, \left(-e^{-x^2}\right)(-2x)$$

$$f'(x) = \frac{xe^{-x^2}}{\sqrt{1 - e^{-x^2}}}$$

f'(x) is defined for all values of x, except 0. \therefore f(x) is differentiable on $(-\infty, 0) \cup (0, \infty)$

201. (b)
$$f(x) = x(\sqrt{x} - \sqrt{x+1})$$

 $f(x) = \frac{x(\sqrt{x} - \sqrt{x+1})(\sqrt{x} + \sqrt{x+1})}{(\sqrt{x} + \sqrt{x+1})}$
 $= \frac{x(x-x-1)}{\sqrt{x} + \sqrt{x+1}} = \frac{-x}{\sqrt{x} + \sqrt{x+1}}$

Hence, f(x) is continuous as well as differentiable at x = 0.

202. (c)
$$f(x) = \frac{x}{x}, x \neq 0$$
.
. The graph is d

 \therefore The graph is discontinious at x = 0, and correctly shown in option (e).

203. (d) $f(x)=(g(x))^2-g(x)$ Given, g(x) is greatest integer function. So, g(x)=[x]. $\therefore f(x)=[x]^2-[x]$ f(x) is discontinuous at every integer except x = 1

205. (b)
$$f(x) = \frac{4x + x^4}{1 + 4x^3}, g(x) = ln\left(\frac{1+x}{1-x}\right)$$

$$g\left(\frac{e-1}{e+1}\right) = \ell n\left(\frac{1+\left(\frac{e-1}{e+1}\right)}{1-\left(\frac{e-1}{e+1}\right)}\right) = \ell n\left(\frac{e+1+e-1}{e+1-e+1}\right)$$
$$= \ell n\left(\frac{2\ell}{2}\right) = \ell n \ e = 1$$

fo
$$g\left(\frac{e-1}{e+1}\right) = f(1) = \frac{4(1)+(1)^4}{1+4(1)^3} = \frac{4+1}{1+4} = \frac{5}{5} = 1$$

206. (d) Given, f(x) = |x + 1|. Let us check all options. (a) $f(x)^2 = |x^2 + 1|$

- $(f(x))^2 = (x+1)^2.$ So, $f(x)^2 \neq (f(x))^2$
- (b) f(|x|) = ||x|+1| |f(x)| = ||x+1|| = |x+1| $f(x) \neq |f(x)|$
- (c) f(x+y) = |x+y+1|f(x) + f(y) = |x+1| + |y+1| $f(x+y) \neq f(x+f(y))$

207. (a)
$$f(x) = \frac{x^2}{1+x^2}$$

for x = 0, f(0) = 0
for x = 1, f(1) = $\frac{1}{2}$ = 0.5
So, range is [0, 1)
208. (a) Given function is continuous at x = 0 and 1.

209. (a)
$$f(x) = \begin{cases} x^2 \ell n |x| & x \neq 0 \\ 0 & x = 0. \end{cases}$$

 $f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h}$
 $= \lim_{h \to 0} \frac{h^2 \ell n |h| - 0}{h}$
 $= \lim_{h \to 0} h \ell n |h|$
 $= 0$

210. (b)
$$f(x) = \frac{x^2 - 9}{x^2 - 2x - 3}$$

Given, the function is continuous at x = 3.

$$f(3) = \lim_{x \to 3} \frac{x^2 - 9}{x^2 - 2x - 3}$$
$$= \lim_{x \to 3} \frac{(x + 3)(x - 3)}{(x - 3)(x + 1)}$$
$$= \frac{3 + 3}{3 + 1} = \frac{6}{4} = \frac{3}{2} = 1.5.$$

211. (d) $f(x) = 4 \sin x - 3 \cos x + 1$ To find range of this function, we have to find maximum and minimum values. We know, for a sin θ + b cos θ + c, max value is $\sqrt{a^2 + b^2} + c$ and minimum value is $-\sqrt{a^2 + b^2} + c$. : Maximum value

$$=\sqrt{(4)^{2} + (-3)^{2}} + 1 = \sqrt{16 + 9} + 1 = 5 + 1 = 6$$

Minimum value $= -\sqrt{16+9} + 1 = -5 + 1 = -4$

$$\therefore$$
 Range, S \in [-4, 6]

212. (a)
$$f(x) = \frac{1}{\sqrt{|x| - x}}$$

$$|x| - x > 0 \text{ since the denominator cannot be zero.}$$

$$\therefore |x| > x$$
for $x > 0$, $x > x$ is not possible.
for $x < 0$, $|x| > x$

$$\Rightarrow 2x < 0$$

$$\Rightarrow x < 0.$$

$$\therefore \text{ Domain is } (-\infty, 0)$$
213. (a) $\lim_{x \to 0} \frac{\tan x}{\sin 2x}$

$$= \lim_{x \to 0} \frac{\frac{\tan x}{\sin 2x}}{2\left(\frac{\sin 2x}{2x}\right)} = \frac{1}{2}.$$
214. (d) $\lim_{h \to 0} \frac{\sqrt{2x + 3h} - \sqrt{2x}}{2h}$
Rationalise the numerator.

$$\lim_{h \to 0} \left(\frac{\sqrt{2x + 3h} - \sqrt{2x}}{2h} \times \frac{\sqrt{2x + 3h} + \sqrt{2x}}{\sqrt{2x + 3h} + \sqrt{2x}}\right)$$

$$= \lim_{h \to 0} \frac{2x + 3h - 2x}{2h\left(\sqrt{2x + 3h} + \sqrt{2x}\right)}$$

$$=\frac{3}{2(\sqrt{2x+0}+\sqrt{2x})}=\frac{3}{4\sqrt{2x}}$$

- 215. (b) f(x) is an even function. Let's see some examples
 - (1) If $f(x) = \cos x$, which is even function, $f'(x) = -\sin x$, which is odd function.
 - (2) If $f(x) = x^2$, which is even function, f'(x) = 2x, which is odd function.
- 216. (d) S is not a function (By vertical line test)

217. (d)
$$f(x) = \frac{\sqrt{x-1}}{x-4}$$

$$f(x) \text{ is defined for } (x-1) \ge 0 \Longrightarrow x \ge 1 \text{ and } x - 4 \ne 0$$

$$\Rightarrow x \ne 4$$

$$\therefore \text{ Domain of } f(x) = 1 \le x < \infty - \{4\}$$

$$\therefore \quad \text{Domain of } f(x) = 1 \le x < \infty - \frac{4}{4}$$

or, $x = [1, 4] \cup (4, \infty).$

or,
$$x = [1, 4] \cup (4, 4]$$

218. (a)
$$\lim_{x \to 0} \frac{\sin(2x)}{5x} = \lim_{x \to 0} \frac{\sin(2x)(2)}{5(2x)} = \frac{2}{5}$$

But at $x = 0, f(x) = \frac{2}{15}$

Hence, f(x) is not continuous at x = 0. 219. (a)

$$\Rightarrow f(x) = \begin{cases} (x-3), & x \ge 3\\ (3-x), & x = 3 \end{cases}$$

$$f'(x) \text{ at } x = 3^+ = 1$$

$$f'(x) \text{ at } x = 3^- = -1$$

Thus, $f(x)$ is not differentiable at $x = 3$ but $f(x)$ is continuous at $x = 3$.

$$f(x) = |x-3|$$

$$\Rightarrow f(x) = \begin{cases} (x-3), & x \ge 3 \\ (3-x), & x = 3 \end{cases}$$

$$f'(x) \text{ at } x = 3^{+} = 1$$

$$f'(x) \text{ at } x = 3^{-} = -1$$
Thus, $f(x)$ is not differentiable at $x = 3$ but $f(x)$ is continuous at $x = 3$.
220. (b) $f(0) = \lim_{x \to 0} \frac{2x - \sin^{-1} x}{2x \tan^{-1} x}$

$$= \lim_{x \to 0} \frac{2 - \frac{\sin^{-1} x}{2x \tan^{-1} x}}{2 \tan^{-1} x} = \frac{2 - 1}{2 - 1} = \frac{1}{3}$$
221. (a) $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(x)$
Now, $f'(x) = \frac{-2x}{2\sqrt{25 - x^2}} = \frac{-x}{\sqrt{25 - x^2}}$
227.
$$f'(1) = \frac{-1}{\sqrt{25 - 1}} = \frac{-1}{\sqrt{24}}$$

222. (c)
$$\lim_{\theta \to 0} \frac{\sqrt{1 - \cos \theta}}{\theta} = \lim_{\theta \to 0} \frac{\sqrt{2} \sin(\theta / 2)}{\theta}$$
$$\sqrt{2} = 1$$

f'(1)

221. (a)

2
$$\sqrt{2}$$

223. (c) $f(x) = x^2 - 4x + 5 = (x - 2)^2 + 1$
 $f(1) = 2, f(4) = 5$

Hence, f(x) is decreasing in $(-\infty, 2.5]$

225. (d)
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \quad \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{f(x)[f(h) - 1]}{h} \quad \lim_{h \to 0} \frac{f(x)[hg(h)\phi(h)]}{h}$$
$$= abf(x)$$

226. (d)
$$\lim_{x \to \frac{\pi}{6}} \frac{(\sin x + 1)(2\sin x - 1)}{(\sin x - 1)(2\sin x - 1)} \quad \frac{\frac{1}{2}}{\frac{1}{2} - 1} \quad -3$$

7. (b)
$$f(x) = \ln(\sqrt{x^2 + 1} - x)$$

 $f(-x) = \ln(\sqrt{(-x)^2 + 1} - (-x)) = \ln(\sqrt{x^2 + 1} + x)$
 $\ln\left(\frac{(\sqrt{x^2 - 1} - x)(\sqrt{x^2 - 1} - x)}{\sqrt{x^2 + 1} - x}\right)$
 $= \ln\left(\frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1} - x}\right) = \ln\left(\frac{1}{\sqrt{x^2 + 1} - x}\right)$
 $= -\ln(\sqrt{x^2 + 1} - x) = -f(x)$
So, f(x) is odd function.

Functions, Limit, Continuity and Differentiability

228. (d) $f(x) = \log_x 10$ Domain of logarithmic function is x > 0 excluding x = 1.

229. (c)
$$\lim_{x \to 0} \frac{1 - \cos^3 4x}{x^2}$$

The given limit is in $\frac{0}{0}$ form. So, apply L'hospital rule.

$$\lim_{x \to 0} \frac{-3\cos^2 4x(-\sin 4x)4}{2x} = \lim_{x \to 0} \frac{12\cos^2 4x\sin 4x}{(2x)2} \times 2$$

$$= 24. \lim_{x \to 0} \cos^2 4x. \frac{\sin 4x}{4x}$$
$$= 24(1) = 24$$

230. (c)
$$f(x) = 3^{1+x}$$

 $f(x) \cdot f(y) \cdot f(z) = 3^{1+x} \cdot 3^{1+y} \cdot 3^{1+z}$
 $= 3^{1+x+1+y+1+z} = 3^{3+x+y+z} = 3^{1+x+y+z+2}$
 $= f(x+y+z+2)$
231. (c) $f(x) = \sqrt{(2-x)(x-3)}$
Here, $(2-x)(x-3) \ge 0$
 $\Rightarrow -(x-2)(x-3) \ge 0$
 $\Rightarrow (x-2)(x-3) \le 0$
 $\Rightarrow x \in [2,3]$
232. (d) $f(x) = \begin{cases} \sin x, & x \ne 0 \\ k, & x = 0 \end{cases}$
Given, $f(x)$ is continuous at $x = 0$
 $\lim_{x \to 0} f(x) = f(0)$
 $\Rightarrow \lim_{x \to 0} \sin x = k$
 $\Rightarrow k = 0$

Derivatives

- If $u = \sin^{-1}(x y)$, x = 3t, $y = 4t^3$, then what is the derivative 7. 1. of u with respect to t?
 - (a) $3(1-t^2)$ (b) $3(1-t^2)^{-\frac{1}{2}}$

(c)
$$5(1-t^2)^{\frac{1}{2}}$$
 (d) $5(1-t^2)$ [2006-I]

2. If
$$x = \cos t$$
, $y = \sin t$, then what is $\frac{d^2 y}{dx^2}$ equal to?
(a) y^{-3} (b) y^3
(c) $-y^{-3}$ (d) $-y^3$ [2006-I]

3. If
$$y = x + e^x$$
, then, what is $\frac{d^2x}{dy^2}$ equal to ?

(a)
$$e^x$$
 (b) $-\frac{e^x}{(1+e^x)^3}$

(c)
$$-\frac{e^{x}}{(1+e^{x})}$$
 (d) $-\frac{e^{x}}{(1+e^{x})^{2}}$ [2006-I]

What is the derivative of f(x) = x |x|? 4. (a) |x| + x(b) 2x (d) -2|x|(c) 2|x|[2006-I]

5. If
$$x + y = t - \frac{1}{t}$$
, $x^2 + y^2 = t^2 + \frac{1}{t^2}$, what is $\frac{dy}{dx}$ equal to ?

(a)
$$\frac{1}{x}$$
 (b) $-\frac{1}{x}$
(c) $\frac{1}{x^2}$ (d) $-\frac{1}{x^2}$ [2006-I]

What is the derivative of $f(x) = \sqrt{1-x^2}$ with respect to 11. If a differentiable function f defined for x > 0 satisfies the 6. $g(x) = \sin^{-1}x$, where $|x| \neq 1$? (a) x (b) -x

(c)
$$\frac{x}{1-x^2}$$
 (d) $-\frac{x}{1-x^2}$ [2006-II]

What is the derivative of

8.

9.

 $(\log_{\tan x} \cot x) (\log_{\cot x} \tan x)^{-1}$ at $x = \frac{\pi}{4}$? (a) -1 (b) 0

(d) $\frac{1}{2}$ [2006-II] (c) 1

What is the derivative of $\cos^{-1}\left(\frac{2\cos x + 3\sin x}{\sqrt{13}}\right)$?

(a)
$$\frac{1}{\sqrt{1-x^2}}$$
 (b) $-\frac{1}{\sqrt{1-x^2}}$
(c) 0 (d) 1

What is the derivative of
$$f(x) = \frac{7x}{(2x-1)(x+3)}$$
?

(a)
$$-\frac{3}{(x+3)^2} - \frac{2}{(2x-1)^2}$$
 (b) $-\frac{3}{(x+3)^2} - \frac{1}{(2x-1)^2}$

(c)
$$\frac{3}{(x+3)^2} + \frac{1}{(2x-1)^2}$$
 (d) $\frac{3}{(x+3)^2} + \frac{2}{(2x-1)^2}$

[2006-II]

[2006-II]

10. What is the solution of
$$y' = 1 + x + y^2 + xy^2$$
, $y(0) = 0$?

(a)
$$y = \tan^2 \left(\frac{x^2}{2} + x \right)$$
 (b) $y = \tan^2 (x^2 + x)$

(c)
$$y = \tan(x^2 + x)$$
 (d) $y = \tan\left(\frac{x^2}{2} + x\right)$

[2006-II]

relation $f(x^2) = x^3$, x > 0, then what is the value of f'(4)?

[2007-II]

12.	What is the derivative of t	$an^{-1}\left(\frac{\sqrt{x}-x}{1+x^{3/2}}\right)at x =$	=1?	19.	For the curve $\sqrt{x} + \sqrt{y} =$	1, wha	at is the value	of $\frac{dy}{dx}$ at
	(a) $-\frac{1}{4}$	(b) $\frac{1}{2}$			$\left(\frac{1}{4},\frac{1}{4}\right)?$			
	(c) $\frac{3}{2}$	(d) 1	[2007-11]		(a) $\frac{1}{2}$	(b)	1	[2008]]
13.	If $x\sqrt{1+y} + y\sqrt{1+x} = 0$, where $x = 0$, where $x = 0$ and $y = 0$.	hat is $\frac{dy}{dx}$ equal to ?		20.	(c) -1 If $y = \frac{1}{\log_{10} x}$, then what	$\frac{dy}{dx}$	equal to ?	[2008-1]
	(a) $-\frac{1}{1+x}$	(b) $-\frac{1}{(1+x)^2}$			(a) x	(b)	x log _e 10	
	(c) $\frac{1}{(1+x)^2}$	(d) $\frac{\sqrt{x}}{\sqrt{1+x}}$	[2007-II]	21	(c) $-\frac{(\log_x 10)^2 (\log_{10} e)}{x}$	(d)	$x \log_{10} e$	[2008-I]
14	dy and a	d ² y	$\frac{d^2x}{d^2x}$	21.	(a) m	(b)	m^2	at x = 0? [2008-II]
14.	If $y = f(x)$, $p = \frac{1}{dx}$ and $q = \frac{1}{dx}$ to ?	$=\frac{1}{dx^2}$, then what is	dy^2 equal	22.	(c) $m^{2} + 2$ If $x^{y} = e^{x-y}$, then dy/dx	is eq	ual to which o	one of the
	$(a) = -\frac{q}{a}$	(b) $-\frac{q}{r}$			following?			[2008-II]
	$(a) p^2$	(b) p^{3}			(a) $\frac{(x-y)}{(1+\log x)^2}$	(b)	$\frac{y}{\left(1+\log x\right)}$	
	(c) $\frac{1}{q}$	(d) $\frac{q}{p^2}$	[2008-1]		(c) $\frac{(x+y)}{(1+1-y)}$	(d)	$\frac{(\log x)}{(1-1-x)^2}$	
15.	If $x = \sin t - t \cos t$ and $y =$	$t \sin t + \cos t$, then w	what is $\frac{dy}{dx}$		$(1 + \log x)$	()	$(1 + \log x)$	
	at point $t = \frac{\pi}{2}$?			23.	If $\frac{dy}{dx} = 1 + x + y + xy$ and y to?	(-1)=	= 0, then what is	y(x) equal
	(a) 0	(b) $\frac{\pi}{2}$			(a) $\frac{(1+x)^2}{2}$ 1	(b)	$\frac{(1-x)^2}{2}$	[
	(c) $-\frac{\pi}{2}$	(d) 1	[2008-1]		(a) e^{-1}	(U) (d)	e^{-2}	
	2	$\overline{2}$, dy		24.	$f(x) = \tan x + e^{-2x} - 7x^3$, t	then w	what is the value	of <i>f</i> '(0)?
16.	If $y = \sin^{-1}x + \sin^{-1}\sqrt{1-x}$	$\frac{dx}{dx}$, what is $\frac{dx}{dx}$ equa	I to ?		(a) -2 (c) 0	(b) (d)	-1 3	[2009-1]
	(a) $\cos^{-1}x + \cos^{-1}\sqrt{1-x^2}$	$\frac{1}{2}$ (b) $\frac{1}{\cos x} + \frac{1}{\cos \sqrt{1}}$	$\overline{-x^2}$	25.	If $3^x + 3^y = 3^{x+y}$ then what	t is $\frac{d}{d}$	$\frac{dy}{dx}$ equal to?	
	(c) $\frac{\pi}{2}$	(d) 0	[2008-1]		(a) $\frac{3^{x+y}-3^x}{3^y}$	(b)	$\frac{3^{x-y}(3^y-1)}{1-3^x}$	
17.	If $f(x) = \log_e [\log_e x]$, then (a) e^{-1}	what is f' (e) equal t (b) e	0?		$3^{x} + 3^{y}$		$3^{x} + 3^{y}$	
10	(c) 1 $I(f(x)) = c \sin(\log \cos x) = 1$	(d) 0	[2008-I]		(c) $\frac{3^{x}+3^{y}}{3^{x}-3^{y}}$	(d)	$\frac{y+y}{1+3^{x+y}}$	[2009-1]
18.	derivative of $f(x)$ with resp	$(x) = \log \cos x$, then ect to $g(x)$?	what is the	26.	If $f(x) = \sin^2 x^2$, then what i	$sf'(\mathbf{x})$) equal to? $2\sin(x^2)\cos(x^2)$)
	 (a) f(x) cos [g(x)] (c) g(x) cos [f(x)] 	 (b) f(x) sin [g(x)] (d) g(x) sin [f(x)] 	[2008-1]		(c) $4\sin(x^2)\sin^2x$	(d)	$2x\cos^2(x^2)$, [2009-1]

27.	If $f(x) = \cos x$, $g(x) = \log x$	and $y = (gof)(x)$, the	n what is the				(\mathbf{r})
	value of $\frac{dy}{dx}$ at $x = 0$?		[2000_1]	37.	What is the derivative of <i>x</i>	$x\sqrt{a^2 - x^2 + a^2} \sin^{-1}$	$\left(\frac{\pi}{a}\right)?$
	$\frac{dx}{dx} = 0$		[2009-1]				[2010-1]
	(a) 0	(b) 1 (d) 2			(a) $\sqrt{r^2 r^2}$	(b) $2\sqrt{a^2 - r^2}$	
	(c) -1	(u) 2			$\sqrt{a} - x$	$(0) 2\sqrt{u} -x$	
28.	If $e^{y} + xy = e$, then what is	the value of $\frac{d^2 y}{d^2}$ at	x = 0?		(c) $\sqrt{x^2 - a^2}$	(d) $2\sqrt{x^2 - a^2}$	
		dx^2	[2000 11]	38	If $r = t^2$, $v = t^3$, then what it	s $\frac{d^2 y}{d^2 y}$ equal to?	[2010-1]
	(a) e^{-1}	(b) e^{-2}	[2009-11]	50.		dx^2 equal to:	[2010 1]
	(c) <i>e</i>	(d) 1			(a) 1	(b) $\frac{3}{3}$	
20		dy	1 ()		()	2t	
29.	If $\sqrt{1-x^2} + \sqrt{1-y^2} = a$, 1	then what is $\frac{1}{dx}$ equ	ial to?		(c) 3	(d) $\frac{3}{2}$	
		1 2			(c) $\frac{1}{4t}$	(u) 2	2
	(a) $\sqrt{(1-x^2)(1-y^2)}$	(b) $\sqrt{\frac{1-y^2}{1-2}}$	[2009-II]	39.	What is the derivative of s	$\sin^2 x$ with respect to	$\cos^2 x$?
		$\sqrt{1-x^2}$			(a) $\tan^2 r$	(b) $\cot^2 r$	[2010-11]
	$1-r^2$				(c) -1	(d) 1	
	(c) $\sqrt{\frac{1-x}{1-y^2}}$	(d) None of thes	e	40.	If $x = k (\theta + \sin \theta)$ and $y =$	$k(1 + \cos \theta)$, then	what is the
	VI y				derivative of y with respect	to x at $\theta = \pi/2$?	[2010-II]
20	$\mathbf{I} \mathbf{f} \mathbf{u} = 1 \mathbf{a} \mathbf{a} \mathbf{f} \mathbf{a} \mathbf{u} \mathbf{d} \mathbf{u} = \mathbf{a}^2 1 \mathbf{d} \mathbf{u}$	$\frac{d^2y}{d^2y}$ at the	- 1 1 4 . 9		(a) -1	(b) 0 (d) 2	
30.	$\prod x = \log t \text{ and } y = t^2 - 1, \text{ th}$	en what is $\frac{dx^2}{dx^2}$ at $l = \frac{1}{dx^2}$	- 1 equal to?		(0) 1	(u) 2	
	(a) 2	(b) 3	[2009-II]	41.	If $\sqrt{x} + \sqrt{y} = 2$, then what	is $\frac{dy}{dy}$ at $y = 1$ and $x =$	= 1 equal to?
21	(c) -4	(d) 4	1 0		·	<i>ux</i>	[2010-]]]
31.	what is the derivative of F (a) $-(\log r)^{-2}$	$\log_x 5$ with respect to (b) $(\log x)^{-2}$	$\log_5 x?$		(a) 5	(b) 2	[]
	(c) $-(\log_5 x)^{-2}$	(d) $(\log_5 x)^{-2}$	[2007 11]		(c) 4	(d) – 1	
32.	A function f is such that f	$f'(x) = 6 - 4 \sin 2x$ and	nd $f(0) = 3$.			$d^2 v$	
	What is $f(x)$ equal to?		[2009-11]	42.	If $x = \cos(2t)$ and $y = \sin^2 t$	t, then what is $\frac{d^2 y}{dr^2}$	equal to?
	(a) $6x + 2\cos 2x$ (c) $6x - 2\cos 2x + 1$	(b) $6x - 2 \cos 2x$ (d) $6x + 2 \cos 2x$	⊥ 1		(a) 0	(b) $\sin(2t)$ [20]	10-111
33.	$f(x) = e^x \text{ and } g(x) = 10^x$	ogx, then what is t	the value of		(u) 0	1	() IIJ
	(gof)'(x)?		[2009-II]		(c) $-\cos(2t)$	(d) $-\frac{1}{2}$	
	(a) 0	(b) 1		43.	If $f(x) = 2^x$, then what is $f''(x) = 2^x$.	x) equal to? $[2011-x]$	[]
24	(c) e L at $a(w) = w^3$ Aw + 6 If f / (a)	(d) None of thes d(w) = d(w) = d(1) = 2	e then what is		(a) $2^{x} (ln 2)^{2}$	(b) $x(x-1)2^{x-2}$	
34.	f(x) equal to?	(x) - g(x) and $f(1) - 2$,	[2009-II]		(c) $2^{x+1} (ln 2)$	(d) $2^x (\log_{10} 2)^2$	
	(a) $x^3 - 4x + 3$	(b) $x^3 - 4x + 6$. ,		$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 $	1)	de.
	(c) $x^3 - 4x + 1$	(d) $x^3 - 4x + 5$		44.	If $y = \left 1 + x^{\overline{4}} \right \left 1 + x^{\overline{2}} \right \left 1 + x^{\overline{2}} \right $	$-x^{\overline{4}}$, then what i	s $\frac{dy}{dx}$ equal
25	10 $\cdot -1 \left(\frac{4x}{4x} \right)$	dy	()			J	
35.	If $y = \sin^{-1}\left(\frac{1}{1+4x^2}\right)$, the	en what is $\frac{1}{dx}$ equal	to?		to?		[2011-II]
	1	1			(a) 1	(b) -1	
	(a) $\frac{1}{1+4x^2}$	(b) $-\frac{1}{1+4r^2}$	[2010 - I]			(1) $\frac{1}{2}$	
	4	4			(c) x	(d) x^2	
	(c) $\frac{4}{1+4z^2}$	(d) $\frac{4x}{1+4x^2}$		/15	If $v = ln \sqrt{\tan r}$ then who	t is the value of $\frac{dy}{dx}$	at $r = \frac{\pi}{2}$?
36	1+4x What is the differentiation	1+4x	et to In r?	чЭ.	$y = \sqrt{1} y \tan x$, then what	dx	4 ¹
50.	(a) 0	(b) 1	[2010-I]		(a) 0 (c) $1/2$	(b) -1	[2011-II]
	(c) $1/x$	(d) x	L - J		(c) $1/2$	(a) 1	

Derivatives

46
 If
$$(x_{1}) = x^{2} - 6x + 8$$
 and there exists a point c in the interval [2, 4] such that $f'(g) = 0$, then what is the value of c^{2} .
 54.
 The derivative of $|x| = |x = 0$ (2013-1]

Consider the curve $x = a (\cos \theta + \theta \sin \theta)$ and $y = a (\sin \theta - \theta \cos \theta)$. 65. What is $\frac{dy}{dx}$ equal to ? [2014-11] (a) $\tan \theta$ (b) $\cot \theta$ (c) $\sin 2\theta$ (d) $\cos 2\theta$ 66. What is $\frac{d^2y}{dx^2}$ equal to ? [2014-11] (a) $\sec^2 \theta$ (b) $-\csc^2 \theta$ (c) $\frac{\sec^3 \theta}{a\theta}$ (d) None of these 67. If $y = x \ln x + xe^x$, then what is the value of $\frac{dy}{dx}$ at $x = 1$? [2014-11] (a) $1 + e$ (b) $1 - e$ (c) $1 + 2e$ (d) None of these 67. If $y = x \ln x + xe^x$, then what is the value of $\frac{dy}{dx}$ at $x = 1$? [2014-11] (a) $1 + e$ (b) $1 - e$ (c) $1 + 2e$ (d) None of these DIRECTIONS (Qs. 68-69): For the next two (2) items that follow: Given that $\frac{dx}{dx} (\frac{1 + x^2 + x^4}{1 + x + x^2}) = 4x + B$. [2015-1] 68. What is the value of A? (a) -1 (b) 1 (c) 2 (d) 4 59. What is the value of B? (a) -1 (b) 1 (c) 2 (d) 4 70. What is the derivative of $\tan^{-1}(\frac{\sqrt{1 + x^2} - 1}{x})$ with respect to $\tan^{-1} x$? [2015-1] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-11] (a) $\frac{1 + \cos x}{(x + \sin x)(1 - \sin x)}$ (b) $\frac{1 - \cos x}{(x + \sin x)(1 + \sin x)}$ (c) $\frac{1 - \cos x}{(x - \sin x)(1 - \cos x)}$ (d) $\frac{1 + \cos x}{(x - \sin x)(1 - \cos x)}$ 72. If $y = \cot^{-1}[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-11] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$	DIF follo	EXECTIONS (Qs. 65-67) : For the next two (02) items that ow :
65. What is $\frac{dy}{dx}$ equal to ? [2014-11] (a) $\tan \theta$ (b) $\cot \theta$ (c) $\sin 2\theta$ (d) $\cos 2\theta$ 66. What is $\frac{d^2y}{dx^2}$ equal to ? [2014-11] (a) $\sec^2 \theta$ (b) $-\csc^2 \theta$ (c) $\frac{\sec^3 \theta}{a\theta}$ (d) None of these 67. If $y = x \ln x + xe^x$, then what is the value of $\frac{dy}{dx}$ at $x = 1$? [2014-11] (a) $1 + e$ (b) $1 - e$ (c) $1 + 2e$ (d) None of these DIRECTIONS (Qs. 68-69): For the next two (2) items that follow: Given that $\frac{d}{dx} \left(\frac{1+x^2+x^4}{1+x+x^2}\right) = 4x + B$. [2015-1] 68. What is the value of A? (a) -1 (b) 1 (c) 2 (d) 4 70. What is the derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect to $\tan^{-1} x$? [2015-1] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-1] (a) $\frac{1+\cos x}{(x+\sin x)(1-\sin x)}$ (b) $\frac{1-\cos x}{(x+\sin x)(1+\sin x)}$ (c) $\frac{1-\cos x}{(x-\sin x)(1+\cos x)}$ (d) $\frac{1+\cos x}{(x-\sin x)(1-\cos x)}$ 72. If $y = \cot^{-1}\left[\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-11] (a) $\frac{1}{2}$ (b) 2 (c) $\frac{1}{2}$ (c) 2 (d) $\frac{1}{2}$ (c) $\frac{1-\cos x}{(x-\sin x)(1-\cos x)}$ (d) $\frac{1+\cos x}{(x-\sin x)(1-\cos x)}$	Con	sider the curve $x = a(\cos \theta + \theta \sin \theta)$ and $y = a(\sin \theta - \theta \cos \theta)$.
(a) $\tan \theta$ (b) $\cot \theta$ (c) $\sin 2\theta$ (d) $\cos 2\theta$ 66. What is $\frac{d^2y}{dx^2}$ equal to ? [2014-11] (a) $\sec^2 \theta$ (b) $-\csc^2 \theta$ (c) $\frac{\sec^2 \theta}{d\theta}$ (d) None of these 67. If $y = x \ln x + xe^x$, then what is the value of $\frac{dy}{dx}$ at $x = 1$? [2014-11] (a) $1 + e$ (b) $1 - e$ (c) $1 + 2e$ (d) None of these DIRECTIONS (Qs. 68-69): For the next two (2) items that follow: Given that $\frac{d}{dx} \left(\frac{1+x^2+x^4}{1+x+x^2}\right) = Ax + B$. [2015-1] 68. What is the value of A? (a) -1 (b) 1 (c) 2 (d) 4 69. What is the value of B? (a) -1 (b) 1 (c) 2 (d) 4 70. What is the derivative of $\tan^{-1}\left(\sqrt{\frac{1+x^2}{x}} - 1\right)$ with respect to $\tan^{-1} x$? [2015-1] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-1] (a) $\frac{1 + \cos x}{(x + \sin x)(1 - \sin x)}$ (b) $\frac{1 - \cos x}{(x + \sin x)(1 + \sin x)}$ (c) $\frac{1 - \cos x}{(x - \sin x)(1 + \cos x)}$ (d) $\frac{1 + \cos x}{(x - \sin x)(1 - \cos x)}$ 72. If $y = \cot^{-1}\left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-11] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$	65.	What is $\frac{dy}{dx}$ equal to ? [2014-II]
(c) $\sin 2\theta$ (d) $\cos 2\theta$ 56. What is $\frac{d^2y}{dx^2}$ equal to ? [2014-11] (a) $\sec^2 \theta$ (b) $-\csc^2 \theta$ (c) $\frac{\sec^3 \theta}{a\theta}$ (d) None of these 57. If $y = x \ln x + xe^x$, then what is the value of $\frac{dy}{dx}$ at $x = 1$? [2014-11] (a) $1 + e$ (b) $1 - e$ (c) $1 + 2e$ (d) None of these DIRECTIONS (Qs. 68-69): For the next two (2) items that follow: Given that $\frac{d}{dx} \left(\frac{1 + x^2 + x^4}{1 + x + x^2} \right) = Ax + B$. [2015-1] 58. What is the value of A? (a) -1 (b) 1 (c) 2 (d) 4 59. What is the value of B? (a) -1 (b) 1 (c) 2 (d) 4 70. What is the derivative of $\tan^{-1} \left(\frac{\sqrt{1 + x^2} - 1}{x} \right)$ with respect to $\tan^{-1} x$? [2015-1] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-1] (a) $\frac{1 + \cos x}{(x + \sin x)(1 - \sin x)}$ (b) $\frac{1 - \cos x}{(x + \sin x)(1 + \sin x)}$ (c) $\frac{1 - \cos x}{(x - \sin x)(1 + \cos x)}$ (d) $\frac{1 + \cos x}{(x - \sin x)(1 - \cos x)}$ 72. If $y = \cot^{-1} \left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-11] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$		(a) $\tan \theta$ (b) $\cot \theta$
56. What is $\frac{d^2y}{dx^2}$ equal to ? [2014-11] (a) $\sec^2 \theta$ (b) $-\csc^2 \theta$ (c) $\frac{\sec^3 \theta}{a\theta}$ (d) None of these 57. If $y = x \ln x + xe^x$, then what is the value of $\frac{dy}{dx}$ at $x = 1$? [2014-11] (a) $1 + e$ (b) $1 - e$ (c) $1 + 2e$ (d) None of these DIRECTIONS (Qs. 68-69): For the next two (2) items that follow: Given that $\frac{d}{dx} \left(\frac{1 + x^2 + x^4}{1 + x + x^2} \right) = Ax + B$. [2015-1] 58. What is the value of A? (a) -1 (b) 1 (c) 2 (d) 4 59. What is the value of B? (a) -1 (b) 1 (c) 2 (d) 4 70. What is the derivative of $\tan^{-1} \left(\frac{\sqrt{1 + x^2} - 1}{x} \right)$ with respect to $\tan^{-1} x$? [2015-1] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-1] (a) $\frac{1 + \cos x}{(x + \sin x)(1 - \sin x)}$ (b) $\frac{1 - \cos x}{(x + \sin x)(1 + \sin x)}$ (c) $\frac{1 - \cos x}{(x - \sin x)(1 + \cos x)}$ (d) $\frac{1 + \cos x}{(x - \sin x)(1 - \cos x)}$ 72. If $y = \cot^{-1} \left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-11] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$		(c) $\sin 2\theta$ (d) $\cos 2\theta$
(a) $\sec^2 \theta$ (b) $-\csc^2 \theta$ (c) $\frac{\sec^3 \theta}{a\theta}$ (d) None of these 57. If $y = x \ln x + xe^x$, then what is the value of $\frac{dy}{dx}$ at $x = 1$? [2014-11] (a) $1 + e$ (b) $1 - e$ (c) $1 + 2e$ (d) None of these DIRECTIONS (Qs. 68-69): For the next two (2) items that follow: Given that $\frac{d}{dx} \left(\frac{1 + x^2 + x^4}{1 + x + x^2} \right) = Ax + B$. [2015-1] 58. What is the value of A? (a) -1 (b) 1 (c) 2 (d) 4 59. What is the value of B? (a) -1 (b) 1 (c) 2 (d) 4 70. What is the derivative of $\tan^{-1} \left(\frac{\sqrt{1 + x^2} - 1}{x} \right)$ with respect to $\tan^{-1} x$? [2015-1] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-11] (a) $\frac{1 + \cos x}{(x + \sin x)(1 - \sin x)}$ (b) $\frac{1 - \cos x}{(x + \sin x)(1 + \sin x)}$ (c) $\frac{1 - \cos x}{(x - \sin x)(1 + \cos x)}$ (d) $\frac{1 + \cos x}{(x - \sin x)(1 - \cos x)}$ 72. If $y = \cot^{-1} \left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-11] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$	56.	What is $\frac{d^2y}{dx^2}$ equal to ? [2014-II]
(c) $\frac{\sec^3 \theta}{a\theta}$ (d) None of these 57. If $y = x \ln x + xe^x$, then what is the value of $\frac{dy}{dx}$ at $x = 1$? [2014-11] (a) $1 + e$ (b) $1 - e$ (c) $1 + 2e$ (d) None of these DIRECTIONS (Qs. 68-69): For the next two (2) items that follow: Given that $\frac{d}{dx} \left(\frac{1 + x^2 + x^4}{1 + x + x^2}\right) = Ax + B$. [2015-1] 58. What is the value of A? (a) -1 (b) 1 (c) 2 (d) 4 59. What is the value of B? (a) -1 (b) 1 (c) 2 (d) 4 70. What is the derivative of $\tan^{-1}\left(\frac{\sqrt{1 + x^2} - 1}{x}\right)$ with respect to $\tan^{-1} x$? [2015-1] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-11] (a) $\frac{1 + \cos x}{(x + \sin x)(1 - \sin x)}$ (b) $\frac{1 - \cos x}{(x + \sin x)(1 + \sin x)}$ (c) $\frac{1 - \cos x}{(x - \sin x)(1 + \cos x)}$ (d) $\frac{1 + \cos x}{(x - \sin x)(1 - \cos x)}$ 72. If $y = \cot^{-1}\left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-11] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$		(a) $\sec^2 \theta$ (b) $-\csc^2 \theta$
57. If $y = x \ln x + xe^x$, then what is the value of $\frac{dy}{dx}$ at $x = 1$? [2014-II] (a) $1 + e$ (b) $1 - e$ (c) $1 + 2e$ (d) None of these DIRECTIONS (Qs. 68-69): For the next two (2) items that follow: Given that $\frac{d}{dx} \left(\frac{1 + x^2 + x^4}{1 + x + x^2} \right) = Ax + B$. [2015-I] 58. What is the value of A? (a) -1 (b) 1 (c) 2 (d) 4 59. What is the value of B? (a) -1 (b) 1 (c) 2 (d) 4 70. What is the derivative of $\tan^{-1} \left(\frac{\sqrt{1 + x^2} - 1}{x} \right)$ with respect to $\tan^{-1} x$? [2015-I] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-II] (a) $\frac{1 + \cos x}{(x + \sin x)(1 - \sin x)}$ (b) $\frac{1 - \cos x}{(x + \sin x)(1 + \sin x)}$ (c) $\frac{1 - \cos x}{(x - \sin x)(1 + \cos x)}$ (d) $\frac{1 + \cos x}{(x - \sin x)(1 - \cos x)}$ 72. If $y = \cot^{-1} \left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-II] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$		(c) $\frac{\sec^3 \theta}{a\theta}$ (d) None of these
[2014-11] (a) $1 + e$ (b) $1 - e$ (c) $1 + 2e$ (d) None of these DIRECTIONS (Qs. 68-69): For the next two (2) items that follow: Given that $\frac{d}{dx} \left(\frac{1 + x^2 + x^4}{1 + x + x^2} \right) = Ax + B$. $[2015-1]$ 68. What is the value of A? (a) -1 (b) 1 (c) 2 (d) 4 59. What is the value of B? (a) -1 (b) 1 (c) 2 (d) 4 70. What is the derivative of $\tan^{-1} \left(\frac{\sqrt{1 + x^2} - 1}{x} \right)$ with respect to $\tan^{-1} x$? $[2015-1]$ (a) 0 (b) $\frac{1}{2}$ (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c	67.	If $y = x \ln x + xe^x$, then what is the value of $\frac{dy}{dx}$ at $x = 1$?
(a) 1 + c (b) 1 - c (c) 1 + 2c (d) None of these DIRECTIONS (Qs. 68-69): For the next two (2) items that follow: Given that $\frac{d}{dx} \left(\frac{1+x^2+x^4}{1+x+x^2} \right) = 4x + B$. [2015-1] 58. What is the value of A? (a) -1 (b) 1 (c) 2 (d) 4 59. What is the value of B? (a) -1 (b) 1 (c) 2 (d) 4 70. What is the derivative of $\tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right)$ with respect to $\tan^{-1} x$? [2015-1] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-11] (a) $\frac{1+\cos x}{(x+\sin x)(1-\sin x)}$ (b) $\frac{1-\cos x}{(x+\sin x)(1+\sin x)}$ (c) $\frac{1-\cos x}{(x-\sin x)(1+\cos x)}$ (d) $\frac{1+\cos x}{(x-\sin x)(1-\cos x)}$ 72. If $y = \cot^{-1} \left[\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}} \right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-11] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$		[2014-11]
DIRECTIONS (Qs. 68-69): For the next two (2) items that follow: Given that $\frac{d}{dx} \left(\frac{1+x^2+x^4}{1+x+x^2}\right) = 4x + B.$ [2015-1] Given that $\frac{d}{dx} \left(\frac{1+x^2+x^4}{1+x+x^2}\right) = 4x + B.$ [2015-1] 68. What is the value of A? (a) -1 (b) 1 (c) 2 (d) 4 99. What is the value of B? (a) -1 (b) 1 (c) 2 (d) 4 70. What is the derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect to $\tan^{-1}x$? [2015-1] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-1] (a) $\frac{1+\cos x}{(x + \sin x)(1 - \sin x)}$ (b) $\frac{1-\cos x}{(x + \sin x)(1 + \sin x)}$ (c) $\frac{1-\cos x}{(x - \sin x)(1 - \sin x)}$ (d) $\frac{1 + \cos x}{(x - \sin x)(1 - \cos x)}$ 72. If $y = \cot^{-1}\left[\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-11] (a) $\frac{1}{2}$ (b) 2 (c) sin $x + \cos x$ (d) sin $x - \cos x$		(a) $1+c$ (b) $1-c$ (c) $1+2e$ (d) None of these
Given that $\frac{d}{dx} \left(\frac{1+x^2+x^4}{1+x+x^2} \right) = Ax + B.$ [2015-1] 68. What is the value of A? (a) -1 (b) 1 (c) 2 (c) 2 (c) 4 69. What is the value of B? (a) -1 (c) 2 (c) 1 (a) 0 (c) 1 (c) 2 (c) 1 (b) $\frac{1}{2}$ (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 1 (c) 1 (c) 2 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (c) 1 (DIF	RECTIONS (Qs. 68-69): For the next two (2) items that follow.
68. What is the value of A? (a) -1 (b) 1 (c) 2 (d) 4 69. What is the value of B? (a) -1 (b) 1 (c) 2 (d) 4 70. What is the derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect to $\tan^{-1}x$? [2015-I] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x+\sin x)$ with respect to $(x+\cos x)$ is [2015-II] (a) $\frac{1+\cos x}{(x+\sin x)(1-\sin x)}$ (b) $\frac{1-\cos x}{(x+\sin x)(1+\sin x)}$ (c) $\frac{1-\cos x}{(x-\sin x)(1+\cos x)}$ (d) $\frac{1+\cos x}{(x-\sin x)(1-\cos x)}$ 72. If $y = \cot^{-1}\left[\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-II] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$	Giv	en that $\frac{d}{dx}\left(\frac{1+x^2+x^4}{1+x+x^2}\right) = Ax + B.$ [2015-1]
(a) -1 (b) 1 (b) 1 (c) 2 (d) 4 (d) 4 (e) -1 (b) 1 (c) 2 (d) 4 70. What is the derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect to $\tan^{-1}x$? [2015-I] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x+\sin x)$ with respect to $(x+\cos x)$ is [2015-II] (a) $\frac{1+\cos x}{(x+\sin x)(1-\sin x)}$ (b) $\frac{1-\cos x}{(x+\sin x)(1+\sin x)}$ (c) $\frac{1-\cos x}{(x-\sin x)(1+\cos x)}$ (d) $\frac{1+\cos x}{(x-\sin x)(1-\cos x)}$ 72. If $y = \cot^{-1}\left[\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-II] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$	68.	What is the value of A? (a) -1 (b) 1
69. What is the value of B? (a) -1 (b) 1 (c) 2 (d) 4 70. What is the derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect to $\tan^{-1}x$? [2015-I] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-II] (a) $\frac{1 + \cos x}{(x + \sin x)(1 - \sin x)}$ (b) $\frac{1 - \cos x}{(x + \sin x)(1 + \sin x)}$ (c) $\frac{1 - \cos x}{(x - \sin x)(1 + \cos x)}$ (d) $\frac{1 + \cos x}{(x - \sin x)(1 - \cos x)}$ 72. If $y = \cot^{-1}\left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}\right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-II] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(a) $\frac{1}{(c)} = \frac{1}{2}$ (b) $\frac{1}{4}$ 70. What is the derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect to $\tan^{-1}x$? [2015-1] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-11] (a) $\frac{1+\cos x}{(x+\sin x)(1-\sin x)}$ (b) $\frac{1-\cos x}{(x+\sin x)(1+\sin x)}$ (c) $\frac{1-\cos x}{(x-\sin x)(1+\cos x)}$ (d) $\frac{1+\cos x}{(x-\sin x)(1-\cos x)}$ 72. If $y = \cot^{-1}\left[\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-11] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$	59 .	What is the value of B? (a) -1 (b) 1
70. What is the derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect to $\tan^{-1}x$? [2015-1] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-11] (a) $\frac{1+\cos x}{(x+\sin x)(1-\sin x)}$ (b) $\frac{1-\cos x}{(x+\sin x)(1+\sin x)}$ (c) $\frac{1-\cos x}{(x-\sin x)(1+\cos x)}$ (d) $\frac{1+\cos x}{(x-\sin x)(1-\cos x)}$ 72. If $y = \cot^{-1}\left[\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-11] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
to $\tan^{-1} x$? [2015-1] (a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-11] (a) $\frac{1 + \cos x}{(x + \sin x)(1 - \sin x)}$ (b) $\frac{1 - \cos x}{(x + \sin x)(1 + \sin x)}$ (c) $\frac{1 - \cos x}{(x - \sin x)(1 + \cos x)}$ (d) $\frac{1 + \cos x}{(x - \sin x)(1 - \cos x)}$ 72. If $y = \cot^{-1} \left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-11] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$	70.	What is the derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect
(a) 0 (b) $\frac{1}{2}$ (c) 1 (d) x 71. The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-II] (a) $\frac{1 + \cos x}{(x + \sin x)(1 - \sin x)}$ (b) $\frac{1 - \cos x}{(x + \sin x)(1 + \sin x)}$ (c) $\frac{1 - \cos x}{(x - \sin x)(1 + \cos x)}$ (d) $\frac{1 + \cos x}{(x - \sin x)(1 - \cos x)}$ 72. If $y = \cot^{-1} \left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-II] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$		to $\tan^{-1} x$? [2015-1]
(c) 1 (d) x The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-II] (a) $\frac{1 + \cos x}{(x + \sin x)(1 - \sin x)}$ (b) $\frac{1 - \cos x}{(x + \sin x)(1 + \sin x)}$ (c) $\frac{1 - \cos x}{(x - \sin x)(1 + \cos x)}$ (d) $\frac{1 + \cos x}{(x - \sin x)(1 - \cos x)}$ 72. If $y = \cot^{-1} \left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-II] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$		(a) 0 (b) $\frac{1}{2}$
(a) $\frac{1+\cos x}{(x+\sin x)(1-\sin x)}$ (b) $\frac{1-\cos x}{(x+\sin x)(1+\sin x)}$ (c) $\frac{1-\cos x}{(x-\sin x)(1+\cos x)}$ (d) $\frac{1+\cos x}{(x-\sin x)(1-\cos x)}$ 72. If $y = \cot^{-1}\left[\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-II] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$	71.	(c) 1 (d) x The derivative of $\ln(x + \sin x)$ with respect to $(x + \cos x)$ is [2015-II]
(c) $\frac{1-\cos x}{(x-\sin x)(1+\cos x)}$ (d) $\frac{1+\cos x}{(x-\sin x)(1-\cos x)}$ 72. If $y = \cot^{-1}\left[\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-II] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$		(a) $\frac{1+\cos x}{(x+\sin x)(1-\sin x)}$ (b) $\frac{1-\cos x}{(x+\sin x)(1+\sin x)}$
72. If $y = \cot^{-1} \left[\frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right]$, where $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx}$ is equal to [2015-II] (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$		(c) $\frac{1-\cos x}{(x-\sin x)(1+\cos x)}$ (d) $\frac{1+\cos x}{(x-\sin x)(1-\cos x)}$
$\frac{dy}{dx} \text{ is equal to} \qquad [2015-II]$ (a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$	72.	If $y = \cot^{-1}\left[\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right]$, where $0 < x < \frac{\pi}{2}$, then
(a) $\frac{1}{2}$ (b) 2 (c) $\sin x + \cos x$ (d) $\sin x - \cos x$		$\frac{dy}{dx}$ is equal to [2015-II]
(c) $\sin x + \cos x$ (d) $\sin x - \cos x$		(a) $\frac{1}{2}$ (b) 2
		(c) $\sin x + \cos x$ (d) $\sin x - \cos x$

73.	If $x^a y^b = (x - y)^{a+b}$, then the	e value of $\frac{dy}{dx} - \frac{y}{x}$	is equal to
			[2015-II]
	a	b	
	(a) $\frac{-}{b}$	(b) $\frac{-}{a}$	
	(c) 1	(d) 0	
74.	If $s = \sqrt{t^2 + 1}$, then $\frac{d^2s}{dt^2}$ is	s equal to	[2015-II]
	(a) $\frac{1}{s}$	(b) $\frac{1}{s^2}$	
	(c) $\frac{1}{s^3}$	(d) $\frac{1}{s^4}$	
75.	$\int \frac{\mathrm{dx}}{1+\mathrm{e}^{-\mathrm{x}}}$ is equal to		[2015-II]
	(a) $1 + e^x + c$ (c) $\ln (1 + e^x) + c$ where c is the constant of i	(b) $\ln (1 + e^{-3})$ (d) $2 \ln (1 + e^{-3})$	(x) + c $(e^{-x}) + c$
DIF	RECTIONS (Os. 76-79): For	the next four (4) ite	ms that follow.
	Let $f: \mathbf{R} \to \mathbf{R}$ be a function	n such that	
	$f(x) = x^3 + x^2 f'(1) + xf''(2)$) + f'''(3)	
	for $x \in \mathbf{R}$) · · · (•)	[2016-1]
76.	What is f(1) equal to?		[20101]
	(a) -2	(b) -1	
77	(c) U What is $f'(1)$ actual to?	(d) 4	
//.	(a) -6	(b) -5	
	(c) 1	(0) 0	
78.	What is f "(10) equal to?		
	(a) 1	(b) 5	
70	(c) 6 Consider the following:	(d) 8	
19.	1. $f(2) = f(1) - f(0)$		
	2. $f''(2) - 2f'(1) = 12$		
	Which of the above is/are	correct?	
	(a) 1 only	(b) 2 only	
00	(c) Both 1 and 2 If $u = 1$ and $u = 1$ and 10	(d) Neither 1 $\frac{1}{2}$	nor 2
80.	If $y = \log_{10} x + \log_x 10 + 10$	$\log_{x} x + \log_{10} 10$	then what is
	$\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{x}=10}$ equal to?		[2016-1]
	(a) 10	(b) 2	
D	(c) 1	(d) 0	
DIF	(Qs. 81-83): <i>F</i>	or the next three	(3) items that

ollow.

Consider the following for the next three (03) items that follow:

Let
$$f(x) = [|x| - |x - 1|]^2$$
 [2016-11]

1. What is f'(x) equal to when x>1?

(a) 0 (b)
$$2x-1$$

(c) $4x-2$ (d) $8x-4$

82.	What is $f'(x)$ equal to when $0 \le x \le 1$?		2		
	(a) 0 (b) $2x-1$		(c) $\frac{2}{1-2}$ for all $ \mathbf{x} < 1$		
	(c) $4x-2$ (d) $8x-4$		$l + x^2$		
83.	Which of the following equations is/are correct?	00	(d) None of the above	с: Г.	0.1
	1. $f(-2) = f(5)$	89.	what is the derivative of th	ne function [2	016
	2. $f''(-2) + f''(0.5) + f''(3) = 4$		$f(x) = e^{\tan x} + ln(\sec x) - ln(\csc x) - ln(\varepsilon x)$	$e^{\ell n x}$ at $x = \frac{\pi}{4}$?	
	Select the correct answer using the code given below: (1)		0	4	
	(a) I only (b) 2 only (c) D_{1} (c) D_{2} (c)		(a) $\frac{c}{2}$	(b) e	
0.4	(c) Both I and 2 (d) Neither I nor 2 (d)		(c) $2\dot{e}$	(d) 4e	
84.	Let $f(x + y) = f(x) f(y)$ for all x and y. Then what is $f'(5)$		x ²	dv	
	[2017-1]	90.	If $y = e^x \sin 2x$, then what	at is $\frac{d}{dx}$ at $x = \pi$ equal to?	
	(a) $f(5) f'0$ (b) $f(5) - f'(0)$			[2	018
	(c) $f(5)f(0)$ (d) $f(5)+f'(0)$		(a) $(1 + -) = \pi^2$	(b) $2 - e^{\pi^2}$	
0.7	$1 = \frac{1}{2} \left(5 + \frac{2}{2} + 2 \right)$		(a) $(1+\pi)e$	$(0) 2\pi e$	
85.	What is the derivative of $\log_{10}(3x + 3)$ with respect to x?		(c) $2e^{\pi^2}$	(d) e^{π^2}	
	[2017-I]		(•) 20		
	$x \log_{10} e$ $2x \log_{10} e$	01	$\int \frac{5-2\tan\sqrt{x}}{2}$	dy dy	- 9
	(a) $\frac{5x^2 + 3}{5x^2 + 3}$ (b) $\frac{5x^2 + 3}{5x^2 + 3}$	91.	If $y = \tan^{-1} \left(2 + 5 \tan \sqrt{x} \right)$, then what is $\frac{dx}{dx}$ equal t	0?
	$10x \log_{10} e$ $10x \log_{2} 10$			[20)18
	(c) $\frac{1}{5x^2+3}$ (d) $\frac{1}{5x^2+3}$		1	L	
			(a) $-\frac{1}{2\sqrt{x}}$	(b) 1	
	$(\cos x)$		- • • •	1	
86.	If $y = (\cos x)^{(\cos x)^{(\cos x)}}$, then $\frac{dy}{dx}$ is equal to		(c) -1	(d) $\frac{1}{2\sqrt{x}}$	
	[2017-11]				
	2	92	What is $\frac{d\sqrt{1-\sin 2x}}{\cos 2x}$ equa	alto where $\frac{\pi}{-} < x < \frac{\pi}{-}$?	
	(a) $-\frac{y \tan x}{1 + y \ln (\cos x)}$ (b) $\frac{y \tan x}{1 + y \ln (\cos x)}$	> <u>_</u> .	dx	4 2	
	$1 - y \ln(\cos x)$ $1 + y \ln(\cos x)$			[20)18
	$v^2 \tan x$ $v^2 \sin x$		(a) $\cos x + \sin x$	(b) $-(\cos x + \sin x)$	
	(c) $\frac{y \ln u}{1 - y \ln (\sin x)}$ (d) $\frac{y \ln u}{1 + y \ln (\sin x)}$		(c) $\pm (\cos x + \sin x)$	(d) None of the above	
		93.	If $f(x) = \sin(\cos x)$, then f"	(x) is equal to $[2]$	019
87	If $\mathbf{v} = \sec^{-1}\left(\frac{\mathbf{x}+1}{\mathbf{x}+1}\right) + \sin^{-1}\left(\frac{\mathbf{x}-1}{\mathbf{x}+1}\right)$, then $\frac{d\mathbf{y}}{d\mathbf{x}}$ is equal to		(a) $\cos(\cos x)$	(b) $\sin(-\sin x)$	
07.	$(x-1)$ $(x+1)^{2}$ and dx is equal to		(c) $(\sin x) \cos (\cos x)$	(d) $(-\sin x) \cos(\cos x)$	
	[2017-II]	94	If $f(\mathbf{x}) = \frac{x-2}{2}$, $x \neq -2$, the	on what is $f^{-1}(x)$ equal to $f^{-1}(x)$,
		74.	x+2, $x+2$		•
	(c) $\frac{x-1}{x-1}$ (d) $\frac{x+1}{x-1}$			[2	01
	x+1 x-1			. 2	
00	$x = x = \cos^{-1} \left(\begin{array}{c} 2x \\ \end{array} \right)$ dy $(x = 1) = \cos^{-1} \left(\begin{array}{c} 2x \\ \end{array} \right)$		(a) $\frac{4(x+2)}{2}$	(b) $\frac{x+2}{4(x-2)}$	
88.	If $y = \cos\left(\frac{1}{1+x^2}\right)$, then $\frac{1}{dx}$ is equal to [2017-11]		x-2	(4(x-2))	
	2		$(x) \frac{x+2}{x+2}$	(d) $\frac{2(1+x)}{x}$	
	(a) $-\frac{2}{1+x^2}$ for all $ x < 1$		(c) x-2	(u) 1 - x	
	1 + X				
	(b) $-\frac{2}{2}$ for all $ \mathbf{x} > 1$				
	$1+x^2 = 10^{101} an x < 1$				

[2018-I]

[2018-I]

[2018-II]

[2018-II]

[2019-I]

[2019-I]

								AN	ISWI	ER K	EY								
1	(b)	11	(c)	21	(d)	31	(a)	41	(d)	51	(d)	61	(c)	71	(a)	81	(a)	91	(a)
2	(c)	12	(a)	22	(d)	32	(d)	42	(a)	52	(b)	62	(c)	72	(a)	82	(d)	92	(a)
3	(b)	13	(b)	23	(a)	33	(b)	43	(a)	53	(c)	63	(b)	73	(d)	83	(a)	93	(d)
4	(c)	14	(b)	24	(b)	34	(d)	44	(b)	54	(d)	64	(c)	74	(c)	84	(a)	94	(d)
5	(c)	15	(a)	25	(b)	35	(c)	45	(d)	55	(a)	65	(a)	75	(c)	85	(c)		
6	(b)	16	(d)	26	(a)	36	(a)	46	(c)	56	(b)	66	(c)	76	(d)	86	(a)		
7	(b)	17	(a)	27	(a)	37	(a)	47	(b)	57	(a)	67	(c)	77	(b)	87	(a)		
8	(d)	18	(a)	28	(b)	38	(c)	48	(d)	58	(a)	68	(c)	78	(c)	88	(a)		
9	(a)	19	(c)	29	(d)	39	(c)	49	(c)	59	(b)	69	(a)	79	(c)	89	(c)		
10	(d)	20	(c)	30	(d)	40	(a)	50	(c)	60	(b)	70	(b)	80	(d)	90	(c)		

HINTS & SOLUTIONS

(b) $u = \sin^{-1} (x - y)$ and x = 3t, $y = 4t^3$ 1. So, $u = \sin^{-1}(3t - 4t^3)$ Let $t = \sin \theta \Rightarrow \theta = \sin^{-1} t$, So, $u = \sin^{-1}(3\sin\theta - 4\sin^3\theta)$ $=\sin^{-1}(\sin 3\theta)=3\theta$ Hence, $u = 3 \sin^{-1} t$ $\frac{du}{dt} = 3\frac{1}{\sqrt{1-t^2}} = 3(1-t^2)^{-1/2}$ 2. (c) Given that $x = \cos t$, $y = \sin t$ $\Rightarrow \frac{dx}{dt} = -\sin t \text{ and } \frac{dy}{dt} = \cot t$ $\Rightarrow \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = -\frac{\cos t}{\sin t} \Rightarrow \frac{dy}{dx} = -\cot t$ $\Rightarrow \frac{d^2y}{dx^2} = \csc^2 t \cdot \frac{dt}{dx} = \csc^2 t \cdot \frac{1}{-\sin t} = -\frac{1}{\sin^3 t}$ $\Rightarrow \frac{d^2 y}{dx^2} = -y^{-3}$ (b) Given that $y = x + e^x$ 3. Differentiating w.r.t.x

$$\frac{dy}{dx} = 1 + e^x$$

dx 1

$$\Rightarrow \frac{dx}{dy} = \frac{1}{1 + e^x}$$

Differentiating w.r.t.y

$$\frac{d^2x}{dy^2} = -\frac{(1)(e^x)}{(1+e^x)^2} \cdot \frac{dx}{dy}$$

$$= -\frac{e^{x}}{(1+e^{x})^{2}} \cdot \frac{1}{(1+e^{x})} = -\frac{e^{x}}{(1+e^{x})^{3}}$$

(c) Given that f(x) = x |x|4.

$$f'(x) = x \cdot \frac{|x|}{x} + |x| [Since f'(uv) = u \cdot f'(v) + v \cdot f'(u)]$$

= |x| + |x| = 2 |x| Here, u = x, v = |x|

1

5. (c) Given that
$$x + y = t - \frac{1}{t}$$
 and $x^2 + y^2 = t^2 + \frac{1}{t^2}$
 $\therefore (x + y)^2 = x^2 + y^2 + 2xy$
 $\Rightarrow \left(t - \frac{1}{t}\right)^2 = \left(t^2 + \frac{1}{t^2}\right) + 2xy$
 $-2 = 2xy \Rightarrow xy = -1$
 $(x - y)^2 = (x + y)^2 - 4xy$
 $= \left(t - \frac{1}{t}\right)^2 - 4 \times -1 = t^2 + \frac{1}{t^2} - 2 + 4 = \left(t + \frac{1}{t}\right)^2$
 $x - y = t + \frac{1}{t}$
 $\Rightarrow x = t, y = -\frac{1}{t}$

$$xy=-1$$

$$\Rightarrow x \frac{dy}{dx} + y = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{y}{x} = \frac{1}{t^2} = \frac{1}{x^2}$$
6. (b) Here, $\frac{d(\sqrt{1-x^2})}{d(\sin^{-1}x)} = \frac{\frac{d}{dx}(\sqrt{1-x^2})}{\frac{d}{dx}(\sin^{-1}x)}$ is to be found.
$$f(x) = \sqrt{1-x^2}$$
So, $f'(x) = \frac{d}{dx}(\sqrt{1-x^2}) = f'(x)\frac{1}{2\sqrt{1-x^2}}(-2x)$

$$\Rightarrow f'(x) = \frac{-x}{\sqrt{1-x^2}} \qquad ...(i)$$
Also, $g(x) = \sin^{-1}x$

$$g'(x) = \frac{1}{\sqrt{1-x^2}} \qquad ...(ii)$$

$$\therefore \frac{f'(x)}{g'(x)} = \frac{-x/\sqrt{1-x^2}}{1/\sqrt{1-x^2}} \qquad (using Eqs. (i) and (ii))$$

$$= -x$$
7. (b) The given function,
$$f(x) = (\log \tan x \cot x) (\log \cot x \tan x)^{-1}$$

$$= \left(\frac{\log \cot x}{\log \tan x}\right) \left(\frac{\log \cot x}{\log \tan x}\right)^{-1}$$

$$= \left(\frac{\log \cot x}{\log \tan x}\right) \left(\frac{\log \cot x}{\log \tan x}\right)^{2} = \left(-\frac{\log \tan x}{\log \tan x}\right)^{2} = 1$$

$$\Rightarrow f(x)=1$$
 (constant function).

$$\Rightarrow f'(x)=0$$

and this is true for $0 < x < \frac{\pi}{2}$

$$\Rightarrow f'\left(\frac{\pi}{4}\right) = 0$$

(d) The given function $f(x) = \cos^{-1}\left(\frac{2\cos x + 3\sin x}{\sqrt{13}}\right)$ 8.

can be written as

$$\cos^{-1}\left(\cos x \cdot \frac{2}{\sqrt{13}} + \sin x \cdot \frac{3}{\sqrt{13}}\right)$$

Let $\frac{2}{\sqrt{13}} = \cos \theta$ and $\frac{3}{\sqrt{13}} = \sin \theta$
 $\Rightarrow \tan \theta = \frac{\frac{3}{\sqrt{13}}}{2} = \frac{3}{2}$

So, (i), $\cos^{-1} (\cos x \cos \theta + \sin x \sin \theta)$ where $\theta = \tan^{-1}\left(\frac{3}{2}\right)$

where
$$0^{-1}$$
 there $\left(\frac{1}{2}\right)^{-1}$
= $\cos^{-1} \left(\cos \left(x - \theta\right)\right) = x - \theta$
hence, f'(x) = 1 ($\because \theta$ is a constant)

(a) Given function is $f(x) = \frac{7x}{(2x-1)(x+3)}$

Breaking into partial fraction

9.

 $\Rightarrow \tan \theta = \frac{\frac{3}{\sqrt{13}}}{\frac{2}{\sqrt{13}}} = \frac{3}{2}$

We get, $f(x) = \frac{1}{2x-1} + \frac{3}{x+3}$

Differentiating w.r.t. x, we get

$$f'(x) = -\frac{2}{(2x-1)^2} - \frac{3}{(x+3)^2}$$

10. (d) Given differential equation is

$$\frac{dy}{dx} = 1 + x + y^{2} + xy^{2}$$

$$\Rightarrow \frac{dy}{dx} = (1 + x)(1 + y^{2})$$

$$\Rightarrow \frac{dy}{1 + y^{2}} = (1 + x)dx$$

$$\Rightarrow \tan^{-1} y = \frac{x^{2}}{2} + x + c$$
Given that when x = 0, y (0) = 0. Hence, c = 0

$$\Rightarrow y = \tan\left(\frac{x^{2}}{2} + x\right)$$

11. (c) According to given relation. \therefore f(x²)=x³ Putting $x = \sqrt{x}$ $\Rightarrow f(x) = x^{3/2}$ Differentiating both the sides, \Rightarrow f'(x) = $\frac{3}{2}x^{1/2}$

$$\Rightarrow f'(4) = \frac{3}{2} \cdot 4^{1/2} = \frac{3}{2}(2) = 3$$

...(i)

12. (a) Let $y = \tan^{-1}\left(\frac{\sqrt{x} - x}{1 + x^{3/2}}\right) = \tan^{-1}\frac{\sqrt{x} - x}{1 + \sqrt{x} + x^{3/2}}$ $=\tan^{-1}\sqrt{x}-\tan^{-1}x$ On differentiating w.r.t.x, we get $\frac{dy}{dx} = \frac{1}{1+x} \cdot \frac{1}{2\sqrt{x}} - \frac{1}{1+x^2}$ Now, $\left(\frac{dy}{dx}\right)_{x=1} = \frac{1}{1+1} \cdot \frac{1}{2} - \frac{1}{1+1} = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4}$. 13. (b) Given equation $x\sqrt{1+y} + y\sqrt{1+x} = 0$ Can be written as : $x\sqrt{1+y} = -y\sqrt{1+x}$ Squaring both sides, we get $x^{2}(1+y) = y^{2}(1+x)$ $\Rightarrow x^{2} + x^{2} y = y^{2} + y^{2}x \Rightarrow x^{2} - y^{2} = y^{2}x - x^{2}y$ \Rightarrow (x-y)(x+y) = -xy(x-y) $\Rightarrow x + y = -xy \Rightarrow y(1+x) = -x$ $y = \frac{-x}{1+x}$ which is in explicit form. Differentiating w.r.t.x, we get $\frac{dy}{dx} = \frac{(1+x)(-1) + x(1)}{(1+x)^2} = \frac{-1}{(1+x)^2}$ 14. (b) As given, y = f(x), $p = \frac{dy}{dx}$ and $q = \frac{d^2y}{dx^2}$ $\frac{dx}{dy} = \frac{1}{p} \implies \frac{d^2x}{dy^2} = \frac{-1}{p^2} \cdot \frac{dp}{dy}$ $\frac{dp}{dx} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2} = q$ $\frac{dp}{dy} = \frac{dp}{dx} \cdot \frac{dx}{dy} = q \cdot \frac{1}{p} = \frac{q}{p}$ $\frac{d^2x}{dv^2} = \Longrightarrow -\frac{1}{p^2} \times \frac{q}{p} = \frac{-q}{n^3}$

15. (a) As given : $x = \sin t - t \cos t$ and $y = t \sin t + \cos t$ On differentiating w.r.t. t, we get

$$\frac{dx}{dt} = \cos t - \{\cos t + t(-\sin t)\}$$
$$\Rightarrow \frac{dx}{dt} = \cos t - \cos t + t \sin t = t \sin t$$

and,
$$\frac{dy}{dt} = t \cos t + \sin t - \sin t = t \cos t$$

Hence, $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{t \cos t}{t \sin t} = \cot t$
 $\Rightarrow \left(\frac{dy}{dx}\right)_{t=\frac{\pi}{2}} = \cot \frac{\pi}{2} = 0$

16. (d) Given function is :

у

$$=\sin^{-1}x + \sin^{-1}\sqrt{1 - x^2}$$

On differentiating, w.r.t. x, we get

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 - 1 + x^2}} \cdot \frac{1}{2\sqrt{1 - x^2}} (-2x)$$
$$= \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} = 0$$

17. (a) The given function is : $f(x) = \log_e [\log_e x]$ Differentiating w.r.t. x, we get

$$f'(x) = \frac{1}{\log_e x} \cdot \frac{1}{x} \implies f'(e) = \frac{1}{\log_e e} \cdot \frac{1}{e} = \frac{1}{e} = e^{-1}$$

18. (a) Given function is : $f(x) = e^{\sin(\log \cos x)}$ Differentiating w.r.t. x

$$f'(x) = e^{\sin(\log \cos x)} .\cos(\log \cos x). \frac{1}{\cos x}(-\sin x)$$
$$= -e^{\sin(\log \cos x)} .\cos(\log \cos x). \tan x$$
and g(x) = log cos x
$$\therefore g'(x) = \frac{1}{\cos x}(-\sin x) = -\tan x$$

Hence,

$$\frac{f'(x)}{g'(x)} = \frac{-e^{\sin(\log \cos x)} . \cos(\log \cos x) . \tan x}{-\tan x}$$

 $= e^{\sin(\log \cos x)} . \cos(\log \cos x)$ $= f(x) . \cos [g(x)]$

19. (c) Given function : $\sqrt{x} + \sqrt{y} = 1$ is an implicit function Differentiating both sides w.r.t. x, we get

$$\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -\sqrt{\frac{y}{x}}$$

Value of $\frac{dy}{dx}$ at $x = \frac{1}{4}$, $y = \frac{1}{4}$

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{\left(\frac{1}{4},\frac{1}{4}\right)} = -\sqrt{\frac{1/4}{1/4}} = -1$$

20. (c) Differentiating the given function, $y = \frac{1}{\log_{10} x}$

We get,
$$\frac{dy}{dx} = -\frac{1}{(\log_{10} x)^2} \cdot \frac{1}{x} \log_{10} e$$

 $\Rightarrow \frac{dy}{dx} = -\frac{(\log_x 10)^2 \cdot \log_{10} e}{100}$

$$\Rightarrow \frac{dy}{dx} = -\frac{dy}{dx} = -\frac{dy}{dx}$$

21. (d) $y = \sin(m \sin^{-1} x)$

Then,
$$\frac{dy}{dx} = \cos(m\sin^{-1}x)\frac{m}{\sqrt{1-x^2}}$$

 $\therefore \frac{d^2y}{dx^2} = \cos(m\sin^{-1}x).m\left\{\frac{-1}{2}.\frac{(-2x)}{(1-x^2)^{3/2}}\right\}$
 $+\frac{m}{\sqrt{1-x^2}}.\{-\sin(m\sin^{-1}x)\}.\frac{m}{\sqrt{1-x^2}}$
 $=\frac{m}{\sqrt{1-x^2}}\left[\frac{x}{(1-x^2)}\cos(m\sin^{-1}x)\right]$
 $-\frac{m}{\sqrt{1-x^2}}\sin(m\sin^{-1}x)\right]$

Now,
$$\frac{d^2 y}{dx^2}$$
 at $x = 0$ is $m [0 - 0] = 0$ ($\because \sin^{-1} 0 = 0$)
22. (d) $x^y = e^{x - y}$

Taking log both sides, we get $\Rightarrow y \cdot \log x = x - y$

$$\Rightarrow y = \frac{x}{1 + \log x}$$
$$\Rightarrow \frac{dy}{dx} = \frac{(1 + \log x) - x\left(0 + \frac{1}{x}\right)}{(1 + \log x)^2}$$
$$= \frac{(1 + \log x) - 1}{(1 + \log x)^2} = \frac{\log x}{(1 + \log x)^2}$$
(a) Let $\frac{dy}{dx} = 1 + x + y + xy$
$$\Rightarrow \frac{dy}{dx} = (1 + x)(1 + y)$$

$$\Rightarrow \frac{dy}{1+y} = dx(1+x)$$

23.

$$\Rightarrow \int \frac{1}{1+y} dy = \int (1+x) dx$$

$$\Rightarrow \log(1+y) = x + \frac{x^2}{2} + c$$

Given
At x = -1, y = 0

$$\Rightarrow \log 1 = -1 + \frac{1}{2} + c$$

$$\Rightarrow c = \frac{1}{2}$$

$$\therefore \log(1+y) = x + \frac{x^2}{2} + \frac{1}{2} = \frac{(1+x)^2}{2}$$

$$\Rightarrow 1+y = e^{\frac{(1+x)^2}{2}}$$

$$\Rightarrow y = e^{\frac{(1+x)^2}{2}} - 1$$

24. (b) Given
$$f(x) = \tan x + e^{-2x} - 7x^3$$

On differentiating w.r.t. x, we get
 $f'(x) = \sec^2 x - 2e^{-2x} - 21x^2$
Put $x = 0$
 $\Rightarrow f'(0) = \sec^2 0 - 2e^0 - 21 \times 0 = 1 - 2 = -1$
25. (b) $3^x + 3^y = 3^{x+y}$
On differentiating w.r.t. x, we get
 $3^x \log 3 + 3^y \log 3 \frac{dy}{dx} = 3^{x+y} \log 3 \left(1 + \frac{dy}{dx}\right)$
 $\Rightarrow \log 3 \left[3^x + 3^y \frac{dy}{dx}\right] = \log 3 \cdot 3^{x+y} \left(1 + \frac{dy}{dx}\right)$

$$\Rightarrow \log \left[3^{x+y} + 3^{y} \right] = \log \left[3^{x+y} + 3^{x} \right]$$
$$\Rightarrow \frac{dy}{dx} (-3^{x+y} + 3^{y}) = 3^{x+y} - 3^{x}$$
$$= 3^{x} \cdot 3^{y} - 3^{x} = 3^{x} \cdot (3^{y} - 1)$$

$$\Rightarrow \frac{dy}{dx} = \frac{3^{x}(3^{y}-1)}{3^{y}(1-3^{x})} = \frac{3^{x-y}(3^{y}-1)}{(1-3^{x})}$$

26. (a) Given
$$f(x) = \sin^2 x^2$$

 $\therefore f'(x) = 2 \sin x^2 \cos x^2 \cdot 2x$
 $= 4x \sin x^2 \cos x^2$

27. (a) Given $f(x) = \cos x$ and $g(x) = \log x$ Consider y = gof(x) $= g \{f(x)\}$ $= \log (f(x))$ $= \log (\cos x)$

$\therefore \quad \frac{dy}{dx} = \frac{1}{\cos x} (-\sin x) = -\tan x$ $\Rightarrow \quad \left(\frac{dy}{dx}\right)_{x=0} = -\tan 0 = 0$

28. (b) Given $e^{y} + xy = e$ On differentiating w.r.t. *x*, we get

$$e^{y} \frac{dy}{dx} + y + x \frac{dy}{dx} = 0$$
...(i)
At $x = 0$ we get $e^{y} + 0$. $y = e \Rightarrow e^{y} = e \Rightarrow y = 1$
 \therefore By putting $y = 1$ in equation (i)
we get

$$e\frac{dy}{dx} + 1 + 0 = 0$$
$$\Rightarrow \frac{dy}{dx} = -\frac{1}{e}$$

Again differentiating Eq. (i), we get

$$e^{y} \frac{d^{2}y}{dx^{2}} + e^{y} \left(\frac{dy}{dx}\right)^{2} + \frac{dy}{dx} + x \frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{d^{2}y}{dx^{2}} (e^{y} + x) + e^{y} \left(\frac{dy}{dx}\right)^{2} + \frac{2dy}{dx} = 0$$

Now, At $x = 0, y = 1$

$$\frac{d^{2}y}{dx^{2}} (e + 0) + e \left(-\frac{1}{e}\right)^{2} + 2 \left(-\frac{1}{e}\right) = 0$$

$$\Rightarrow e \frac{d^{2}y}{dx^{2}} - \frac{1}{e} = 0$$

$$\Rightarrow \frac{d^{2}y}{dx^{2}} = \frac{1}{e^{2}} = e^{-2}$$

29. (d) Let $\sqrt{1-x^2} + \sqrt{1-y^2} = a$ On differentiating w.r.t. *x*, we get

$$\frac{1}{2\sqrt{1-x^2}}(-2x) + \frac{1(-2y)}{2\sqrt{1-y^2}}\frac{dy}{dx} = 0$$
$$\Rightarrow \frac{-x}{\sqrt{1-x^2}} - \frac{y}{\sqrt{1-y^2}}\frac{dy}{dx} = 0$$
$$\Rightarrow \frac{-x}{\sqrt{1-x^2}} = \frac{y}{\sqrt{1-y^2}}\frac{dy}{dx}$$
$$\Rightarrow \frac{dy}{dx} = -\frac{x}{y}\sqrt{\frac{1-y^2}{1-x^2}}$$

NDA Topicwise Solved Papers - MATHEMATICS (d) Let $x = \log t$ and $y = t^2 - 1$ $x = \log t$ $\Rightarrow 2x = 2 \log t$ $\Rightarrow 2x = \log t^2$ $\Rightarrow 2x = \log (y+1) \Rightarrow e^{2x} = y+1$ On differentiating w.r.t. x, twice, we get $e^{2x} 2 = \frac{dy}{dx} \Rightarrow 4e^{2x} = \frac{d^2y}{dx^2}$

$$\frac{d^2 y}{dx^2} = 4e^{2(0)} = 4 \qquad (\because e^0 = 1)$$

31. (a) Let
$$u_1 = \log_x 5$$
 and $u_2 = \log_5 x$

At t = 1, x = 0

30.

$$\Rightarrow u_1 = \frac{\log_e 5}{\log_e x} \text{ and } u_2 = \frac{\log_e x}{\log_e 5}$$

On differentiating w.r.t. x, we get

$$\frac{du_1}{dx} = \left[\frac{\log_e x(0) - \left(\frac{1}{x}\right)}{(\log_e x)^2}\right] \log_e 5 = -\frac{\log_e 5}{x(\log_e x)^2}$$

and $\frac{du_2}{dx} = \frac{1}{x\log_e 5}$
 $\therefore \frac{du_1}{du_2} = \frac{du_1/dx}{du_2/dx} = -\frac{\log_e 5}{x(\log_e x)^2} \times x\log_e 5$
 $= -\left(\frac{\log_e 5}{\log_e x}\right)^2 = -(\log_x 5)^2 = -(\log_5 x)^{-2}$

32. (d) Given,

 $f'(x) = 6 - 4 \sin 2x$ and f(0) = 3Consider $f'(x) = 6 - 4 \sin 2x$ Integrate both sides w.r.t x $\int f'(x)dx = \int (6 - 4\sin 2x)dx$ $f(x) = 6x - \frac{4(-\cos 2x)}{2} + c$ Where 'c' is constant of integration $\Rightarrow f(x) = 6x + 2\cos 2x + c$ By using f(0) = 3, we have $3 = f(0) = 6.0 + 2 \cos 0 + c$ \Rightarrow 3 = 2 + c \Rightarrow c = 1 Hence, $f(x) = 6x + 2\cos 2x + 1$ 33. (b) Let $f(x) = e^x$, $g(x) = \log x$ Consider (g of)(x) = g[f(x)](By defn of g(x)) $=\log f(x)$ $= \log(e^x) \quad (\because f(x) = e^x)$ $(:: \log e = 1)$ = x

Now,
$$(gof)'(x) = 1$$

34. (d) Given, $g(x) = x^3 - 4x + 6$
But $f'(x) = g'(x)$
 $\Rightarrow \int f'(x) dx = \int g'(x) dx$
 $\Rightarrow f(x) = g(x) + c$
 $\therefore f(x) = x^3 - 4x + 6 + c$ where 'c' is a constant.
Now, $f(1) = 2$
 $\Rightarrow 2 = f(1) = (1)^3 - 4(1) + 6 + c$
 $\Rightarrow 2 = 1 - 4 + 6 + c$
 $\Rightarrow c = -1$
 $\therefore f(x) = x^3 - 4x + 6 - 1 = x^3 - 4x + 5$

35. (c) Let
$$y = \sin^{-1}\left(\frac{4x}{1+4x^2}\right) = \sin^{-1}\left(\frac{2.2x}{1+(2x)^2}\right)$$

Put $2x = \tan \theta \Rightarrow \theta = \tan^{-1}2x$

$$\operatorname{Fut} 2x - \operatorname{tall} 0 \longrightarrow 0 - \operatorname{tall} 2x$$

$$\therefore y = \sin^{-1} \left(\frac{2 \tan \theta}{1 + \tan^2 \theta} \right)$$
$$= \sin^{-1} \left(\sin 2 \theta \right) = 2 \theta \left(\because \sin 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta} \right)$$

 $= 2 \tan^{-1} 2x$

On differentiating w.r.t. *x*, we get

$$\frac{dy}{dx} = \frac{2}{1 + (2x)^2} \cdot 2 = \frac{4}{1 + 4x^2}$$

ALTERNATE SOLUTION

$$y = \sin^{-1}\left(\frac{4x}{1+4x^2}\right)$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1-\left(\frac{4x}{1+4x^2}\right)^2}} \times \frac{(1+4x^2)^4 - 4x(8x)}{(1+4x^2)^2}$$

$$= \frac{1+4x^2}{\sqrt{(1+4x^2)^2 - 16x^2}} \times \frac{4+16x^2 - 32x^2}{(1+4x^2)^2}$$

$$= \frac{4-16x^2}{(1+4x^2)\sqrt{1-8x^2 + 16x^4}}$$

$$= \frac{4-16x^2}{(1+4x^2)(1-4x^2)}$$

$$= \frac{(2)^2 - (4x)^2}{(1+4x^2)(1-2x)(1+2x)} = \frac{(2+4x)2}{(1+4x^2)(1+2x)} = \frac{4}{1+4x^2}$$

36. (a) Let
$$u = \log_x x = 1$$

Differentiate w.r.t 'x'
 $\frac{du}{dx} = 0$
and Let $v = \ln x \Rightarrow \frac{dv}{dx} = \frac{1}{x}$
 $\therefore \quad \frac{du}{dv} = \frac{du/dx}{dv/dx} = 0$
37. (a) Let $y = x\sqrt{a^2 - x^2} + a^2 \sin^{-1}\left(\frac{x}{a}\right)$
Differentiate both side w.r.t 'x' we get

$$\frac{dy}{dx} = x \frac{1}{2\sqrt{a^2 - x^2}} \cdot (-2x) + \frac{a^2}{\sqrt{1 - \frac{x^2}{a^2}}} \cdot \frac{1}{a}$$
$$= \frac{-x^2}{\sqrt{a^2 - x^2}} + \frac{a^2 \cdot a}{\sqrt{a^2 - x^2}} \cdot \frac{1}{a}$$
$$= \frac{a^2 - x^2}{\sqrt{a^2 - x^2}} = \sqrt{a^2 - x^2}$$
38. (c) Let $x = t^2$ and $y = t^3$

$$\Rightarrow \frac{dx}{dt} = 2t \text{ and } \frac{dy}{dt} = 3t^2$$

$$\therefore \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2}{2t} = \frac{3}{2}t$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{3}{2} \cdot \frac{dt}{dx} = \frac{3}{2} \cdot \frac{1}{2t} \left(\because \frac{dx}{dt} = 2t \right)$$

$$= \frac{3}{4t}$$

39. (c) Let $u = \sin^2 x$ and $v = \cos^2 x$

.

$$\Rightarrow \frac{du}{dx} = 2 \sin x \cos x = \sin 2x$$

and $\frac{dv}{dx} = -2 \sin x \cos x = -\sin 2x$
$$\therefore \frac{du}{dx} = \frac{du}{dx} = \frac{-\sin 2x}{2} = -1$$

$$\therefore \quad \frac{1}{dv} = \frac{1}{dv/dx} = \frac{1}{\sin 2x} = -1$$

40. (a) Let $x = k (\theta + \sin \theta)$ and $y = k (1 + \cos \theta)$ Differentiate both the functions w.r.t. ' θ '

$$\Rightarrow \quad \frac{dx}{d\theta} = k \left(1 + \cos \theta \right)$$

and
$$\frac{dy}{d\theta} = -k \sin \theta$$

 $(\because \log_a a = 1)$

$$\Rightarrow \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$$

$$= \frac{-k\sin\theta}{k(1+\cos\theta)} = \frac{-2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\cos^{2}\frac{\theta}{2}} = -\tan\frac{\theta}{2}$$
(:: sin 2 θ = 2 sin θ cos θ and cos 2 θ = 2 cos² θ -1)
$$\Rightarrow \left(\frac{dy}{dx}\right)_{\theta=\frac{\pi}{2}} = -\tan\frac{\pi}{4} = -1$$
Let $\sqrt{x} + \sqrt{y} = 2$
Differentiate w.r.t.x, we get
$$\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0 \qquad \dots (1)$$
Put y = 1, x = 1 in equation (1)
$$\frac{1}{2} + \frac{1}{2}\frac{dy}{dx} = 0$$

41. (d)

$$\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}} \frac{dy}{dx} = 0 \qquad \dots \dots (1)$$

Put y = 1, x = 1 in equation (1)
$$\frac{1}{2} + \frac{1}{2} \frac{dy}{dx} = 0$$
$$\implies \frac{dy}{dx} = -1$$

42. (a) Let $x = \cos 2t$ and $y = \sin^2 t$

Differentiate both the functions w.r.t. 't'

$$\frac{dx}{dt} = -2\sin 2t \text{ and } \frac{dy}{dt} = 2\sin t \cos t = \sin 2t$$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\sin 2t}{-2\sin 2t} = -\frac{1}{2}$$

$$\Rightarrow \quad \frac{d^2y}{dx^2} = 0$$

(a) Let $f(x) = 2^x$ On differentiating w.r.t. *x*, we get $f'(x) = 2^x (\ln 2)$ On again differentiating w.r.t. x, we get $f''(x) = 2^{x} (\ln 2)^{2}$

43.

44. (b) Let
$$y = \left(1 + x^{1/4}\right) \left(1 + x^{1/2}\right) \left(1 - x^{1/4}\right)$$
$$= \left(1 + x^{1/4}\right) \left(1 - x^{1/4}\right) \left(1 + x^{1/2}\right)$$
$$= \left(1 - x^{1/2}\right) \left(1 + x^{1/2}\right)$$
$$\left(\because (a+b)(a-b) = a^2 - b^2\right)$$

$$= (1-x)\left(\because (a+b)(a-b) = a^2 - b^2\right)$$
$$\Rightarrow y = 1-x$$

Differentiate both side w.r.t 'x' $\frac{dy}{dx} = -1$

45. (d) Let
$$y = ln \sqrt{\tan x}$$

Differentiate both side w.r.t 'x'

$$\frac{dy}{dx} = \frac{1}{\sqrt{\tan x}} \cdot \frac{1}{2\sqrt{\tan x}} \cdot \sec^2 x$$
Now, $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$

$$= \frac{1}{\sqrt{\tan \frac{\pi}{4}}} \times \frac{1}{2\sqrt{\tan \frac{\pi}{4}}} \times \frac{1}{\cos^2(\frac{\pi}{4})}$$

$$= \frac{1}{2} \times 1 \times \frac{1}{\left(\frac{1}{\sqrt{2}}\right)^2} = \frac{1}{2} \times 1 \times 2 = 1$$
46. (c) Let $f(x) = x^2 - 6x + 8$
 $f'(x) = 2x - 6$
 $f'(c) = 0$
 $\Rightarrow 2c - 6 = 0 \Rightarrow c = 3$
47. (b) Let $y = \frac{x+1}{x-1}$
Differentiate both the side w.r.t 'x'

$$\frac{dy}{dx} = \frac{(x-1)(1) - (x+1)1}{(x-1)^2}$$

$$=\frac{x-1-x-1}{(x-1)^2}=\frac{-2}{(x-1)^2}$$

48. (d) Let
$$y = \cos t$$
, $x = \sin t$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -\sin t, \ \frac{\mathrm{d}x}{\mathrm{d}t} = \cos t$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = -\frac{\sin t}{\cos t} = -\frac{x}{y}$$

49. (c) Let $x^m + y^m = 1$ Differentiate both the sides w.r.t 'x'

m.
$$x^{m-1} + m. y^{m-1}. \frac{dy}{dx} = 0$$

 $\Rightarrow mx^{m-1} = -my^{m-1}. \frac{dy}{dx}$
 $\Rightarrow \frac{x^{m-1}}{y^{m-1}} = -\frac{dy}{dx}$

$$\Rightarrow \left(\frac{x}{y}\right)^{m-1} = \frac{x}{y} \qquad \left(\because \frac{dy}{dx} = -\frac{x}{y}\right)$$

$$\Rightarrow m-1 = 1 \Rightarrow m = 2$$
50. (c) (1) $y = ln (\sec x + \tan x)$

$$\frac{dy}{dx} = \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x}$$

$$= \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x} = \sec x$$

 $y = ln(\csc x - \cot x)$

$$\frac{dy}{dx} = \frac{\csc x (\csc x - \cot x)}{\csc x - \cot x} = \csc x$$

Hence, both statements are correct.
51. (d) Let $f(x) = 2^{\sin x}$. $ln 2\cos x$.
52. (b) $y = ln(emx + e - mx)$
 $b \qquad \frac{dy}{dx} = \frac{1}{e^{mx} + e^{-mx}} \cdot \frac{d}{dx} (emx + e - mx)$
 $= \frac{me^{mx} - me^{-mx}}{e^{mn} + e^{-mx}} = \frac{m(e^{mx} - e^{-mx})}{e^{mx} + e^{-mx}}$
 $= \frac{m\left[e^{mn} - \frac{1}{e^{mx}}\right]}{e^{mx} + \frac{1}{x^{nx}}} = \frac{m[e^{2mx} - 1]}{e^{2mx} + 1}$
so, $\frac{dy}{dx}|_{x=0} = \frac{m(e^0 - 1)}{e^0 + 1} = m(0) = 0$
53. (c) Let $2x^3 - 3y^2 = 7$
Differentiate both side, w.r.t. 'x'
 $6x^2 - 6y \frac{dy}{dx} = 0$
 $\Rightarrow \frac{dy}{dx} = \frac{x^2}{y}$

54. (d)
$$y = |x|$$

 \therefore R. H. D of |x| = 1 at x = 0and L. H. D of |x| = -1 at x = 0Now, R. H. $D \neq L$. H. D at x = 0Hence, the derivative of |x| at x = 0 does not exist. (a) Let $y = \sin(ax + b)$ 55. $\Rightarrow \frac{dy}{dx} = a \cos(ax + b)$ $\Rightarrow \frac{d^2y}{dx^2} = -a^2 \sin(ax+b)$ Now, $\frac{d^2y}{dx^2}$ at $x = -\frac{b}{a}$ is $-a^{2}\sin\left(a\left(-\frac{b}{a}\right)+b\right) = -a^{2}\sin 0 = 0$ 56. (b) Let $y = x^x$ Take log on both the sides $\Rightarrow \ell ny = x \cdot \ell nx.$ $\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = 1 + \ln x \quad \Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = \ln e + \ln x$ $\Rightarrow \frac{dy}{dx} = y \ ln \ ex = = (x^x) ln \ ex$ $\frac{\mathrm{dy}}{\mathrm{dx}}\Big|_{\mathrm{y}=1} = 1. \ \ln \mathrm{e} = 1$ 57. (a) Let $y = \log_x x$ \Rightarrow y=1 (for x > 0 and x \neq 1) On differentiating both the side w.r.t 'x', we get $\frac{dy}{dx} = 0$ 58. (a) Let $u = \sec^2 x$, $v = \tan^2 x$ To find : $\frac{du}{dv}$. Now, $\frac{du}{dx} = 2 \sec x \cdot \sec x \cdot \tan x$ and $\frac{dv}{dx} = 2 \tan x \cdot \sec^2 x$ Thus, $\frac{du}{dv} = \frac{du}{dx} \times \frac{dx}{dv} = \frac{2 \sec x \cdot \sec x \cdot \tan x}{2 \tan x \sec^2 x} = 1$

Since $|x| = \begin{cases} x \text{ if } x \ge 0 \\ -x \text{ if } x < 0 \end{cases}$

59. (b)
$$U=x^3$$

$$\frac{dU}{dx} = 3x^2$$

...(1)

67. (c)
$$y = x \ln x + xe^{x}$$

After differentiating both sides with respect to x,
we get $\frac{dy}{dx} = x \cdot \frac{1}{x} + \log x + xe^{x} + e^{x}$
or $= 1 + \log x + xe^{x} + e^{x}$
Therefore $\left(\frac{dy}{dx}\right)_{x=1} = 1 + \log 1 + 1 \cdot e^{1} + e^{1} = 1 + 2e$
[$\because \log 1 = 0$]

Sol. (68-69)

...(2)

Given
$$\frac{d}{dx} \left(\frac{1+x^2+x^4}{1+x+x^2} \right)$$

$$= \frac{d}{dx} \left[\frac{1+x+x^2+x^4-x}{1+x+x^2} \right]$$

$$= \frac{d}{dx} \left[1+\frac{x^4-x}{x^2+x+1} \right]$$

$$= \frac{d}{dx} \left[1+\frac{x(x^3-1)}{x^2+x+1} \right]$$

$$= \frac{d}{dx} \left[1+x(x-1) \right]$$

$$= \frac{d}{dx} \left[1+x^2-x \right] = 2x-1 \qquad ...(i)$$
Now comparing equation (i) with AX + B, we get A=2 and B = -1.
68. (c)

70. (b) Let
$$y = \tan^{-1} \left[\frac{\sqrt{1 + x^2} - 1}{x} \right]$$
 and $u = \tan^{-1} x$
Put $x = \tan \theta \Rightarrow \theta = \tan^{-1} x$
Then, $y = \tan^{-1} \left[\frac{\sqrt{1 + \tan^2 \theta} - 1}{\tan \theta} \right]$
 $= \tan^{-1} \left[\frac{\sqrt{\sec^2 \theta} - 1}{\tan \theta} \right]$
 $= \tan^{-1} \left[\frac{\sec \theta - 1}{\tan \theta} \right] = \tan^{-1} \left[\frac{\frac{1}{\cos \theta} - 1}{\frac{\sin \theta}{\cos \theta}} \right]$

$$\frac{\text{M}\cdot 324}{\frac{dV}{dx} = 2x} \qquad ...(2)$$
From (1) and (2)

$$\frac{dU}{dV} = \frac{3x^2}{2x} = \frac{3}{2}x$$
60. (b) $F(x) = 2x^{2} + 3x - 5$
 $F'(x) = 4x + 3$
 $F'(0) + 3F'(-1) = 3 + 3(-4 + 3) = 0$
61. (c) $\frac{d}{dx}\sin(\sin x) = \cos(\sin x) \cdot \cos x$
62. (c) $f(x) = |x - 1|$
Redefined the function $f(x)$
 $f(x) = \begin{cases} -1, x < 1 \\ 1, x > 1 \end{cases}$
 $f'(x) = \begin{cases} -1; x < 1 \\ 1; x > 1 \end{cases}$
 $\therefore f'(2) = 1$
63. (b) Let $y = \sqrt{\frac{1 + \cos x}{1 - \cos x}} = \frac{\sqrt{2}\cos \frac{x}{2}}{\sqrt{2}\sin \frac{x}{2}} = \cot \frac{x}{2}$
 $\frac{dy}{dx} = -\csc^2 \frac{x}{2} \cdot \frac{1}{2} = -\frac{1}{2} \csc^2 \frac{x}{2}$
64. (c) $z = fof(x) = f(x^2) = x^4$
 $\frac{dz}{dx} = 4x^3$
65. (a) Given, $x = a(\cos \theta + \theta \sin \theta)$ and $y = a(\sin \theta - \theta \cos \theta)$
 $\frac{dx}{d\theta} = a(-\sin \theta + \theta \cos \theta + \sin \theta) = a \theta \cos \theta$
 $\frac{dy}{d\theta} = a(\cos \theta + \theta \sin \theta - \cos \theta) = a \theta \sin \theta$
Now $\frac{dy}{dx} = \frac{a\theta \sin \theta}{a\theta \cos \theta} = \tan \theta$
66. (c) Given $x = a(\cos \theta + \theta \sin \theta)$
 $y = a(\sin \theta - \theta \cos \theta)$ and we have $\frac{dy}{dx} = \tan \theta$
According to question $\frac{d^2y}{dx^2} = \sec^2\theta \frac{d\theta}{dx}$
 $= \sec^2 \theta (\frac{1}{a\theta \cos \theta})$
 $\left[\because \frac{dx}{d\theta} = a\theta \cos \theta\right]$

$$= \tan^{-1} \left[\frac{1 - \cos \theta}{\sin \theta} \right] = \tan^{-1} \left[\frac{2 \sin^2 \frac{\theta}{2}}{2 \sin \frac{\theta}{2}, \cos \frac{\theta}{2}} \right]$$
$$\left(\because 1 - \cos \theta = 2 \sin^2 \frac{\theta}{2} \text{ and} \\ \sin x = 2 \sin \frac{x}{2} \cdot \cos \frac{x}{2} \right)$$
$$= \tan^{-1} \left[\tan \frac{\theta}{2} \right]$$
$$\Rightarrow \quad y = \frac{\theta}{2} \Rightarrow y = \frac{\tan^{-1} x}{2} \qquad [\because \theta = \tan^{-1} x]$$
$$\Rightarrow \quad y = \frac{u}{2}$$
$$\frac{dy}{du} = \frac{1}{2}$$
$$\therefore \quad \text{Option (b) is correct.}$$
71. (a)
$$\ln(x + \sin x) = y \qquad (say)$$
$$\frac{dy}{dx} = \frac{1}{(x + \sin x)} (1 + \cos x)$$
$$= \frac{(1 + \cos x)}{(x + \sin x)}$$
$$x + \cos x = z (say)$$
$$\frac{dz}{dx} = (1 - \sin x)$$
$$\text{derivative of } \ln(x + \sin x) \text{ w.r.t} (x + \cos x) \text{ is}$$
$$\frac{dy}{dz} = \frac{(1 + \cos x)}{(x + \sin x)(1 - \sin x)}$$
72. (a)
$$y = \cot^{-1} \left[\frac{\sqrt{-\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\sin \frac{x}{2} \cos \frac{x}{2}}}{\sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\sin \frac{x}{2} \cos \frac{x}{2}}} \right]$$

$$y = \cot^{-1} \left[\frac{\sqrt{\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)^2} + \sqrt{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)^2}}{\sqrt{\left(\cos \frac{x}{2} + \sin \frac{x}{2}\right)^2} - \sqrt{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)^2}} \right]$$

$$y = \cot^{-1} \left[\frac{\cos \frac{x}{2} + \sin \frac{x}{2} + \cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2} - \cos \frac{x}{2} + \sin \frac{x}{2}} \right]$$

$$y = \cot^{-1} \left[\frac{2\cos \frac{x}{2}}{2\sin \frac{x}{2}} \right] = \cot^{-1} \left(\cot \frac{x}{2} \right) = \frac{x}{2}$$

$$\left[\frac{dy}{dx} = \frac{1}{2} \right]$$

$$x^a y^b = (x - y)^{a+b}$$
taking log both the sides.
$$\log \left(x^a y^b\right) = \log \left(x - y\right)^{(a+b)}$$
a logx + b logy = (a + b) log (x - y)
differentiating both sides w.r.t 'x'.
$$\frac{a}{x} + \frac{b}{y} \frac{dy}{dx} = \frac{(a+b)}{(x-y)} \left[1 - \frac{dy}{dx} \right]$$

$$\frac{dy}{dx} \left[\frac{bx + ay}{y(x-y)} \right] = \frac{a + b}{x-y} - \frac{a}{x}$$

$$\frac{dy}{dx} \left[\frac{bx + ay}{y(x-y)} \right] = \frac{bx + ay}{x}$$

$$\frac{dy}{dx} \left[\frac{bx + ay}{y} \right] = \frac{bx + ay}{x}$$

$$\frac{dy}{dx} = \frac{y}{x}$$

$$\frac{dy}{dx} = \frac{y}{x}$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{t^2 + 1}}$$

$$\Rightarrow \frac{ds}{dt} = \frac{1}{\sqrt{t^2 + 1}}^{3}$$

73. (d)

74. (c)

$$\Rightarrow \left[\frac{d^{2}s}{dt^{2}} = \frac{1}{s^{3}} \right]$$
75. (c) $\int \frac{dx}{1 + e^{-x}}$

$$\Rightarrow \int \frac{e^{x}}{e^{x} + 1} dx$$
Let $e^{x} + 1 = t$
 $e^{x} dx = dt$
 $= \int \frac{dt}{t}$

$$\Rightarrow \log t + c \Rightarrow \log(e^{x} + 1) + c$$
76. (d) $f(x) = x^{3} + x^{2}f'(1) + xf''(2) + f'''(3) \dots (1)$
 $f'(x) = 3x^{2} + 2xf'(1) + f''(2) \dots (2)$
 $f'''(x) = 6 \dots (4)$
 $f''(1) = 3 + 2f'(1) + f''(2) \dots (5)$
 $f''(2) = 12 + 2f'(1)$
 $-3f'(1) = 15$
 $f'(1) = -5$
Using this value in eqn (6) we get
 $f'(2) = 12 + 2x(-5)$
 $f'''(2) = 2$
Using $x = 3$ in eqn (4),
 $f'''(3) = 6$
Putting value of $f'(1) + f''(2)$ and $f'''(3)$ in eqn (1)
We get
 $f(x) = x^{3} + x^{2}(-5) + x(2) + 6$
 $= x^{3} - 5x^{2} + 2x + 6$
Putting $x = 1$
 $f(1) = -5$
T8. (c) $f'''(1) = -5$
T8. (c) $f'''(1) = -5$
T8. (c) $f'''(1) = 6$
79. (c) 1. $f(1) - f(0) = 4 - 6$
 $= -2$
 $f(2) = 8 - 20 + 4 + 6 = -2$
Hence $f(2) = f(1) - f(0)$
 \therefore Statement (2) is correct.
2. $f''(2) - 2f'(1) = 12$
 \therefore Statement (2) is correct.
80. (d) $y = \log_{10}x + \log_{10}1 + \log_{10}x + \log_{10}10$
 $y = \log_{10}x + \log_{10}1 + \log_{10}x + \log_{10}10$
 $y = \log_{10}x + \log_{10}1 - 1$
Differentiating equation w.r.t. x
 $\frac{dy}{dx} = \frac{1}{x \log_{e} 10} - \frac{1}{(\log_{10} x)^{2}} \cdot \frac{1}{(x \log_{10}0)}$

м-326

$$= \frac{1}{x \log_{e} 10} \left[1 - \frac{1}{(\log_{10} x)^{2}} \right]$$

$$\left(\frac{dy}{dx} \right)_{x=10} = \frac{1}{10 \log_{e} 10} [1-1] = 0$$

$$\left[\text{Note: } \log_{x} 10 = \frac{\log_{10} 10}{\log_{10} x} = \frac{1}{\log_{10} x} \right]$$

$$\left(\frac{d}{dx} \left[\frac{1}{\log_{10} x} \right] = -(\log_{10} x)^{-2} \times \frac{1}{x \log_{e} 10} \right]$$

$$= -\frac{1}{(\log_{10} x)^{2} \times \log_{e} 10} \right]$$
Sol. (Qs. 81 to 83)
Given $f(x) = (|x| - |x+1|)^{2}$

$$f(x) = \begin{cases} 1 & x \le 0 \\ (2x-1)^{2} & 0 < x < 1 \\ 1 & x \ge 1 \end{cases}$$
81. (a) When $x > 1$

$$f(x) = 1$$

$$f(x) = 1$$

$$f(x) = 0$$
82. (d) When $0 < x < 1$

$$f(x) = (2x-1)^{2}$$

$$f'(x) = 2(2x-1) \cdot 2 = 4(2x-1)$$

$$f'(x) = 8x - 4$$
83. (a) For $x = -2$

$$f(x) = 1 \text{ so } f(-2) = 1$$
For $x = 5$

$$f(x) = 1 \Rightarrow f(5) = 1$$
Hence $f(-2) = f(5)$
Now, for $x = -1$

$$f''(x) = 0$$

$$f''(x) = 8 \Rightarrow f''(0.5) = 8$$
For $x = 3$

$$f''(x) = 0 \Rightarrow f''(3) = 0$$

$$\Rightarrow f''(-2) + f''(0.5) + f''(3) = 8 \neq 4$$
Only statement 1 is correct.
84. (a) $f(x + y) = f(x) \cdot f(y)$
Let $f(x) = a^{x}$

$$f(x + y) = a^{x + y} = a^{x} \cdot a^{y} = f(x) \cdot f(y).$$

$$f(5) = a^{5}$$

$$f(0)$$

$$f'(0) = a^{0} \cdot \log a$$

$$= \log a$$

Derivatives 85. (c) $y = \log_{10} (5x^2 + 3)$ $\frac{dy}{dx} = \frac{d}{dx} \left(\log_{10} \left(5x^2 + 3 \right) \right) = \frac{1}{5x^2 + 3} \times \log_{10} e \times 10x$ $=\frac{10x\log_{10}e}{5x^2+3}$ (a) $y = (\cos x)^{(\cos x)^{\cos x^{\cdots}}}$ 86. \Rightarrow y = (cos x)^y $\Rightarrow \log y = y \cdot \log \cos x$ Differentiating on both sides, we get $\frac{1}{v} \cdot \frac{dy}{dx} = y(-\tan x) + \log \cos x \cdot \frac{dy}{dx}$ $\Rightarrow \frac{dy}{dx} \left(\frac{1}{y} - \log \cos x \right) = -y \tan x$ $\Rightarrow \frac{dy}{dx} = \frac{-y \tan x}{\frac{1}{y} - \log \cos x} = \frac{-y^2 \tan x}{1 - y \log \cos x}$ 87. (a) $y = \sec^{-1}\left(\frac{x+1}{x-1}\right) + \sin^{-1}\left(\frac{x-1}{x+1}\right)$ $=\cos^{-1}\left(\frac{x-1}{x+1}\right)+\sin^{-1}\left(\frac{x+1}{x-1}\right)$ $=\frac{\pi}{2}\left(\because \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}\right) \quad \therefore \frac{dy}{dx} = 0$ 88. (a) $y = \cos^{-1}\left(\frac{2x}{1+x^2}\right)$ Put $x = \tan \theta$. $\Rightarrow \theta = \tan^{-1}x$ $y = \cos^{-1}\left(\frac{2\tan\theta}{\left(1 + \tan^2\theta\right)}\right) = \cos^{-1}\left(\sin 2\theta\right)$ $=\cos^{-1}\left(\cos\left(\frac{\pi}{2}-2\theta\right)\right) = \frac{\pi}{2}-2\theta.$ $\therefore \frac{dy}{dx} = \frac{d}{dx} \left(\frac{\pi}{2} - 2\theta \right)$ $=\frac{d}{dx}\left(\frac{\pi}{2}-2\tan^{-1}x\right)$ $\frac{dy}{dx} = \frac{-2}{1+x^2}$, when |x| < 189. (c) $f(x) = e^{\tan x} + \ln(\sec x) - e^{\ln x}$ $f'(\mathbf{x}) = e^{\tan \mathbf{x}} \cdot \sec^2 \mathbf{x} + \frac{1}{\sec \mathbf{x}} \cdot \sec \mathbf{x} \tan \mathbf{x} - 1$ $\left(\because e^{\ln x} = x \text{ and } \frac{d}{dx}(x) = 1 \right)$ $f'\left(\frac{\pi}{4}\right) = e^{\tan\frac{\pi}{4}} \cdot \sec^2\frac{\pi}{4} + \tan\frac{\pi}{4} - 1$

$$= 2e + 1 - 1$$

$$= 2e.$$
90. (c) $y = e^{x^{2}} . \sin 2x$

$$\frac{dy}{dx} = 2.e^{x^{2}} . \cos 2x + 2xe^{x^{2} . \sin 2x}$$

$$= 2e^{x^{2}} (\cos 2x + x \sin 2x)$$

$$\frac{dy}{dx}\Big|_{x=\pi} = 2e^{\pi^{2}} (\cos 2\pi + \pi . \sin 2\pi)$$

$$= 2e^{\pi^{2}} (1 + 0)$$

$$= 2.e^{\pi^{2}}$$
91. (a) $y = \tan^{-1}\left(\frac{5 - 2 \tan \sqrt{x}}{2 + 5 \tan \sqrt{x}}\right)$

$$= \tan^{-1}\left(\frac{5}{2} - \tan \sqrt{x}}{1 + \left(\frac{5}{2}\right) \tan \sqrt{x}}\right)$$

$$= \tan^{-1}\frac{5}{2} - \tan^{-1} \tan \sqrt{x}$$

$$= \tan^{-1}\frac{5}{2} - \sqrt{x}$$

$$\therefore \frac{dy}{dx} = -\frac{1}{2\sqrt{x}}$$
92. (a) For $\frac{\pi}{4} < x < \frac{\pi}{2}$,
 $\sqrt{1 - \sin 2x} = (\sin^{2} x + \cos^{2} x + 2 \sin x . \cos x)^{1/2}$

$$= (\sin x - \cos x)$$

$$\therefore \text{ Differentiation = } \cos x + \sin x$$

93. (d) $f(x) = \sin (\cos x)$
 $f'(x) = \cos (\cos x) . (-\sin x)$

$$= -\sin x . \cos (\cos x)$$

94. (d) $f(x)y = 4\frac{x-2}{x+2} \Rightarrow \frac{y+1}{y-1} = \frac{x-2+x+2}{x-2-x-2}$

$$\Rightarrow \frac{y+1}{y-1} = \frac{2x}{-4}$$

Application of Derivatives

1. Under what conditions is the tangent to a given curve at a point perpendicular to x-axis?

(a)
$$\frac{dy}{dx} = 0$$
 (b) $\frac{dy}{dx} = 1$

(c)
$$\frac{dx}{dy} = 0$$
 (d) $\frac{d^2y}{dx^2} = 1$ [2006-1]

- 2. If $f(x) = (x - x_0) \phi(x)$ and $\phi(x)$ is continuous at $x = x_0$, then what is $f'(x_0)$ equal to ?
 - (a) $\phi'(x_0)$ (b) $\phi(\mathbf{x}_0)$
 - (c) $x_0\phi(x_0)$ (d) $2\phi(x_0)$ [2006-I]
- 3. The sum of two numbers is 20. What are the numbers if the product of the square of one and the cube of the other is maximum?
 - (a) 6,14 (b) 15,5
 - (c) 12,8 (d) 10,10 [2006-1]
- What is the slope of the normal at the point $(at^2, 2at)$ of the 4. parabola $y^2 = 4ax$?
 - (a) (b) t

(d) $-\frac{1}{t}$ [2006-1] (c) -t

5. Which one of the following statements is not correct?

- (a) The derivative of f(x) at x = a is the slope of the graph of f(x) at the point [a, f(a)]
- (b) f(x) has a positive derivative at x = a means f(x)increases as x increases from 'a'
- (c) The sum of two differentiable functions is differentiable
- (d) If a function is continuous at a point, it is also differentiable at the same point. [2006-II]

6. Which one of the following statements is correct in respect of the curve $4y - x^2 - 8 = 0$?

- (a) The curve is increasing in (-4, 4)
- (b) The curve is increasing in (-4, 0)
- (c) The curve is increasing in (0, 4)
- (d) The curve is decreasing in (-4, 4)[2006-II] What is the minimum value of px + qy (p > 0, q > 0) when 7.
 - $xy = r^2$?

- (a) $2r\sqrt{pq}$ 2pq√r (b)
- (c) $-2r\sqrt{pq}$ (d) 2 rpq

8.

- What is /are the critical points(s) of the function f(x) = $x^{2/3}$ (5-2x) on the interval [-1, 2]?
- (a) 1 only (b) 0,1 (c) $\frac{3}{2}$ only (d) $0, \frac{3}{2}$ [2007-1]
- 9. Match List I with List II and select the correct answer using

	the	code give	in below th	e lists:		
		List I			List II	
	(a)	f(x) = cc	OSX	1.	The graph	cuts y-axis in
					infinite nu	mber of points
	(b)	$f(x) = \ln x$	Х	2.	The graph	cuts x -axis in
					two point	
	(c)	f(x) = x	$^{2}-5x+4$	3.	The graph	cuts y-axis in
					only one p	point
	(d)	$f(x) = e^{x}$	C C	4.	The graph	cuts x-axis in
					only one p	point
				5.	The graph	cuts x-axis in
					infinite nu	mber of points
	Cod	les:				
		(A)	(B)	(C)	(D)	
	(a)	1	4	5	3	
	(b)	1	3	5	4	
	(c)	5	4	2	3	
	(d)	5	3	2	4	[2007-I]
10.	Ifx∙	+y=12, y	what is the i	naximur	n value of x	y?
	(a)	25		(b)	36	
	(c)	49		(d)	64	[2007-I]
11.	Wha	at is the 2	k-coordinat	e of the	point on th	e curve $f(x) =$
	\sqrt{x}	(7x - 6),	where the	tangent is	s parallel to	x-axis?
	(a)	1		(h -)	2	
	(a)	$-\frac{1}{3}$		(0)	7	
		6		(1)	1	Fa a a a
	(c)	7		(d)	$\overline{2}$	[2007-1]

12. If sin x cos y = $\frac{1}{2}$, then what is the value of $\frac{d^2 y}{dx^2}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$? (b) -2 (a) -4 (c) -6 [2007-I] (d) 0

[2006-II]

13.	What is the interval in which the function $f(x) = \sqrt{9-x^2}$	20.
	is increasing? $(f(x)>0)$	
	(a) $0 < x < 3$ (b) $-3 < x < 0$	
	(c) $0 < x < 9$ (d) $-3 < x < 3$ [2007-1]	
14.	A wire 34 cm long is to be bent in the form of a quadrilateral	26.
	of which each angle is 90° . What is the maximum area which	
	can be enclosed inside the quadrilateral?	
	(a) 68 cm^2 (b) 70 cm^2	27
	(c) 71.25 cm^2 (d) 72.25 cm^2 [2007-I]	27.
15.	Which one of the following is correct? The function	
	$f(x) = (x - 1)e^{x} + 1$ is [2007-II]	
	(a) negative for all $x > 0$ (b) positive for all $x > 0$	
	(c) increasing for all x (d) decreasing for all x	
16	The motion of a particle is described as $s = 2 - 3t + 4t^3$. What	
10.	is the acceleration of the particle at the point where its	
	velocity is zero?	
	(a) 0 (b) 4 unit	
	(d) $\frac{1}{2}$ (d) $\frac{1}{2}$ unit [2007-II]	
17	What is the product of two parts of 20 such that the product $\frac{1}{2}$	
17.	of one part and the cube of the other is maximum?	28.
	(a) = 75 (b) 01	
	(a) 75 (b) 91 (c) 94 (d) 96 [2007 II]	
10	(c) 84 $(d) 96$ $[200/-11]$	29
18.	what is the maximum slope of the curve	<i>2)</i> .
	$y = -x^3 + 3x^2 + 2x - 27?$	
	(a) 1 (b) 2	
	(c) 5 (d) -23 [2007-II]	
19.	What is the area of the largest rectangular field which can	
	be enclosed with 200 m of fencing ?	30
	(a) $1600 \mathrm{m}^2$ (b) $2100 \mathrm{m}^2$	
	(c) $2400 \mathrm{m}^2$ (d) $2500 \mathrm{m}^2$ [2008-I]	
20.	What is the smallest value of m for which $f(x) = x^2 + mx + 5$ is	
	increasing in the interval $1 \le x \le 2$?	
	(a) $m=0$ (b) $m=-1$	
	(c) $m = -2$ (d) $m = -3$ [2008-1]	
21	What is the maximum value of x v subject to the condition	31
21.	x + y = 8?	51.
	(a) 8 (b) 16	
	(a) $\frac{1}{2}$ (b) $\frac{1}{10}$ (c) $\frac{1}{2}$ (d) $\frac{2}{2}$ [2008]]	
\mathbf{r}	(c) 24 (d) 52 [2000-1] What is the equation of the survey where along at any point	
<i>LL</i> .	is equal to 2y and which pages through the origin?	
	is equal to $2x$ and which passes through the origin?	32.
	[2008-11]	
	(a) $y(1-x) = x^2$ (b) $y^2(1+x^2) = x^4$	
	(c) $y^2 = (x+1)^2$ (d) $y = x^2$	
23.	What is the maximum value of the function $\log x - x$?	
	[2008-11]	33
	(a) -1 (b) 0	55.
	(c) 1 (d) ∞	
24	A rectangular how with a cover is to have a square base. The	
<i>⊥</i> +.	The contract of the second sec	24

volume is to be 10 cubic cm. The surface area of the box in terms of the side x is given by which one of the following functions? [2008-II]

(a)
$$f(x) = (40/x) + 2x^2$$
 (b) $f(x) = (40/x) + x^2$
(c) $f(x) = (40/x) + x$ (d) $f(x) = (60/x) + 2x$

25 $f(x) = \cos x$ is monotonic decreasing under which one of the following conditions? [2008-II] (a) $0 < x < \frac{\pi}{2}$ only $\frac{\pi}{2} < x < \pi$ only (b) (d) $\tilde{0} < x < 2\pi$ (c) $0 < x < \overline{\pi}$ What is the minimum value of $2x^2 - 3x + 5$? [2008-II] (b) 3/4 (a) 0 (c) 31/4 (d) 31/8 Assertion (A) : The tangent to the curve $y = x^3 - x^2 - x + 2$ at (1, 1) is parallel to the x-axis. **Reason (R)**: The slope of the tangent to the curve at (1, 1)is zero. [2009-I] (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true but R is not the correct explanation of A (c) A is true but R is false (d) A is false but R is true The function $f(x) = x^2 - 2x$ increases for all [2009-1] (a) $x \ge -1$ only (b) $x \le -1$ only (c) x > 1 only (d) x < 1 only Let a and b be two distinct roots of a polynomial equation f(x) = 0. Then there exists at least one root lying between a and b of the polynomial equation. [2009-I] (a) f(x) = 0(b) f'(x) = 0(c) f''(x) = 0(d) None of these The profit function, in rupees, of a firm selling x items $x \ge 0$ per week is given by P(x) = -3500 + (400 - x)x. How many items should the firm sell so that the firm has maximum [2009-I] profit? (b) 300 (a) 400 (c) 200 (d) 100 A stone thrown vertically upward satisfies the equation $s = 64t - 16t^2$, where s is in meter and t is in second. What is the time required to reach the maximum height? [2009-I] (a) 1s (b) 2s (c) 3s (d) 4s If $f(x) = 3x^2 + 6x - 9$, then [2009-1] (a) f(x) is increasing in (-1, 3)(b) f(x) is decreasing in $(3, \infty)$ (c) f(x) is increasing in $(-\infty, -1)$ (d) f(x) is decreasing in $(-\infty, -1)$ If $x \cos \theta + y \sin \theta = 2$ is perpendicular to the line x - y = 3, then what is one of the value of θ ? [2009-I] (a) π/6 (b) π/4 (c) $\pi/2$ (d) $\pi/3$ The function $y = \tan^{-1} x - x$ [2009-II] 34 (a) is always decreasing (b) is always increasing first increases and then decreases (c)

(d) first decreases and then increases

- 35. The velocity v of a particle at any instant t moving in a straight line is given by v=s+1 where s metre is the distance travelled in t second. What is the time taken by the particle to cover a distance of 9m? [2009-II] (a) 1 s (b) $(\log 10) s$
 - (c) $2(\log 10)s$ (d) 10s
- 36. The velocity of telegraphic communication is given by $v = x^2 \log (1/x)$, where x is the displacement. For maximum velocity, x equals to? [2009-II] (a) $e^{1/2}$ (b) $e^{-1/2}$
 - (a) e (b) e(c) $(2e)^{-1}$ (d) $2e^{-1/2}$
- 37. What is the maximum point on the curve $x = e^x y$?(a) (1, e)(b) $(1, e^{-1})$ (c) (e, 1)(d) $(e^{-1}, 1)$
- 38. A balloon is pumped at the rate of 4cm³ per second. What is the rate at which its surface area increases and radius is 4 cm? [2010-I]
 (a) 1 cm²/s? (b) 2 cm²/s
 - (a) $1 \text{ cm}^{-1}\text{s}^{-1}$ (b) $2 \text{ cm}^{-1}\text{s}$ (c) $3 \text{ cm}^{2}\text{s}$ (d) $4 \text{ cm}^{2}\text{s}$
- 39. If $f(x) = kx^3 9x^2 + 9x + 3$ is monotonically increasing in every interval, then which one of the following is correct? (a) k < 3 (b) $k \le 3$ [2010-1] (c) k > 3 (d) $k \ge 3$
- 40. Given two squares of sides x and y such that $y = x + x^2$. What is the rate of change of area of the second square with respect to the area of the first square? [2010-I] (a) $1+3x+2x^2$ (b) $1+2x+3x^2$
 - (a) $1+3x+2x^2$ (b) $1+2x+3x^2$ (c) $1-2x+3x^2$ (d) $1-2x-3x^2$
- 41. Statement I : $y = -\tan^{-1}(x^{-1}) + 1$ is an increasing function of x.

Statement II : $\frac{dy}{dx}$ is positive for all values of *x*. Which one of the following is correct in respect of the above statements? [2010-I]

- (a) Both statements I and II are independently correct and statement II is the correct explanation of statement I
- (b) Both statements I and II are independently correct but statement II is not the correct explanation of statement I
- (c) Statement I is correct but statement II is false.
- (d) Statement I is false but statement II is correct.
- 42. What is the least value of $f(x) = 2x^3 3x^2 12x + 1$ on [-2, 2.5]? [2010-1]

[2,2.2].	
(a) -3	(b) 8
(c) -19	(d) -16.5

- 43. What is the interval over which the function $f(x) = 6x x^2, x > 0$ is increasing? [2010-II] (a) (0,3) (b) (3,6)
 - (c) (6,9) (d) None of these
- 44. If *f* and *g* are two increasing functions such that *fog* is defined, then which one of the following is correct?

[2010-II]

- (a) fog is always an increasing function(b) fog is always a decreasing function
- (c) fog is neither an increasing nor a decreasing function
- (d) None of the above
- 45. For a point of inflection of y = f(x), which one of the following is correct? [2010-II]

(a) $\frac{dy}{dx}$ must be zero

(b)
$$\frac{d^2 y}{dx^2}$$
 must be zero

(c)
$$\frac{dy}{dx}$$
 must be non-zero

(d)
$$\frac{d^2 y}{dx^2}$$
 must be non-zero

46. What is the value of p for which the function

$$f(x) = p \sin x + \frac{\sin 3x}{3}$$

has an extremum at $x = \frac{\pi}{3}$? [2010-II]
(a) 0 (b) 1
(c) -1 (d) 2
If at even instant 4 for a solution when the radius of

47. If at any instant *t*, for a sphere, *r* denotes the radius, *S* denotes the surface area and *V* denotes the volume, then

what is
$$\frac{dV}{dt}$$
 equal to? [2010-II]

(a)
$$\frac{1}{2}S\frac{dr}{dt}$$
 (b) $\frac{1}{2}r\frac{dS}{dt}$

(c)
$$r \frac{dS}{dt}$$
 (d) $\frac{1}{2} r^2 \frac{dS}{dt}$

48. The function
$$f(x) = k \sin x + \frac{1}{3} \sin 3x$$
 has maximum value at

$$x = \frac{\pi}{3}$$
, what is the value of k? [2011-I]

(a) 3 (b) 3
(c) 2 (d)
$$\frac{1}{2}$$

(a)

49. Consider the following statements in respect of the function

$$f(x) = x^3 - 1, \ x \in [-1, 1]$$
[2011-I]

I.
$$f(x)$$
 is increasing in $[-1, 1]$

II. f(x) has no root in (-1, 1).

Which of the statements given above is/are correct? (a) Only I (b) Only II

(c) Both I and II (d) Neither I nor II

50. The largest value of $2x^3 - 3x^2 - 12x + 5$ for $-2 \le x \le 2$ occurs when [2011-I]

(a)
$$x=-2$$

(b) $x=-1$
(c) $x=2$
(d) $x=0$

(c) x=2 (d) x=051. The function y=f(x) = mx + c has [2011-II]

(a) maximum point but no minimum point

- (b) minimum point but no maximum point
- (c) both maximum and minimum points
- (d) neither maximum point nor minimum point

Application of Derivatives

52.	At an extreme point of a function $f(x)$, the tangent to the curve is [2011-II]	62. The radius of 3 cm/s. What
	(a) parallel to the x-axis	is 10 cm ?
	(b) perpendicular to the x-axis	(a) $6\pi \mathrm{cm}^2$
	(c) inclined at an angle 45° to the x-axis	(c) $30\pi \mathrm{cm}^{2}$
	(d) inclined at an angle 60° to the x-axis	63. The function
53.	The point in the interval $(0, 2\pi)$ where $f(x) = e^x \sin x$ has	(a) $0 < x < 2$
	maximum slope is [2011-II]	(c) $x > 2$ or
	π π 3π	64. What is the m
	(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) π (d) $\frac{5\pi}{2}$	(a) -1
51	$4 \qquad 2 \qquad 2$	(c) 1
54.	If the rate of change in volume of spherical soap bubble is	
	uniform, then the rate of change of surface area varies as	65. The function
	(a) square root of radius [2011-11]	value at
	(b) square root of radius (c) inversely propertional to radius	(a) $x=0$
	(d) cube of the radius	(c) $x=2$
55	(d) cube of the radius If $f(x) = x \ln x$, then $f(x)$ attains minimum value at which one	66. The curve y =
55.	$(x) = x \ln x$, then $f(x)$ attains minimum value at which one of the following points? [2011 II]	1
	(a) $r = e^{-2}$ (b) $r = e^{-2}$	(a) $-\frac{1}{-1}$
	(a) $x - e$ (b) $x - e$ (c) $x - e^{-1}$ (d) $x - 2e^{-1}$	e e
56	(c) $x - e$ (d) $x - 2e$ What are the points on the survey $x^2 + x^2 - 2x - 2 = 0$	(c) – e
30.	what are the points on the curve $x^2 + y^2 - 2x - 3 = 0$	67. The maximu
	where the tangents are parallel to x-axis? [2011-11]	exists at
	(a) $(1,2)$ and $(1,-2)$ (b) $(0,\sqrt{3})$ and $(0,-\sqrt{3})$	(a) $x = -2$
	(1) (2) (3)	(c) $x=2$
57	(c) $(3,0)$ and $(-3,0)$ (d) $(2,1)$ and $(2,-1)$	68. The minimur
57.	which one of the following statement is correct? $[2012-1]$	
	(a) The derivative of a function $I(x)$ at a point will exist if there is one tencent to the sum $x = f(x)$ at that rough	(a) $r = 0$
	there is one tangent to the curve $y = I(x)$ at that point	$\begin{array}{c} (a) & x & 0 \\ (c) & x = 4 \end{array}$
	(b) The derivative of a function $f(x)$ at a point will exist if	(0) $x = 460 What is the s$
	(b) The derivative of a function $f(x)$ at a point will exist if there is one tongent to the survey $x = f(x)$ at that point	of $r = 0.2$
	there is one tangent to the curve $y = I(x)$ at that point	a(x) = 0
	(a) The derivative of a function f(x) at a point will exist if	(a) 0 (c) 2
	(c) The derivative of a function $I(x)$ at a point will exist if there is one and only one tongont to the survey $x = f(x)$	DIRECTIONS (C
	there is one and only one tangent to the curve $y = I[X]$	
	(d) None of the above	Consider the curv
50	(d) None of the above	70. What is the s
38.	From many tangents are parametric x-axis for the curve $y = x^2 - 4x + 22$	(a) 0
	y - x - 4x + 5? [2012-1]	(c) 2
	(a) 1 (b) 2	/I. Where does
	(0) = 2 (c) = 3	x-axis?
	(d) No tangont is norallal to y avis	(a) $(1,0)$
	(u) No tangent is parallel to x-axis	(c) $(-1/2, 0)$
59.	What is the rate of change of $\sqrt{x^2 + 16}$ with respect to x^2 at	DIRECTIONS ((
07.	x = 3? [2012-1]	
	(a) $1/5$ (b) $1/10$	Consider the func
	(c) $1/20$ (d) None of the above	
60	What is the slope of the tangent to the curve	72. What is the n
00.	$x = t^2 + 3t - 8$ $y = 2t^2 - 2t - 5$ at $t = 2?$ [2012-I]	(a) 1/2
	(a) $7/6$ (b) $6/7$	(c) 2
	(c) 1 (d) $5/6$	73. What is the n
61	Which one of the following statement is correct?	(a) 1/2
01.	(a) e^{x} is an increasing function [2012 I]	(c) 2
	(a) e^{x} is a decreasing function [2012-1] (b) e^{x} is a decreasing function	DIRECTIONS (C
	(c) e^{X} is neither increasing nor decreasing function	A rectangular box
	(d) e^{x} is a constant function	9 inch width cuttin
		four corners and t

2.	The 3 cm is 10	radius of a circle is un /s. What is the rate of i cm ?	iformly ncrease	increasing at in area, when	the rate of the radius
	(a)	$6\pi \mathrm{cm}^2/\mathrm{s}$	(b)	10π cm ² /s	[=01=11]
	(c)	$30\pi\mathrm{cm}^2/\mathrm{s}$	(d)	60π cm ² /s	
3.	The	function $f(x) = x^3 - 3x^2$	2+6 is an	n increasing fu	inction for:
	(a)	0 < x < 2	(b)	x < 2	[2012-II]
	(c)	x > 2 or $x < 0$	(d)	all x	
4.	Wha	t is the minimum value	$\operatorname{of} \mathbf{x} $?		[2012-II]
	(a)	-1	(b)	0	
	(c)	1	(d)	2	
5.	The	function $f(x) = x^2 - 4$	lx, x∈	[0, 4] attains	minimum
	valu	e at			[2013-1]
	(a)	x=0	(b)	x = 1	LJ
	(c)	x=2	(d)	x=4	
6.	The	curve y = xe ^x has minin	num val	lue equal to	
		1		1	
	(a)	$-\frac{1}{\rho}$	(b)	- -	[2013-I]
	(a)	C	(d)	0	
7	The	– c maximum value of the	function	$f(r) = r^3 + 2$	$r^2 - 4r + 6$
/.	exist	inaximum varue of the	Tunetio	$n_{f(x)} = x + 2$	[2013-II]
	(a)	x = -2	(b)	x = 1	
	(c)	x = 2	(d)	x = -1	
8.	The	minimum value of the	function	f(x) = x - 4	exists at
				J () .	[2013-11]
	(a)	x = 0	(b)	x = 2	[2015 11]
	(c)	x = 4	(d)	x = -4	
9.	Wha	t is the slope of the tan	gent to t	the curve $v = s$	$\sin^1(\sin^2 x)$
	at x =	= 0 ?	-	-	[2014-I]
	(a)	0	(b)	1	
	(c)	2	(d)	None of thes	e
DIR	RECT	IONS (Qs. 70-71): For	the next	two (02) items	that follow
Con	sider	the curve $y = e^{2x}$.			[2014-I]
0.	Wha	t is the slope of the tar	igent to	the curve at (0, 1)?
	(a)	0	(b)	1	
4	(c)	2	(d)	4	1
Ι.	whe	tre does the tangent t	o the ci	arve at $(0, 1)$) meet the
	x-axi	(1 (1))	(b)	(2,0)	
	(a)	(1,0) (-1/2,0)	(d)	(2,0) (1/2,0)	
)IR		(-1/2, 0)	the next	(1/2,0) two (02) items	that follow
	LUI		2	1110 (02) tients	indijonom
Con	sider	the function $f(x) = \frac{x}{r}$	$\frac{x^2 - x + 1}{x^2 + x + 1}$		[2014-I]
2	Wha	t is the maximum valu	e of the t	function ?	
	(a)	1/2	(b)	1/3	
	(c)	2	(d)	3	
3.	Wha	t is the minimum value	e of the f	function?	
	(a)	1/2	(b)	1/3	
	(c)	2	(d)	3	

DIRECTIONS (Qs. 74-75): For the next two (02) items that follow

A rectangular box is to be made from a sheet of 24 inch length and 9 inch width cutting out identical squares of side length x from the four corners and turning up the sides. [2014-II]

(d) $-\frac{x}{x}$

74.	Wha	at is the value of x fo	r width the	vulume is maximum?
	(a)	1 inch	(b)	1.5 inch
	(c)	2 inch	(d)	2.5 inch
75.	Wha	at is the maximum v	olume of th	e box ?
	(a)	200 cubic inch	(b)	400 cubic inch
	(c)	100 cubic inch	(d)	None of these
DIR	RECT	TIONS (Qs. 76-78)): For the	next two (02) items that
folle	<i>w</i>			

A cylinder is inscribed in a sphere of radius r. [2014-)14-II	[201	phere of radius r.	l in a s	inscribed	is	vlinder	Ac

76. What is the height of the cylinder of maximum volume?

(a)
$$\frac{2r}{\sqrt{3}}$$
 (b) $\frac{r}{\sqrt{3}}$

(c) 2r (d) $\sqrt{3}r$

77. What is the radius of the cylinder of maximum volume?

(a)
$$\frac{2r}{\sqrt{3}}$$
 (b) $\frac{\sqrt{2}}{\sqrt{3}}$

(c)
$$r$$
 (d) $\sqrt{3}$

- 78. Consider the following statements: [2015-I]
 - 1. $y = \frac{e^x + e^{-x}}{2}$ is an increasing function on $[0, \infty)$.
 - 2. $y = \frac{e^x e^{-x}}{2}$ is an increasing function on $(-\infty, \infty)$.
 - Which of the above statements is/are correct? (a) 1 only (b) 2 only
 - (c) Both 1 and 2 (d) Neither 1 nor 2

DIRECTIONS (Qs. 79-80): For the next two (02) items that follow

Consider the function $f(x) = \frac{x^2 - 1}{x^2 + 1}$, where $x \in \mathbb{R}$ [2015-I]

- 79. At what value of x does f(x) attain minimum value? (a) -1 (b) 0 (c) 1 (d) 2 80. What is the minimum value of f(x)?
 - (b) $\frac{1}{2}$ (c) -1 (a) 0 (d) 2

$$f(x) = 0.75x^4 - x^3 - 9x^2 + 7$$

81. What is the maximum value of the function? (d) 9 (a) 1 (b) 3 (c) 7 82. Consider the following statements: [2015-1] The function attains local minima at x = -2 and x = 3. 1. The function increases in the interval (-2, 0)Which of the above statements is/are correct? (a) 1 only (b) 2 only(c) Both 1 and 2 (d) Neither 1 nor 2

DIRECTIONS (Qs. 83-85): For the next three (03) items that follow [2015-1]

Consider the parametric equation

$$x = \frac{a(1-t^{2})}{1+t^{2}}, y = \frac{2at}{1+t^{2}}$$

(a)
$$\frac{y}{x}$$
 (b) $-\frac{y}{x}$ (c) $\frac{x}{y}$
What is $\frac{d^2y}{dx^2}$ equal to?
 a^2 a^2 a^2

What does the equation represent? (a) It represents a circle of diameter a

None of the above

84. What is $\frac{dy}{dx}$ equal to?

It represents a circle of radius a It represents a parabola

83

85.

(b)

(c) (d)

(a)
$$\frac{a^2}{y^2}$$
 (b) $\frac{a^2}{x^2}$ (c) $-\frac{a^2}{x^2}$ (d) $-\frac{a^2}{y^3}$

- 86. The function $f(x) = \frac{x^2}{e^x}$ monotonically increasing if [2015-II]
 - (a) x < 0 only (b) x > 2 only
- (c) 0 < x < 2(d) $x \in (-\infty, 0) \cup (2, \infty)$ 87. Consider the following statements : [2015-II]
 - 1. $f(x) = \ln x$ is an increasing function on $(0, \infty)$. 2
 - $f(x) = e^x x (\ln x)$ is an increasing function on $(1, \infty)$. Which of the above statements is/are correct?

 - (a) 1 only (b) 2 only
 - (c) Both 1 and 2(d)Neither 1 nor 2

$$f(x) = \left(\frac{1}{x}\right)^{2x^2}$$
, where $x > 0$

88. At what value of x does the function attain maximum value? [2015-II]

(a) e (b)
$$\sqrt{e}$$
 (c) $\frac{1}{\sqrt{e}}$ (d) $\frac{1}{e}$

The maximum value of the function is 89. [2015-II]

(b)
$$\frac{2}{e^{e}}$$

90-91): For the next two (02) items that follow

Consider $f'(x) = \frac{x^2}{2} - kx$ 1 such that f(0) = 0 and f(3) = 15

(c) $\frac{1}{e^e}$ (d)

90. The value of k is

(a) e

(a) $\frac{5}{3}$ (b) $\frac{3}{5}$ (c) $-\frac{5}{3}$ (d) $-\frac{3}{5}$ 91. $f''\left(-\frac{2}{3}\right)$ is equal to (a) -1 (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) 1

Application of Derivatives

DIF	ECTIONS (Qs. 92-93): For the next two (02) items that follow	102. What is the maximum value of the function							
Cor	sider the function [2015-II]	$f(\mathbf{x}) = 4\sin^2 \mathbf{x} + 1? \qquad [2017-I]$							
f(x)	$=-2x^3-9x^2-12x+1$	(a) 5 (b) 3 (c) 2 (d) 1							
92.	The function $f(x)$ is an increasing function in the interval	103 Let $f(x) = x + \frac{1}{2}$ when $x \in (0, 1)$. Then which one of the							
	(a) $(-2, -1)$ (b) $(-\infty, -2)$ (c) $(-1, 2)$ (d) $(-1, \infty)$	105. Let $f(x) = x + \frac{1}{x}$, when $x \in (0, 1)$. Then when one of the X							
93	(c) $(-1, 2)$ (d) $(-1, \infty)$ The function $f(x)$ is a decreasing function in the interval	following is correct? [2017-I]							
<i>))</i> .	(a) $(-2, -1)$ (b) $(-\infty, -2)$ only	(a) $f(x)$ fluctuates in the interval							
	(c) $(-1, \infty)$ only (d) $(-\infty, -2) \cup (-1, \infty)$	(b) $f(x)$ increases in the interval							
DIF	RECTIONS (Qs. 94-96): For the next three (03) items that follow	(c) $f(x)$ decreases in the interval (d) None of the above							
Cor	sider the function $f(\theta) = 4(\sin^2 \theta + \cos^4 \theta)$ [2016-I]	4. Consider the following statements : [2017-II]							
94.	What is the maximum value of the function $f(\theta)$?	dy at a paint on the sume size slare of the ten part							
	(a) 1 (b) 2 (c) 2 (d) 4	1. $\frac{1}{dx}$ at a point on the curve given slope of the tangent							
95.	What is the minimum value of the function $f(\theta)$?	at that point.							
96.	(a) 0 (b) 1 (c) 2 (d) 3 Consider the following statements:	2. If a(t) denotes acceleration of a particle, then							
	1. $f(\theta) = 2$ has no solution.	$\int a(t)dt + c$ gives velocity of the particle.							
	$2 = f(\theta) = \frac{7}{100}$ has a solution	3. If s(t) gives displacement of a particle at time t, then							
	2. $\Gamma(\theta) = \frac{1}{2}$ has a solution.	$\frac{ds}{ds}$ gives its acceleration at that instant.							
	Which of the above statements is/are correct?	dt							
	(a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2	Which of the above statements is/are correct?							
п	$\mathbf{PECTIONS} (\mathbf{Os} \ 97 \ 98) \cdot \mathbf{For} the next two (02) items that follow$	(a) $1 \text{ and } 2 \text{ only}$ (b) 2 only (c) 1 only (d) $1 2 \text{ and } 3$							
		105. Which one of the following is correct in respect of the							
Coi	isider the equation	function $f(x) = x(x-1)(x+1)?$ [2017-II]							
k s1	$nx + \cos 2x = 2k - 7 \qquad [2016-1]$	(a) The local maximum value is larger than local minimum value							
97.	If the equation possesses solution, then what is the minimum value of k?	(b) The local maximum value is smaller than local minimum							
	(a) 1 (b) 2 (c) 4 (d) 6	value							
98.	If the equation possesses solution, then what is the maximum	(c) The function has no local maximum							
	value of k?	(d) The function has no local minimum							
	(a) 1 (b) 2 (c) 4 (d) 6	106 The maximum value of $\frac{\ln x}{m}$ is [2017-11]							
99.	Which one of the following statements is correct in respect								
	of the function $f(x) = x^3 \sin x$? [2016-II]	(a) e (b) $\frac{1}{-}$							
	(a) It has local maximum at $x = 0$.	e e							
	(b) It has local minimum at $x = 0$.	(c) $\frac{2}{2}$ (d) 1							
	(c) It has neither maximum nor minimum at $x = 0$.								
	(d) It has maximum value 1.	107. Match List-1 with List-11 and select the correct answer using the code given below the lists : [2017-11]							
100	π	List-I List-II							
100.	The maximum value of $\sin \left(\frac{x+\frac{1}{6}}{6}\right) + \cos \left(\frac{x+\frac{1}{6}}{6}\right)$ in the	(Function) (Maximum value)							
	(π)	A $\sin x + \cos x$ 1 $\sqrt{10}$							
	interval $\left(0, \frac{\pi}{2}\right)$ is attained at [2017-I]	$\mathbf{P} = 2 \operatorname{sin} \mathbf{r} + 4 \operatorname{son} \mathbf{r} = 2 \sqrt{2}$							
		B. $3\sin x + 4\cos x$ 2. $\sqrt{2}$							
	(a) $\frac{\pi}{12}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$	C. $2\sin x + \cos x$ 3. 5 D $\sin x + 3\cos x$ 4 $\sqrt{5}$							
101	What is the length of the longest interval in which the	D. $\sin x + 3\cos x + \sqrt{3}$							
101.	function $f(x) = 3 \sin x - 4 \sin^3 x$ is increasing?								
	[2017-1]								
	π π 3π	(a) $2 3 1 4$ (b) $2 3 4 1$							
	(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{2}$ (c) $\frac{3\pi}{2}$ (d) π	(c) $3 2 1 4$							
	<u> </u>	(d) $3 \ 2 \ 4 \ 1$							

108. A cylindrical jar without a lid has to be constructed using a given surface area of a metal sheet. If the capacity of the jar is to be maximum, then the diameter of the jar must be k times the height of the jar. The value of k is [2017-II]
(a) 1
(b) 2

(d) 4

 $\frac{\pi}{15}$

[2018-I]

- (c) 3
- 109. The maximum value of

$$\sin\left(x+\frac{\pi}{5}\right)+\cos\left(x+\frac{\pi}{5}\right)$$
, where $x \in \left(0,\frac{\pi}{2}\right)$, is attained at

- (a) $\frac{\pi}{20}$ (b)
- (c) $\frac{\pi}{10}$ (d)

110. What is the maximum value of $16 \sin \theta - 12 \sin^2 \theta$? [2018-I]

(a)
$$\frac{3}{4}$$
 (b) $\frac{4}{3}$
(c) $\frac{16}{3}$ (d) 4

- 111. Which one of the following is correct in respect of the function [2018-II]
 - f(x) = x sin x + cos x + $\frac{1}{2}$ cos² x? (a) It is increasing in the interval $\left(0, \frac{\pi}{2}\right)$ (b) It remain constant in the interval $\left(0, \frac{\pi}{2}\right)$
 - (c) It is decreasing in the interval $\left(0, \frac{\pi}{2}\right)$
 - (d) It is decreasing in the interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

- 112. A flower in the form of a sector has been fenced by a wire of 40 m length. If the flower-bed has the greatest possible area, then what is the radius of the sector? [2018-II]
 (a) 25m
 (b) 20m
 (c) 10m
 (d) 5m
- 113. What is the minimum value of $[x(x-1)+1]^{\overline{3}}$, where 0 < x < 1? [2018-II]

(a)
$$\left(\frac{3}{4}\right)^{\frac{1}{3}}$$
 (b) 1 (c) $\frac{1}{3}$ (d) $\left(\frac{3}{8}\right)^{\frac{1}{3}}$

114. If $y = |\sin x|^{|x|}$, then what is the value of $\frac{dy}{dx}$ at $x = \frac{\pi}{6}$? [2018-11]

(a)
$$\frac{2^{-\frac{\pi}{6}} \left(6 \, \ell n 2 - \sqrt{3} \pi\right)}{6}$$

(b)
$$\frac{2^{\frac{\pi}{6}} \left(6 \, \ell n 2 + \sqrt{3} \pi\right)}{6}$$

(c)
$$\frac{2^{-\frac{\pi}{6}} \left(6 \, \ell n 2 + \sqrt{3} \pi\right)}{6}$$

(d)
$$\frac{2^{\frac{\pi}{6}} \left(6 \, \ell n 2 - \sqrt{3} \pi\right)}{6}$$

- 115. A given quantity of metal is to be cast into a half cylinder (i,e, with a rectangular base and semicircular ends). If the total surface area is to be minimum, then the ratio of the height of the half cylinder to the diameter of the semicircular ends is [2019-1]
 - (a) $\pi: (\pi + 2)$ (b) $(\pi + 2): \pi$ (c) 1:1 (d) None of the above

ANSWER KEY																			
1	(c)	13	(b)	25	(c)	37	(b)	49	(a)	61	(a)	73	(b)	85	(d)	97	(b)	109	(a)
2	(b)	14	(d)	26	(d)	38	(b)	50	(b)	62	(d)	74	(c)	86	(c)	98	(d)	110	(c)
3	(c)	15	(c)	27	(a)	39	(c)	51	(d)	63	(c)	75	(a)	87	(c)	99	(b)	111	(a)
4	(c)	16	(d)	28	(c)	40	(a)	52	(a)	64	(b)	76	(a)	88	(c)	100	(a)	112	(c)
5	(d)	17	(a)	29	(b)	41	(a)	53	(a)	65	(c)	77	(b)	89	(c)	101	(a)	113	(a)
6	(c)	18	(c)	30	(c)	42	(c)	54	(c)	66	(a)	78	(c)	90	(c)	102	(a)	114	(a)
7	(a)	19	(d)	31	(b)	43	(a)	55	(c)	67	(a)	79	(b)	91	(d)	103	(c)	115	(a)
8	(a)	20	(c)	32	(d)	44	(a)	56	(a)	68	(c)	80	(c)	92	(a)	104	(a)		
9	(c)	21	(b)	33	(b)	45	(b)	57	(c)	69	(a)	81	(c)	93	(d)	105	(a)		
10	(b)	22	(d)	34	(a)	46	(d)	58	(a)	70	(c)	82	(c)	94	(d)	106	(b)		
11	(b)	23	(a)	35	(b)	47	(b)	59	(b)	71	(c)	83	(b)	95	(d)	107	(b)		
12	(a)	24	(a)	36	(b)	48	(c)	60	(b)	72	(d)	84	(d)	96	(c)	108	(b)		
HINTS & SOLUTIONS

6.

7.

1. (c) Tangent to a given curve at a point is perpendicular to x-axis gives $\frac{dy}{dx} = \tan \frac{\pi}{2}$ $\Rightarrow \frac{dx}{dy} = \cot \frac{\pi}{2} = 0$ (b) Given that $f(x) = (x - x_0)\phi(x)$ 2. Differentiating w. r. t. x $f'(x) = (x - x_0) \phi'(x) + \phi(x)(1)$ Putting $x = x_0$ (c) Let the numbers are x and y. So, x + y = 20; Let $P = x^2 y^3 = x^2 (20 - x)^3$ 3. (As given) Differentiating w.r.t.x $\frac{dP}{dx} = x^2 . 3(20 - x)^2 (-1) + (20 - x)^3 . 2x$ $= (20-x)^2 [-3x^2 + 40x - 2x^2]$ = (20-x)^2 [40x - 5x^2] $\frac{d^2P}{dx^2} = (20-x)^2 [40-10x] + (40x-5x^2) 2(20-x)(-1)$ $\frac{dp}{dx} = 0$ for maxima or minima. So, $(20-x)^2 [40x-5x^2] = 0$ $\Rightarrow (20-x)^2 \times (x)(40-5x) = 0 \Rightarrow x = 20, 0, 8$ We get, $\left(\frac{d^2P}{dx^2}\right)_{x=0} < 0; \left(\frac{d^2p}{dx^2}\right)_{x=0} > 0$ and $\left(\frac{\mathrm{d}^2 \mathrm{p}}{\mathrm{dx}^2}\right)_{\mathrm{x}=20} = 0$ Hence, P is maximum at x = 8and, Numbers are 12 and 8. 4. (c) Equation of parabola is $y^2 = 4ax$ $2y\frac{dy}{dx} = 4a$ $\therefore \quad \frac{dy}{dx} = \frac{2a}{y},$ [slope of tangent] So, slope of normal $= -\left(\frac{dx}{dy}\right)_{(at^2, 2at)}$ $=-\left(\frac{y}{2a}\right)=-\frac{2at}{2a}=-t$ 5. (d) If a function is continuous at a point, it need not be differentiable at the same point. Example, f(x) = |x| is

continuous at x = 0 but f(x) is not differentiable at x = 0

(c) Given that
$$4y - x^2 - 8 = 0$$

 $\Rightarrow y = \frac{x^2 + 8}{4}$
Differentiating w.r.t. x
 $\frac{dy}{dx} = \frac{2x}{4}$
For increasing function
 $\frac{dy}{dx} > 0$
So, $\frac{2x}{4} > 0 \Rightarrow x > 0$
Thus, the curve is increasing in (0, 4).
(a) Given that $xy = r^2$
 $\Rightarrow y = \frac{r^2}{x}$
Let $S = px + qy = px + \frac{qr^2}{x}$
 $\Rightarrow \frac{dS}{dx} = p - \frac{qr^2}{x^2}$
 $\frac{dS}{dx} = 0$ for maximum or minimum.
So, $0 = p - \frac{qr^2}{x^2}$
 $\Rightarrow x^2 = \frac{qr^2}{p} \Rightarrow x = \pm \sqrt{\frac{q}{p}}r$
Now, $\frac{d^2S}{dx^2} = \frac{2qr^2}{x^3}$
At $x = +\sqrt{\frac{q}{p}}$. r $\frac{d^2S}{dx^2} > 0$
Hence, S is minimum at $x = \sqrt{\frac{q}{p}}r$
 $\Rightarrow y = \frac{r^2}{\sqrt{\frac{q}{p}} \cdot r} = \sqrt{\frac{p}{q}}$. r
Minimum value of $px + qy = p \cdot \sqrt{\frac{q}{p}} \cdot r + q$.
 $= \sqrt{pq}r + \sqrt{pq}r = 2r\sqrt{pq}$

 $\sqrt{\frac{p}{a}}$.r

8. (a)
$$f(x) = x^{2/3}(5-2x)$$

or, $f(x) = 5x^{2/3} - 2x^{5/3}$
differentiating both the sides.
 $f'(x) = 5 \times \frac{2}{3}x^{-1/3} - 2 \times \frac{5}{3}x^{2/3}$
or, $f'(x) = \frac{10}{3}(x^{-1/3} - x^{2/3})$

To get the critical value. f'(x) = 0

so,
$$x^{-1/3} - x^{2/3} = 0 \Rightarrow x^{-1/3} (1-x) = 0$$

 $\Rightarrow 1 - x = 0 \text{ as } x^{-1/3} \neq 0$

- or, x = 1 is the only value in the interval [-1, 2]
- 9. (c) (A) Graph of f(x) = cos x cuts x-axis at infinite number of points. (5 of list II)
 (D) Cruck = f(x) = 1
 - (B) Graph of f(x) = In x cuts x-axis in only one point. (4 of list II)
 - (C) Graph of $f(x) = x^2 5x + 4$ cuts x axis in two points (2 of list II)
 - (D) Graph of f(x) = e^x cuts y-axis in only one point.
 (3 of list II)

10. (b) Given
$$x + y = 12$$

 $y=12-x$
so, $xy=x(12-x)=12x-x^2$
Let $f(x)=12x-x^2$
 $f'(x)=12-2x$
To get maximum or minimum value
 $f'(x)=0$ and $f''(x) < 0$ it is maximum
 $f''(x)=-2 < 0$,
so, $f'(x)=0$ will give maximum value.
so, $12-2x=0 \Rightarrow x=6$ and $x + y = 12 \Rightarrow y=6$
Hence, $y=6$
and $f(x)=12x-x^2=12 \times 6-36=36$

11. (b)
$$f(x) = \sqrt{x} (7x-6) = 7x^{3/2} - 6x^{1/2}$$

 $f'(x) = 7 \times \frac{3}{2}x^{1/2} - 6 \times \frac{1}{2}x^{-1/2}$

When tangent is parallel to x axis f'(x) = 0

or,
$$\frac{21}{2}x^{1/2} - 3x^{-1/2} = 0$$

 $\frac{21}{2}\sqrt{x} = \frac{3}{\sqrt{x}}$
or, $7x = 2 \implies x = \frac{2}{7}$

12. (a) $\sin x \cos y = \frac{1}{2}$ Differentiating both the sides $\sin x(-\sin y) \frac{dy}{dx} + \cos y \cos x = 0$ $\frac{dy}{dx} = \frac{\cos x \cos y}{\sin x \sin y} = \cot x \cot y$

$$\frac{d^2 y}{dx^2} = \cot x (-\csc^2 y) \frac{dy}{dx} + \cot y (-\csc^2 x)$$

when the point is $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$
then $x = \frac{\pi}{4}$ and $y = \frac{\pi}{4}$
 $\frac{dy}{dx} = \cot \frac{\pi}{4} \cdot \cot \frac{\pi}{4} = 1$
So, $\frac{d^2 y}{dx^2} = \cot \frac{\pi}{4} \left(-\cos \sec^2 \frac{\pi}{4}\right) \cdot 1 + \cot \frac{\pi}{4} \left(-\cos \sec^2 \frac{\pi}{4}\right)$
 $= 1(-2) + 1 \cdot (-2) = -4$
13. (b) $f(x) = \sqrt{9 - x^2}$

$$f'(x) = \frac{1}{2\sqrt{9 - x^2}} \times (-2x) = -\frac{x}{\sqrt{9 - x^2}}$$

For function to be increasing

$$-\frac{x}{\sqrt{9-x^2}} > 0$$

or $-x > 0$ or $x < 0$
but $\sqrt{9-x^2}$ is defined only when
 $9-x^2 > 0$ or $x^2 - 9 < 0$
 $(x+3)(x-3) < 0$
i.e. $-3 < x < 3$
 $-3 < x < 3 \cap x < 0$
 $\Rightarrow -3 < x < 0$
(d) Let one side of quadrilateral be x and another sid
 $x = 2(x+x) = 24$

d) Let one side of quadrilateral be x and another side be y so, 2(x + y) = 34or, (x + y) = 17 ...(i) We know from the basic principle that for a given perimeter square has the maximum area, so, x = y and putting this value in equation (i)

$$x = y = \frac{17}{2}$$
Area = x . y = $\frac{17}{2} \times \frac{17}{2} = \frac{289}{4} = 72.25$
15. (c) The given function is
$$f(x) = (x - 1)e^{x} + 1$$

$$\Rightarrow f'(x) = (x - 1)e^{x} + e^{x}$$

$$= (x - 1 + 1)e^{x} = xe^{x}$$
Thus, it is clear that f(x) is increasing for all x.
16. (d) Given rule is:

Distance,
$$s = 2 - 3t + 4t^3$$

14.

$$\Rightarrow$$
 Velocity $\frac{ds}{dt}$ -3 12t²

$$\Rightarrow$$
 Acceleration = $\frac{d^2s}{dt^2} = 24t$

Since, velocity is zero

$$\therefore \quad \frac{\mathrm{ds}}{\mathrm{dt}} \quad 0$$

17.

18.

$$\Rightarrow 0 = -3 + 12 t^{2} \Rightarrow t = \sqrt{\frac{3}{12}} = \frac{1}{2}$$
Acceleration (when velocity is zero)

$$\Rightarrow \frac{d^{2}s}{dt^{2}} = 24t = 24 \times \frac{1}{2} = 12 \text{ unit}$$
(a) Let 20 be divided in two parts such that
first part = x

$$\therefore \text{ Second part} = 20 - x$$
Now, assume that

$$P = x^{3}(20 - x)$$

$$= 20x^{3} - x^{4}$$
Now, $\frac{dP}{dx} = 60x^{2} - 4x^{3}$
and $\frac{d^{2}P}{dx^{2}} = 120x - 12x^{2}$
Put $\frac{dP}{dx} = 0$ for maxima or minima

$$\Rightarrow \frac{dP}{dx} = 0$$

$$\Rightarrow 4x^{2}(15 - x) = 0 \Rightarrow x = 0, x = 15$$

$$\therefore \left(\frac{d^{2}P}{dx^{2}}\right)_{x=15} = 120 \times 15 - 12 \times (225)$$

$$= 1800 - 2700 = -900 < 0$$

$$\therefore P \text{ is a maximum at } x = 15.$$

$$\therefore First part = 15$$
and second part = 20 - 15 = 5
Required product = 15 \times 5 = 75
(c) The equation of curve is given as :

$$y = -x^{3} + 3x^{2} + 2x - 27$$
On differentiating w.r.t.x. we get

 $\frac{dy}{dx} = -3x^2 \quad 6x \quad 2$

This represents slope of the curve at any point.

Let A
$$\frac{dy}{dx} -3x^2 - 6x - 2$$

 $\Rightarrow \frac{dA}{dx} = -6x - 6$
and $\frac{d^2A}{dx^2} = -6$
Put $\frac{dA}{dx} = 0$ for maxima or minima.
 $-6x + 6 = 0$
 $\Rightarrow x = 1$
Now, $\left(\frac{d^2A}{dx^2}\right)_{x=1} 1 = -6 < 0$
 \therefore A is maximum at $x = 1$

:. Maximum slope of curve = -3 + 6 + 2 = 5

19. (d) Area of largest rectangular field for a given perimeter for is possible if length and breadth of rectangular field are equal i.e. it is a square

$$\Rightarrow 4x = 200 \Rightarrow x = \frac{200}{4} = 50m$$

 \therefore Area of largest rectangular field = $50 \times 50 = 2500 \text{m}^2$ Aliter: Let length and breadth of rectangular field be x and y respectively

$$\therefore 2(x+y) = 200$$

$$\Rightarrow y = 100 - x$$

and area, A = xy
= x(100 - x) = 100 x - x²

$$\therefore \frac{\mathrm{dA}}{\mathrm{dx}} = 100 - 2\mathrm{x}$$

~

20.

Put $\frac{dA}{dx} = 0$ for maxima or minima 100-2x=0 $\Rightarrow x = 50 \Rightarrow y = 50$

Now,
$$\frac{d^2A}{dx^2} = -2 < 0$$
, which shows maximum,

independent of values of x and y, but only when they are equal. \therefore A is movimum at x = 50

$$\therefore \quad \text{A is maximum at } x = 50.$$

Hence, required area = 50 (100 - 50) = 50 × 50 = 2500 m²

- (c) $f(x)=x^2+mx+5$ Consider, option (c) m = -2. $f(x)=x^2-2x+5 \implies f'(x)=2x-2$ It is clear that f'(x) > 0 in interval $1 \le x \le 2$. $\therefore m = -2$
- 21. (b) The given condition is : $x + y = 8 \implies y = 8 - x$ and let, the product of x and y be, P = xy $\implies P = x(8-x) = 8x - x^2$

Differentiating w.r.t. x

$$\Rightarrow \frac{dP}{dx} = 8 - 2x$$

and $\frac{d^2P}{dx^2} = -2 < 0$
Put $\frac{dP}{dx} = 0$, for maxima or minima
 $8 - 2x = 0$
 $\Rightarrow x = \frac{8}{2} = 4$ and $y = 4$
and $\left(\frac{d^2P}{dx^2}\right) < 0$ when $x = y$
 \therefore P is maximum at $x = 4$
Maximum value of $P = 4.(8 - 4) = 4.4 = 16$

22. (d) Slope at the point (x, y) = 2x $\therefore \frac{dy}{dx} = 2x$ $\Rightarrow \int dy = \int 2x \, dx$ $\Rightarrow y = x^2 + c$ Given that, it passes through the origin. So, $0 = (0)^2 + c$ $\Rightarrow c=0$ Then, $y = x^2$ 23. (a) Let $y = \log x - x$ $\therefore \frac{dy}{dx} = \frac{1}{x} - 1$ and $\frac{d^2y}{dx^2} = -\frac{1}{x^2}$ For maximum and minimum value of y $\frac{dy}{dx} = \frac{1}{x} - 1 = 0 \implies \frac{1}{x} = 1 \implies x = 1$ For x=1, $\frac{d^2y}{dx^2} = -ve$ Thus, the value of given function is maximum for x = 1So, the maximum value of the function = $\log(1) - 1 = -1$ Let the height of rectangular box be y cm. 24. (a) \therefore Volume = $x \times x \times y$ $\Rightarrow y = \frac{10}{r^2}$...(i) Now, surface area of box

27.

28.

29.

30.

31.

$$= 2(x^{2} + xy + yx) = 2(x^{2} + 2xy)$$
$$= 2\left(x^{2} + \frac{20}{x}\right) \qquad \text{From equation (i)}$$
$$= 2x^{2} + \frac{40}{x}$$

25 (c) Given, $f(x) = \cos x$, $\Rightarrow f'(x) = -\sin x$ Now f'(x) = 0 $\Rightarrow -\sin x = 0$ $\Rightarrow \sin x = \sin (0)$ $\Rightarrow x = n\pi$ Clearly, f'(x) < 0, when $0 < x < \pi$ Hence f(x) is decreasing when $0 < x < \pi$

(d) Let $y = 2x^2 - 3x + 5$ 26.

$$\Rightarrow \frac{dy}{dx} = 4x - 3$$

and $\frac{d^2y}{dx^2} = 4$

For maximum and minimum value of y

$$\frac{dy}{dx} = 0$$

$$\Rightarrow 4x - 3 = 0$$

$$\Rightarrow x = \frac{3}{4}$$

Since, for every value of $x, \frac{d^2y}{dx^2} = +ve$ So, minimum value of $2x^2 - 3x + 5$ is minimum $x = \frac{3}{4}$. \therefore The minimum value = $2\left(\frac{3}{4}\right)^2 - 3\left(\frac{3}{4}\right) = 5$ $=\frac{9}{8}-\frac{9}{4}$ 5 $=\frac{9-18}{8}$ 40 $=\frac{31}{8}$ (a) Given equation of the curve is $y = x^3 - x^2 - x + 2$ $\frac{dy}{dx} = 3x^2 - 2x - 1$ $\Rightarrow \left(\frac{dy}{dx}\right)_{(11)} = 3 - 2 - 1 \quad 0$ Since, $\frac{dy}{dr}$ at (1, 1) is 0 \therefore slope of the tangent = 0. Hence, The equation of tangent at (1, 1) is $y-1=0(x-1) \Rightarrow y=1$ *ie*, parallel to x-axis. Both A and R true and R is the correct explanation of A. Given $f(x) = x^2 - 2x$ (c) On differentiating w.r.t 'x', we get f'(x) = 2x - 2f(x) is increasing, if f'(x) > 0 $\Rightarrow 2x-2>0$ $\Rightarrow x > 1$ (b) Rolle's theorem says between any two roots of a polynomial f(x), there is always a root of its derivative f'(x)Therefore between a and b. There exist at least one root of the polynomial equation f'(x) = 0(c) $P(x) = -3500 + (400 - x)x = -3500 + 400x - x^2$ On differentiating w.r.t. x, we get P'(x) = 400 - 2xPut P'(x) = 0 for maxima or minima $\Rightarrow 400-2x=0$ $\Rightarrow x = 200$ Now P''(x) = -2x $\Rightarrow P''(200) = -400 < 0$ $\therefore P(x)$ is maximum at x = 200Hence 200 items should the firm sell so that the firm has maximum profit. (b) Given equation is $s = 64t - 16t^2$ \therefore On differentiating w.r.t. t, we get $\frac{ds}{dt} = 64 - 32t$ Put $\frac{ds}{dt} = 0$ for maximum height

$$\Rightarrow 64 - 32t = 0 \Rightarrow t =$$

Now, $\frac{d^2s}{dt^2} = -32$

2

At
$$t=2$$
, $\frac{d^2s}{dt^2} = -32$
Since, $\left(\frac{d^2s}{dt^2}\right)_{t=2} < 0$
 \therefore Required time = 2 second
32. (d) Given $f(x) = 3x^2 + 6x - 9$
On differentiating w.r.t. x , we get
 $f'(x) = 6x + 6$
 $f'(x) < 0$
 $\Rightarrow 6x + 6 < 0$
 $\Rightarrow 6x < -6$
 $\Rightarrow x < -1$
Hence $f(x)$ is decreasing in $(-\infty, -1)$
33. (b) Consider a line
 $x \cos \theta + y \sin \theta = 2$
 $\Rightarrow y \sin \theta = -x \cos \theta + 2$
 $\Rightarrow y = -x \frac{\cos \theta}{\sin \theta} - \frac{2}{\sin \theta}$
 $\Rightarrow y = -x \cot \theta + 2 \csc \theta$
On comparing this equation with
 $y = mx + c$ we get
slope of line $x \cos \theta + y \sin \theta = 2$ is $-\cot \theta$
Also, we have a line $x - y = 3$
 $\Rightarrow y = x - 3$
slope of line $x - y = 3$ is 1.
Since, both the lines are perpendicular to each other
 \therefore Product of their slopes $= -1$
 $\Rightarrow (-\cot \theta)(1) = -1$
 $\Rightarrow \cot \theta = 1 = \cot \frac{\pi}{4}$
34. (a) Let $y = \tan^{-1} x - x$
On differentiating w.r.t.x, we get
 $\frac{dy}{dx} = \frac{1}{1+x^2} - 1 = \frac{1-1-x^2}{1+x^2} = \frac{-x^2}{1+x^2}$
 $\Rightarrow \frac{dy}{dx} < 0, \forall x \in R$

Hence, function is always decreasing. (b) Given velocity is v = s + 135.

Since, velocity
$$= \frac{ds}{dt}$$

 $\therefore \frac{ds}{dt} = s + 1 \Rightarrow \frac{ds}{s+1} = dt$
Integrate both side we get
 $\log (s+1) = t$
At $s = 9$ m,
 $t = \log (10)$ second
36. (b) Given, velocity is

$$v = x^2 \log \frac{1}{x} = -x^2 \log x$$
 where x is displacement.

For maximum velocity, $\frac{dv}{dx} = 0$ Now, $\frac{dv}{dx} = -x^2 \frac{1}{x} + \log x(-2x)$ $= -x - 2x \log x$ $\frac{dv}{dx} = 0 \Longrightarrow -x - 2x \log x = 0 \Longrightarrow x = -2x \log x$ $\Rightarrow \frac{-1}{2} = \log x$ $\Rightarrow x = e^{-\frac{1}{2}}$ Hence, for maximum velocity $x = e^{-1/2}$ 37. (b) Given curve is $x = e^x y$ Which can be rewritten as $y = xe^{-x}$ On differentiating w.r.t. x, we get $\frac{dy}{dx} = -xe^{-x} + e^{-x}$ Put $\frac{dy}{dx} = 0$ for maxima or minima $\Rightarrow -xe^{-x} + e^{-x} = 0$ $\Rightarrow e^{-x}(1-x)=0$ Since e^{-x} can not be zero $\therefore 1-x=0 \implies x=1$ Now, $\frac{d^2 y}{dx^2} = -e^{-x} + xe^{-x} - e^{-x} = xe^{-x} - 2e^{-x}$ $=e^{-x}(x-2)$ $\Rightarrow \left(\frac{d^2 y}{dx^2}\right) < 0$ \therefore y is maximum at x = 1. Thus, when x = 1then $y = e^{-1}$ Hence, maximum point on the curve $x = e^x y$ is $(1, e^{-1})$. (b) Let *r* be the radius of balloon. Balloon is like a sphere and volume of sphere $=\frac{4}{3}\pi r^3$

$$\therefore \quad V = \frac{4}{3}\pi r^3$$

38.

Differentiate both side w.r.t 't'

$$\Rightarrow \frac{dV}{dt} = \frac{4}{3}\pi . 3r^2 \frac{dr}{dt}$$
$$\Rightarrow 4 = \frac{4}{3}\pi . 3(4)^2 \frac{dr}{dt} \qquad \left(\because \frac{dV}{dt} = 4cm^3 / s\right)$$
$$\Rightarrow \frac{dr}{dt} = \frac{1}{16\pi} \qquad (1)$$

 $\therefore f(x)$ is minimum at x = 2. Hence, minimum value is

$$f(2) = 2(2)^{3} - 3(2)^{2} - 12 \times 2 + 1$$

= 16 - 12 - 24 + 1 = -19
43. (a) Given $f(x) = 6x - x^{2}, x > 0$
Differentiate w.r.t. x both side we get
 $f'(x) = 6 - 2x$
As we know $f(x)$ will be increasing function, if
 $f'(x) > 0 \therefore 6 - 2x > 0 \Rightarrow x < 3$

Thus, required interval is (0,3).

44. (a) Product of two increasing function is always an increasing function.
 ∴ fog is always an increasing function

45. (b) Let
$$y = f(x)$$

Now, for a point of inflection of $y = f(x)$,
 d^2y

$$\frac{d^2 y}{dx^2}$$
 must be zero.

46.

(d) Let
$$f(x) = p \sin x = \frac{\sin 3x}{3}$$

Differentiate both side w.r.t (x).
 $\Rightarrow f'(x) = p \cos x = \frac{3 \cos 3x}{3} = p \cos x = \cos 3x$
It is given that $f(x)$ has extremum value at $x = \pi/3$

$$\therefore f'\left(\frac{\pi}{3}\right) = 0$$

$$\Rightarrow p\cos\frac{\pi}{3} + \cos\pi = 0$$

$$\Rightarrow \frac{p}{2} - 1 = 0 \Rightarrow p = 2$$

47. (b) Surface area of sphere $S = 4\pi r^2$ Differentiate both sides w.r.t. t'

$$\Rightarrow \frac{dS}{dt} \frac{8\pi r dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{1}{8\pi r} \cdot \frac{ds}{dt} \qquad \dots(i)$$

and Volume = V = $\frac{4}{3}\pi r^3$
$$\Rightarrow \frac{dV}{dt} = \frac{4}{3}\pi . 3r^2 \frac{dr}{dt} = 4\pi r^2 \frac{dr}{dt}$$

$$\frac{4\pi r^2}{8\pi r} \cdot \frac{dS}{dt} = \frac{1}{2}r \frac{dS}{dt} \qquad (from (i)$$

Let $f(x) = k \sin x + \frac{1}{2} \sin 3x$

48. (c) Let
$$f(x) = k \sin x + \frac{1}{3} \sin 3x$$

Differentiate both side w.r.t. 'x'
 $\Rightarrow f'(x) = k \cos x + \frac{3}{3} \cos 3x$
Put $f'(x) = 0$
 $\Rightarrow k \cos x + \cos 3x = 0$
Since the $f(x)$ has maximum value at $x = \frac{\pi}{3}$

Now, surface area of balloon $= S = 4 \pi r^2$

$$\frac{dS}{dt} = 4\pi . 2r \frac{dr}{dt}$$
$$= 4\pi . 2 \times 4 \frac{1}{16\pi} (\text{from } (1)) = 2cm^2 / s$$

39. (c) Given $f(x) = kx^3 - 9x^2 + 9x + 3$ On differentiating w.r.t. *x*, we get $f'(x) = 3kx^2 - 18x + 9$ For a function to be monotonically increasing. $b^2 - 4ac < 0$ Here, a = 3k, b = -18, c = 9 $\therefore b^2 - 4ac = (-18)^2 - 4(3k)(9) = (-18)(-18) - (3k)18 \times 2$ $\Rightarrow 36 - 12k < 0$ $\Rightarrow k > 3$

40. (a) Let x be the side of first square and y be the side of second square. \therefore Area of first square $A = x^2$

: Area of first square, $A_1 = x^2$ and area of second square, $A_2 = y^2$

$$= \left(x + x^{2}\right)^{2} \left(\because y = x + x^{2}\right)$$
$$= x^{2} + x^{4} + 2x^{3}$$
Now, $\frac{dA_{1}}{dx} = 2x$ and, $\frac{dA_{2}}{dx} = 2x + 4x^{3} + 6x^{2}$

Hence, the Rate of change of area of the second square with respect to the area of the first square

$$=\frac{dA_2}{dA_1} = \frac{2x+4x^3+6x^2}{2x} = 1+2x^2+3x$$

41. (a) Let $y = -\tan^{-1}(x^{-1}) + 1$

$$\therefore \quad \frac{dy}{dx} = -\frac{1}{1+x^{-2}}(-1)x^{-2} = \frac{1}{1+x^2}$$

Since, $\frac{dy}{dx}$ is positive for all values of *x*. Therefore, *y* is an increasing function of *x*. Hence, option (a) is correct. (c) Let $f(x) = 2x^3 - 3x^2 - 12x + 1$

42. (c) Let
$$f(x) = 2x^3 - 3x^2 - 12x + 1$$

 $\Rightarrow f'(x) = 6x^2 - 6x - 12$
Put $f'(x) = 0$ for maxima or minima
 $\Rightarrow 6x^2 - 6x - 12 = 0 \Rightarrow x^2 - x - 2 = 0$
 $\Rightarrow (x - 2)(x + 1) = 0$
 $\Rightarrow x = 2, x = -1$
Now, $f''(x) = 12x - 6$
 $\Rightarrow f''(2) = 24 - 6 = 18 > 0$
Since, $f''(x)$ is + *ve* at $x = 2$

$$\therefore \quad k \cos \frac{\pi}{3} + \cos 3\left(\frac{\pi}{3}\right) = 0$$
$$\Rightarrow \quad \frac{k}{2} + (-1) \quad 0 \Rightarrow \quad k = 2$$

- 49. (a) Since f(x) is an increasing function in [-1, 1] and it has a root in (-1, 1).
 ∴ Only statement I is correct.
- 50. (b) Let $f(x) = 2x^3 3x^2 12x + 5$ We find, f(-2), f(-1), f(0), f(1), f(2). Now, f(-2) = -16 - 12 + 24 + 5 = 1 f(-1) = -2 - 3 + 12 + 5 = 12 f(0) = 5 f(1) = 2 - 3 - 12 + 5 = -8and $f(2) = 2(2)^3 - 3(2)^2 - 12(2) + 5$ = 16 - 12 - 24 + 5 = 21 - 36 = -15 \therefore Largest value of $2x^3 - 3x^2 - 12x + 5$ is at x = -1

51. (d) Let
$$f(x) = mx + c$$

then, f'(x) = m

So, $f'(x) \neq 0$ for any real value of x.

Hence, f(x) has neither maximum point nor minimum point.

52. (a) At an extreme point of a function f(x), slope is always zero.Thus, At an extreme point of a function f(x), the tangent to the curve is parallel to the x-axis.

53. (a) Given
$$f(x) = e^x \sin x$$

$$\Rightarrow f'(x) = e^x \cos x + e^x \sin x$$

$$\Rightarrow \text{slope} = e^x (\cos x + \sin x)$$

Now, $\frac{d}{dx} \cos x \sin x = 0$
$$\Rightarrow -\sin x + \cos x = 0$$

$$\Rightarrow \sin x = \cos x \Rightarrow \tan x = 1 \Rightarrow x = \frac{\pi}{4}$$

54. (c) Let volume =
$$V = \frac{4}{3}\pi r^3$$
 ...(1)

and surface area =
$$S = 4\pi r^2$$
 ...(2)

Now, (1)
$$\Rightarrow \frac{dv}{dt} = \frac{4}{3} \times 3\pi r^2 \times \frac{dr}{dt}$$

= $4\pi r^2 \frac{dr}{dt}$...(3)

$$(2) \Rightarrow \frac{ds}{dt} = 4\pi \times 2 \times r \frac{dr}{dt} = \frac{8\pi r^2}{r} \frac{dr}{dt}$$
$$= \frac{2}{r} \left[4\pi r^2 \frac{dr}{dt} \right] = \frac{2}{r} \frac{dv}{dt} \qquad \text{(from 3)}$$
$$(c) \quad \text{Let } f(x) = x \ln x$$

$$f'(x) = \frac{x}{x} + \ln x = 1 + \ln x$$

55.

$$\Rightarrow \ln x = -1 \Rightarrow x = e^{-1}$$
Now, $f''(x) = \frac{1}{x}$

$$f''(x)|_{x=e^{-1}} = \frac{1}{e^{-1}} = e > 0$$
Hence, $f(x)$ attains minimum value at $x = e^{-1}$.
(a) Given equation curve is
 $x^2 + y^2 - 2x - 3 = 0$... (1)
On differentiating we get
 $2x + 2y \frac{dy}{dx} - 2 = 0$
 $\Rightarrow y \frac{dy}{dx} = -x + 1$
 $\Rightarrow \frac{dy}{dx} = -\frac{x+1}{y}$
Since, tangent is parallel to x -axis
 $\therefore \frac{dy}{dx} = 0 \Rightarrow -\frac{x+1}{y} = 0 \Rightarrow x = 1$
 \therefore From equation (1), we have
 $1 + y^2 - 2 - 3 = 0 \Rightarrow y = \pm 2$
Hence, required points are (1, 2) and (1, -2).
(c) It is obvious
(a) Let $y = x^2 - 4x + 3$
Differentiate both sides w.r.t. 'x'
 $\frac{dy}{dx} = 0 \Rightarrow 2x - 4 = 0 \Rightarrow x = \frac{4}{2} = 2$
 \Rightarrow one tangent is $|| \text{ to x-axis}$
 \therefore slope = 0
 $\Rightarrow \frac{dy}{dx} = 0 \Rightarrow 2x - 4 = 0 \Rightarrow x = \frac{4}{2} = 2$
 \Rightarrow one tangent
(b) Let $u = \sqrt{x^2 + 16}, v = x^2$
 $\Rightarrow u^2 = x^2 + 16, \frac{dv}{dx} = 2x$
 $\Rightarrow 2u \frac{du}{dx} = 2x$
 $\Rightarrow 2u \frac{du}{dx} = 2x$
 $\Rightarrow 2u \frac{du}{dx} = \frac{x}{\sqrt{x^2 + 16}}$
Now, required rate of change = $\frac{du}{dv}$
 $= \frac{du}{dx} \times \frac{dx}{dv} = \frac{x}{\sqrt{x^2 + 16}} \times \frac{1}{2x} = \frac{1}{2\sqrt{x^2 + 16}}$
Now, $\frac{du}{dv}|_{x=3} = \frac{1}{2 + 5} = \frac{1}{10}$

Put $f'(x) = 0 \Longrightarrow 1 + \ln x = 0$

56.

57. 58.

59.

66. (a) Let
$$y = xe^{x}$$
.
Differentiate both side w.r.t. 'x'.
 $\Rightarrow \frac{dy}{dx} = e^{x} + xe^{x} = e^{x} (1+x)$
Put $\frac{dy}{dx} = 0$
 $\Rightarrow e^{x} (1+x) = 0 \Rightarrow x = -1$
Now, $\frac{d^{2}y}{dx^{2}} = e^{x} + e^{x} (1+x) = e^{x} (x+2)$
 $\left(\frac{d^{2}y}{dx^{2}}\right)_{(x=-1)} = \frac{1}{e} + 0 > 0$
Hence, $y = xe^{x}$ is minimum function and

$$y_{\min} = -\frac{1}{e}.$$
67. (a) $f(x) = x^3 + 2x^2 - 4x + 6$
 $f'(x) = 3x^2 + 4x - 4$
 $f''(x) = 6x + 4$
Put $f'(x) = 0$
 $3x^2 + 4x - 4 = 0$
 $x = -2, \frac{2}{3}$
 $f''(-2) = 6x - 2 + 4 = -8 < 0$
 $f''\left(\frac{2}{3}\right) = 6 \times \frac{2}{3} + 4 = 8 > 0$
Value is maximum at $x = -2$
68. (c) At $x = 4$, $f(x) = 0$
69. (a) $y = \sin^{-1}(\sin^2 x)$
 $\frac{dy}{dx} = \frac{2\sin x \cos x}{\sqrt{1 - \sin^4 x}} \Rightarrow \frac{dy}{dx} = \frac{\sin 2x}{\sqrt{1 - \sin^4 x}}$
 $at x = 0, \frac{dy}{dx} = 0$
70. (c) $y = e^{2x}$
 $\frac{dy}{dx} = 2e^{2x}$
 $\frac{dy}{dx} = 2e^{2x}$

71. (c) Equation of line passing through (0, 1) and slope = 2 y-1 = 2 (x-0) y=2x+1let line meets at (x₁, 0) $0=2x_1+1 \Rightarrow x_1 = -\frac{1}{2}$

Tangent to the curve at (0, 1) meets the x-axis at

 $\left(-\frac{1}{2},0\right)$

72. (d)
$$f(x) = \frac{x^2 - x}{x^2 - x} \frac{1}{1}$$

$$f'(x) = \frac{(x^2 + x + 1)(2x - 1) - (x^2 - x + 1)(2x + 1)}{(x^2 + x + 1)^2}$$

$$= \frac{2x^2 - 2}{(x^2 - x - 1)^2}$$
Put $f'(x) = 0$
 $2x^2 - 2 = 0$
 $x = \pm 1$

$$f''(x) = \frac{(x^2 - x - 1)^2(4x) - 2(2x^2 - 2)(x^2 - x - 1)(2x - 1)}{(x^2 - x - 1)^4}$$

$$f''(-1) = \frac{-36}{81} < 0$$

$$f(x) \text{ is maximum at } x = -1$$

$$f(-1) = 3$$
73. (b)
$$f''(1) = \frac{36}{81} = 0$$

$$f(x) \text{ is minimum at } x = 1$$

$$f(1) = \frac{1}{3}$$
74. (c) Volume of the box = V
$$V = (24 - 2x)(9 - 2x) \cdot x \quad (\because \text{ height of box } = x \text{ inch})$$

$$= (216 - 48x - 18x + 4x^2) \cdot x$$

$$V(x) = 4x^3 - 66x^2 + 216x$$

$$\Rightarrow V'(x) = 12x^2 - 132x + 216$$
For maximum, put $V'(x) = 0$

$$\Rightarrow 12x^2 - 132x + 216$$
For maximum, put $V'(x) = 0$

$$\Rightarrow x^2 - 9x - 2x + 18 = 0$$

$$\Rightarrow x^2 - 9x - 2x + 18 = 0$$

$$\Rightarrow x(x - 9) - 2(x - 9) = 0$$

$$\Rightarrow (x - 9)(x - 2) = 0$$

$$\Rightarrow x = 9 \text{ or } x = 2$$
Now $V''(x) = 24x - 132$

$$\therefore V''(9) = 216 - 132 = 84 < 0$$
Thus, volume is maximum when $x = 2$ inch.
75. (a) Volume of box = (24 - 4)(9 - 4).2
$$= 20 \times 5 \times 2 = 200 \text{ cu inch}$$
76. (a) Let h be the height, R be the radius and V be the volume of cylinder.
In ΔOAB , we have

$$r^2 = R^2 \left(\frac{h}{2}\right)^2 \qquad \dots(i)$$

$$\left(\because OA = \frac{h}{2} \text{ as } \Delta OAB \cong \Delta OCD\right)$$

Clearly, $V = \pi R^2 h$
 $\Rightarrow V(h) = \pi \left(r^2 - \frac{h^2}{4}\right) h$ [using eq. (i)]
 $\Rightarrow V(h) = \pi \left(r^2 h - \frac{h^3}{4}\right)$
 $\Rightarrow V'(h) = \pi \left(r^2 - \frac{3h^2}{4}\right)$...(ii)
For maximum put V' (h) = 0
 $\Rightarrow r^2 = \frac{3h^2}{4} \Rightarrow h^2 = \frac{4r^2}{3}$
 $\Rightarrow h = \frac{2r}{\sqrt{3}}$ ($\because h > 0$)
Differentiating eq. (ii) w.r.t. h, we get
 $V''(h) = \pi \left(\frac{-6h}{4}\right)$
 $\Rightarrow V''\left(\frac{2r}{\sqrt{3}}\right) = \pi \left(\frac{-6}{4} \times \frac{2r}{\sqrt{3}}\right) = 0$

Thus, the volume is maximum when $h = \frac{2r}{\sqrt{3}}$.

77. (b) Volume of cylinder is maximum when
$$h = \frac{2r}{\sqrt{3}}$$

By using the relation
$$r^2 = R^2 \left(\frac{h}{2}\right)^2$$
, we get
 $R^2 = r^2 - \frac{h^2}{4} = r^2 - \frac{4r^2}{12}$
 $R^2 = \frac{12r^2 - 4r^2}{12} = \frac{8r^2}{12} - \frac{2r^2}{3}$

$$\Rightarrow \mathbf{R} = \sqrt{\frac{2r^2}{3}} \quad \frac{\sqrt{2r}}{\sqrt{3}} \qquad (\because \mathbf{R} > 0)$$

м-344

78. (c) From statement -1

$$y = \frac{e^{x} + e^{-x}}{2}$$

$$\frac{dy}{dx} = \frac{1}{2} [e^x - e^{-x}]$$

Now equating
$$\frac{dy}{dx}$$
 to zero we get,

$$e^{x} - e^{-x} = 0$$

$$e^{x} = e^{-x}$$

$$\therefore \quad \frac{e^{x}}{e^{-x}} = 1 \qquad \xleftarrow{-} \qquad + \\ & & & & \\ & & & e^{2x} = 1 \end{cases}$$

$$\therefore 2x=0$$

∴ x=0

The given function is increasing on interval $[0, \infty]$ From Statement -2

$$y = \frac{e^{x} - e^{-x}}{2}$$
$$\frac{dy}{dx} = \frac{1}{2} [e^{x} - e^{x}]$$

Now equating $\frac{dy}{dx}$ to zero, we get. $e^{x} + e^{-x} = 0$

$$\therefore e^{x} + \frac{1}{e^{x}} = 0$$

$$\therefore e^{2x} + 1 = 0$$

$$\therefore e^{2x} = -1$$

- Hence, the given function is increasing from $[-\infty, \infty]$ \therefore Both statement are correct
- \therefore Option (c) is correct.

79. (b) Given
$$f(x) = \frac{x^2 - 1}{x^2 + 1}$$

In order to find the value of 'x', where f(x) is maximum or minimum; equation f'(x) equal to zero.

$$\therefore f'(x) = \frac{(x^2 + 1)\frac{d}{dx}(x^2 - 1) - (x^2 - 1)\frac{d}{dx}(x^2 + 1)}{(x^2 + 1)^2}$$
$$\therefore f'(x) = \frac{(x^2 + 1)(2x) - (x^2 - 1)(2x)}{(x^2 + 1)^2}$$
$$= \frac{2x[x^2 + 1 - x^2 + 1]}{(x^2 + 1)^2}$$

$$\therefore f'(x) = \frac{2x[2]}{(x^2+1)^2}$$

Now equating f'(x) to zero, we get 4x=0

- $\therefore x=0$ Hence, f(x) attain minimum value at x=0 $\therefore \text{ Option (b) is correct.}$
- 80. (c) f(x) is minimum at x=0

$$\therefore \quad f(0) = \frac{-1}{1} = -1$$

$$\therefore$$
 minimum value of f(x) is -1

- \therefore Option (c) is correct.
- 81. (c) $f(x) = 0.75x^4 x^3 9x^2 + 7$ $f'(x) = 4 \times 0.75x^3 - 3x^2 - 18x$ $= 3x(x^2 - x - 6)$ = 3x(x+2)(x-3)for maximum value, f'(x) = 0 3x(x+2)(x-3) = 0 x = 0, -2, 3. f(0) = 7 $f(-2) = 0.75(-2)^4 - (-2)^3 - 9(-2)^2 + 7$ = 2 + 8 - 36 + 7 = -9 $f(3) = 0.75(3)^4 - (3)^3 - 9(3)^2 + 7$ = 60.75 - 27 - 81 + 7 = -40.25 \therefore maximum value of f(x) is 7
 - \therefore Option (c) is correct.

82.

(c) From Statement 1: Function attain local minima at x = -2 and x = 3As we have,

$$f'(x) = 3x^3 - 3x^2 - 18x$$

Now, $f''(x) = 9x^2 - 6x - 18$ For x = -2,

$$f''(-2) = 9(-2)^2 - 6(-2) - 18$$

= 36 + 12 - 18 = 48 - 18 = 30 > 0
For x = 3,

$$f''(3) = 9(3)^2 - 6(3) - 18$$

$$=81-36=45>0$$

:. Statement 1 is correct From Statement 2:

...

The function increases in the interval (-2, 0)Option (c) is correct.

83. (b)
$$x^{2} + y^{2} = \left[\frac{a(1-t^{2})}{1+t^{2}}\right]^{2} + \left[\frac{2at}{1+t^{2}}\right]^{2}$$

 $= \frac{a^{2}(1-t^{2})^{2}}{(1+t^{2})^{2}} + \frac{4a^{2}t^{2}}{(1+t^{2})^{2}}$
 $= \frac{a^{2}(1+t^{4}-2t^{2})+4a^{2}t^{2}}{(1+t^{2})^{2}}$
 $= \frac{a^{2}(1+t^{4}+2t^{2})}{(1+t^{2})^{2}} = \frac{a^{2}(1+t^{2})^{2}}{(1+t^{2})^{2}} = a^{2}$

Hence, the given equation represent a circle of radius (a)

88.

 $\therefore \quad \text{Option (b) is correct.} \\ 84. \quad (d) \quad \text{Here, } x^2 + y^2 = a^2$

$$\therefore \quad 2x + 2y \frac{dy}{dx} = 0$$

$$\therefore \quad \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{2x}{-2y} = -\frac{x}{y}$$

 \therefore Option (d) is correct.

85. (d)
$$\frac{d^2 y}{dx^2} = \frac{y \frac{d}{dx}(-x) - (-x) \frac{dy}{dx}}{y^2}$$
$$= \frac{-y + x \frac{dy}{dx}}{y^2} = \frac{-y + x \left(\frac{-x}{y}\right)}{y^2}$$
$$= \frac{-y^2 - x^2}{y^3} = \frac{-(x^2 + y^2)}{y^3} = -\frac{a^2}{y^3}$$

 \therefore Option (d) is correct.

86. (c)
$$f(x) = \frac{x^2}{e^x}$$

$$f'(x) = \frac{2x \cdot e^x - e^x \cdot x^2}{\left(e^x\right)^2}$$
$$f'(x) = \frac{2x - x^2}{x}$$

 e^{x} as e^{x} is always positive and for monotonically increasing; $2x - x^{2} > 0$ $\Rightarrow x^{2} - 2x < 0 \Rightarrow x(x-2) < 0 \Rightarrow x = (0, 2)$

87. (c) $f(x) = \log x$ Clearly f(x) is increasing on $(0, \infty)$ $f(x) = e^x - x \log x$ $f'(x) = e^x - (\log x + 1)$

From the figure it is clear that f'(x) > 0 on $(1, \infty)$. So both statements (1) & (2) are correct.

(c)
$$f(x) = \left(\frac{1}{x}\right)^{2x^{2}} = y \text{ (say)}$$

$$\log y = 2x^{2} \log\left(\frac{1}{x}\right)$$

$$\frac{1}{y} \frac{dy}{dx} = 2\left[2x \cdot \log\left(\frac{1}{x}\right) + x^{2} \cdot \frac{1}{1/x} \cdot \left(\frac{-1}{x^{2}}\right)\right]$$

$$\frac{dy}{dx} = 2y\left[2x \log\left(\frac{1}{x}\right) - x\right]$$
For max. or min. value $\frac{dy}{dx} = 0$

$$2x \log\left(\frac{1}{x}\right) - x = 0$$

$$x\left[2 \log\left(\frac{1}{x}\right) - 1\right] = 0$$

$$\therefore x \neq 0$$

$$\Rightarrow 2 \log\left(\frac{1}{x}\right) = 1 \qquad \Rightarrow \quad \frac{1}{x} = e^{\frac{1}{2}}$$

$$\Rightarrow \qquad \left[\frac{x = e^{-\frac{1}{2}}}{x = e^{\frac{1}{2}}}\right]$$
Again $\frac{d^{2}y}{dx^{2}} = \left\{2xy\left[\log\left(\frac{1}{x}\right) - 1\right]\right\}$

$$= (2xy)'\left(\log\frac{1}{x} - 1\right) + 2xy\left[x \cdot \left(-\frac{1}{x^{2}}\right)\right]$$

$$= (2xy)'\left(\log\frac{1}{x} - 1\right) - 2y$$

$$= 2\left[\left(y + xy^{1}\right)\left(\log\frac{1}{x} - 1\right) - y\right] < 0$$

So at $x = e^{-1/2}$ function is maximum.

Sol. (94-96)

$$f(\theta) = 4(\sin^2 \theta + \cos^4 \theta)$$

$$= 4(\sin^2 \theta + \cos^2 \theta(1 - \sin^2 \theta))$$

$$= 4(\sin^2 \theta + \cos^2 \theta - \sin^2 \theta \cos^2 \theta)$$

$$= 4\left(1 - \frac{1}{4}\sin^2 2\theta\right) \qquad [\because \sin 2\theta = 2\sin\theta\cos\theta]$$
94. (d) For maximum value of $f(\theta)$, $\sin^2 2\theta$ should be minimum

94. (d) For maximum value of $f(\theta)$, $\sin^2 2\theta$ should be minimum. i.e. $\sin^2 2\theta = 0$

$$f(\theta)|_{\max} = 4(1-0) = 4$$

96.

95. (d) For minimum value of $f(\theta)$, $\sin^2 2\theta$ should be maximum i.e. $\sin^2 2\theta = 1$.

$$f(\theta)|_{\min} = 4\left(1 - \frac{1}{4}(1)\right) = 4 \times \frac{3}{4} = 3$$

(c) $f(\theta) = 2$

$$4\left(1 - \frac{1}{4}\sin^2 2\theta\right) = 2$$

$$\Rightarrow 1 - \frac{1}{4}\sin^2 2\theta = \frac{2}{4} \qquad \Rightarrow -\frac{1}{4}\sin^2 2\theta = +\frac{1}{2} - 1$$

$$\Rightarrow -\frac{1}{4}\sin^2 2\theta = -\frac{1}{2} \qquad \Rightarrow \sin^2 2\theta = 2$$

$$\Rightarrow \sin 2\theta = \pm\sqrt{2}$$

Since sin θ cannot have value greater than 1 & less than -1.

Hence $f(\theta) = 2$ has no solution.

$$f(\theta) = \frac{7}{2}$$

$$4\left(1 - \frac{1}{4}\sin^2 2\theta\right) = \frac{7}{2}$$

$$\Rightarrow \left(1 - \frac{1}{4}\sin^2 2\theta\right) = \frac{7}{8} \qquad \Rightarrow -\frac{1}{4}\sin^2 2\theta = \frac{7}{8} - 1$$

$$\Rightarrow -\frac{1}{4}\sin^2 2\theta = -\frac{1}{8} \qquad \Rightarrow \sin^2 2\theta = \frac{1}{2}$$

$$\Rightarrow \sin 2\theta = \pm \frac{1}{\sqrt{2}} \qquad \Rightarrow \sin 2\theta = \pm \sin \frac{\pi}{4}$$

$$\Rightarrow \sin 2\theta = \sin (\pm \pi/4) \qquad \Rightarrow 2\theta = \pm \pi/4$$

$$\theta = (\pm)\frac{\pi}{8}$$

Hence $f(\theta) = \frac{7}{2}$ has a solution.

97. (b) $K \sin x + \cos 2x = 2K - 7$ $K \sin x + (1 - 2\sin^2 x) = (2K - 7)$ $2\sin^2 x - K \sin x + (2K - 8) = 0$ This is a quadratic equation in sin x.

89. (c)
$$f(x) = \left(\frac{1}{x}\right)^{2x^2}$$

 $f\left(e^{-\frac{1}{2}}\right) = \left(e^{\frac{1}{2}}\right)^{2xe^{-1}}$
 $= \left(e^{\frac{1}{2}}\right)^{\frac{2}{e}} = e^{\frac{1}{2}x^2} = e^{1/e}$
90. (c) $f'(x) = \frac{x^2}{2} - kx + 1$
 $f(0) = 0; f(3) = 15$
 $f(x) = \frac{1}{6}x^3 - \frac{k}{2}x^2 + x + c$
Putting $x = 0$
 $f(x) = \frac{x^3}{6} - \frac{k}{2}x^2 + x$
Putting $x = 3$
 $f(3) = \frac{(3)^3}{6} - \frac{k}{2}(3)^2 + 3$
 $15 = \frac{9}{2} - \frac{9}{2}k + 3 \implies k = -\frac{5}{3}$
91. (d) $\because f'(x) = \frac{x^2}{2} + \frac{5}{3}x + 1$
 $\implies f''(x) = x + \frac{5}{3}$
 $f''(x) = -6x^2 - 18x - 12$
for increasing function $f'(x) > 0$
 $\implies -(6x^2 + 18x + 12) > 0$
 $\implies (x^2 + 3x + 2) < 0$

 $x = (-\infty, -2) \cup (-1, \infty)$

 $\sin x = \frac{-(-K) \pm \sqrt{K^2 - 4(2)(2K - 8)}}{2 \times 2}$ For minimum value of K $\sin x = -1$ $\Rightarrow \frac{K \pm \sqrt{K^2 - 16K + 64}}{4} = -1$ $\Rightarrow (\pm)\sqrt{K^2 - 16K - 64} - K - 4$ Squaring both sides, we get $K^2 - 16K + 64 = K^2 + 16 + 8K$ $\Rightarrow 24K = 48 \Rightarrow K = 2$ (d) For maximum value of K98. $\sin x = 1$ $\frac{K \pm \sqrt{K^2 - 16K} + 64}{4} = 1$ $\Rightarrow (\pm)\sqrt{K^2 - 16K - 64} \quad (-K - 4)$ Squaring both sides, we get $K^2 - 16K + 64 = K^2 + 16 - 8K$ $\Rightarrow 8K = 48 \Rightarrow K = 6$ 99. (b) $f(x) = x^3 \sin x$ $f'(x) = 3x^2 \sin x + x^3 \cos x$ f'(x) = 0 $\Rightarrow 3x^2 \sin x + x^3 \cos x = 0$ $\Rightarrow x^2(3\sin x + x\cos x) = 0$ $\Rightarrow x = 0, 3\sin x + x\cos x = 0$...(1) Put x = 0 in (1) $3\sin x = 0 \Rightarrow \sin x = 0$ $f''(x) = 6x\sin x + 3x^2\cos x + 3x^2\cos x + x^3(-\sin x)$ f''(0) = 0So, f(x) has min. at x = 0. 100. (a) $\sin\left(x+\frac{\pi}{6}\right) + \cos\left(x+\frac{\pi}{6}\right)$ $=\sqrt{2}\left[\frac{1}{\sqrt{2}}\sin\left(x+\frac{\pi}{6}\right)+\frac{1}{\sqrt{2}}\cos\left(x+\frac{\pi}{6}\right)\right]$ $=\sqrt{2}\left[\sin\left(x+\frac{\pi}{6}\right)\cos\frac{\pi}{4}+\cos\left(x+\frac{\pi}{6}\right)\sin\frac{\pi}{4}\right]$ $=\sqrt{2}\left[\sin\left(x+\frac{\pi}{6}+\frac{\pi}{4}\right)\right]$ $[\because \sin(A + B) = \sin A \cos B + \cos A \sin B)$ $=\sqrt{2}\left[\sin\left(x+\frac{5\pi}{12}\right)\right]$ Given interval is $\left(0, \frac{\pi}{2}\right)$

For, maximum value $x + \frac{5\pi}{12} = \frac{\pi}{2}$

 $\Rightarrow x = \frac{\pi}{2} - \frac{5\pi}{12} = \frac{6\pi - 5\pi}{12} = \frac{\pi}{12}$

sin 3x increases in
$$\left[\frac{-\pi}{6}, \frac{\pi}{6}\right]$$

So, interval length $= \frac{\pi}{3}$
102. (a) We know, $-1 \le \sin x \le 1$
 $\Rightarrow 0 \le \sin^2 x \le 1$
 $\Rightarrow 0 \le \sin^2 x \le 1$
 $\Rightarrow 0 \le \sin^2 x \le 1$
 $\Rightarrow 0 \le 4\sin^2 x \le 4$
 $\Rightarrow 1 \le 4\sin^2 x + 1 \le 5$
103. (c) $f(x) = x + \frac{1}{x}$
For $x \in (0, 1), f'(x) < 0$
 $\Rightarrow f(x)$ decreases
104. (a) Statements (1), (2) are correct.
105. (a) $f(x) = x(x-1)(x+1) = x(x^2-1)$
Differentiating, we get
 $f'(x) = x(2x) + (x^2-1) = 2x^2 + x^2 - 1 = 3x^2 - 1$
Again differentiating
 $f''(x) = 6x$
At $f'(x) = 0 \Rightarrow 3x^2 - 1 = 0 \Rightarrow x^2 = \frac{1}{3} \Rightarrow x = \pm \frac{1}{\sqrt{3}}$.
Maximum value of $f(x) = f\left(\frac{-1}{\sqrt{3}}\right) = \frac{-1}{\sqrt{3}}\left(\left(\frac{-1}{\sqrt{3}}\right)^2 - 1\right)$
 $= \frac{-1}{\sqrt{3}}\left(\frac{1}{3} - 1\right) - \frac{-1}{\sqrt{3}}\left(\frac{-2}{3}\right) = \frac{2}{3\sqrt{3}}$
Minimum value of $f(x) = f\left(\frac{1}{\sqrt{3}}\right) - \frac{1}{\sqrt{3}}\left(\frac{1}{3} - 1\right) - \frac{-2}{3\sqrt{3}}$
106. (b) $f(x) = \frac{\ln x}{x^2} = \frac{1 - \ln x}{x^2}$
 $f'(x) = 0 \Rightarrow \frac{1 - \ln x}{x^2} = 0 \Rightarrow 1 - \ln x = 0$
 $\Rightarrow \ln x - 1 = x = c.$
107. (b) $f(x) = \sin x + \cos x$
We know, the maximum value of a sin x + b cos x is $\sqrt{a^2 - b^2}$.
 \therefore Maximum value of sin x + cos x is $\sqrt{1 - 1} - \sqrt{2}$.

101. (a) $f(x) = 3\sin x - 4\sin^3 x = \sin 3x$

Maximum value of $3 \sin x + 4 \cos x$ is $\sqrt{9 \cdot 16} = 5$

B→(3)
Maximum value of 2 sin x + cos x is
$$\sqrt{4+1} = \sqrt{5}$$

C→(4)
Maximum value of sin x + 3 cos x is $\sqrt{1+9} = \sqrt{10}$
D→(1)
108. (b) The capacity of the jar will be maximum if height and
radius of the cylinder are equal.
 \therefore height = radius(1)
Given diameter is k times the height of the jar.
Diameter = 2 × radius
= 2 × height(from (1))
 \therefore k = 2.
109. (a) Let $y = sin\left(x + \frac{\pi}{5}\right) + cos\left(x + \frac{\pi}{5}\right)$
 $\Rightarrow \frac{dy}{dx} = cos\left(x + \frac{\pi}{5}\right) - sin\left(x + \frac{\pi}{5}\right)$
for maximum value, $\frac{dy}{dx} = 0$.
 $\therefore cos\left(x + \frac{\pi}{5}\right) - sin\left(x + \frac{\pi}{5}\right) = 0$
 $\Rightarrow \frac{cos\left(x + \frac{\pi}{5}\right)}{sin\left(x + \frac{\pi}{5}\right)} = 1$
 $\Rightarrow cot\left(x + \frac{\pi}{5}\right) = cot\frac{\pi}{4}$
 $\Rightarrow x + \frac{\pi}{5} = \frac{\pi}{4}$
 $\Rightarrow x = \frac{\pi}{4} - \frac{\pi}{5} = \frac{5\pi - 4\pi}{20} = \frac{\pi}{20}$.
110. (c) f(0) = 16 sin $\theta - 12 sin^2\theta$
 $f'(\theta) = 16 cos \theta - 24 sin \theta = 0$
 $\Rightarrow cos \theta = 0$ (or) $16 - 24 sin \theta = 0$
 $\Rightarrow 0 = \frac{\pi}{2} (or) sin \theta = \frac{2}{3}$
 $f\left(\frac{\pi}{2}\right) = 16 sin \frac{\pi}{2} - 12 sin^2 \frac{\pi}{2} = 16 - 12 = 4$
 $f\left(sin \theta = \frac{2}{3}\right) = 16\left(\frac{2}{3}\right) - 12\left(\frac{2}{3}\right)^2$
 $= \frac{32}{3} - \frac{48}{9} = \frac{32}{3} - \frac{16}{3} = \frac{16}{3}$.
111. (a) $f(x) = x sin x + cos x + \frac{1}{2} cos^2x$
 $\Rightarrow f'(x) = x cos x + sin x - sin x cos x$
 $= cos x(x - sin x) > 0 in \left(0, \frac{\pi}{2}\right)$

112. (c)
$$\ell + 2r = 40$$

Area is maximum, when $\ell + 2r = 20 \Rightarrow r = 10$ 113. (a) $[x(x-1)+1]^{1/3}$ is minimum when $x^2 - x + 1$ is minimum, $0 \le x \le 1$ $x^2 - x + 1 = \left(x - \frac{1}{2}\right)^2 + \left(1 - \frac{1}{4}\right)$ $= \left(x - \frac{1}{2}\right)^2 + \frac{3}{4}$ \therefore minimum value of $x^2 - x + 1 = \frac{3}{4}$ \Rightarrow Required value $= \left(\frac{3}{4}\right)^{1/3}$ 114. (a) $y = (-\sin x)^{-x}$ $\frac{dy}{dx} = (-\sin)^{-x} \left[\frac{x}{\sin x}(-\cos x) + \log(-\sin x) \cdot (-1)\right]$ $\left[\frac{dy}{dx}\right]x = -\frac{\pi}{6} = \left(\frac{1}{2}\right)^{\pi/6} \left[-\frac{\pi}{6}\sqrt{3} - \log\frac{1}{2}\right]$ $= 2^{-\pi/6} \left(\frac{6\log 2 - \sqrt{3}\pi}{6}\right)$

115. (a) Volume of half cylinder with height 'l' and radius 'r'

$$=\frac{1}{2}\pi r^2 l \qquad \dots (1)$$

Surface area of half cylinder.

$$S = l \times 2r + 2\left(\frac{1}{2}\pi r^2\right) + 2\left(\frac{1}{2}\pi rl\right)$$

$$S = 2rl + \pi r^2 + \pi rl$$

$$S = \frac{4V}{\pi r} + \frac{\pi . 2V}{\pi r} + \pi r^2 \qquad \text{(from (1))}$$

$$\frac{ds}{dr} \Rightarrow \frac{-4V}{\pi r^2} - \frac{2V}{r^2} + 2\pi r = 0$$

$$\Rightarrow 2\pi r = \frac{4V}{\pi r^2} + \frac{2V}{r^2}$$

$$\Rightarrow 2\pi r = \frac{4.\pi r^2 l}{2\pi r^2} + \frac{2}{r^2} \cdot \frac{1}{2}\pi r^2 l$$

$$\Rightarrow \frac{l}{2r} = \frac{\pi}{\pi + 2}$$

Indefinite Integration

6.

- If $f(x) = \ln(x \sqrt{1 + x^2})$, then what is $\int f''(x) dx$ equal to? 1. [2006-I]
 - (a) $\frac{1}{(x-\sqrt{1+x^2})} + c$ (b) $-\frac{1}{\sqrt{1+x^2}} + c$ (c) $-\sqrt{1+x^2} + c$ (d) $\ln(x-\sqrt{1+x^2}) + c$
- If $\int \sec x \operatorname{cosec} x \, dx = \log |g(x)| + c$, then what is g(x) equal 2. to? [2006-II]
 - (b) $\sec^2 x$ (a) $\sin x \cos x$ (c) tan x (d) $\log |\tan x|$
- What is the value of $\int \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$? [2007-I] 3.

$$(a)\int \frac{[\{\tan^{-1}(x/a)\}/a - \{\tan^{-1}(x/b)\}/b]}{(a^2 + b^2)} + c$$

(b)
$$\int \frac{[\{\tan^{-1}(x/a)\}/a + \{\tan^{-1}(x/b)\}/b]}{(a^2 + b^2)} + c$$

(c)
$$\int \frac{[\{\tan^{-1}(x/a)\}/a + \{\tan^{-1}(x/b)\}/b]}{(b^2 - a^2)} + c$$

(d)
$$\int \frac{[\{\tan^{-1}(x/a)\}/a + \{\tan^{-1}(x/b)\}/b]}{(b^2 - a^2)} + c$$

4. What is the value of
$$\int (\sqrt{x} + x)^{-1} dx$$
? [2007-I]

(a) In
$$(x + \sqrt{x}) + c$$
 (b) $2\ln(1 + \sqrt{x}) + c$

- (c) $2\ln(x + \sqrt{x}) + c$ (d) $2\ln(x \sqrt{x}) + c$
- What is the value of $\int \frac{e^x(1+x)}{\sin^2(xe^x)} dx$? 5. [2007-II]
 - (a) $-e^x \cot x + c$
 - (b) $\cos^2(x e^x) + c$
 - (c) $\log \sin (x e^x) + c$
 - (d) $-\cot(x e^{x}) + c$

	(a)	$x \log(x+1) - x + c$	(b)	$(x+1) \log (x+1)$	+1) - x + c
	(c)	$\frac{1}{x+1}+c$	(d)	$\frac{\log(x+1)}{x+1} + c$	[2008-I]
7.	If ∫	$\frac{dx}{f(x)} = \log \{ f(x) \}^2 + c,$	then	what is $f(x)$ equ	ual to ?
	(a)	$2x + \alpha$	(b)	$x + \alpha$	
	(c)	$\frac{x}{2} + \alpha$	(d)	$x^{2}+\alpha$	[2008-I]
8.	Wh	at is $\int (e^x + 1)^{-1} dx$ equa	l to?		[2008-II]
	(a)	$\ln\left(e^x+1\right)+c$	(b)	$\ln\left(e^{-x}+1\right)+c$	•
	(c)	$-\ln\left(e^{-x}+1\right)+c$	(d)	$-(e^x+1)+c$	
9.	Wh	at is $\int \frac{d\theta}{\sin^2 \theta + 2\cos^2 \theta}$	-1 eq	ual to?	[2008-II]
	(a)	$\tan \theta + c$	(b)	$\cot \theta + c$	
	(c)	$\frac{1}{2}\tan\theta + c$	(d)	$\frac{1}{2}\cot\theta + c$	
10.	Wh	at is $\int \sin x \log(\tan x) dx$	equ	al to?	[2008-II]
	(a) (b)	$\cos x \log \tan x + \log \tan x$	(x/2)	() + c (2) + c	

 $-\cos x \log \tan x + \log \tan (x/2) + c$ (D)

What is $\int \log (x+1) dx$ is equal to?

- (c) $\cos x \log \tan x + \log \cot (x/2) + c$
- (d) $-\cos x \log \tan x + \log \cot (x/2) + c$

DIRECTION (Q. 11) : The following item consists of two statements, one labelled the Assertion (A) and the other labelled the Reason (R). You are to examine these two statements carefully and decide if the Assertion (A) and Reason (R) are individually true and if so, whether the reason is a correct explanation of the Assertion. Select your answer using the codes given below.

- 11. Assertion (A): $\int \frac{e^x}{x} (1 + x \log x) dx + c = e^x \log x$ **Reason (R):** $\int e^{x} [f(x) + f'(x)] dx = e^{x} f(x) + c$ [2009-I]
 - (a) Both A and R are true and R is the correct explanation of A
 - (b) Both A and R are true but R is not the correct explanation of A
 - A is true but R is false (c)
 - A is false but R is true (d)

12. What is
$$\int \tan^2 x \sec^4 x \, dx$$
 equal to? [2009-I]
(a) $\frac{\sec^5 x}{5} + \frac{\sec^3 x}{3} + c$ (b) $\frac{\tan^5 x}{5} + \frac{\tan^3 x}{3} + c$
(c) $\frac{\tan^5 x}{5} + \frac{\sec^3 x}{3} + c$ (d) $\frac{\sec^5 x}{5} + \frac{\tan^3 x}{3} + c$
13. What $\int \sec x^o dx$ is equal to? [2009-I]
(a) $\log(\sec^o + \tan x^o) + c$
(b) $\frac{\pi \log \tan\left(\frac{\pi}{4} + \frac{\pi}{2}\right)}{180^o} + c$
(c) $\frac{180^o \log \tan\left(\frac{\pi}{4} + \frac{x}{2}\right)}{\pi} + c$
(d) $\frac{180^o \log \tan\left(\frac{\pi}{4} + \frac{x}{360^o}\right)}{\pi} + c$
14. What is $\int \frac{a - b \sin x}{\cos^2 x} \, dx$ equal to? [2009-II]
(a) $a \sec x + b \tan x + c$ (b) $a \tan x + b \sec x + c$
(c) $a \cot x + b \csc x + c$ (d) $a \csc x + b \cot x + c$
15. What is $\int \frac{\log x}{1 - \log x^2} \, dx$ equal to? [2009-II]
(a) $\frac{1}{1 - \log x^3} - c$ (b) $\frac{1}{1 - \log x^2} - c$
(c) $\frac{x}{1 - \log x} - c$ (d) $\frac{x}{1 - \log x^2} - c$
Where c is a constant.

16. What is $\int e^{\ln x} \sin x \, dx$ equal to? [2010-1] (a) $e^{\ln x} (\sin x - \cos x) + c$ (b) $(\sin x - x \cos x) + c$ (c) $(x \sin x + \cos x) + c$ (d) $(\sin x + x \cos x) - c$ Where 'c' is a constant of integration.

17. What is
$$\int \frac{x^4 + 1}{x^2 + 1} dx$$
 equal to? [2010-I]
(a) $\frac{x^3}{3} - x + 4 \tan^{-1} x + c$ (b) $\frac{x^3}{3} + x + 4 \tan^{-1} x + c$
(c) $\frac{x^3}{3} - x + 2 \tan^{-1} x + c$ (d) $\frac{x^3}{3} - x - 4 \tan^{-1} x + c$
Where 'c' is a constant of integration.

18. If $\int x^2 \ln x \, dx = \frac{x^3}{m} \ln x + \frac{x^3}{n} + c$, then what are the values of *m* and *n* respectively? [2010-I]

- (a) $\frac{1}{3}, -\frac{1}{9}$ (b) 3, -9
- (c) 3,9 (d) 3,3
- where c is a constant of integration.

19. What is $\int \frac{1}{1+e^x} dx$ equal to? [2010-I] (a) $x - \log x + c$ (b) $x - \log (\tan x) + c$ (c) $x - \log (1+e^x) + c$ (d) $\log (1+e^x) + c$ where c is a constant of integration. 20. What is $\int \sqrt{x} e^{\sqrt{x}} dx$ equal to? [2010-II] (a) $2e^{\sqrt{x}} (x - 2\sqrt{x} + 2) + c$ (b) $2e^{\sqrt{x}} (x + 2\sqrt{x} + 2) + c$ (c) $2e^{\sqrt{x}} (x + 2\sqrt{x} - 2) + c$ (d) $2e^{\sqrt{x}} (x - 2\sqrt{x} - 2) + c$

Where 'c' is a constant of integration.

21. What is $\int \sec^n x \tan x dx$ equal to ? [2010-II]

(a)
$$\frac{\sec^n x}{n} + c$$
 (b) $\frac{\sec^{n-1} x}{n-1} + c$

(c)
$$\frac{\tan^n x}{n} + c$$
 (d) $\frac{\tan^{n-1} x}{n-1} + c$

Where 'c' is a constant of integration.

22. What is
$$\int \frac{e^x (1+x)}{\cos^2 (xe^x)} dx$$
 equal to? [2010-II]

(a)
$$xe^{x} + c$$

(b) $\cos(xe^{x}) + c$
(c) $\tan(xe^{x}) + c$
(d) $x \csc(xe^{x}) + c$

Where c is a constant of integration.

23. What is
$$\int e^x \left(\sqrt{x} + \frac{1}{2\sqrt{x}}\right) dx$$
 equal to [2011-I]
(a) $xe^x + C$ (b) $e^x \left(\sqrt{x}\right) + C$

(c)
$$2e^{x}(\sqrt{x}) + C$$
 (d) $2xe^{x} + C$

(where C is a constant of integration.)

24. What is
$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$$
 equal to? [2011-I]
(a) $\frac{\cos \sqrt{x}}{2} + C$ (b) $2\cos \sqrt{x} + C$
(c) $\frac{-\cos \sqrt{x}}{2} + C$ (d) $-2\cos \sqrt{x} + C$

Indefinite Integration

(c) x + c

where c is constant of integration.

25. What is
$$\int \sin^{-1}(\cos x) dx equal to ? [2011-1]$$

(a) $\frac{x\pi}{2} - \frac{x^2}{2} + K$ (b) $\frac{\pi}{2} + \frac{x^2}{2} + K$
(c) $-\frac{x\pi}{2} - \frac{x^2}{2} + K$ (d) $\frac{\pi}{2} - \frac{x^2}{2} + K$
(e) $-\frac{x\pi}{2} - \frac{x^2}{2} + K$ (d) $\frac{\pi}{2} - \frac{x^2}{2} + K$
(e) $(-\frac{x\pi}{2} - \frac{x^2}{2} + K$ (f) $\frac{\pi}{2} - \frac{x^2}{2} + K$
(f) Where K is a constant of integration.
26. What is $\int \frac{dx}{\sin^2 x \cos^2 x}$ equal to? [2011-1]
(a) $\tan x + \cot x + c$ (b) $\tan x - \cot x + c$
(c) $(\tan x + \cot x)^2 + c$ (d) $(\tan x - \cot x)^2 + c$
(e) $(\tan x + \cot x)^2 + c$ (d) $(\tan x - \cot x)^2 + c$
(f) $(\tan x + \cot x)^2 + c$ (d) $(\tan x - \cot x)^2 + c$
(g) $1 - \int \ln 10 dx = x + c$ 2 $\int 10^x dx = 10^x + c$
(g) $1 - 0 \ln y$ (b) 2 only
(e) Both 1 and 2 (d) Neither 1 nor 2
28. What is $\int (x^2 + 1)^{\frac{7}{2}} + c$ (d) None of the above
where c is a constant of integration.
29. What is $\int a^x e^x dx$ equal to ? [2012-1]]
(a) $\frac{a^x e^x}{\ln a} - c$ (b) $\frac{2}{7}(x^2 + 1)^{\frac{7}{2}} + c$
30. What is $\int \frac{\ln x}{x} dx$ equal to ? [2012-1]]
(a) $\frac{e^x}{\ln a} - c$ (b) $\frac{2}{7}(x^2 + 1)^{\frac{7}{2}} + c$
31. What is $\int \frac{\ln x}{x} dx$ equal to ? [2012-1]]
(a) $\frac{e^x e^x}{\ln a} - c$ (b) $\frac{e^x}{2} e^x + c$
(c) $\frac{1}{7}(x^2 + 1)^{\frac{7}{2}} + c$ (d) None of the above
where c is the constant of integration.
30. What is $\int \frac{\ln x}{x} dx$ equal to ? [2012-1]]
(a) $\frac{e^x e^x}{\ln a} - c$ (b) $\frac{e^x}{2} e^x + c$
(c) $(\pi x)^2 + c$ (d) None of the above
where c is the constant of integration.
30. What is $\int \frac{\ln x}{x} dx$ equal to ? [2012-1]]
(a) $\frac{e^x e^x}{\ln a} - c$ (b) $\frac{e^x}{2} - c$
(c) $(\pi x)^2 + c$ (d) None of the above
where c is the constant of integration.
31. What is $\int \frac{\ln x^2}{2} - c$ (b) $\frac{e^x}{2} + c$
(c) $(\pi x)^2 + c$ (d) None of the above
where c is the constant of integration.
32. What is $\int e^{4\pi x} dx$ equal to ? [2012-1]]
(a) $xe^{6\pi x} + c$ (b) $-2 \cot 2x + c$
(b) $-2 \cot 2x + c$
(c) -122
(c) $(\pi x)^2 + c$ (d) None of the above
where c is the constant of integration.
32. What is $\int e^{6\pi x} dx$ equal to ? [2013-1]]
(a) $xe^{6\pi x} + c$ (b) $-2 \cot 2x + c$
(b) $-2 \cot 2x + c$

(a) ln (ln x) + c(c) $(ln x)^2 + c$

(a)
$$\tan x - \frac{\tan^3 x}{3} + 4x$$
 (b) $\tan x - \frac{\tan^3 x}{3} + 4x$
(c) $\tan x - \frac{\sec^3 x}{3} + 4x$ (d) $-\tan x - \frac{\tan^3 x}{3} + 4x$

[2013-I]

[2013-II]

[2013-II]

[2013-II]

[2013-II]

[2014-I]

[2014-II]

[2014-II]

(b) $\ell n x + c$

(d) None of the above

42. What is f(x) equal to ?

(a)
$$\frac{2\ln\sec x}{3} + \frac{\tan^2 x}{6} + 2x^2$$

(b)
$$\frac{3\ln\sec x}{2} + \frac{\cot^2 x}{6} + 2x^2$$

(c) $\frac{4\ln\sec x}{3} + \frac{\sec^2 x}{6} + 2x^2$

(d)
$$\ln \sec x + \frac{\tan^4 x}{12} + 2x^2$$

43. What is
$$\int \frac{xe^{x} dx}{(x+1)^{2}}$$
 equal to? [2015-I]
(a) $(x+1)^{2}e^{x}+c$ (b) $(x+1)e^{x}+c$
(c) $\frac{e^{x}}{x+1}+c$ (d) $\frac{e^{x}}{(x+1)^{2}}+c$

where *c* is the constant integration.

DIRECTIONS (Qs. 44-45): For the next two (2) items that follow.

The integral $\int \frac{dx}{a\cos x + b\sin x}$ is of the form $\frac{1}{r} \ln \left[\tan \left(\frac{x + \alpha}{2} \right) \right]$. 44. What is *r* equal to? [2015-I] (a) $a^2 + b^2$ (b) $\sqrt{a^2 + b^2}$ (c) a + b (d) $\sqrt{a^2 - b^2}$ 45. What is α equal to? (a) $\tan^{-1} \left(\frac{a}{b} \right)$ (b) $\tan^{-1} \left(\frac{b}{a} \right)$

(c)
$$\tan^{-1}\left(\frac{a+b}{a-b}\right)$$
 (d) $\tan^{-1}\left(\frac{a-b}{a+b}\right)$

46. What is
$$\int \frac{dx}{\sqrt{x^2 + a^2}}$$
 equal to? [2015-I]

(a)
$$\ln \left| \frac{x + \sqrt{x^2 + a^2}}{a} \right| + c$$
 (b) $\ln \left| \frac{x - \sqrt{x^2 + a^2}}{a} \right| + c$
(c) $\ln \left| \frac{x^2 + \sqrt{x^2 + a^2}}{a} \right| + c$ (d) None of these

(c)
$$\ln \left| \frac{x^2 + \sqrt{x^2 + a^2}}{a} \right| + c$$
 (d) None of these

where *c* is the constant of integration.

47. What is
$$\int \frac{x^4 - 1}{x^2 \sqrt{x^4 + x^2 + 1}} dx$$
 equal to? [2016-II]

(a)
$$\sqrt{\frac{x^4 + x^2 + 1}{x}} + c$$
 (b) $\sqrt{x^4 + 2 - \frac{1}{x^2}} + c$

(c)
$$\sqrt{x^2 + \frac{1}{x^2} + 1} + c$$
 (d) $\sqrt{\frac{x^4 - x^2 + 1}{x}} + c$

NDA Topicwise Solved Papers - MATHEMATICS

48. What is
$$\int e^{\sin x} \frac{x \cos^3 x - \sin x}{\cos^2 x} dx$$
 equal to? [2016-II]
(a) x sec x $e^{\sin x}$ c (b) x - sec x $e^{\sin x}$ c
(c) x tan x $e^{\sin x}$ c (d) x - tan x $e^{\sin x}$ c
49. What is $\int \frac{dx}{x(x^7+1)}$ equal to? [2017-I]
 $1 \ln |x^7-1| + c$ $1 \ln |x^7-1| = c$

(a)
$$\frac{1}{2} \ln \left| \frac{x^7 + 1}{x^7 + 1} \right|^{+c}$$
 (b) $\frac{1}{7} \ln \left| \frac{x^7}{x^7} \right|^{-c}$
(c) $\ln \left| \frac{x^7 - 1}{7x} \right|^{+c}$ (d) $\frac{1}{7} \ln \left| \frac{x^7}{x^7 + 1} \right|^{+c}$
 $\left(x^{e-1} + e^{x-1} \right) dx$

50. What is
$$\int \frac{(x^{e} + e^{x})dx}{x^{e} + e^{x}}$$
 equal to? [2017-I]

(a)
$$\frac{x^2}{2} + c$$
 (b) In $(x + e) + c$

(c)
$$\ln (x^e + e^x) + c$$
 (d) $\frac{1}{e} \ln (x^e + e^x) + c$

- 51. Let f(x) be an indefinite integral of $\sin^2 x$. Consider the following statements : [2017-I] Statement 1 : The function f(x) satisfies $f(x + \pi) = f(x)$ for all real x. Statement 2 : $\sin^2(x + \pi) = \sin^2 x$ for all real x. Which one of the following is correct in respect of the above statements?
 - (a) Both the statements are true and Statement 2 is the correct explanation of Statement 1
 - (b) Both the statements are true but Statement 2 is not the correct explanation of Statement 1
 - (c) Statement 1 is true but Statement 2 is false
 - (d) Statement 1 is false but Statement 2 is true

52. What is
$$\int \tan^{-1} (\sec x + \tan x) dx$$
 equal to? [2017-II]

(a)
$$\frac{\pi x}{4} + \frac{x^2}{4} + c$$
 (b) $\frac{\pi x}{2} + \frac{x^2}{4} + c$
(c) $\frac{\pi x}{4} - \frac{\pi x^2}{4} - c$ (d) $\frac{\pi x}{4} - \frac{x^2}{4} + c$

53.
$$\int (\ln x)^{-1} dx - \int (\ln x)^{-2} dx \text{ is equal to} \qquad [2017-II]$$

(a) $x (\ln x)^{-1} + c$ (b) $x (\ln x)^{-2} + c$
(c) $x (\ln x) + c$ (d) $x (\ln x)^{2} + c$

54. What is
$$\int \frac{dx}{2^x - 1}$$
 equal to? [2018-1]

с

(a)
$$ln(2^{x}-1)+c$$
 (b) $\frac{ln 1-2^{-x}}{ln 2}$

(c)
$$\frac{\ln 2^{-x} - 1}{2 \ln 2}$$
 c (d) $\frac{\ln 1 2^{-x}}{\ln 2}$ c

Indefinite Integration

55. What is
$$\int \sin^3 x \cos x \, dx \, equal to?$$
 [2018-II]
(a) $\cos^4 x + c$ (b) $\sin^4 x + c$
(c) $\frac{1 - \sin^2 x^2}{4}$ c (d) $\frac{1 - \cos^2 x^2}{4}$ c (d) None of these
(e) $\frac{1 - \sin^2 x^2}{4}$ c (f) $\frac{1 - \cos^2 x^2}{4}$ c (f) None of these
(g) $\frac{1 - \sin^2 x}{4}$ c (g) None of these
(g) None of these
(g) None of these
(g) $2x \ln(x) - 2x + c$ (g) $\frac{2}{x} + c$
(g) $2x \ln(x) - 2x + c$ (g) $\frac{2}{x} + c$
(g) $2x \ln(x) - 2x + c$ (g) $\frac{2 \ln(x)}{x} - 2x + c$
(g) $2x \ln(x) + c$ (g) $\frac{2 \ln(x)}{x} - 2x + c$
(g) $2x \ln(x) + c$ (g) $\frac{2 \ln(x)}{x} - 2x + c$
(g) $2x \ln(x) + c$ (g) $\frac{2 \ln(x)}{x} - 2x + c$
(g) $2x \ln(x) + c$ (g) $\frac{2 \ln(x)}{x} - 2x + c$
(g) $2x \ln(x) + c$ (g) $\frac{2 \ln(x)}{x} - 2x + c$
(g) $2x \ln(x) + c$ (g) $\frac{2 \ln(x)}{x} - 2x + c$
(g) $2x \ln(x) + c$ (g) $\frac{2 \ln(x)}{x} - 2x + c$
(g) $\frac{a^x}{\ln(a)} + c$ (g) $\frac{a^x}{\ln(a)} + c$
(g) $\frac{a^x}{\ln(a)} + c$ (g) $\frac{a^x}{\ln(a)} + c$
(g) $\frac{a^x}{\ln(a)} + c$ (g) $\frac{ae^x}{\ln(a)} + c$
(g) $\frac{e^x}{\ln(ae)} + c$ (g) $\frac{ae^x}{\ln(a)} + c$
(h) $\frac{ae^x}{\ln(a)} + c$
(h)

	ANSWER KEY																		
1	(b)	7	(c)	13	(a)	19	(c)	25	(a)	31	(a)	37	(a)	43	(c)	49	(d)	55	(d)
2	(c)	8	(c)	14	(b)	20	(a)	26	(b)	32	(d)	38	(c)	44	(b)	50	(d)	56	(b)
3	(d)	9	(a)	15	(c)	21	(a)	27	(d)	33	(a)	39	(b)	45	(a)	51	(b)	57	(a)
4	(b)	10	(b)	16	(b)	22	(c)	28	(c)	34	(a)	40	(c)	46	(a)	52	(a)	58	(a)
5	(d)	11	(b)	17	(c)	23	(b)	29	(c)	35	(a)	41	(b)	47	(c)	53	(a)	59	(a)
6	(b)	12	(b)	18	(b)	24	(d)	30	(a)	36	(a)	42	(a)	48	(b)	54	(b)		

HINTS & SOLUTIONS

1. (b) Given that $f(x) = \ln(x - \sqrt{1 + x^2})$

 $\int f''(x) dx \quad f'(x) \quad c \qquad \text{where c is a constant} \qquad 3.$

$$= \frac{1}{(x - \sqrt{1 + x^{2}})} \cdot \left(1 - \frac{2x}{2\sqrt{1 + x^{2}}}\right) + c$$
$$= \frac{-(x - \sqrt{1 + x^{2}})}{(\sqrt{1 + x^{2}})(x - \sqrt{1 + x^{2}})} + c = -\frac{1}{\sqrt{1 + x^{2}}} + c$$

2. (c) Let I =
$$\int \sec x \cdot \csc x \, dx = \int \frac{2}{2 \sin x \cos x} dx$$

$$= 2\int \frac{1}{\sin 2x} dx = 2\int \frac{1}{\frac{2\tan x}{1+\tan^2 x}} \left[\because \sin 2x = \frac{2\tan x}{1+\tan^2 x} \right]$$
$$= \int \frac{\sec^2 x}{\tan x} dx$$

Let
$$\tan x = t \Rightarrow \sec^2 dx = dt$$

So, $I = \int \frac{dt}{t} = \log |t| + c = \log |\tan x| + c$
 $g(x) = \tan x$

But $\int \sec x \operatorname{cosec} x \, dx = \log |g(x)| + c$ $\therefore g(x) = \tan x$

(d) The given integral is $\int \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$

Breaking the expression under integral into partial fraction

$$\frac{1}{(x^{2} + a^{2})(x^{2} + b^{2})}$$

$$= \left(\frac{1}{(x^{2} + a^{2})} - \frac{1}{(x^{2} + b^{2})}\right) \times \frac{1}{b^{2} - a^{2}}$$
The given integral is
$$\frac{1}{(b^{2} - a^{2})} \int \left(\frac{1}{(x^{2} + a^{2})} - \frac{1}{(x^{2} + b^{2})}\right) dx$$

$$= \frac{1}{(b^{2} - a^{2})} \int \left[\frac{1}{x^{2} + a^{2}} dx - \int \frac{1}{x^{2} + b^{2}} dx\right]$$

$$= \frac{1}{(b^{2} - a^{2})} \left\{\frac{\tan^{-1}\left(\frac{x}{a}\right)}{a} - \frac{\tan^{-1}\left(\frac{x}{b}\right)}{b}\right\} + c$$

10.

11.

12.

4. (b)
$$\int (x + \sqrt{x})^{-1} dx = \int \frac{1}{(x + \sqrt{x})} dx$$
$$= \int \frac{1}{(\sqrt{x} + \sqrt{x})} dx = \int \frac{1}{(\sqrt{x} + \sqrt{x})} dx$$
Let $\sqrt{x} + 1 = t$
then, $\frac{1}{2\sqrt{x}} dx = dt \Rightarrow \frac{1}{\sqrt{x}} dx = 2dt$
$$\therefore \int \frac{1}{\sqrt{x}(\sqrt{x} + 1)} dx = \int \frac{2dt}{t} = 2 \log t + c$$
$$= 2 \log (1 + \sqrt{x}) + c$$
5. (d) Let the given integral be
$$I = \int \frac{e^{x}(1 + x)}{\sin^{2}(xe^{x})} dx$$
Put $x e^{x} = t \text{ and } e^{x}(1 + x) dx = dt$
$$\Rightarrow I = \int \frac{dt}{\sin^{2}t} = \int \csc^{2}t dt$$
$$= -\cot t c = -\cot (x e^{x}) + c$$
6. (b) Let $I = \int \log(x + 1) dx$
Let $x + 1 = t$
$$\Rightarrow dx = dt$$
$$\Rightarrow I = \int 1 \log(x + 1) dx$$
Let $x + 1 = t$
$$\Rightarrow dx = dt$$
$$\Rightarrow I = \int 1 \log t dt$$
Integrating by parts, taking log t as first function
$$\Rightarrow I = t \log t - \int \frac{1}{t} dt + c_{1} = t \log t - t + cI$$
$$= (x + 1) \log (x + 1) - x - 1 + c_{1}$$
$$= (x + 1) \log (x + 1) - x - 1 + c_{1}$$
$$= (x + 1) \log (x + 1) - x - 1 + c_{1}$$
$$= (x + 1) \log (x + 1) - x - 1 + c_{1}$$
$$= (x + 1) \log (x + 1) - x + c$$
[$\because c = c_{1} - I$]
7. (c) We check from the given options one by one. Options
(a) and (b) do not satisfy. We check option (c).
Let $f(x) = \frac{x}{2} + \alpha$
$$\therefore \int \frac{dx}{2} + \alpha} = \int \frac{2dx}{(x + 2\alpha)}$$
$$= 2 \log (x + 2\alpha) + c_{1} = \log (x + 2\alpha)^{2} + c_{1}$$
$$= \log \left(\frac{x}{2} + \alpha\right)^{2} + \log 2^{2} + c_{1} = \log \left(\frac{x}{2} + \alpha\right)^{2} + c$$

8. (c) Let $I = \int (e^{x} + 1)^{-1} dx = \int \frac{1}{e^{x} + 1} dx = \int \frac{e^{-x}}{1 + e^{-x}} dx$ Let $1 + e^{-x} = t \Rightarrow -e^{-x} dx = dt$
$$\therefore I = -\int \frac{1}{t} dt = -\log t + c = -\log (1 + e^{-x}) + c$$

9. (a) Let $I = \int \frac{d\theta}{\sin^{2} \theta + 2\cos^{2} \theta - 1} = \int \frac{d\theta}{\cos^{2} \theta}$
$$= \int \sec^{2} \theta d\theta = \tan \theta + c$$

(b)
$$\int \sin x \log(\tan x) dx$$

$$= -\cos x \log \tan x - \int (-\cos x) \frac{1}{\tan x} \sec^2 x dx$$

$$= -\cos x \log(\tan x) + \int \frac{1}{\sin x} dx$$

$$= -\cos x \log(\tan x) + \int \frac{1 + \tan^2 \frac{x}{2}}{2 \tan \frac{x}{2}} dx$$

Let $t = \tan \frac{x}{2}$

$$\Rightarrow \frac{dx}{dt} = \frac{2}{1+t^2} \Rightarrow dx = \frac{2}{1+t^2} \cdot dt$$

So, $-\cos x \cdot \log(\tan x) + \int \frac{1 + \tan^2 \frac{x}{2}}{2 \tan \frac{x}{2}} \cdot dx$

$$= -\cos x \cdot \log(\tan x) + \int \frac{1+t^2}{2t} \cdot \frac{2}{1+t^2} \cdot dt$$

$$= -\cos x \log(\tan x) + \int \frac{1+t^2}{2t} \cdot \frac{2}{1+t^2} \cdot dt$$

$$= -\cos x \log(\tan x) + \int \frac{1}{t} dt$$

$$= -\cos x \log(\tan x) + \log(t) + c$$

$$= -\cos x \log(\tan x) + \log(t) + c$$

$$= -\cos x \log(\tan x) + \log(t) + c$$

$$= -\cos x \log(\tan x) + \log(t) + c$$

(b) (A) Consider $\int \frac{e^x}{x} (1 + x \log x) dx$

$$= \int \frac{e^x}{x} dx + \int e^x \log x dx + \int e^x \log x dx = e^x \log x$$

(R) $\int e^x [f(x) + f'(x)] dx$

$$= \int e^x f(x) dx + \int e^x f'(x) dx = e^x f(x) + c$$

Both A and R are true but R is not the correct explanation of A.
(b) Let $I = \int \tan^2 x \sec^4 x dx$
Let $\tan x = t$

$$\Rightarrow \sec^2 x dx = dt$$

 $\therefore I = \int \tan^2 x \sec^2 x \sec^2 x dx$

$$= \int \tan^2 x(1 + \tan^2 x) \sec^2 x dx$$

$$= \int \tan^2 x(1 + \tan^2 x) \sec^2 x dx$$

$$= \int \tan^2 x(1 + \tan^2 x) \sec^2 x dx$$

$$= \int \tan^2 x(1 + \tan^2 x) \sec^2 x dx$$

$$= \int \tan^2 x(1 + \tan^2 x) \sec^2 x dx$$

$$= \int \tan^2 x(1 + \tan^2 x) \sec^2 x dx$$

$$= \int \tan^2 x(1 + \tan^2 x) \sec^2 x dx$$

$$= \int \tan^2 x(1 + \tan^2 x) \sec^2 x dx$$

Indefinite Integration

13. (a)
$$\int \sec x^{\circ} \cdot dx = \int \frac{\sec x^{\circ} \cdot (\sec x^{\circ} + \tan x^{\circ})}{\sec x^{\circ} + \tan x^{\circ}} \cdot dx$$

Let $u = \sec x^{\circ} + \tan x^{\circ}$
 $\Rightarrow \frac{du}{dx} = \sec x^{\circ} + \tan x^{\circ} + \sec^{2} x^{\circ}$
 $\Rightarrow du = (\sec x^{\circ} \times \tan x^{\circ} + \sec^{2} x^{\circ}) \cdot dx$
 $\therefore \int \frac{\sec x^{\circ} \cdot (\sec x^{\circ} + \tan x^{\circ})}{\sec x^{\circ} + \tan x^{\circ}} dx$
 $= \int \frac{\sec^{2} x^{\circ} + \sec x^{\circ} \cdot \tan x^{\circ}}{\sec x^{\circ} + \tan x^{\circ}} \cdot dx$
 $= \int \frac{du}{u} = \log(u) + C = \log(\sec x^{\circ} + \tan x^{\circ}) + C$
14. (b) Consider $\int \frac{a \cdot b \sin x}{\cos^{2} x} dx = \int \left(\frac{a}{\cos^{2} x} - \frac{b \sin x}{\cos^{2} x}\right) dx$
 $= \int (a \sec^{2} x + b \tan x \sec x) dx = a \tan x + b \sec x + c$
15. (c) Let $I = \int \frac{\log x}{(1 + \log x)^{2}} dx$

Put
$$\log x = t \Rightarrow \frac{1}{x} dx$$
 dt
 $\Rightarrow dx = x \cdot dt \Rightarrow dx = e^t \cdot dt$ $(\because x = e^t)$
 $I = \int \frac{e^t t}{(1+t)^2} dt = \int \frac{e^t \cdot (t+1-1)}{(1+t)^2} dt$
 $\int \frac{e^t (1-t)}{(1-t)^2} dt - \int \frac{e^t}{(1-t)^2} dt = \int \frac{e^t}{1+t} dt - \int \frac{e^t}{(1+t)^2} dt$
 $= \frac{e^t}{1+t} - \int -e^t \frac{1}{(1+t)^2} dt - \int \frac{e^t}{(1+t)^2} dt$
 $= \frac{e^t}{1-t} \int e^t \frac{1}{(1-t)^2} dt - \int \frac{e^t}{(1-t)^2} dt$
 $= \frac{e^t}{1+t} + c = \frac{x}{1+\log x} + c$
16. (b) Let I = $\int e^{\ln x} \sin x \, dx = \int x \sin x \, dx \, (\because e^{\log a} = a)$

 $= -x \cos x + \int 1 \cos x \, dx = (\sin x - x \cos x) + c$

17. (c)
$$\int \frac{x^4 + 1}{x^2 + 1} dx = \int \frac{x^4 + 2 - 1}{x^2 + 1} dx = \int \left(\frac{x^4 - 1}{x^2 + 1} + \frac{2}{x^2 + 1} \right) dx$$
$$= \int \left[\frac{(x^2 - 1)(x^2 + 1)}{x^2 + 1} + \frac{2}{x^2 + 1} \right] dx$$
$$= \int \left(x^2 - 1 + \frac{2}{x^2 + 1} \right) dx = \frac{x^3}{3} - x + 2 \tan^{-1} x + c$$
18. (b)
$$\int x^2 \ln x \, dx = \ln x \frac{x^3}{3} - \int \frac{1}{x} \frac{x^3}{3} \, dx$$
$$= \frac{x^3}{3} \ln x - \int \frac{x^2}{3} \, dx = \frac{x^3}{3} \ln x - \frac{1}{3} \frac{x^3}{3} + c$$

$$= \frac{x^3}{3} \ln x - \frac{x^3}{9} + c \qquad(1)$$

But $\int x^2 \ln x \, dx = \frac{x^3}{m} \ln x + \frac{x^3}{n} + c$
On comparing with (1), we get
 $m = 3$ and $n = -9$
19. (c) $\int \frac{1}{1 + e^x} dx = \int \frac{1}{e^x \left(1 + \frac{1}{e^x}\right)} \, dx = \int \frac{e^{-x}}{e^{-x} + 1} \, dx$
Put $1 + e^{-x} = t$
 $-e^{-x} \, dx = dt$
 $\therefore \quad \int \frac{e^{-x}}{1 + e^{-x}} \, dx = -\int \frac{dt}{t} = -\log t + c$

$$\int \frac{e^{-x}}{1 + e^{-x}} dx = -\int \frac{dt}{t} = -\log t + c$$

= $-\log(1 + e^{-x}) + c$
= $-\log\left(\frac{1 - e^x}{e^x}\right) - c = x - \log(1 + e^x) + c$
($\because \log e^x = x$)

20. (a) Let
$$I = \int \sqrt{x} e^{\sqrt{x}} dx$$

Put, $\sqrt{x} = t$
Differentiate both side w.r.t (t)
 $\Rightarrow \frac{1}{2\sqrt{x}} dx = dt \Rightarrow dx = 2t dt$
 $\therefore I = \int te^t 2t dt = 2\int t^2 e^t dt$
By parts, let first function = t^2 and second function
 $= e^t$.
 $= 2\left[t^2e^t - \int 2t e^t dt\right] = 2\left[t^2e^t - 2\{te^t - \int e^t dt\}\right]$
 $= 2\left[t^2e^t - 2t e^t + 2e^t\right] + c$
where c is a constant of integration.
 $= 2[xe^{\sqrt{x}} - 2\sqrt{x}e^{\sqrt{x}} + 2e^{\sqrt{x}}] + c$
 $= 2e^{\sqrt{x}}(x - 2\sqrt{x} + 2) + c$

21. (a) Let $I = \int \sec^n x \tan x dx$.

Put, sec
$$x = t \Rightarrow \sec x \tan x dx = dt \Rightarrow dx = \frac{dt}{t}$$

 $\therefore \quad I = \int t^n \cdot \frac{dt}{t} = \int t^{n-1} dt = \frac{t^n}{n} + c = \frac{\sec^n x}{n} + c$
where 'c' is a constant of integration.

22. (c) Let I
$$\int \frac{e^x \ 1 \ x}{\cos^2 \ xe^x} dx$$

Put, $xe^x = t \Rightarrow e^x (1+x) dx = dt$
 \therefore I $\int \frac{dt}{\cos^2 t} \int \sec^2 t dt \quad \tan t \ c$
where 'c' is a constant of integration.
 $= \tan (xe^x) + c$

23. (b) Let
$$I = \int e^x \left(\sqrt{x} \quad \frac{1}{2\sqrt{x}} \right) dx$$

 $= \int e^x \sqrt{x} dx \quad \int e^x \cdot \frac{1}{2\sqrt{x}} dx \quad \int e^x \cdot \frac{1}{2\sqrt{x}} dx$
 $= e^x \sqrt{x} - \int e^x \cdot \frac{1}{2\sqrt{x}} dx \quad \int e^x \cdot \frac{1}{2\sqrt{x}} dx$
 $= e^x \sqrt{x} + C$ where *C* is constant of integration.
24. (d) Let $I = \int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$
Put $\sqrt{x} = t \Rightarrow \frac{1}{2\sqrt{x}} dx \quad dt \Rightarrow \frac{1}{\sqrt{x}} dx \quad 2dt$
 $\therefore \quad I = 2 \int \sin t dt = -2 \cos t \quad C = -2 \cos \sqrt{x} \quad C$
where 'C' is a constant of integration.
25. (a) Let $I = \int \sin^{-1} (\cos x) dx$
 $= \int \sin^{-1} \left[\sin \left(\frac{\pi}{2} - x \right) \right] dx = \int \left(\frac{\pi}{2} - x \right) dx$
 $= \frac{x\pi}{2} - \frac{x^2}{2} \quad K$
where *K* is a constant of integration.
26. (b) Let $I = \int \frac{dx}{\sin^2 x \cos^2 x} = \int \frac{(\sin^2 x + \cos^2 x) dx}{\sin^2 x \cos^2 x}$
 $= \int \left[\frac{\sin^2 x}{\sin^2 x \cos^2 x} + \frac{\cos^2 x}{\sin^2 x \cos^2 x} \right] dx$
 $= \int \left[\frac{1}{\cos^2 x} + \frac{1}{\sin^2 x} \right] dx$
 $= \int (\sec^2 x + \csc e^2 x) dx$
 $= \tan x - \cot x + c$ where *c* is constant of Integration.
27. (d) (1) Let $I = \int n 10 dx = l n 10 dx = l (n 10]x + c$
(2) Let $I = \int 10^x dx = \frac{10^x}{\log_2 10} + c = \frac{10^x}{l n 10} + c$
28. (c) Let $I = \int x(x^2 + 1)^{5/2} dx$
 $\operatorname{Put} x^2 + 1 = t$
 $2xdx = dt$
 $x dx = \frac{dt}{2}$
(c) Let $I = \int x(x^2 + 1)^{5/2} dx$
 $I = n \int (t)^{5/2} \frac{dt}{2} = \frac{1}{2} \left(\frac{t^{7/2}}{7/2} \right) + c = \frac{1}{7} (x^2 + 1)^{7/2} + c$
29. (c) Let $I = \int a^x e^x dx$

$$I = a^{x} e^{x} - \ell n a \int a^{x} e^{x} dx$$

$$I = a^{x} e^{x} - \ell n a (I)$$

$$\Rightarrow (I + \ell n a) I = a^{x} e^{x}.$$

$$\Rightarrow I = \frac{a^{x} e^{x}}{\ell n ae} c \because \ell n e = 1$$
0. (a) Let $I = \int \frac{\ell n x}{x} dx$
Put $\ell n x = t$

$$\frac{1}{x} dx = dt$$

$$\therefore I = \int t dt = \frac{t^{2}}{2} + c$$
where c is the constant of integration.
$$= \frac{\ell n x^{2}}{2} c$$
1. (a) Let $I = \int \left(\frac{1}{\cos^{2} x} - \frac{1}{\sin^{2} x}\right) dx$

$$= \int (\sec^{2} x - \csc^{2} x) dx$$

$$= \tan x + \cot x + c$$

$$= \tan x + \frac{1}{\tan x} + c = \frac{\tan^{2} x + 1}{\tan x} + c = \frac{\sec^{2} x}{\tan x} + c$$

$$= \frac{2}{2\sin x} \cos x + c = \frac{2}{\sin 2x} + c = 2 \csc 2x + c$$
2. (d) Let $I = \int e^{\ell n x} dx = \int x dx = \frac{x^{2}}{2} + c$
3. (a) Let $I = \int \frac{dx}{x \ell n x}$
Put $\ell n x = t \Rightarrow \frac{1}{x} dx = dt$

$$\therefore I = \int \frac{1}{t} dt = \ell nt + c = \ell n (\ell n x) + c$$
where c is the constant of integration.
4. (a) $\int \frac{dx}{\sqrt{4 + x^{2}}} = \int \frac{dx}{\sqrt{2^{2} - x^{2}}} = \ln |\sqrt{4 + x^{2}} + x| + C$
5. (a) $\int \sin^{2} x dx + \int \cos^{2} x dx = \int (\sin^{2} x + (\cos^{2} x) dx)$

6. (a)
$$I = \int e^{e^{x}} e^{x} dx$$
Let $e^{x} = y \Rightarrow e^{x} dx = dy$

$$dx = \frac{dy}{e^{x}}$$

$$I = \int e^{y} e^{x} \frac{dy}{e^{x}} = \int e^{y} dy = e^{y} + c$$

$$I = e^{e^{x}} c$$

Indefinite Integration

37. (a)
$$\int (x \cos x + \sin x) dx = \int x \cos x dx + \int \sin x dx$$
$$= x \sin x - \int \sin x dx + \int \sin x dx = x \sin x + c$$

38. (c) $dy = y \tan x dx$
$$\int \frac{dy}{y} = \int \tan x dx$$
$$\log |y| = \log |\sec x| + \log |c|$$
$$\log |y| = \log |\sec x|$$
$$y = \csc x$$
$$at x = 0, y = 1$$
$$y = c$$
Solution is given by
$$y = \sec x$$
Sol. (39-40)
Given,
$$\int x \tan^{-1} x dx = A(x^2 - 1) \tan^{-1} x = Bx = C$$
where, C is the constant of integration
Consider,
$$\int x \tan^{-1} x dx = A(x^2 - 1) \tan^{-1} x = Bx = C$$
where, C is the constant of integration
Consider,
$$\int x \tan^{-1} x dx = \tan^{-1} x \frac{x^2}{2} - \int \frac{d}{dx} (\tan^{-1}x) \cdot \frac{x^2}{2} dx$$
(using integration by parts)

$$= \frac{x^2 \cdot \tan^{-1} x}{2} - \frac{1}{2} \int \frac{x^2}{1 - x^2} dx$$
(using integration by parts)

$$= \frac{x^2 \tan^{-1} x}{2} - \frac{1}{2} \left(\int dx - \int \frac{dx}{1 + x^2} \right)$$

$$= \frac{x^2 \tan^{-1} x}{2} - \frac{1}{2} (x - \tan^{-1} x) = C$$
$$= \frac{x^2 \tan^{-1} x}{2} - \frac{1}{2} (x - \tan^{-1} x) = C$$
$$= \frac{1}{2} (x^2 + 1) \tan^{-1} x - \frac{x}{2} = C$$
39. (b)
$$A = \frac{1}{2}$$
, hence option (b) is correct.
40. (c)
$$B = -\frac{1}{2}$$
, hence option (c) is correct.
41. (b)
$$f'(x) = \int f''(x) dx = C_1$$
$$= \int (\sec^4 x - 4) dx = C_1$$
$$= \int (\sec^4 x - 4) dx = C_1$$
$$= \int (\sec^4 x - 4) dx = C_1$$
$$= \int (1 + \tan^2 x) \sec^2 x dx + 4 dx + C_1 = I_1 + 4x + C_1$$
$$= \int (1 + \tan^2 x) \sec^2 x dx + 4 dx + C_1 = I_1 + 4x + C_1$$
$$= \int (1 + \tan^2 x) \sec^2 x dx + 4 dx + C_1 = I_1 + 4x + C_1$$

$$\therefore I_{1} = \int (1 \quad t^{2})dt \quad t \quad \frac{t^{3}}{3} \quad C'$$

$$= \tan x \quad \frac{\tan^{3} x}{3} \quad C'$$

$$\therefore f'(x) = \tan x \quad \frac{\tan^{3} x}{3} \quad 4x \quad C'$$
where, $C = C_{1} + C'$

$$\therefore f'(0) = 0 \Rightarrow C \quad 0$$
Thus, $f'(x) = \tan x \quad \frac{\tan^{3} x}{3} \quad 4x$
(a) $f(x) = \int f'(x)dx \quad C_{2}$

$$= \int \left(\tan x \quad \frac{\tan^{3} x}{3} \quad 4x\right)dx \quad C_{2}$$

$$= \int \tan x dx + \frac{1}{3}\int \tan^{3} x dx + 4\int x dx + C_{2}$$

$$= \int \tan x dx + \frac{1}{3}\int \tan x(\sec^{2} x - 1)dx + 4 \cdot \frac{x^{2}}{2} + C_{2}$$

$$= \frac{2}{3}\int \tan x dx + \frac{1}{3}\int \tan x \sec^{2} x dx + 2x^{2} + C_{2}$$

$$= \frac{2}{3}\ln(\sec x) + \frac{1}{3}I_{2} + 2x^{2} + C_{2}$$
Consider $I_{2} = \int \tan x \sec^{2} x dx$
Put $\tan x = t \Rightarrow \sec^{2} x dx = dt$

$$\Rightarrow I_{2} = \int t dt = \frac{t^{2}}{2} + C_{3} = \frac{\tan^{2} x}{2} + C_{3}$$

$$\therefore f(x) = \frac{2}{3}\ln(\sec x) \quad \frac{1}{6}\tan^{2} x \quad 2x^{2} \quad C_{4}$$
Here, $C_{4} = C_{2} \quad \left(\frac{C_{3}}{3}\right)$

$$\therefore f(x) = \frac{2}{3}\ln(1) \quad 0 \quad 0 \quad C_{4}$$

$$\Rightarrow C_{4} = 0$$

$$\therefore f(x) = \frac{2}{3}\ln(\sec x) \quad \frac{1}{6}\tan^{2} x \quad 2x^{2}$$
(c) $\int \frac{x e^{x}}{(1 + x)^{2}} dx$

$$= \int e^{x} \left[\frac{1}{1 + x} - \frac{1}{(1 + x)^{2}}\right] dx$$

$$= \frac{e^{x}}{1 + x} + C \qquad \left\{\int e^{x} (f(x) + f'(x))dx = e^{x} f(x)\right\}$$

42.

43.

47. (c)

44. (b) Given that,
$$\int \frac{dx}{a \cos x + b \sin x} = \frac{1}{r} \ln \left[\tan \left(\frac{x + \alpha}{2} \right) \right]$$

Let $a = r \sin \alpha$, $b = r \cos \alpha$

$$\int \frac{dx}{r \sin \alpha \cos x + r \cos \alpha \sin x} = \frac{1}{r} \int \frac{1}{\sin (x + \alpha)}$$

$$= \frac{1}{r} \int \csc (x + \alpha) dx = \frac{1}{r} \ln \left[\tan \left(\frac{x + \alpha}{2} \right) \right]$$

 $a = r \sin \alpha \Rightarrow a^2 = r^2 \sin^2 \alpha$...(i)
 $b = r \cos \alpha \Rightarrow b^2 = r^2 \cos^2 \alpha$...(ii)
Adding (i) and (ii), we get
 $r^2 = a^2 + b^2$
 $\Rightarrow r = \sqrt{a^2 + b^2}$.

45. (a)
$$a = r \sin \alpha$$
 ... (i)
 $b = r \cos \alpha$... (ii)
Dividing (i) from (ii),

$$\frac{a}{b} = \tan \alpha$$
$$\alpha = \tan^{-1} \left(\frac{a}{b}\right).$$

46. (a)
$$\int \frac{dx}{\sqrt{x^2 + a^2}}$$

Let $x = a \tan u$
 $dx = a \sec^2 u \, du$

$$= \int \frac{a \sec^2 u \, du}{\sqrt{a^2 \tan^2 u + a^2}}$$

$$= a \int \frac{\sec^2 u \, du}{\sqrt{a^2 (1 + \tan^2 u)}} \Rightarrow \frac{a}{a} \int \frac{\sec^2 u \, du}{\sec u}$$

$$= \int \frac{\sec^2 u \, du}{\sec u} = \int \sec u \, du$$

$$= \ln[\tan(u) + \sec(u)] + c \qquad [\because \int \sec x \, dx = \tan x]$$

$$= \ln\left[\frac{x}{\sqrt{a^2}} + \sqrt{1 + \frac{x^2}{a^2}}\right] + c$$

$$= \ln\left[\frac{x}{a} + \frac{\sqrt{a^2 + x^2}}{a}\right] + c$$

$$= \ln\left[\frac{x + \sqrt{x^2 + a^2}}{a}\right] + c$$

Option (a) is correct. . .

Take option (a)

$$I_{1} = \sqrt{\frac{x^{4} + x^{3} + 1}{x}} + C$$

$$\frac{dI_{1}}{dx} = \frac{d}{dx} \Big[(x^{3} + x^{2} + x^{-1})^{1/2} + C \Big]$$

$$\frac{dI_{2}}{dx} = \frac{1}{2} (x^{3} - x^{2} - x^{-1})^{-1/2} (3x^{2} - 2x - x^{-2})$$

$$\frac{1}{2} \Bigg[\frac{3x^{2} + 2x - \frac{1}{x^{2}}}{\sqrt{x^{3} - x^{2}} - \frac{1}{x}} \Bigg]$$

$$\frac{dI_{2}}{dx} = \frac{1}{2} \Bigg[\frac{3x^{4} + 2x^{3} - 1}{\frac{x^{2}}{\sqrt{x^{4} - x^{3}}} \Big]$$
Take option (b):

$$I_{2} = \sqrt{x^{4} + 2 - \frac{1}{x^{2}}} + C$$

$$\frac{dI_{2}}{dx} = \frac{1}{2} [x^{4} + 2 - x^{-2}]^{-1/2} [4x^{3} + 0 + 2x^{-3}]$$

$$\frac{1}{2} \Bigg[\frac{4x^{3} - \frac{2}{x^{3}}}{\sqrt{x^{4} + 2 - \frac{1}{x^{2}}} \Bigg] \frac{2x^{6} - 1}{\frac{x^{3}}{x} \sqrt{x^{6} + 2x^{2} - 1}}$$
Take option (c):

$$I_{3} = \sqrt{x^{2} + x^{-2} + 1} + C$$

$$\frac{dI_{3}}{dx} = \frac{1}{2} [x^{2} + x^{-2} + 1]^{-1/2} [2x - 2x^{-3} + 0]$$

$$\frac{1}{2} \Bigg[\frac{2x - \frac{2}{x^{3}}}{\sqrt{x^{4} - \frac{1}{x^{2}}}} \Bigg] \frac{1}{2} \Bigg[\frac{2(x^{4} - 1)}{x^{3} \sqrt{\frac{x^{4} - 1}{x^{2}}}} \Bigg]$$

(b) Let us differentiate all the options one by one to get 48. the expression in the question whose integral is to be found.

> Here $xe^{\sin x}$ is the common term in all the options. So, let us differentiate it first.

Let
$$l = xe^{\sin x}$$

 $\Rightarrow \frac{dl}{dx} = e^{\sin x} [x \cos x + 1]$

 $=\frac{1}{x^2\sqrt{x^4+x^2+1}}$

$$\Rightarrow \frac{dl}{dx} = \frac{e^{\sin x}}{\cos^2 x} [x \cos^3 x + \cos^2 x]$$
Let $m = \sec x e^{\sin x}$

$$\Rightarrow \frac{dm}{dx} = \sec x e^{\sin x} \cdot \cos x + e^{\sin x} \sec x \tan x$$

$$\Rightarrow \frac{dm}{dx} = e^{\sin x} \left[1 + \frac{\sin x}{\cos^2 x} \right]$$

$$\Rightarrow \frac{dm}{dx} = \frac{e^{\sin x}}{\cos^2 x} [\cos^2 x + \sin x]$$
Differentiation of option (a) is

$$= \frac{e^{\sin x}}{\cos^2 x} [x \cos^3 x + \cos^2 x + \cos^2 x + \sin x]$$
Differentiation of option (b) is

$$= \frac{e^{\sin x}}{\cos^2 x} [x \cos^3 x + \cos^2 x - \cos^2 x - \sin x]$$
Differentiation of option (b) is

$$= \frac{e^{\sin x}}{\cos^2 x} [x \cos^3 x - \sin x]$$

$$\therefore \text{ Option (b) is correct.}$$
49. (d) $\int \frac{dx}{x(x^7 + 1)} = \int \frac{x^6}{x^7(x^7 + 1)} dx$
Let $x^7 = t$

$$\Rightarrow 7x^6 dx = dt \Rightarrow x^6 dx = \frac{dt}{7}$$
Then $\int \frac{x^6 dx}{x^7(x^7 + 1)} = \frac{1}{7} \int \frac{dt}{t(t+1)}$

$$= \frac{1}{7} [\int \frac{1}{t} dt - \int \frac{1}{t+1} dt]$$

$$= \frac{1}{7} [\ln |t| - \ln |t+1|] c$$

$$\frac{1}{7} ln \left| \frac{x^7}{x^7 - 1} \right| c$$
50. (d) $\int \frac{(x^{e-1} + e^{x-1}) dx}{x^e + e^x}$
Put $x^e = e^x dx dt$

50.

$$\therefore \int \frac{\left(x^{e-1} + e^{x-1}\right) dx}{x^e + e^x} = \frac{1}{e} \int \frac{ex^{e-1} + e^x}{x^e + e^x} dx$$

$$\frac{1}{e} \int \frac{dt}{t} - \frac{1}{e} \ln t - c$$

$$= \frac{1}{e} \ln \left(x^e + e^x\right) + c$$
51. (b) f x $\int \sin^2 x dx \int \frac{1 - \cos 2x}{2} dx$

$$= \frac{1}{2}x - \frac{\sin 2x}{2} \cdot \frac{1}{2} + c = \frac{1}{2}x - \frac{1}{4}\sin 2x + c$$
(i) $f(\pi + x) = \frac{1}{2}(\pi + x) - \frac{1}{4}\sin 2(\pi + x)$

$$= \frac{1}{2}\pi + \frac{1}{2}x - \frac{1}{2}\sin(2\pi + 2x) + c$$

$$= \frac{x}{2} - \frac{1}{2}\sin 2x + c = f(x)$$
So, statement 1 is true.
(ii) $\sin^2(\pi + x) = \sin^2x$
 $(-\sin x)^2 = -\frac{1}{2}dx$
 $(-\sin x)^{-1} dx - \int ((-\pi x)^{-2} dx)$
 $(-\sin x)^{-1} dx - \int ((-\pi x)^{-2} dx)$
 $(-\sin x)^{-1} dx - \int ((-\pi x)^{-2} dx)$
 $(-\sin x)^{-1} dx - ((-\pi x)^{-2} dx)$
 $(-\sin x)^{-1} dx - ((-\pi x)^{-2} dx)$
 $(-\sin x)^{-1} dx - ((-\pi x)^{-2} dx)$
 $(-\sin x)^{-1} dx +$

54. (b)
$$\int \frac{dx}{2^{x} - 1} = \int \frac{dx}{\frac{1}{2^{-x}}}$$
$$= \int \frac{2^{-x}}{1 - 2^{-x}} dx$$
$$Let 1 - 2^{-x} = t$$
$$\Rightarrow 2^{-x} \cdot \log 2 = \frac{dt}{dx} \Rightarrow 2^{-x} = \frac{1}{\log 2} \cdot \frac{dt}{dx} \Rightarrow 2^{-x} \cdot dx \quad \frac{dt}{\log 2}$$
$$\therefore \int \frac{2^{-x}}{1 - 2^{-x}} dx \quad \frac{1}{\log 2} \int \frac{dt}{t} \quad \frac{1}{\log 2} \log t \quad c$$
$$= \frac{1}{\log 2} \log 1 - 2^{-x} \quad c.$$

55. (d) Let $t = \sin x \Rightarrow dt = \cos x \, dx$

$$\int \sin^3 x \cos x \, dx = \int t^3 dt \quad \frac{t^4}{4} \quad c \quad \frac{\sin^4 x}{4} \quad c$$
$$= \frac{(1 - \cos^2 x)^2}{4} \quad c$$

56. (b)
$$\int e^{\ell n (\tan x)} dx = \int \tan x \, dx$$
$$= \ell n | \sec x | c$$

57. (a)
$$I = \frac{1}{a^2} \int \frac{\sec^2 x}{\tan^2 x \left(\frac{b}{a}\right)^2}$$
$$= \frac{1}{a^2} \times \frac{a}{b} \tan^{-1} \left(\frac{a \tan x}{b}\right) c$$
$$= c \frac{1}{ab} \tan^{-1} \left(\frac{a \tan x}{b}\right)$$

58. (a)
$$\int \ln(x^2) \cdot dx = 2 \cdot \int \ln x \cdot dx$$

8. (a)
$$\int \ln(x^{-}) \cdot dx = 2 \cdot \int \ln x \cdot dx$$

= $2 \int 1 \cdot \ln x \cdot dx = 2 \left[\ln x \cdot x - \int \frac{1}{x} \cdot dx \right]$

$$= 2 \int 1 \ln x \, dx = 2 \int \ln x \, dx = \int \frac{1}{x} x \, dx$$
$$= 2 (x \ln x - x) + c = 2x \ln x - 2x + c$$

59. (a)
$$\int e^{x \ln(a)} dx = \int e^x dx = \frac{a^x}{\ln(a)} + c$$

Definite Integration & Its Application

5.

7.

8.

1. If
$$f(x) = A \sin\left(\frac{\pi x}{2}\right) + B$$
 and $f'\left(\frac{1}{2}\right) = \sqrt{2}$ and
 $\int_0^1 f(x) dx = \frac{2A}{\pi}$, then what is the value of B?
(a) $\frac{2}{\pi}$ (b) $\frac{4}{\pi}$

π

(d) 1 [2006-I] (c) 0If m and n are integers, then what is the value of 6. 2. $\sin mx \sin nx dx$, if $m \neq n$?

π

- (b) $\frac{1}{m+n}$ (a) 0 (c) $\frac{1}{m-n}$ (d) mn [2006-I]
- 3. What is the area under the curve y = |x| + |x - 1| between x = 0 and x = 1?
 - $\frac{1}{2}$ (a) (b) 1 (c) $\frac{3}{2}$ (d) 2 [2006-I]
- 4. The following question consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer.

Assertion (A):
$$\int_{1}^{e} \ln^{2} x \, dx = e - 2$$

Reason (R): $I_{n} = \int_{1}^{e} \ln^{n} x \, dx = e - nI_{n-1}$

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is not the correct explanation A
- (c) A is true but R is false

What is the value of $\int_{0}^{1} (x-1)e^{-x} dx$? (b) e (a) 0 (d) $\frac{-1}{e}$ (c) $\frac{1}{e}$ [2006-II]

If $\int_{\ln 2}^{x} (e^x - 1)^{-1} dx = \ln \frac{3}{2}$, then what is the value of x? (b) $\frac{1}{-}$ (a) e^2

If
$$\int_{-3}^{2} f(x)dx = \frac{7}{3}$$
 and $\int_{-3}^{9} f(x)dx = -\frac{5}{6}$, then what is the

value of
$$\int_{2}^{9} f(x) dx$$
?

(a)
$$-\frac{19}{6}$$
 (b) $\frac{19}{6}$
(c) $\frac{3}{2}$ (d) $-\frac{3}{2}$ [2007-I]

The following question consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer.

Assertion(A):
$$\int_{0}^{\pi} \sin^{7} x \, dx = 2 \int_{0}^{\pi/2} \sin^{7} x \, dx$$

Reason(R): $\sin^7 x$ is an odd function

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is not the correct explanation A
- A is true but R is false (c)
- [2007-I] (d) A is false but R is true

9.	What is the area enclosed	by the curve $2x^2 + y^2$	= 1?	17	The value of $\int_{-\infty}^{2} (ax^3 + bx)$	(a) dy dan an da an ar	high of the
	(a) 2π	(b) π		17.	The value of $\int_{-2}^{2} (dx + bx)$	+c) as depends on w	
	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{\sqrt{2}}$	[2007-II]		(a) Values of x only (b) Values of each of a, b	and c	[2008-11]
10.	What is the value of integr	ral $I = \int_0^1 x (1-x)^9 dx^9$?	18.	(d) Value of b only(d) What are the values of	p which satisfy the	e equation
	(a) $\frac{1}{110}$	(b) $\frac{1}{111}$			$\int_{0}^{P} (3x^{2} + 4x - 5) dx = p^{3} - $	-2?	[2008-II]
	(c) $\frac{1}{112}$	(d) $\frac{1}{110}$	[2007-11]		(a) 1/2 and 2 (c) 1/2 and -2	(b) $-1/2$ and 2 (d) $-1/2$ and -2	
	112	119		19.	What is the value of $\int_{0}^{\pi/2}$	$\log (\tan x) dx?$	[2009-I]
11.	What is the value of $\int_{-1}^{1} x$	$ \mathbf{x} d\mathbf{x}$?			(a) 0	(b) 1	
	(a) 2	(b) 1			(c) -1	(d) $\pi/4$	
	(c) $\frac{1}{4}$	(d) 0	[2007-11]	20.	What is $\int_0^1 x(1-x)^n dx$ equ	al to?	[2009-I]
12.	What is the value of $\int_0^{\pi/2}$	$\cos^8 x dx$?			(a) $\frac{1}{n(n+1)}$ (c) 1	(b) $\frac{1}{(n+1)(n+2)}$ (d) 0	
	(a) $\frac{35\pi}{256}$	(b) $\frac{70}{256}$		21.	What is the value of k if the	the area bounded by th = $\pi/(3k)$ is 3 sq unit?	ne curve [2009-11]
	(c) $\frac{16}{35}$	(d) $\frac{8\pi}{35}$	[2007-II]	22	(c) $3/2$ (c) $3/2$	(d) 2 $f(x) = \int_{-\infty}^{1} f(x) dx$	
12	blogx 1			<i>LL</i> .	$\prod_{x \in \mathcal{X}} f(x) = u + \partial x + \partial x + \partial x$, then	what is $\int_0^{j} (x) dx \mathrm{eq}$	
13.	(a) $(1/2) \log (ab) \cdot \log (b)$ (b) $\log b / \log a$ (c) $\log (b/a)$ (d) $(1/2) \log [(a+b)/ab)$ What is the area of the region x=1, x=3 and x-axis in s	o/ a) o/ a) n bounded by the line 3: q unit ?	<i>[2007-II]</i> x-5y=15,	23.	(a) $[f(0)+4f(1/2)+f(1)]/(b) [f(0)+4f(1/2)+f(1)]/(c) [f(0)+4f(1/2)+f(1)]/(d) [f(0)+2f(1/2)+f(1)]/(d) [f(0)+2f(1/2)+f(1)]/(d) What is the area bounded the x-axis? (a) 2/3 sq unit (c) 5/3 sq unit$	⁶ ⁷ ⁶ by the curve $y = 4x - (b) \frac{4}{3}$ sq unit (d) $\frac{4}{5}$ sq unit	$x^2 - 3$ and [2009-11]
	36	18			(c) $3/3$ sq and $\sin^3 r$	(u) wo sq unit	
	(a) $\frac{1}{5}$	(b) $\frac{1}{5}$		24.	What is $\int_{0}^{\pi/2} \frac{\sin^2 x}{\sin^3 x + \cos^2 x}$	$\frac{1}{3} \frac{dx?}{x}$	[2010-I]
	(c) $\frac{9}{5}$	(d) $\frac{3}{5}$	[2008-I]		(a) π	(b) $\frac{\pi}{2}$	
15.	What is the value of $\int_0^1 xe^{-1} dx = \int_0^1 xe^{-1} dx$	$x^2 dx$?			(c) $\frac{\pi}{4}$	(d) 0	
	(a) $\frac{(e-1)}{2}$	(b) $e^2 - 1$		25.	What is the area enclosed the lines $x = 0$ and $y = 6$?	between the curves y^2	$2^{2} = 12x$ and [2010-I]
	(c) $2(e-1)$	(d) e – 1	[2008-I]		(a) 2 sq unit (c) 6 sq unit	(d) 4 sq unit (d) 8 sq unit	
16.	What is the area of the elli	pse $4x^2 + 9y^2 = 1$	[2008-II]	26.	What is $\int_{-\pi/4}^{\pi/4} \tan^3 x dx$ equ	ual to ?	[2010-1]
	(a) 6π (b	$\frac{\pi}{36}$			(a) $\sqrt{3}$	(b) $\frac{1}{3}$	
	(c) $\frac{\pi}{6}$ (d	$\frac{\pi}{\sqrt{6}}$			(c) $\frac{1}{2}$	(d) 0	

Definite Integration & Its Application

27. What is the value of
$$\int_{\pi/4}^{\pi/4} \frac{dx}{dx x \cos x}$$
? [2010-11] 35. What is $\int_{0}^{\pi} \frac{dx}{1+2\sin^{2}x}$ equal to? [2011-1]
(a) $2\ln \sqrt{5}$ (b) $\ln \sqrt{5}$
(c) $2\ln 3^{5}$ (c) $\ln \ln \sqrt{5}$
(d) $4\ln 3$ (a) π (b) $\frac{\pi}{3}$
28. What is the value of $\int_{1}^{2} e^{x} \left(\frac{1}{x} - \frac{1}{x^{2}}\right) dx$? [2010-11] (c) $\frac{\pi}{\sqrt{5}}$ (d) $\frac{2\pi}{\sqrt{3}}$ (d) $\frac{2\pi}{\sqrt{3}}$
(e) $e^{-\frac{1}{e}}$ (f) 0 (f) e^{-1} (f) e^{-1} (f) $e^{-\frac{1}{e}}$ (f) 0 (f) e^{-1} (f) $e^{-\frac{1}{e}}$ (f) 0 (f) $e^{-\frac{1}{e}}$ (f) e

42.	The area bounded by the cut two lines $y = a$ and $y = b$ is a	rve x = f[y], the y-equal to:	axis and the [2012-I]	50	W 71	$a = \int_{a}^{a} (x^3 + \sin x) dx$			[2012 1]
	b	b		50.	wna	-a	equal t	.0	[2013-1]
	(a) $\int_{a} y dx$	(b) $\int_{a} y^2 dx$			(a) (c)	a 0	(b) (d)	2a 1	
	(c) $\int_{a}^{b} x dy$	(d) None of the	above	51.	Wha	t is $\int_{0}^{1} x e^{x} dx$ equal to	,	[2013-1]	
	a				(a)	1	(b)	-1	
43.	What is $\overset{1}{\overset{0}{\mathbf{o}}} \frac{\tan^{-1}}{1+x^2} dx$ equal	to?	[2012-1]		(0)	$\frac{\pi}{6} \sin^5 x \cos^3 x$	(u)	e	
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{8}$		52.	Wha	t is $\frac{-\pi}{6} x^4$ d	x is equ	al to?	[2013-I]
	(c) $\frac{\pi^2}{8}$	(d) $\frac{\pi^2}{32}$			(a)	$\frac{\pi}{2}$	(b)	$\frac{\pi}{4}$	
44.	What is $\int_{0}^{1} x x dx$ equal to	o ?	[2012-II]	53	(c) Wha	$\frac{\pi}{8}$	(d)	0 velosed by v	-2 y and
	(a) 2^{-1}	(b) 1		55.	y = 4			iciosed by y	$= 2 \mathbf{x} $ and $[2013-I]$
	(c) $\frac{1}{0}$	(d) -1			(a) (c)	2 square unit 8 square unit	(b) (d)	4 square uni 16 square uni	t it
45.	What is $\int_{0}^{1} \frac{\tan^{-1} x}{1+x^2} dx$ equal	to?	[2012-11]	54.	Wha rectu	t is the area of the par m?	abola y ²	$r^2 = x$ bounded	by its latus [2013-I]
	2	2			(a)	$\frac{1}{12}$ square unit	(b)	$\frac{1}{6}$ square un	it
	(a) $\frac{\pi^{-}}{8}$	(b) $\frac{\pi^2}{32}$			(c)	$\frac{1}{3}$ square unit	(d)	None of the	above
	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{8}$		55.	Wha	t is $\int_{1}^{2} \ell n x d x$ equal	to?		[2013-II]
46	What is $\int \sin 2x \ell n (\cot x)$	x) dx equal to ?	[2012-]]]		(a)	ln 2	(b)	1	
10.	(a) 0 (a) 0	(b) $\pi \ell n 2$	[2012 11]		(c)	$ln\left(\frac{4}{e}\right)$	(d)	$ln\left(\frac{e}{4}\right)$	
	(c) $-\pi \ln 2$	(d) $\frac{\pi \ell n 2}{2}$		56.	What $2 = 0$	t is the area bounded b	y the lin	es x = 0, y = 0	and $x + y + $ [2013-11]
47	What is the area of the port	2	sin v lving		- 0	1			[2010 11]
ч/.	between $x = 0$, $y = 0$ and $x =$	2π ?	[2012-II]		(a)	$\frac{-}{2}$ square unit	(b)	1 square unit	
	(a) 1 square unit(c) 4 square units	(b) 2 square un (d) 8 square un	its its	57	(c) Wha	2 square units	(d) rabola r	4 square units $2 - y$ bounded	by the line
48.	What is the area of the reg	ion bounded by the	lines $y = x$,	57.	y=1	?		- y bounded	[2013-II]
	 y=0 and x = 4? (a) 4 square units (c) 12 square units 	(b) 8 square un(d) 16 square u	[2012-11] its nits		(a)	$\frac{1}{3}$ square unit	(b)	$\frac{2}{3}$ square un	nit
49.	What $\int_{-\frac{1}{2}}^{2} \frac{dx}{dx}$ equal to ?	[2013-	<i>I]</i>		(c)	$\frac{4}{3}$ square units	(d)	2 square uni	ts
	$0^{x} + 4^{x}$	π, π		58.	Wha	t is the area bounded	by $y = ta$	$\ln x, y = 0$ and	$1 x = \frac{\pi}{4} ?$
	(a) $\frac{1}{2}$	(b) $\frac{-}{4}$						4 0	[2013-II]
	(c) $\frac{\pi}{2}$	(d) None of the	e above		(a)	ln 2 square units	(b)	$\frac{\ln 2}{2}$ square	units
	8				(c)	2 (ln 2)square units	(d)	- None of the	se

- 59. What is $\int_0^2 e^{\ln x} dx$ equal to? [2013-II] (a) 1 (b) 2 (c) 4 (d) None of these
- 60. What is the derivative of $\sqrt{\frac{1+\cos x}{1-\cos x}}$? [2014-1]

(a)
$$\frac{1}{2}\sec^2\frac{x}{2}$$
 (b) $-\frac{1}{2}\csc^2\frac{x}{2}$

(c)
$$-\csc^2 \frac{x}{2}$$
 (d) None of these

61. What is
$$\int_{0}^{1} \frac{e^{\tan^{-1}x} dx}{1+x^2}$$
 equal to ? [2014-1]

(a)
$$e^{\frac{\pi}{4}} - 1$$
 (b) $e^{\frac{\pi}{4}} + 1$
(c) $e - 1$ (d) e

DIRECTIONS	(Qs.	62-63):	For	the	next	two	(02)	items	that
follow.									

Consider the integrals

(c) -2

$$I_{1} = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{dx}{1 + \sqrt{\tan x}} \text{ and } I_{2} = \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x} dx}{\sqrt{\sin x} + \sqrt{\cos x}}$$
[2014-1]

62. What is
$$I_1 - I_2$$
 equal to ?
(a) 0 (b) $2I_1$
(c) π (d) None of the above
63. What is I_1 equal to ?
(a) $\pi/24$ (b) $\pi/18$

(c)
$$\pi/12$$

64. What is
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x \, dx$$
 equal to ? [2014-1]
(a) 0 (b) 2

(d) π/6

(d) π

65. What is
$$\int_{0}^{\frac{\pi}{2}} \ln(\tan x) dx$$
 equal to ? [2014-1]

(a) $\ln 2$ (b) $-\ln 2$ (c) 0 (d) None of these 66. What is the area of the parabola $y^2 = 4bx$ bounded by its latus rectum? [2014-II] (a) $2b^2/3$ square unit (b) $4b^2/3$ square unit

(c)
$$b^2$$
 square unit (d) $8b^2/3$ square unit

DIRECTIONS (Qs. 67-69): For the next three (03) items that follow.

Consider
$$I = \int_{0}^{\pi} \frac{x dx}{1 + \sin x}$$
 [2014-II]
67. What is I equal to ?
(a) $-\pi$ (b) 0
(c) π (d) 2π
68. What is $\int_{0}^{\pi} \frac{(\pi - x) dx}{1 + \sin x}$ equal to ?
(a) π (b) $\pi/2$
(c) 0 (d) 2π
69. What is $\int_{0}^{\pi} \frac{dx}{1 + \sin x}$ equal to ?
(a) 1 (b) 2
(c) 4 (d) -2

Consider the integral
$$I = \int_{0}^{\pi} \ln(\sin x) dx$$
 [2014-II]
70. What is $\int_{0}^{\pi/2} \ln(\sin x) dx$ equal to ?
(a) $4I$ (b) $2I$
(c) I (d) $I/2$
71. What is $\int_{0}^{\pi/2} \ln(\cos x) dx$ equal to ?
(a) $I/2$ (b) I
(c) $2I$ (d) $4I$
72. What is $\int_{0}^{\pi/2} \frac{dx}{a^2 \cos^2 x + b^2 \sin^2 x}$ equal to? [2014-II]
(a) $2ab$ (b) $2\pi ab$
(c) $\frac{\pi}{2ab}$ (d) $\frac{\pi}{ab}$
73. The area of a triangle, whose vertices are (3, 4), (5, 2) and the point of intersection of the lines $x = a$ and $y = 5$, is 3 square units. What is the value of a ? [2015-I]
(a) 2 (b) 3
(c) 4 (d) 5

DIRECTIONS (Qs. 74-75): For the next two (2) items that follows.

Consider the line $x = \sqrt{3}y$ and the circle $x^2 + y^2 = 4$.

74. What is the area of the region in the first quadrant enclosed by the *x*-axis, the line $x = \sqrt{3}$ and the circle? [2015-I]

(a)
$$\frac{\pi}{3} - \frac{\sqrt{3}}{2}$$
 (b) $\frac{\pi}{2} - \frac{\sqrt{3}}{2}$

(c)
$$\frac{\pi}{3} - \frac{1}{2}$$
 (d) None of these

75. What is the area of the region in the first quadrant enclosed by the x-axis, the line $x = \sqrt{3}y$ and the circle? [2015-1]83. The value of $(2015-1]$ (2015-1](a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{3} \cdot \frac{\sqrt{3}}{2}$ (d) None of these(a) $2b - a \sin (b - a)$ (b) $a + 3bcos (b - a)$ DIRECTIONS (Qs. 76-77): For the next two (2) items that follow: Consider the curves $y = \sin x$ and $y = cos x$. 76. What is the area of the region bounded by the above two curves and the lines $x = \frac{\pi}{4}$ or $x = \frac{\pi}{2}$? [2015-1](a) $b - a - b $ (b) $ a - b $ (a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $\frac{16}{ a }$ (d) 0 (2015-1](a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $\frac{15}{ a }$ (d) 0 (2015-1](a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $\frac{32}{2}$ (d) 0 (2015-1](a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $\frac{32}{15}$ (d) 0 (2015-1](a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $\frac{32}{15}$ (d) 0 (2015-1](a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $\frac{32}{15}$ (d) 0 (2015-1](a) $\sqrt{2} - 1$ (b) $\frac{1}{2}$ (c) $\frac{3}{2}$ (d) 0 (d) $\frac{2}{15}$ (b) $\sqrt{2} + 1$ (d) 2 (d) 0 (d) $\frac{1}{2}$ (d) $\frac{1}{2}$ (d) $\frac{1}{2}$ (c) $(1 - 1) - 1) - 1) - 1) - 1) - 1) - 1) - $	м-3	66							N	DA Topicwise Solve	d Pap	ers - MATH	IEMATICS
by the <i>x</i> -axis, the line $x = \sqrt{3}y$ and the circle? [2015-1] (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{3} \cdot \sqrt{3}$ (d) None of these DIRECTIONS (Qs. 76-77): <i>kor the next two</i> (2) <i>items that follows</i> . Consider the curves $y = \sin x$ and $y = \cos x$. 7. What is the area of the region bounded by the above two curves and the lines $x = 0$ and $x = \frac{\pi}{4}$? [2015-1] (a) $\sqrt{2} - 1^{-1}$ (b) $\sqrt{2} + 1$ (c) $\sqrt{2}$ (d) 2 7. What is the area of the region bounded by the above two curves and the lines $x = \frac{\pi}{4}$ and $x = \frac{\pi}{2}$? [2015-1] (a) $\sqrt{2} - 1^{-1}$ (b) $\sqrt{2} + 1$ (c) $\sqrt{2}$ (d) 2 7. What is the area of the region bounded by the above two curves and the lines $x = \frac{\pi}{4}$ and $x = \frac{\pi}{2}$? [2015-1] (a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $2\sqrt{2}$ (d) 2 DIRECTIONS (Qs. 78-81): <i>I for the nextfour (4) items that follow</i> : 78. What is f_1 equal to? (a) 0 (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) 1 (c) 1 (d) 0 (c) 1 (d) 0 (b) $\frac{1}{2}$ (c) 1 (d) 0 (b) $\frac{1}{2}$ (d) 2 79. What is f_1 equal to? (e) 1 (d) 0 (f) 1 (d) 0 (g) 1 (d) 1 (g) 2 (g) 1 (g) 1 (h) 2 (g) 1 (g) 1 (g) 2 79. What is f_1 equal to? (g) 1 (g) 1 (g) 2 (g) 1 (g) 1 (g) 2 70. What is f_m equal to? (g) 1 (g) 1 (g) 2 71. $I_m - I_m$ (g) 2015 -1/] (g) 1 (g) 1 (g) 2 72. The area of the following: [2015-1/] (g) 1 (g) 1 (g) 2 73. The area of the following is correct? (g) 1 only (h) 2 only (g) Roth 1 and 2 (h) Reither 1 nor 2 84. The area of the following is correct? (g) 1 only (h) 2 only (g) $\frac{e^2}{ab}$ (h) $\frac{2e^2}{ab}$ (g) $\frac{e^2}{ab}$ (h) $\frac{e^2}{ab}$ (g) $\frac{\pi}{4}$ (h) $\frac{\pi}{4}$ (h) $\frac{\pi}{2}$ (g) $\frac{\pi}{4}$ (h) $\frac{\pi}{4}$ (h) $\frac{\pi}{2}$ (h) $\frac{\pi}{4}$ (h) $\frac{\pi}{2}$ (c) $\frac{2\pi}{4}$ (d) π	75.	Wha	at is	the area of the regi	ion in th	e first quad	rant enclosed	83.	The	value of			[2015-II]
$\begin{array}{c} (c) \frac{\pi}{3} - \frac{\sqrt{3}}{2} \qquad (d) \text{None of these} \\ (e) \frac{\pi}{3} - \frac{\sqrt{3}}{2} \qquad (d) \text{None of these} \\ (f) 2f = 1 \\ (c) x_{1} \\ (c) x_{2} $		by th (a)	$\frac{\pi}{3}$	axis, the line $x =$	$\sqrt{3}y$ and (b)	d the circle? $\frac{\pi}{6}$	[2015-I]		$\int_{a}^{b} \frac{x^{7}}{2}$	$\frac{d^2 + \sin x}{\cos x} dx$ where $a + b$	= 0 is		
DIFECTIONS (Qs. 76-77): For the next two (2) itens that follow:Consider the curves $y = \sin x$ and $y = \cos x$.76. What is the area of the region bounded by the above two curves and the lines $x = 0$ and $x = \frac{\pi}{4}$? [2015-1](a) $ b - a $ (b) $ a - b $ (a) $\sqrt{2} - 1^{'}$ (b) $\sqrt{2} + 1$ (c) $ \frac{ b }{ a }$ (d) 0(c) $\sqrt{2}$ (d) 2(d) $\sqrt{2} - 1^{'}$ (e) $\sqrt{2} + 1$ (e) $\frac{8}{15}$ (f) $\frac{16}{15}$ (a) $\sqrt{2} - 1^{'}$ (b) $\sqrt{2} + 1$ (c) $\frac{1}{2}$ (c) $2\sqrt{2}$ (d) 2(d) 2 77. What is the area of the region bounded by the above two curves and the lines $x = \frac{\pi}{4}$ and $x = \frac{\pi}{2}$? [2015-1](a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $\frac{3}{15}$ (d) 0(c) $2\sqrt{2}$ (d) 2(d) 2 DIRECTIONS (Qs. 78-81): For the next four (4) items that follow:(a) 0 (b) $\frac{1}{2}$ (c) 1(a) 0 (b) $\frac{1}{2}$ (2015-1](b) 1 (c) 1 (c) 1 (d) 2(2015-1](c) 1 (c) 1 (d) 2(2015-1](a) 0 (b) 1(2015-1](b) 1 (c) 1 (d) 0(2015-1](c) 1 (d) 0(b) 1(c) 1 (d) 0(c) 1(c) 1 (d) 0(d) 0(d) 1 4 (d) 2(e) m (d) 2(f) 1 for the allowing:(f) 1 for the allowing:(g) 1 only(h) 1 for the allowing:(h) 1 for the		(c)	$\frac{\pi}{3}$	$-\frac{\sqrt{3}}{2}$	(d)	None of th	iese		(a) (c)	$2b - a \sin (b - a)$ sin a - (b - a) cos b	(b) (d)	a + 3bcos 0	(b – a)
Consider the curves $y = \sin x$ and $y = \cos x$. (a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $\sqrt{2}$ (d) 2 (c) $\sqrt{2}$ (d) 0 (c) $\sqrt{2}$ (d) $\sqrt{2}$ (d) 0 (c) $\sqrt{2}$ (d)	DIF	RECT	ION	IS (Os. 76-77): Fo	r the nex	t two (2) iten	is that follow.	84	If0.	$< a < b$ then $\int_{a}^{b} \frac{ x }{dx} dx$ is	s equal	to	[2015-11]
76. What is the area of the region bounded by the above two curves and the lines $x = 0$ and $x = \frac{\pi}{4}$? [2015-1] (a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $\sqrt{2}$ (d) 2 77. What is the area of the region bounded by the above two curves and the lines $x = \frac{\pi}{4}$ and $x = \frac{\pi}{2}$? [2015-1] (a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $\frac{3}{2}$ (d) 2 DIRECTIONS (QS. 78-81): For the next four (4) items that follow: Consider the integral $I_{ni} = \int_{0}^{\pi} \frac{\sin 2\pi x}{\sin x} dx$, where <i>m</i> is a positive integer. 78. What is I_{1} equal to? [2015-1] (a) 0 (b) $\frac{1}{2}$ (c) $1 - \frac{1}{2}$ (d) 2 79. What is $I_{2} + I_{3}$ equal to? [2015-1] (a) $4 - \frac{1}{2}$ (b) 2 (c) $1 - \frac{1}{2}$ (c) $\frac{2}{2} - \frac{1}{2}$ (d) 2 79. What is $I_{2} + I_{3}$ equal to? [2015-1] (a) $4 - \frac{1}{2}$ (b) 2 (c) $1 - \frac{1}{2}$ (c) $\frac{1}{2}$ square unit (b) $\frac{1}{2}$ square unit (c) $\frac{1}{2}$ square unit (c) $\frac{1}{2}$ square unit (d) $\frac{1}{6}$ s	Cor	sider	the	$\frac{1}{\text{curves } y = \sin x \text{ ar}}$	rd y = cc	$\frac{1}{100}$ s x.	<u> </u>	01.	110		equui	10	[2010 11]
curves and the lines $x = 0$ and $x = \frac{\pi}{4}$? [2015-1] (a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $\sqrt{2}$ (d) 2 77. What is the area of the region bounded by the above two curves and the lines $x = \frac{\pi}{4}$ and $x = \frac{\pi}{2}$? [2015-1] (a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $2\sqrt{2}$ (d) 2 DIRECTIONS (Qs. 78-81): For the next four (4) items that follow: (c) $2\sqrt{2}$ (d) 2 DIRECTIONS (Qs. 78-81): For the next four (4) items that follow: Consider the integral $I_m = \int_0^{\pi} \frac{\sin 2mx}{\sin x} dx$, where <i>m</i> is a positive integer. 78. What is I_1 equal to? (c) 1 (c) 1 (d) 2 (c) 1 (c) 1 (d) 2 (c) 1 (c) 1 (d) 0 (c) 1 (d) 0 (c) 1 (c) 1 (d) 0 (c) 1 (d) 1 (d	76.	Wha	at is	the area of the re	gion bo	unded by th	ne above two		(a)	b - a	(b)	a - b	
(a) $\sqrt{2} - 1$, (b) $\sqrt{2} + 1$ (c) $\sqrt{2}$, (d) 2 77. What is the area of the region bounded by the above two curves and the lines $x = \frac{\pi}{4}$ and $x = \frac{\pi}{2}$? [2015-1] (a) $\sqrt{2} - 1$, (b) $\sqrt{2} + 1$, (c) $2\sqrt{2}$, (d) 2 DIRECTIONS (Qs. 78-81): For the next four (4) items that follow: Consider the integral $I_m = \int_0^{\pi} \frac{\sin 2mx}{\sin x} dx$, where <i>m</i> is a positive integer. 78. What is I_1 equal to? (c) 1 (d) 0 (b) $\frac{1}{2}$ (c) (c) 1 (d) 2 79. What is $I_2 + I_3$ equal to? (c) 1 (d) 0 (c) (n) (d) 2 (d) 0 (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f		curv	ves a	nd the lines $x = 0$ a	and $x =$	$\frac{\pi}{4}$?	[2015-I]		(c)	$\frac{ \mathbf{b} }{ \mathbf{a} }$	(d)	0	
(c) $\sqrt{2}$ (d) 2 (c) $\sqrt{2}$ (d) 2 (c) $\sqrt{2}$ (d) 2 (c) $\sqrt{2}$ (d) 2 (c) $\sqrt{2}$ (d) $\sqrt{2} + 1$ (c) $2\sqrt{2}$ (d) 2 (c) $2\sqrt{2}$ (d) 2 (c) $2\sqrt{2}$ (d) 2 (c) $2\sqrt{2}$ (d) 2 (c) $\sqrt{2} + 1$ (c)		(a)	$\sqrt{2}$	-1	(b)	$\sqrt{2} + 1$			2π	u			
77. What is the area of the region bounded by the above two curves and the lines $x = \frac{\pi}{4}$ and $x = \frac{\pi}{2}$? [2015-1] (a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $2\sqrt{2}$ (d) 2 DIRECTIONS (Qs. 78-81): For the next four (4) items that follow: Consider the integral $I_m = \int_0^{\pi} \frac{\sin 2mx}{\sin x} dx$, where <i>m</i> is a positive integer. 78. What is I_1 equal to? [2015-1] (a) 0 (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) 1 (d) 0 (b) 1 (c) m (d) 2 79. What is $I_2 + I_3$ equal to? [2015-1] (a) 0 (b) 2 (c) 1 (d) 0 (b) 1 (c) m (d) 2 80. What is I_m equal to? [2015-1] (a) 0 (b) 1 (b) 1 (c) m (d) 2 81. Consider the following: [2015-1] (a) 0 (b) 2 (c) m (d) 2 81. Consider the following: [2015-1] (b) 2 (c) m (d) 2 81. Consider the following: [2015-1] (c) 1 m - I_m - I_i is equal to 0. 2 $I_{2m}^{m} I_m$ 81. Consider the following: [2015-1] (a) 1 only (b) 2 only (c) Both 1 and 2 (c) Neither 1 nor 2 82. The area of the figure formed by the lines $ax + by + c = 0$, ax - by + c = 0, $ax + by - c = 0$ and $ax - by - c = 0$ is [2015-1] (a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{3\pi}{4}$ (d) π		(c)	$\sqrt{2}$	-	(d)	2		85.	$\int_{1}^{2\pi} s$	$\sin^5\left(\frac{x}{1}\right) dx$ is equal to			[2015-II]
curves and the lines $x = \frac{\pi}{4}$ and $x = \frac{\pi}{2}$? [2015-I] (a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $2\sqrt{2}$ (d) 2 DIRECTIONS (Qs. 78-81): For the next four (4) litens that follow: Consider the integral $I_m = \int_0^{\pi} \frac{\sin 2mx}{\sin x} dx$, where <i>m</i> is a positive integer. 78. What is I_1 equal to? [2015-I] (a) 0 (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) 1 (d) 2 79. What is $I_2 + I_3$ equal to? [2015-I] (a) 0 (b) 1 (c) n (d) 2 79. What is I_m equal to? [2015-I] (a) 0 (b) 1 (c) n (d) 2 79. What is $I_m = 1$ (d) 0 80. Consider the following: [2015-I] (a) 0 (b) 1 (b) 1 (c) m (d) 2m 81. Consider the following: [2015-I] (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 82. The area of the figure formed by the lines ax + by + c = 0, ax -by + c = 0, ax + by - c = 0 and ax - by - c = 0 is [2015-I]] (a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{3\pi}{4}$ (d) π (b) $\frac{\pi}{2}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{3\pi}{4}$ (d) π	77.	Wha	at is	the area of the re	gion bo	unded by th	ne above two		0	(4)			
(a) $\sqrt{2} - 1$ (b) $\sqrt{2} + 1$ (c) $2\sqrt{2}$ (d) 2 DIRECTIONS (Qs. 78-81): For the next four (4) items that follow: Consider the integral $I_m = \int_0^{\pi} \frac{\sin 2mx}{\sinx} dx$, where <i>m</i> is a positive integer. 78. What is I_1 equal to? (a) 0 (b) $\frac{1}{2}$ (b) 1 $\frac{1}{2}$ (c) 1 (d) 0 (c) 1 (d) 0 (d) 2 79. What is $I_2 + I_3$ equal to? (a) 0 (b) 2 (b) 1 (c) 1 (d) 0 (c) 1 (d) 0 (c) 1 (d) 0 (d) 2 79. What is $I_2 + I_3$ equal to? (e) 1 (d) 0 (f) 1 (g) m (d) 2 79. What is I_m equal to? (g) 1 (d) 0 (g) 1 (d) 1 (g) 2 (d)		curv	ves a	nd the lines $x = \frac{\pi}{4}$	and $x =$	$\frac{\pi}{2}$?	[2015-I]		(a)	$\frac{8}{15}$	(b)	$\frac{16}{15}$	
(c) $\sqrt{2} = 1$ (c) $\sqrt{2} = 1$ (d) $\sqrt{2} = 1$ (e) $2\sqrt{2}$ (d) 2 (f) $2\sqrt{2}$ (d) 2 (c) $1_m = \int_0^{\pi} \frac{\sin 2mx}{\sin x} dx$, where <i>m</i> is a positive integer. 78. What is I_1 equal to? [2015-1] (a) 0 (b) $\frac{1}{2}$ (c) 1 (c) 1 (d) 2 79. What is $I_2 + I_3$ equal to? [2015-1] (a) 4 (b) 2 (c) 1 (d) 0 80. What is I_m equal to? [2015-1] (a) 0 (b) 1 (b) 2 (2015-1] (c) 1 (d) 0 81. Consider the following: [2015-1] (a) 0 (b) 2 (d) 0 82. Consider the following: [2015-1] (a) $1 = f_{m-1}$ is equal to 0. (c) $1 = \frac{\pi}{3}$ square unit (d) $\frac{1}{6}$ square unit (e) m (d) $2m$ 81. Consider the following: [2015-1] (a) $1 = \frac{\pi}{1} - \frac{1}{m} = \frac{\pi}{0} \frac{\sin x dx}{\sin x - \cos x}$ 82. The area of the figure formed by the lines ax + by + c = 0, ax + by - c = 0 and ax - by - c = 0 is [2015-1]/ (a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{c^2}{ab}$ (d) $\frac{c^2}{ab}$ (e) $\frac{2c^2}{ab}$ (c) $\frac{2\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{2\pi}{4}$ (d) π		(a)	<u>,</u>	- 1	(b)	$\sqrt{2} \pm 1$				22		15	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(a)	2		(b)	2			(c)	$\frac{32}{15}$	(d)	0	
DIRECTIONS (Qs. 78-81): For the next four (4) items that follow:Consider the integral $I_m = \int_0^{\pi} \frac{\sin 2mx}{\sin x} dx$, where m is a positive86. $\int_{-1}^{1} x x dx$ is equal to[2015-1](a) 0(b) $\frac{1}{2}$ (a) 0(b) $\frac{2}{3}$ (b) 0(c) 1(d) 2(c) 2(d) -2(c) 1(d) 2[2015-1](a) 1 square unit(b) $\frac{1}{2}$ square unit(a) 0(b) 1(c) 1(d) 0(c) $\frac{1}{3}$ square unit(b) $\frac{1}{2}$ square unit(a) 0(b) 1(c) 1(d) 0(c) $\frac{1}{3}$ square unit(d) $\frac{1}{6}$ square unit(a) 0(b) 1(c) $\frac{1}{2}$ square unit(d) $\frac{1}{6}$ square unit(d) $\frac{1}{6}$ square unit(a) 0(b) 1(c) $\frac{1}{3}$ square unit(d) $\frac{1}{6}$ square unit(d) $\frac{1}{6}$ square unit(a) 1 only(b) 2 only(c) $\frac{1}{2m} x h x - \cos x$ (a) $A = 2B$ (b) $B = 2A$ (a) $\frac{e^2}{ab}$ (b) $\frac{2e^2}{ab}$ (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (a) $\frac{e^2}{ab}$ (b) $\frac{2e^2}{ab}$ (c) $\frac{3\pi}{4}$ (d) π		(C)	2 م	12	(d)	2				15			
integer. 78. What is I_1 equal to? (a) 0 (b) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) 1 (c) 1 (c	Cor	sider	the	integral $I_m = \int_0^{\frac{\pi}{2}} \frac{1}{2}$	$\frac{\sin 2mx}{\sin x}$	dx, where n	<i>n</i> is a positive	86.	$\int_{-1} z$	$\mathbf{x} \mid \mathbf{x} \mid \mathbf{dx}$ is equal to		2	[2015-11]
78. What is I_1 equal to?[2015-I](c) 2(d) -2(a) 0(b) $\frac{1}{2}$ 87. The area bounded by the coordinate axes and the curve $\sqrt{x} + \sqrt{y} = 1$, is[2015-II](a) 1(d) 2(a) 1 square unit(b) $\frac{1}{2}$ square unit(c) $\frac{1}{2}$ square unit(a) 4(b) 2[2015-I](a) 1 square unit(b) $\frac{1}{2}$ square unit(a) 4(b) 2[2015-I](a) 1 square unit(d) $\frac{1}{6}$ square unit(a) 0(b) 1[2015-I](c) $\frac{1}{3}$ square unit(d) $\frac{1}{6}$ square unit(a) 0(b) 1[2015-I](c) $\frac{1}{3}$ square unit(d) $\frac{1}{6}$ square unit(a) 0(b) 1[2015-I](c) $\frac{1}{3}$ square unit(d) $\frac{1}{6}$ square unit(a) 1 $m_m = 1_{m-1}$ is equal to 0.[2015-I][2015-I](a) 1 only(b) 2 only[2015-I][2015-I](b) 2 only(c) Both 1 and 2(d) Neither 1 nor 2(a) 1(b) $\frac{2c^2}{ab}$ (c) $A=B$ (d) $A=3B$ (a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{3\pi}{4}$ (d) π	inte	ger.							(a)	0	(b)	$\frac{-}{3}$	
(a) 0 (b) $\frac{1}{2}$ (c) 1 (d) 2 (c) 1 (d) 2 (c) 1 (d) 0 (c) 1 (d) 1	78.	Wha	at is	I_1 equal to?			[2015 - I]		(c)	2	(d)	-2	
(a) 0 (b) $\frac{1}{2}$ $\sqrt{x} + \sqrt{y} = 1$, is [2015-1] (c) 1 (d) 2 (c) 1 (d) 0 (2015-1] (a) 1 square unit (b) $\frac{1}{2}$ square unit (a) 4 (b) 2 (c) 1 (d) 0 (2015-1] (c) $\frac{1}{3}$ square unit (c) $\frac{1}{6}$ square unit (c) 1		()	0		(1)	1		87.	The	area bounded by the	coordin	nate axes a	nd the curve
(c) 1(d) 279. What is $I_2 + I_3$ equal to?[2015-I](a) 1 square unit(b) $\frac{1}{2}$ square unit(a) 4(b) 2(c) 1(d) 0(c) 1(d) 0[2015-I](c) $\frac{1}{3}$ square unit(d) $\frac{1}{6}$ square unit80. What is I_m equal to?[2015-I](c) $\frac{1}{3}$ square unit(d) $\frac{1}{6}$ square unit(a) 0(b) 1(c) m(d) 2m DIRECTIONS (Qs. 88-89) : For the next two (02) items that81. Consider the following:[2015-I]follow :Consider the integrals1. $I_m - I_{m-1}$ is equal to 0.[2015-I]Consider the integralsConsider the integrals2. $I_{2m} > I_m$ (b) 2 only $sa + by + c = 0$, ax-by+c = 0, ax + by-c = 0 and ax - by-c = 0 is [2015-I]]88. Which one of the follwing is correct ?[2015-II](a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{3\pi}{4}$ (b) $\frac{\pi}{2}$ [2015-II]		(a)	0		(0)	$\overline{2}$			$\sqrt{\mathbf{x}}$	$+\sqrt{y} = 1$, is			[2015-II]
79. What is $I_2 + I_3$ equal to?[2015-I](a) 1 square unit(b) $\frac{1}{2}$ square unit(a) 4(b) 2(c) 1(d) 0(c) 1(d) 0[2015-I](c) $\frac{1}{3}$ square unit(d) $\frac{1}{6}$ square unit80. What is I_m equal to?[2015-I](c) $\frac{1}{3}$ square unit(d) $\frac{1}{6}$ square unit(a) 0(b) 1[2015-I](c) $\frac{1}{3}$ square unit(d) $\frac{1}{6}$ square unit(a) 0(b) 1[2015-I](c) $\frac{1}{3}$ square unit(d) $\frac{1}{6}$ square unit(a) 1 $m_m - I_{m-1}$ is equal to 0.[2015-I][2015-I] DIRECTIONS (Qs. 88-89) : For the next two (02) items that1. $I_m - I_{m-1}$ is equal to 0.[2015-I]Consider the integralsConsider the integrals2. $I_{2m} > I_m$ (b) 2 onlySame archever (c) and ax - by - c = 0 and ax - by - c = 0 is [2015-I]88. Which one of the following is correct ?[2015-II]82. The area of the figure formed by the lines ax + by + c = 0, ax - by + c = 0, ax + by - c = 0 and ax - by - c = 0 is [2015-II]88. What is the value of B?[2015-II](a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{2c^2}{ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{3\pi}{4}$ (d) π		(c)	1		(d)	2						1	
(a) 4 (b) 2 (c) 1 (d) 0 80. What is I_m equal to? [2015-I] (a) 0 (b) 1 (c) m (d) 2m 81. Consider the following: [2015-I] 1. $I_m - I_{m-1}$ is equal to 0. 2. $I_{2m} > I_m$ Which of the above is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 82. The area of the figure formed by the lines ax + by + c = 0, ax-by + c = 0, ax + by - c = 0 and ax - by - c = 0 is [2015-II] (a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{3\pi}{4}$ (d) π	79.	Wha	at is	$I_2 + I_3$ equal to?			[2015 - I]		(a)	1 square unit	(b)	$\frac{1}{2}$ square	unit
(c) 1 (d) 0 (a) 0 (b) 1 (c) m (d) 2m (a) 1 (c) m (d) 2m (c) m (d) m		(a)	4		(b)	2						2	
80. What is T_m equal to? (a) 0 (b) 1 (c) m (d) 2m 81. Consider the following: [2015-I] 1. $I_m - I_{m-1}$ is equal to 0. 2. $I_{2m} > I_m$ Which of the above is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 82. The area of the figure formed by the lines $ax + by + c = 0$, ax - by + c = 0, $ax + by - c = 0$ and $ax - by - c = 0$ is [2015-II] (a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (e) $\frac{3}{4}$ (f) π (a) 0 (b) $\frac{1}{2}$ (b) $\frac{2c^2}{4ab}$ (c) $\frac{3}{4}$ (d) π	00	(c)	l tia	L aqual to?	(d)	0	[2015 1]		(c)	$\frac{1}{2}$ square unit	(d)	$\frac{1}{2}$ square	unit
(c) c (c) m (d) $2m$ (c) m (d) $2m$ DIRECTIONS (Qs. 88-89) : For the next two (02) items that follow : 1. $I_m - I_{m-1}$ is equal to 0. 2. $I_{2m} > I_m$ Which of the above is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 82. The area of the figure formed by the lines $ax + by + c = 0$, ax - by + c = 0, $ax + by - c = 0$ and $ax - by - c = 0$ is [2015-II] (a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{3\pi}{4}$ (d) π	00.	٥n w (a)	at IS O		(h)	1	[2013-1]	_		3 -		6	
81. Consider the following: 1. $I_m - I_{m-1}$ is equal to 0. 2. $I_{2m} > I_m$ Which of the above is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 82. The area of the figure formed by the lines $ax + by + c = 0$, ax - by + c = 0, $ax + by - c = 0$ and $ax - by - c = 0$ is [2015-II] (a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{3\pi}{4}$ (d) π		(c)	m		(d)	2m		DIR	RECT	IONS (Qs. 88-89) : Fo	or the	next two (0	2) items that
1. $I_m - I_{m-1}$ is equal to 0. 2. $I_{2m} > I_m$ Which of the above is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 ax - by + c = 0, ax + by - c = 0 and $ax - by - c = 0$ is [2015-II] (a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{3\pi}{4}$ (d) π Consider the integrals Consider the integrals $A = \int_0^{\pi} \frac{\sin x dx}{\sin x + \cos x} and B = \int_0^{\pi} \frac{\sin x dx}{\sin x - \cos x}$ $A = \int_0^{\pi} \frac{\sin x dx}{\sin x + \cos x} and B = \int_0^{\pi} \frac{\sin x dx}{\sin x - \cos x}$ (a) $A = 2B$ (b) $B = 2A$ (c) $A = B$ (c) $A = B$ (c) $A = B$ (c) $A = 3B$ (d) $\frac{c^2}{4ab}$ (e) $\frac{c^2}{2ab}$ (f) $\frac{c^2}{4ab}$ (f) $\frac{c^2}{4ab}$ (f) $\frac{c^2}{4ab}$ (h) $\frac{\pi}{4}$ (h) $\frac{\pi}{4}$	81.	Con	side	the following:	(**)		[2015-1]	folle	<i>w</i> :				
2. $I_{2m} > I_m$ Which of the above is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 82. The area of the figure formed by the lines $ax + by + c = 0$, ax-by+c=0, ax + by-c=0 and $ax-by-c=0$ is [2015-II] (a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{3\pi}{4}$ (d) π		1.	I_m -	$-I_{m-1}$ is equal to 0			_ 4		Con	sider the integrals			
Which of the above is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 82. The area of the figure formed by the lines $ax + by + c = 0$, ax-by+c=0, $ax + by-c=0$ and $ax - by-c=0$ is [2015-II] (a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{3\pi}{4}$ (d) π		2.	I_{2m}	$>I_m$						π sin x dx	π	n v dv	
(a) 1 only (b) 2 only ${}_{0}$ bin A + cos A {}_{0} bin A + cos A ${}_{0}$ bin A + cos A ${}_{0}$ bin A + cos A {}_{0} bin A + cos A ${}_{0}$ bin A + cos A {}_{0} bin A + co		Whi	ch o	f the above is/are	correct?)			A=	$\int \frac{\sin x dx}{\sin x + \cos x}$ and B =	$\int \frac{\sin y}{\sin y}$	$x = \cos x$	
(c) Both 1 and 2 (d) Neither 1 nor 2 (a) Neither 1 nor 2 (a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (d) $\frac{c^2}{4ab}$ (e) $\frac{3\pi}{4}$ (f) π (f) $\frac{3\pi}{4}$ (f) π		(a)	1 0	nly	(b)	2 only				0	0 5117		
(a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (e) $\frac{3\pi}{4}$ (f) π (a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{4ab}$ (c) $\frac{3\pi}{4}$ (d) π	02	(C)	Bot	th 1 and 2	(d)	Neither 1 n	$\operatorname{or} 2$	88.	Whi	ch one of the following i $A = 2D$	s corre	$\operatorname{ct} ?$	[2015-II]
(a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{\pi}{4}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$ (d) $\frac{c^2}{4ab}$ (e) $\frac{3\pi}{4}$ (f) $\frac{\pi}{4}$ (f) $\frac{\pi}{2}$ (g) $\frac{\pi}{4}$ (g) $\frac{\pi}{4}$	82.	1 he	e are	a of the figure form $c = 0$ as $\pm by$ $c = 0$	med by t	x = by = c = b	+ by + c = 0,		(a)	A = 2B $\Delta = B$	(d)	B = 2A $\Delta = 3B$	
(a) $\frac{c^2}{ab}$ (b) $\frac{2c^2}{ab}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (e) $\frac{3\pi}{4}$ (f) π		ал-	0y⊤	c = 0, ax + 0y - c =	u anu a	⊼-0y-0-1	0 13 [201 J- 11]	89.	Wha	at is the value of B?	(u)	л - JD	[2015-11]
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$ (c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{3\pi}{4}$ (d) π		(a)	c	2	(h)	$2c^2$				π		π	[· · · -]
(c) $\frac{c^2}{2ab}$ (d) $\frac{c^2}{4ab}$ (c) $\frac{3\pi}{4}$ (d) π		(a)	al	b	(0)	ab			(a)	$\frac{\pi}{4}$	(b)	$\frac{\pi}{2}$	
(c) $\frac{c}{2ab}$ (d) $\frac{c^{-}}{4ab}$ (c) $\frac{3\pi}{4}$ (d) π				2		.2				,		-	
2a0 4a0 4		(c)	$\frac{c}{2}$		(d)	$\frac{c^{-}}{4a^{+}}$			(c)	$\frac{3\pi}{4}$	(d)	π	
			2	ab		4ab				4	()		

Definite Integration & Its Application

DII foli	RECTIONS (Qs. 90-91) : For	the next two (2)	items that	00	What is $\int_{0}^{\frac{\pi}{2}} d\theta$ equal	to?	[2017]]]
<u>j 011</u>	Consider the functions			90.	what is $\int_0^{1} \frac{1}{1 + \cos \theta}$ equal	10 !	[2017-1]
	$f(x) = xg(x)$ and $g(x) = \left[\frac{1}{x}\right]$				(a) $\frac{1}{2}$	(b) 1	
	Where $[\cdot]$ is the greatest integr	er function.		99	(c) $\sqrt{3}$ If f (x) and g (x) are con	(d) None of the	above
90.	What is $\int_{\frac{1}{3}}^{\frac{1}{2}} g(x) dx$ equal to?		[2016-1]	<i>))</i> .	$f(\mathbf{x}) = f(\mathbf{a} - \mathbf{x})$ and $g(\mathbf{x})$	+ g (a - x) = 2, th	en what is
	. 1	1			$\int_0^a f(\mathbf{x}) g(\mathbf{x}) d\mathbf{x} \text{ equal to?}$		[2017-I]
	(a) $\frac{-6}{5}$	(b) $\frac{1}{3}$			(a) $\int_0^a g(x) dx$	(b) $\int_0^a f(x) dx$	
	(c) $\frac{5}{18}$	(d) $\frac{3}{36}$			(a) $2\int_{a}^{a} f(\mathbf{x}) d\mathbf{x}$		
91.	What is $\int_{1}^{1} f(x) dx$ equal to ?		[2016-1]	100	(c) $2 \int_0^{\infty} f(x) dx$	$(\mathbf{u}) = 0$	aincoribad
	$J_{\frac{1}{3}}$ (7) J_{1}	2		100.	in a circle of radius a?	r a triangle that can t	[2017-I]
	(a) $\frac{72}{72}$	(b) $\frac{-1}{3}$			(a) $\frac{3a^2}{4}$	(b) $\frac{a^2}{2}$	
02	(c) $\frac{17}{72}$	(d) $\frac{37}{144}$	[2016]]]		(c) $\frac{3\sqrt{3}a^2}{4}$	(d) $\frac{\sqrt{3}a^2}{d}$	
92.	$\int_{1}^{2} \int_{1}^{2} \int_{1$		[2010-1]		4	4	
	$\int_{-2}^{2} x dx - \int_{-2} [x] dx$ equal to, where [·] is the great (a) 0	est integer function	on?	101.	What is $\int_{e^{-1}}^{e^2} \left \frac{\ln x}{x} \right dx$ equal	to?	[2017-1]
	(c) 2	(d) 4			(a) $\frac{3}{4}$	(b) $\frac{5}{3}$	
93.	If $\int_{-2}^{5} f(x) dx = 4$ and $\int_{0}^{5} \{1 + f(x) \} dx = 4$	(x) dx = 7, then	n what is		(c) 2 (c) 3	(d) 4	
	$\int_{-2}^{0} f(x) dx \text{ equal to?}$	(b) 2	[2016-1]	102.	What is $\int_0^{2\pi} \sqrt{1 + \sin \frac{x}{2}} dx$	equal to?	[2017-II]
	(a) -3 (c) 3	(0) 2 (d) 5			(a) 8	(b) 4	
94.	What is $\int_0^{4\pi} \cos x dx$ equal t	o?	[2016-1]	103.	(c) 2 The area bounded by the cu	(d) 0 rve $ x + y = 1$ is	[2017-II]
	(a) 0 (c) 4	(b) 2 (d) 8			(a) 1 square unit	(b) $2\sqrt{2}$ square	units
95.	What is the area bounded by	the curves $ y = 1$	$-x^{2}?$ [2016-II]		(c) 2 square units $\begin{bmatrix} 1 & n \end{bmatrix}$	(d) $2\sqrt{3}$ square	units
	(a) $\frac{4}{3}$ square units	(b) $\frac{8}{3}$ square un	its	104.	Let $f(\mathbf{n}) = \left\lfloor \frac{1}{4} + \frac{1}{1000} \right\rfloor$, wh	ere [x] denote the in	itegral part
	(c) 4 square units	(d) $\frac{16}{3}$ square u	nits		of x. Then the value of $\sum_{n=1}^{1000}$	f(n) is	[2017-II]
96.	If $\int_{-\infty}^{\pi/2} \frac{dx}{dx} = k \cot^{-1} 2$, the function is the second se	hen what is the va	lue of K ?		(a) 251 (c) 1	(b) 250 (d) 0	
	$\int_{0}^{3} 3\cos x + 5$		[2016_11]	105	The value of $\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} dx$	$\int \frac{\pi}{4} \int \frac{1}{2\pi i \pi} dx = i s e c$	uual to
	(a) 1/4 (c) 1	(b) 1/2 (d) 2	[2010-11]	105.	The value of $\int_0^4 \sqrt{\tan x} dx$	$+ \int_0^4 \sqrt{\cot x} dx$ is eq	[2017-II]
97.	What is $\int_{1}^{3} 1-x^4 dx$ equal to?	2	[2016-11]		(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	
	(a) $-232/5$ (c) $116/5$	(b) -116/5 (d) 232/5			(c) $\frac{\pi}{2\sqrt{2}}$	(d) $\frac{\pi}{\sqrt{2}}$	

106. What is the area of the region bounded by the parabola $y^2 = 6 (x - 1)$ and $y^2 = 3x$? [2018-I]	as
(a) $\frac{\sqrt{6}}{3}$ (b) $\frac{2\sqrt{6}}{3}$	
(c) $\frac{4\sqrt{6}}{3}$ (d) $\frac{5\sqrt{6}}{3}$	114.
DIRECTIONS (Qs. 107-109) : Consider the following information for the next three (03) items that follow.	ıg
Three sides of a trapezium are each equal to 6 cm. L	et
$\alpha \in \left(0, \frac{\pi}{2}\right)$ be the angle between a pair of adjacent sides.	. 115.
107. If the area of the trapezium is the maximum possible, the what is α equal to? [2018-I]	en '
(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$	
(c) $\frac{\pi}{3}$ (d) $\frac{2\pi}{5}$	
108. If the area of the trapezium is maximum, what is the length the fourth side? [2018-I]	of 116. '

- the fourth side? (a) 8 cm (b) 9 cm(c) 10 cm (d) 12 cm
- 109. What is the maximum area of the trapezium? [2018-I] (a) $36\sqrt{3}$ cm² (b) $30\sqrt{3}$ cm²
 - (c) $27\sqrt{3} \text{ cm}^2$ (d) $24\sqrt{3} \text{ cm}^2$
- 110. What is $\int_{0}^{\pi} e^{x} \sin x \, dx \text{ equal to}?$ [2018-I]
 - (a) $\frac{e^{\pi} + 1}{2}$ (b) $\frac{e^{\pi} 1}{2}$ (c) $e^{\pi} + 1$ (d) $\frac{e^{\pi} + 1}{4}$

111. What is $\int_{1}^{e} x \ln x \, dx$ equal to? [2018-1]

- (a) $\frac{e+1}{4}$ (b) $\frac{e^2+1}{4}$ (c) $\frac{e-1}{4}$ (d) $\frac{e^2-1}{4}$
- 112. What is $\int_{0}^{\sqrt{2}} [x^2] dx$ equal to (where [.] is the greatest integer function)? [2018-1]
 - (a) $\sqrt{2} 1$ (b) $1 \sqrt{2}$ (c) $2(\sqrt{2} - 1)$ (d) $\sqrt{3} - 1$

113. What is the value of
$$\frac{\overline{f}}{\frac{-\pi}{4}}$$
 (sin × tan x)dx? [2018-1]

	<u>.</u>	±	
	(a) $-\frac{1}{\sqrt{2}} + \ell n \left(\frac{1}{\sqrt{2}} \right)$	(b) $\frac{1}{\sqrt{2}}$	
	(c) 0 $\sqrt{2}$ ($\sqrt{2}$)	(d) $\sqrt{2}$	
114.	If $\int_{a}^{b} x^{3} dx = 0$ and $\int_{a}^{b} x^{2} dx = 0$	$=\frac{2}{3}$, then what are the	e values of a
	and b respectively? (a) -1, 1 (c) 0, 0	(b) 1, 1 (d) 2, -2	[2018-I]
115.	What is $\int_{0}^{1} x (1-x)^9 dx$ equations	al to?	[2018-1]
	(a) $\frac{1}{110}$	(b) $\frac{1}{132}$	
	(c) $\frac{1}{148}$	(d) $\frac{1}{240}$	
116.	What is $\int_{a}^{b} [x] dx + \int_{a}^{b} [-x] dx$	x equal to, where [.] is	the greatest
	integer function?		[2018-II]
	(a) $b-a$	(b) $a - b$	
	(c) 0	(d) $2(b-a)$	
117.	What is $\int_{2}^{8} x-5 dx$ equal to	0?	[2018-II]
	(a) 2	(b) 3	
	(c) 4	(d) 9	
118.	What is $\int_{-1}^{1} \left\{ \frac{d}{dx} \left(\tan^{-1} \frac{1}{x} \right) \right\}$	dx equal to?	[2018-II]
	(a) 0	(b) $-\frac{\pi}{4}$	
	(c) $-\frac{\pi}{2}$	(d) $\frac{\pi}{2}$	
119.	$\int_{0}^{\pi/2} \sin x - \cos x dx \text{ is eq}$	ual to	[2019-I]
	(a) 0	(b) $2(\sqrt{2}-1)$	
	(c) $2\sqrt{2}$	(d) $2(\sqrt{2}+1)$	
120.	$\int_{0}^{\pi/2} e^{\sin x} \cos x dx$ is equal	to	[2019-1]
	(a) $e+1$	(b) $e-1$	
101	(c) $e+2$	(d) e	
121.	what is the area of one of c sin x and x -axis?	the loops between th	e curve y = [2019-1]
	(a) c	(b) 2c	

(d) 4c

(c) 3c

Definite Integration & Its Application

									ANS	SWE	CR F	KEY									
1	(c)	13	(a)	25	(c)	37	(c)	49	(c)	61	(a)	73	(d)	85	(c)	97	(d)	109	(c)	121	(b)
2	(a)	14	(b)	26	(d)	38	(b)	50	(c)	62	(a)	74	(a)	86	(a)	98	(b)	110	(a)		
3	(b)	15	(a)	27	(b)	39	(a)	51	(a)	63	(c)	75	(a)	87	(d)	99	(b)	111	(b)		
4	(a)	16	(c)	28	(a)	40	(d)	52	(d)	64	(b)	76	(a)	88	(c)	100	(c)	112	(a)		
5	(d)	17	(c)	29	(b)	41	(a)	53	(c)	65	(c)	77	(a)	89	(b)	101	(b)	113	(c)		
6	(c)	18	(a)	30	(c)	42	(c)	54	(b)	66	(d)	78	(a)	90	(b)	102	(a)	114	(a)		
7	(a)	19	(a)	31	(a)	43	(d)	55	(c)	67	(c)	79	(d)	91	(a)	103	(c)	115	(a)		
8	(b)	20	(b)	32	(a)	44	(c)	56	(c)	68	(a)	80	(a)	92	(c)	104	(a)	116	(b)		
9	(d)	21	(a)	33	(c)	45	(b)	57	(c)	69	(b)	81	(a)	93	(b)	105	(d)	117	(d)		
10	(a)	22	(a)	34	(b)	46	(a)	58	(b)	70	(d)	82	(b)	94	(d)	106	(c)	118	(c)		
11	(d)	23	(b)	35	(c)	47	(b)	59	(b)	71	(a)	83	(d)	95	(b)	107	(c)	119	(b)		
12	(a)	24	(c)	36	(c)	48	(b)	60	(b)	72	(c)	84	(a)	96	(b)	108	(d)	120	(b)		

HINTS & SOLUTIONS

1. (c) Given function
$$f(x) = A \sin\left(\frac{\pi x}{2}\right) + B$$

Differentiating w.r.t.x

$$f'(x) = A \cos\left(\frac{\pi x}{2}\right) \cdot \frac{\pi}{2}$$

$$f'\left(\frac{1}{2}\right) = \sqrt{2} = A\left(\cos\frac{\pi}{4}\right)\frac{\pi}{2} = A \cdot \frac{1}{\sqrt{2}} \cdot \frac{\pi}{2}$$

$$\Rightarrow A = \frac{(\sqrt{2} \times \sqrt{2}) \times 2}{\pi} = \frac{4}{\pi}$$
Now,
$$\int_{0}^{1} f(x) dx = \frac{2A}{\pi}$$

$$\Rightarrow \int_{0}^{1} \left\{ A \sin\left(\frac{\pi x}{2}\right) + B \right\} dx = \frac{2 \times 4}{\pi^{2}}$$

$$\Rightarrow \left[-A \cos\frac{\pi x}{2} \cdot \frac{2}{\pi} + Bx \right]_{0}^{1} = \frac{8}{\pi^{2}}$$

$$\Rightarrow -\frac{4}{\pi} \cdot \frac{2}{\pi} \cos\frac{\pi}{2} + B + \frac{4}{\pi} \cdot \frac{2}{\pi} \cos 0 = \frac{8}{\pi^{2}}$$

$$\Rightarrow B + \frac{8}{\pi^{2}} = \frac{8}{\pi^{2}} \Rightarrow B = 0$$
The given integral

(a)

$$\int_{0}^{\pi} \sin mx . \sin nx \, dx$$
$$= \int_{0}^{\pi} \sin m (\pi - x) . \sin n (\pi - x) \, dx$$
$$= \int_{0}^{\pi} \sin mx . \sin nx \, dx$$

So,
$$\int_{0}^{\pi} \sin mx . \sin nx \, dx$$

$$= 2 \int_{0}^{\pi/2} \sin mx . \sin nx \, dx$$

$$= 2 \int_{0}^{\pi/2} \frac{1}{2} [\cos(mx - nx) - \cos(mx + nx)] dx$$

$$= \int_{0}^{\pi/2} [\cos(m - n)x - \cos(m + n)x] dx$$

$$= \left[\frac{\sin(m - n)x}{m - n} - \frac{\sin(m + n)x}{m + n} \right]_{0}^{\pi/2} = 0$$
3. (b) $|x| \text{ for } x \ge 0$

$$= x \text{ and } |x - 1| \text{ for } x \le 1$$

$$= -(x - 1),$$
so, $\int_{0}^{1} (|x| + |x - |1|) = \text{ required area}$

$$a = \int_{0}^{1} x \, dx - \int_{0}^{1} (x - 1) \, dx$$

$$= \left[\frac{x^{2}}{2} \right]_{0}^{1} - \left[\frac{x^{2}}{2} - x \right]_{0}^{1} = \frac{1}{2} - \left(\frac{1}{2} - 1 \right) = 1 \text{ sq units}$$
4. (a) Assertion (A): $\int_{1}^{e} \ln^{2} x \cdot dx = \int_{1}^{e} \ln^{2} x \cdot 1 \, dx$

$$\int \ln^{2} x \cdot 1 \, dx = x \cdot \ln^{2}(x) - \int 2 \cdot \ln x \cdot dx$$

$$= x \cdot \ln^{2} x - 2x \cdot \ln x + 2x$$

$$\therefore \int_{1}^{e} \ln^{2} x \cdot dx = [x \cdot \ln^{2} x - 2x \ln x + 2x]_{1}^{e}$$

м-369

= e - 2e + 2e - 0 + 0 - 2 $(:: \ln e = 1 \text{ and } \ln 1 = 0)$ = e - 2So, A is true. Reason (R): $I_n = \int_{-\infty}^{e} \ln^n x \cdot dx$ $\therefore \int \ln^n x \cdot dx = x \times \ln^n x - n \int \ln^{n-1} x \cdot dx$ $= x \cdot \ln^n x - n \times \mathbf{I}_{n-1}$ So, $\int_{1}^{e} \ln^{n} x \cdot dx = [x \cdot \ln^{n} x - n \times I_{n-1}]_{1}^{e}$ $= e \cdot \ln^{n} e - \ln^{n} 1 - n \times I_{n-1}$ = $e - n \times I_{n-1}$ (: $\ln e = 1$ and I So, R is true and R is correct explanation of A. $(:: \ln e = 1 \text{ and } \ln 1 = 0)$ (d) Given integral is $I = \int_{0}^{1} (x-1)e^{-x} dx$ 5. Integrating by parts taking (x-1) as first function We get, $I = [(x-1) \{-e^{-x}\}]_0^1 - \int_0^1 1 \cdot (-e^{-x}) dx$ $=-(1-1)\frac{1}{2}+(-1)e^{0}+[-e^{-x}]_{0}^{1}=-1-\frac{1}{e}+1=-\frac{1}{e}$ (c) Let I = $\int_{\ell_{\text{R}}}^{x} (e^{x} - 1)^{-1} dx$ 6. $=\int_{\ell n^2}^{x} \frac{1}{2^{x}-1} dx$ Put $e^x - 1 = t \implies e^x = t + 1$ $e^{x} dx = dt \implies dx = \frac{dt}{e^{x}}$ or, $dx = \frac{dt}{t+1}$ when $x = \ell n 2$, $t = e^{\ln 2} - 1 = 2 - 1 = 1$ and I = $\int_{1}^{t} \frac{1}{t(t+1)} dt$ breaking into partial fractions. $\frac{1}{t(t+1)} = \frac{1}{t} - \frac{1}{t+1}$ and I = $\int_{1}^{t} \left(\frac{1}{t} - \frac{1}{t+1}\right) dt = \left[\log_{e}^{t} - \log_{e}(t+1)\right]_{1}^{t}$ or $I = \left[\log_e \frac{t}{t+1} \right]_1^t = \log_e \frac{t}{t+1} - \log_e \frac{1}{2}$ $=\log_e \frac{2t}{t+1} = \log_e \frac{3}{2}$ $\left[\operatorname{Since}, \int_{\ell_{n}2}^{x} (e^{x} - 1)^{-1} dx = \log_{e} \frac{3}{2}\right]$

 $= (e \cdot \ln^2 e - 2e \cdot \ln e + 2e) - (\ln^2 1 - 2\ln 1 + 2)$

So,
$$\frac{2t}{t+1} = \frac{3}{2}$$

or, $4t = 3t+3 \Rightarrow t=3$
So, $e^{x}-1=3$, $e^{x}=4 \Rightarrow x=\ln 4$
7. (a) Value of the integral $\int_{2}^{9} f(x) dx$
 $= \int_{-3}^{9} f(x) dx = \frac{-5}{6}$ and $\int_{-3}^{2} f(x) dx = \frac{7}{3}$
Putting these values in equation (i)
 $\int_{2}^{9} f(x) dx = \frac{-5}{6} - \frac{7}{3} = -\frac{19}{6}$
8. (b) $\int_{0}^{\pi} \sin^{7} x dx = 2\int_{0}^{\pi/2} \sin^{7} x dx$
sin x is an odd function and for an odd function
 $\int_{0}^{a} f(x) dx = 2\int_{0}^{a/2} f(x) dx$
Hence, $\int_{0}^{\pi} \sin^{7} x dx = 2\int_{0}^{\pi/2} \sin^{7} x dx$ is true.
So, A and R both are individually true but R is not the
correct explanation of A.
9. (d) Given equation of curve $2x^{2} + y^{2} = 1$ is an ellipse which
can be written as $\frac{x^{2}}{y^{2}} + \frac{y^{2}}{1} = 1$
Area of ellipse $\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ is $A = \pi$ ab sq unit
Here, $a = \frac{1}{\sqrt{2}}$, $b = 1$.
 \therefore Required area $= \pi \cdot \frac{1}{\sqrt{2}} \cdot 1 = \frac{\pi}{\sqrt{2}}$ sq unit
10. (a) Let the given integral be,
 $I = \int_{0}^{1} x(1-x)^{9} dx$
Put $1-x = t \Rightarrow dx = -dt$ and $x = 1-t$
when $x = 0$, $t = 1$ and when $x = 1$, $t = 0$
 $\Rightarrow I = \int_{1}^{0} (1-t) t^{9} (-dt)$
 $= -\int_{1}^{0} (-t^{10} + t^{9}) dt = -\int_{1}^{0} (-t^{10} + t^{9}) dt$
 $\left[-\frac{t^{11}}{11} + \frac{t^{10}}{10} \right]_{0}^{1} = -\frac{1}{11} + \frac{1}{10} = -\frac{10+11}{110} = -\frac{1}{110}$
Definite Integration & Its Application

11. (d) Let f(x)=x|x|
f(-x)=-x|-x|=-x|x|=-f(x)
⇒ x | x | is an odd function
Hence,
$$\int_{-1}^{1} x | x | dx = 0$$

12. (a) Let, $I = \int_{0}^{\pi/2} \cos^{8} x dx$
Given integral can be also be written as :
 $I = \int_{0}^{\pi/2} \sin^{\alpha} x \cos^{8} x dx$, which is known as Gamma
function.
Solution is : $\int_{0}^{\pi/2} \sin^{m} x \cos^{n} x dx$
 $= \frac{[(m-1)(m-3)...2 \text{ or } 1][(n-1)(n-3)...2 \text{ or } 1]}{[(m+n)(m+n-2)...2 \text{ or } 1]} \cdot \theta$
If m and n both are even then RHS should be multiplied
by $\frac{\pi}{2}$ here, m = 0, n = 8
⇒ $I = \frac{(8-1)(8-3)(8-5)...(8-7)}{8.(8-2)(8-4)(8-6)} \frac{\pi}{2}$
 $= \frac{7.5.3.1}{8.(6.4.2)2} = \frac{35\pi}{256}$
13. (a) Let the given integer be
 $I = \int_{0}^{b} \frac{\log x}{x} dx$
Put log x = t and $\frac{dx}{x} = dt$ when x = a, t = log a and if
x = b, t = log b.
∴ $I = \int_{loga}^{logb} t dt = \left[\frac{t^2}{2}\right]_{a}^{b}$
 $= \frac{1}{2}[(\log b)^2 - (\log a)^2]$
 $= \frac{1}{2}\log(ab)\log(\frac{b}{a})$
14. (b) The given equation of line can be rewritten as
 $\frac{x}{5} - \frac{y}{3} = 1$ and $y = \frac{3x-15}{5}$

 \therefore Required area = $\int_1^3 y dx$

 $= \int_{1}^{3} \left(\frac{3x-15}{5}\right) dx = \frac{1}{5} \int_{1}^{3} (3x-15) dx$

 $=\frac{1}{5}\left[\frac{3x^2}{2} - 15x\right]_1^3 = \frac{1}{5}\left[\frac{27}{2} - 45 - \frac{3}{2} + 15\right]$

$$= \frac{1}{5} \left[\frac{24}{3} - 30 \right] = \frac{1}{5} [12 - 30]$$

$$= \frac{-18}{5} = \frac{18}{5} \text{ sq. unit (neglecting -ve sign)}$$
(a) Let $I = \int_{0}^{1} xe^{x^{2}} \cdot dx$
Let $x^{2} = t$
 $\Rightarrow 2x \, dx = dt$
 $\Rightarrow xdx = \frac{dt}{2}$
when $x = 0, t = 0$ then $x = 1, t = 1$
 $\Rightarrow I = \frac{1}{2} \int_{0}^{1} e^{t} dt = \frac{1}{2} \left[e^{t} \right]_{0}^{1}$
 $= \frac{1}{2} \left[e^{x^{2}} \right]_{0}^{1} = \frac{1}{2} [e^{-e^{0}}] = \frac{e - 1}{2}$
(c) Given $4x^{2} + 9y^{2} = 1$
 $\Rightarrow \frac{x^{2}}{\left(\frac{1}{2}\right)^{2}} + \frac{y^{2}}{\left(\frac{1}{3}\right)^{2}} = 1$
 $\therefore a = \frac{1}{2} \text{ and } b = \frac{1}{3}$
 x'
 $(0, 0)$
 $(0, 0)$
 $(0, 0)$
 $(0, 0)$
 $(0, -\frac{1}{3})$
Now, area of ellipse $= 4 \int_{0}^{1/2} ydx$
 $= 4 \int_{0}^{1/2} \sqrt{\frac{1 - 4x^{2}}{9}} dx = \frac{4}{3} \int_{0}^{1/2} \sqrt{1 - (2x)^{2}} dx$
 $= \frac{2}{3} \int_{0}^{1} \sqrt{1 - t^{2}} dt = \frac{2}{3} \left[\frac{1}{2} x \frac{\pi}{2} - \frac{1}{2} \times 0 \right] = \frac{\pi}{6}$

17. (c)
$$\int_{-2}^{2} (ax^{3} + bx + c)dx$$
$$= \left[\frac{ax^{4}}{4} + \frac{bx^{2}}{2} + \frac{cx}{1}\right]_{-2}^{2}$$
$$= \left[\frac{a(16)}{4} + \frac{b(4)}{2} + 2c\right] - \left[\frac{a(16)}{4} + \frac{b(4)}{2} - 2c\right] = 4c$$
So the value of given integral depends on the value of

So, the value of given integral depends on the value of 21. (a) *c* only

18. (a) Given equation,

$$\int_{0}^{p} (3x^{2} + 4x - 5)dx = p^{3} - 2$$

$$\Rightarrow \left[\frac{3x^{3}}{3} + \frac{4x^{2}}{2} - 5x\right]_{0}^{p} = p^{3} - 2$$

$$\Rightarrow p^{3} + 2p^{2} - 5p = p^{3} - 2$$

$$\Rightarrow 2p^{2} - 5p + 2 = 0$$

$$\Rightarrow 2p^{2} - 4p - p + 2 = 0$$

$$\Rightarrow 2p (p - 2) - 1 (p - 2) = 0$$

$$\Rightarrow (p - 2) (2p - 1) = 0$$

$$\Rightarrow p - 2 = 0, 2p - 1 = 0$$

Hence the values of *p* are $\frac{1}{2}$ and 2.

19. (a) Let
$$I = \int_0^{\pi/2} \log(\tan x) dx$$
 ...(i)

and $I = \int_0^{\pi/2} \log\left\{ \tan\left(\frac{\pi}{2} - x\right) \right\} dx$

[By the property of definite integral which says

$$\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$$

$$\Rightarrow I = \int_{0}^{\pi/2} \log(\cot x) dx \qquad \dots (ii)$$
By adding equation (i) and (ii), we get

$$2I = \int_0^{\pi/2} \log (\tan x) dx + \int_0^{\pi/2} \log (\cot x) dx$$
$$\Rightarrow 2I = \int_0^{\frac{\pi}{2}} \log (\tan x \cot x) dx$$

 $[\because \log m + \log n = \log(mn)]$

$$= \int_{0}^{\frac{\pi}{2}} \log(\tan x. \frac{1}{\tan x}) \, dx = \int_{0}^{\frac{\pi}{2}} \log 1 \, dx = 0$$

$$\Rightarrow I = 0$$

20. (b) Let
$$I = \int_0^1 x(1-x)^n dx$$

Put $1-x = t \Rightarrow dx = -dt$
when $x = 0$ then $t = 1$
when $x = 1$ then $t = 0$

$$\therefore I = -\int_{1}^{0} (1-t)t^{n} dt = \int_{0}^{1} (t^{n} - t^{n+1}) dt$$
$$= \left[\frac{t^{n+1}}{n+1} - \frac{t^{n+2}}{n+2} \right]_{0}^{1}$$
$$= \frac{1}{n+1} - \frac{1}{n+2} = \frac{1}{(n+1)(n+2)}$$
21. (a) Given $x = \pi/k, x = \frac{\pi}{3k}$ and $y = \sin kx$ Let the required area be A So, A = 3 (Given)
Therefore Area, $A = \int_{\pi/3k}^{\pi/3k} \sin kx \, dx$
$$\Rightarrow 3 = -\left[\frac{\cos kx}{k} \right]_{\pi/3k}^{\pi/3k}$$
$$\Rightarrow 3 = -\frac{1}{k} \left[\cos \pi - \cos \frac{\pi}{3} \right]$$
$$\Rightarrow 3 = -\frac{1}{k} \left[-1 - \frac{1}{2} \right]$$
 $(\because \cos \pi = \cos (\pi/2 + \pi/2))$
$$= -\sin \pi/2 \text{ and } \cos 60^{\circ} =$$
22. (a) Given, $f(x) = a + bx + cx^{2}$
$$\therefore \int_{0}^{1} f(x) dx = \int_{0}^{1} (a + bx + cx^{2}) dx$$
$$= \left[ax + \frac{bx^{2}}{2} + \frac{cx^{3}}{3} \right]_{0}^{1}$$

 $\frac{1}{2})$

$$= a + \frac{b}{2} + \frac{c}{3} \qquad ..(i)$$

Here, $f(0) = a$, $f\left(\frac{1}{2}\right) = a + \frac{b}{2} + \frac{c}{4}$
and $f(1) = a + b + c$
Now: $\frac{f(0) + 4f\left(\frac{1}{2}\right) + f(1)}{2}$

Now,
$$\frac{(2)}{6} = \frac{a + 4\left(a + \frac{b}{2} + \frac{c}{4}\right) + a + b + c}{6} = \frac{a + 4\left(\frac{4a + 2b + c}{4}\right) + a + b + c}{6}$$

$$=\frac{a+4a+2b+c+a+b+c}{6} = \frac{6a+3b+c}{6}$$
$$=a+\frac{b}{2}+\frac{c}{3}$$

2c

: From Eqs. (i) and (ii), we get

$$\int_{0}^{1} f(x)dx = \frac{f(0) + 4f\left(\frac{1}{2}\right) + f(1)}{6}$$

23. (b) Given curve is $y = 4x - x^2 - 3$ Since, area bounded by x-axis $\therefore y=0$ $\Rightarrow 4x - x^2 - 3 = 0 \Rightarrow x^2 - 4x + 3 = 0$ $\Rightarrow x^2 - 3x - x + 3 = 0 \Rightarrow (x - 3)(x - 1) = 0$ $\Rightarrow x = 1, 3$

$$\therefore$$
 Required area = $\int_{1}^{3} (4x - x^2 - 3) dx$

$$= \frac{4x^2}{2} - \frac{x^3}{3} - 3x \Big|_{1}^{3} = \left(\frac{36}{2} - \frac{27}{3} - 9\right) - \left(\frac{4}{2} - \frac{1}{3} - 3\right)$$
$$= (18 - 9 - 9) - \left(2 - \frac{10}{3}\right) = 0 - \left(\frac{-4}{3}\right) = \frac{4}{3}$$
 sq. unit.

24. (c) Let
$$I = \int_0^{\pi/2} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} dx$$
 ...(i)

$$= \int_0^{\pi/2} \frac{\sin^3(\pi/2 - x)}{\sin^3(\pi/2 - x) + \cos^3(\pi/2 - x)} dx$$

By using the property $\int_0^a f(x) dx = \int_0^a f(a-x) dx$

$$\Rightarrow I \int_0^{\pi/2} \frac{\cos^3 x}{\sin^3 x + \cos^3 x} dx \left(\frac{\because \sin(\frac{\pi}{2} - \theta) = \cos \theta \text{ and}}{\cos(\frac{\pi}{2} - \theta) = \sin \theta} \right)$$

On adding Eqs. (i) and (ii), we get
$$2I = \int_0^{\pi/2} \frac{\sin^3 x \, dx}{\sin^3 x + \cos^3 x} + \int_0^{\pi/2} \frac{\cos^3 x \, dx}{\sin^3 x + \cos^3 x}$$

$$= \int_0^{\pi/2} \frac{\sin^3 x + \cos^3 x \, dx}{\sin^3 x + \cos^3 x}$$

$$2I = \int_0^{\pi/2} 1 \, dx \implies 2I = \left[x\right]_0^{\pi/2} = \frac{\pi}{2} \implies I = \frac{\pi}{4}$$
25. (c) Equation of given curve is $y^2 = 12x$

At
$$y=6$$
, $36=12x \implies x=3$

:. Required area = $\int_0^3 (y_1 - y_2) dx$ where y_1 represents line and y_2 represents the curve.

$$= \int_{0}^{3} \left(6 - \sqrt{12x}\right) dx = \left[6x\right]_{0}^{3} - \sqrt{12} \left[\frac{2x^{3/2}}{3}\right]_{0}^{3}$$
$$= \left[6 \times 3\right] - \frac{\sqrt{12} \times 2 \times \sqrt{27}}{3} = 18 - 12 = 6 \text{ sq unit}$$

26. (d) We know

$$\int_{-a}^{a} f(x)dx = \begin{cases} 0 \text{ if } f(x) \text{ is odd.} \\ 2 \int_{0}^{a} f(x)dx \text{ if } f(x) \text{ is even} \end{cases}$$

Since, $\tan^3 x$ is an odd function

$$\therefore \quad \int_{-\pi/4}^{\pi/4} \tan^3 x \ dx = 0$$

27. (b) Let I =
$$\int_{\pi/6}^{\pi/4} \frac{dx}{\sin x \cos x}$$

multiply and divide by 2

$$= 2\int_{\pi/6}^{\pi/4} \frac{dx}{2\sin x \cos x} = 2\int_{\pi/6}^{\pi/4} \frac{dx}{\sin 2x}$$
$$= 2\int_{\pi/6}^{\pi/4} \cos ec \, 2x \, dx = 2[\log \tan x]_{\pi/6}^{\pi/4} \cdot \frac{1}{2}$$
$$= [\log \tan \pi/4 - \log \tan \pi/6]$$
$$= \log 1 - \log \frac{1}{\sqrt{3}} = 0 - \log \frac{1}{\sqrt{3}}$$
$$= \log \sqrt{3} \quad (\because \log 1 = 0)$$
28. (a) Let I = $\int_{1}^{2} e^{x} \left(\frac{1}{x} - \frac{1}{x^{2}}\right) dx$

$$= \int_{1}^{2} e^{x} (f(x) + f'(x)) dx \text{ where } f(x) = \frac{1}{x}$$
$$= e^{x} f(x) \Big|_{1}^{2}$$
$$\therefore \quad I = \frac{e^{x}}{x} \Big|_{1}^{2} = \frac{e^{2}}{2} - e = e \left(\frac{e}{2} - 1\right)$$

29. (b) Given curve is
$$f(x) = xe^x$$
, $x = 0$ and $x = 1$.

So, Required Area =
$$\int_{0}^{1} f(x) dx = \int_{0}^{1} x e^{x} dx$$

Let *x* be the first function and e^x be the second function then by parts

$$= \left[xe^{x} - \int e^{x} dx \right]_{0}^{1} = \left[xe^{x} - e^{x} \right]_{0}^{1}$$

$$= (e-e)-(0-1) = 1 \text{ sq unit}$$

30. (c) Given, equations of curves are
$$y = x^2 \qquad \dots(i)$$
and $y = 16 \qquad \dots(ii)$
On solving Eqs. (i) and (ii), we get
$$x^2 = 16 \Rightarrow x = 4, -4$$

∴ Points of intersection are (4, 16), and (-4, 16).

34.

$$y = x^{2}$$

$$y = x^{2}$$

$$y = x^{2}$$

$$y = x^{2}$$

$$x' = \frac{1}{4}$$

$$x$$

(b) Let
$$I_n = \int_0^{\pi/4} \tan^n x \, dx$$

Consider,
 $I_n + I_{n-2} = \int_0^{\pi/4} \tan^n x \, dx + \int_0^{\pi/4} \tan^{n-2} x \, dx$
 $= \int_0^{\pi/4} \tan^{n-2} x (\tan^2 x + 1) \, dx$
 $= \int_0^{\pi/4} \sec^2 x \tan^{n-2} x \, dx$
Put $\tan x = t$
 $\sec^2 x \, dx = dt$
when $x = 0$ then $t = 0$ and when $x = \frac{\pi}{4}, t = 1$
 $\therefore I_n + I_{n-2} = \int_0^1 t^{n-2} \, dt$
 $= \frac{t^{n-2+1}}{n-2+1} \Big|_0^1 = \frac{t^{n-1}}{n-1} \Big|_0^1 = \frac{1}{n-1} [1-0] = \frac{1}{n-1}$
(c) $I = \int_0^{\pi} \frac{dx}{1+2\sin^2 x} = 2 \int_0^{\pi/2} \frac{dx}{1+2\sin^2 x}$
 $= 2 \int_0^{\pi/2} \frac{\sec^2 x \, dx}{\sec^2 x + 2\tan^2 x} = 2 \int_0^{\pi/2} \frac{\sec^2 x \, dx}{1+3\tan^2 x}$
Put $\tan x = t \Rightarrow \sec^2 x \, dx = dt$
When $x = 0, t = 0$
When $x = \frac{\pi}{2}, t = \infty$
 $\therefore I = 2 \int_0^{\infty} \frac{dt}{1+3t^2} = \frac{2}{3} \int_0^{\infty} \frac{dt}{t^2 + (\frac{1}{\sqrt{3}})^2}$
 $= \frac{2}{\sqrt{3}} [\tan^{-1} \frac{t}{1/\sqrt{3}}]_0^{\infty}$
 $= \frac{2}{\sqrt{3}} [\tan^{-1} \frac{\pi}{3} t]_0^{\infty}$
 $= \frac{2}{\sqrt{3}} [\tan^{-1} \infty - \tan^{-1} 0]$
 $= \frac{2}{\sqrt{3}} \times \frac{\pi}{2} = \frac{\pi}{\sqrt{3}}$

Definite Integration & Its Application

(c) Since f(x) is an even function therefore 36.

$$\int_{0}^{\pi} f(x) dx = 2 \int_{0}^{\pi/2} f(x) dx$$

Hence,
$$\int_{0}^{\pi} f(\cos x) dx = 2 \int_{0}^{\pi/2} f(\cos x) dx$$

37. (c) Required Area = $\int_0^{\pi/6} \cos 3x \, dx$

$$=\frac{\sin 3x}{3}\Big|_{0}^{\frac{\pi}{6}}=\frac{\sin 3\left(\frac{\pi}{6}\right)}{3}-\sin 0$$

$$= \frac{1}{3} \sin \frac{\pi}{2} - 0 = \frac{1}{3} (1) = \frac{1}{3} \text{ sq. unit.}$$

38. (b) Given equation of circle is $x^2 + y^2 = 2$ $\Rightarrow y - \sqrt{2 - x^2}$

$$\Rightarrow y = \sqrt{2 - x^2}$$

Required area = $4 \times$ Area of shaded portion

$$=4\int_{0}^{\sqrt{2}}\sqrt{2-x^{2}} dx \qquad \dots(i)$$

$$\sqrt{2-x^{2}} dx \qquad \dots(i)$$
Let $x = \sqrt{2} \sin t \Rightarrow t = \sin^{-1}\left(\frac{x}{\sqrt{2}}\right)$

$$dx = \sqrt{2} \cos t \cdot dt$$

$$\therefore \int \sqrt{2-x^{2}} \cdot dx = \int \sqrt{2-2\sin^{2} t} \cdot \sqrt{2} \cos t \cdot dt$$

$$= \int \sqrt{2\cos^{2} t} \cdot \sqrt{2} \cos t \cdot dt$$

$$= 2\int \cos^{2} t \cdot dt$$
We have:

We know,

$$\int \cos^n x \cdot dx = \frac{n-1}{n} \int \cos^{n-2}(x) dx + \frac{\cos^{n-1} x \cdot \sin x}{n}$$

$$= 2\left[\frac{\cos t \cdot \sin t}{2} + \frac{1}{2}\int 1 \cdot dt\right] = 2\left[\frac{\cos t \cdot \sin t}{2} + \frac{t}{2}\right]$$

$$= \cos t \sin t + t$$

$$= \cos\left(\sin^{-1}\frac{x}{\sqrt{2}}\right) \times \sin\left(\sin^{-1}\frac{x}{\sqrt{2}}\right) + \sin^{-1}\frac{x}{\sqrt{2}}$$

$$= \sqrt{1 - \frac{x^{2}}{2}} \cdot \frac{x}{\sqrt{2}} + \sin^{-1}\frac{x}{\sqrt{2}}$$

$$= \sqrt{1 - \frac{x^{2}}{2}} \cdot \frac{x}{\sqrt{2}} + \sin^{-1}\frac{x}{\sqrt{2}}$$

$$= \frac{x}{2}\sqrt{2 - x^{2}} + \sin^{-1}\frac{x}{\sqrt{2}}$$

$$= 4\left[0 + \sin^{-1}\frac{\sqrt{2}}{\sqrt{2}} - 0 - \sin^{-1}\frac{0}{\sqrt{2}}\right]$$

$$= 4\left[\cos^{-1}1 - \sin^{-1}0\right] = 4\left(\frac{\pi}{2} - 0\right) = 2\pi \text{ sq. units.}$$

(a) Let $\int_{1}^{2} \left\{K^{2} + (4 - 4K)x + 4x^{3}\right\} dx \le 12$

$$\Rightarrow K^{2}x + \frac{(4 - 4K)x^{2}}{2} + \frac{4x^{4}}{4}\Big|_{1}^{2} \le 12$$

$$\Rightarrow [2K^{2} + (2 - 2K)(4) + 16] - [K^{2} + (2 - 2K) + 1] \le 12$$

$$\Rightarrow (2K^{2} + 8 - 8K + 16) - (K^{2} - 2K + 3) \le 12$$

$$\Rightarrow K^{2} - 6K + 21 \le 12$$

$$\Rightarrow K^{2} - 6K + 9 \le 0 \Rightarrow (K - 3)^{2} \le 0$$

$$\Rightarrow K = 3$$

39.

40. (d) Area bounded by curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ (x, y ≥ 0) and coordinate axes is

$$= \int_{0}^{a} y \, dx = \int_{0}^{a} a + x - 2\sqrt{a}\sqrt{x} \, dx$$

(:: $\sqrt{y} = \sqrt{a} - \sqrt{x} \Rightarrow y = a + x - 2\sqrt{a}\sqrt{x}$)
$$= ax + \frac{x^{2}}{2} - \frac{2\sqrt{a}x^{3/2}}{3/2} \Big|_{0}^{a}$$

$$= a^{2} + \frac{a^{2}}{2} - \frac{4}{3}a^{2} = \frac{3a^{2}}{2} - \frac{4}{3}a^{2}$$

$$= \frac{9a^{2} - 8a^{2}}{6} = \frac{a^{2}}{6} \text{ sq. unit}$$

41. (a) Let
$$I = \int_{-\pi/2}^{\pi/2} |\sin x| dx$$

Consider, $|\sin x| = \begin{cases} \sin x, 0 < x < \frac{\pi}{2} \\ -\sin x, -\frac{\pi}{2} < x < 0 \end{cases}$
 $I = \int_{-\pi/2}^{0} -\sin x dx + \int_{0}^{\pi/2} \sin x dx$
 $= -[-\cos x]_{-\pi/2}^{0} + (-\cos x)]_{0}^{\pi/2}$
 $= (\cos 0 - \cos(-\pi/2)) + (-\cos \pi/2 - (-\cos 0))$
 $= (1 - 0) + (-0 + 1) = 2.$
42. (c) Required Area $= \int_{y=a}^{b} f(y) dy = \int_{a}^{b} x dy$
43. (d) Let $I = \int_{0}^{1} \frac{\tan^{-1}}{1 + x^{2}} dx$
Put $\tan^{-1}x = t$
 $\frac{1}{1 + x^{2}} dx = dt$
 $x = 0, \Rightarrow t = 0$
 $x = 1, \Rightarrow t = \pi/4$
 $\therefore I = \int_{-1}^{\pi/4} t dt = \frac{t^{2}}{2} \int_{0}^{\pi/4} = \frac{\pi^{2}}{32}$
44. (c) Let $I = \int_{-1}^{1} x |x| dx = \int_{-1}^{0} x(-x) dx + \int_{0}^{1} x(x) dx$
 $\left(\because |x| = \left\{ x \quad \text{if } x \ge 0 \right\} \right)$
 $= -\int_{-1}^{0} x^{2} dx + \int_{0}^{1} x^{2} dx$
 $= -\frac{-3^{3}}{3} \Big|_{-1}^{0} + \frac{x^{3}}{3} \Big|_{0}^{0} = -\left(0 + \frac{1}{3}\right) + \frac{1}{3} = 0$
45. (b) Let $I = \frac{1}{0} \frac{\tan^{-1} x}{1 + x^{2}} dx$
Let, $\tan^{-1} x = t$
 $\frac{1}{1 + x^{2}} dx = dt$
Also, $x = 0 \to t = 0$
 $x = 1 \to t = \frac{\pi}{4}$

$$\therefore I = \int_{0}^{\frac{\pi}{4}} t \, dt = \frac{t^{2}}{2} \Big|_{0}^{\frac{\pi}{4}} = \frac{\pi^{2}}{32}$$
46. (a) Let $I = \int_{0}^{\frac{\pi}{2}} \sin 2x \, \ln(\cot x) \, dx$

$$= \int_{0}^{\frac{\pi}{2}} \sin 2x \, \ln(\cos x) \, dx - \int_{0}^{\frac{\pi}{2}} \sin 2x \, \ln(\sin x) \, dx$$

$$\left(\because \cot x = \frac{\cos x}{\sin x} \right)$$

$$= \int_{0}^{\frac{\pi}{2}} \sin \left[2 \left(\frac{\pi}{2} + x \right) \right] \, \ln \cos \left(\frac{\pi}{2} + x \right) \, dx$$

$$- \int_{0}^{\frac{\pi}{2}} \sin 2x \, \ln(\sin x) \, dx - \int_{0}^{\frac{\pi}{2}} \sin 2x \, \ln(\sin x) \, dx$$

$$= \int_{0}^{\frac{\pi}{2}} \sin 2x \, \ln(\sin x) \, dx - \int_{0}^{\frac{\pi}{2}} \sin 2x \, \ln(\sin x) \, dx$$

$$= \int_{0}^{\frac{\pi}{2}} \sin 2x \, \ln(\sin x) \, dx - \int_{0}^{\frac{\pi}{2}} \sin 2x \, \ln(\sin x) \, dx = 0$$
47. (b) Required area $= \int_{0}^{2\pi} \sin x \, dx$

$$= -\cos x \Big|_{0}^{2\pi} = -\cos 2\pi - (-\cos 0)$$

$$= -\cos (\pi + \pi) + 1 = -[-\cos \pi] + 1$$

$$= +\cos \left(\frac{\pi}{2} + \frac{\pi}{2} \right) + 1 = \sin \frac{\pi}{2} + 1 = 1 + 1 = 2 \text{ sq. units.}$$
48. (b)
$$\int \int \frac{\sqrt{2} (4, 4)}{\sqrt{4}} \int \frac{\sqrt{2$$

49. (c) Let
$$I = \int_{0}^{2} \frac{dx}{x^{2} + 4} = \int_{0}^{2} \frac{dx}{x^{2} + (2)^{2}}$$

 $= \frac{1}{2} \left[\tan^{-1} \frac{x}{2} \right]_{0}^{-2} = \frac{1}{2} \left[\tan^{-1}(1) - \tan^{-1}(0) \right]$
 $= \frac{1}{2} \left[\frac{\pi}{4} - 0 \right] = \frac{\pi}{8}$
50. (c) Let $I = \int_{-a}^{a} (x^{3} + \sin x) dx$
Let $f(x) = x^{3} + \sin x$
 $f(-x) = (-x)^{3} + \sin (-x) = -x^{3} - \sin x$
 $= -(x^{3} + \sin x) = -f(x)$
Since $f(x)$ is an odd function
 $\therefore \int_{-a}^{a} f(x) dx = 0$
51. (a) Let $I = \int_{0}^{1} \frac{x}{1 + 1} e^{x} dx = x e^{x} - \int_{0}^{1} 1 e^{x} dx = \left[x e^{x} - e^{x} \right]_{0}^{1}$
 $= (e - e) - [0 - 1] = 1$
52. (d) Let $f(x) = \frac{\sin^{5} x \cos^{3} x}{x^{4}}$
 $f(-x) = \frac{\sin^{5} (-x) \cos^{3} (-x)}{(-x)^{4}}$
 $= \frac{-\sin^{5} x \cos^{3} x}{x^{4}} = -f(x)$
 $\Rightarrow f(x)$ is an odd function.
Hence, $\int_{\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{\sin^{5} x \cos^{3} x}{x^{4}} dx = 0$
53. (c)
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$
 $(-2, 4)$

54. (b) Required Area =
$$2 \int_{0}^{\frac{1}{4}} \sqrt{x} dx$$

$$\int_{0}^{y^{2} = x} \sqrt{(\frac{1}{4}, 0)} = 2 \cdot \frac{2}{3} \left[x^{3/2} \right]_{0}^{1/4} = \frac{4}{3} \left[\frac{1}{8} - 0 \right] = \frac{1}{6} \text{ sq. unit.}$$
55. (c) $\int_{1}^{2} \ln x dx = [x \ln x - x]_{1}^{2} = 2 \ln 2 - 2 - \ln 1 + 1$
 $= \ln 4 - \ln e = \ln \left(\frac{4}{e}\right)$
56. (c) $\int_{0}^{x} \sqrt{(-2, 0)} \sqrt{(0, 0)} + \frac{1}{2} \times 2 \times 2 = 2 \text{ square units}}$
57. (c) $A = \frac{1}{2} \times 2 \times 2 = 2 \text{ square units}}$
57. (c) $A = \frac{1}{2} - 2 - 1 = 2 \text{ sq. units}}{B(-1, 0) - 0} + C(1, 0)$
Area of ABCD = $2 \times 1 = 2 \text{ sq. units}}$
Area of AOD = $\int_{-1}^{1} x^{2} dx = \frac{x^{3}}{3} \Big|_{-1}^{1} = \frac{2}{3} \text{ sq. units}}$
Required area = $2 - \frac{2}{3} = \frac{4}{3} \text{ sq. units}$

$$= \left[x\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{\pi}{6} = \frac{\pi}{12} \qquad (\because I_1 + I_2 = 2I)$$

64. (b)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \sin x \, dx = 2 \int_{0}^{\frac{\pi}{2}} x \sin x \, dx$$

 $\{x sin \ x \ is \ an \ even \ function\}$

$$= 2[-x \cos x + \sin x]_{0}^{2} = 2$$

65. (c)
$$I = \int_{0}^{\frac{\pi}{2}} \ln(\tan x) dx$$
...(i)

$$I = \int_{0}^{\frac{\pi}{2}} \ln\left(\tan\left(\frac{\pi}{2} - x\right)\right) dx$$

$$= \int_{0}^{\frac{\pi}{2}} \ln\cot x dx$$
...(ii)
Adding equations (i) and (ii)

$$2I = \int_{0}^{\frac{\pi}{2}} \ln(\tan x . \cot x) dx$$

$$2I = 0$$

$$I = 0$$

π

66. (d) Given equation $y^2 = 4bx = 2 \int_0^b \sqrt{4bx} dx$

$$= 4\sqrt{b} \times \frac{2}{3} \left[x^{\frac{3}{2}} \right]_{0}^{b} = \frac{8\sqrt{b}}{3} \left[b^{\frac{3}{2}} - 0 \right]$$

 \therefore area of parabola bounded by its latus rectum

$$=\frac{8b^2}{3}$$
 sq. units

Sol. (67-69)

Given,
$$I = \int_0^{\pi} \frac{x \, dx}{1 + \sin x}$$
 ...(i)

$$= \int_0^{\pi} \frac{(\pi - x)}{1 + \sin(\pi - x)} dx$$

$$\left[\because \int_0^a f(x) dx = \int_0^a f(a - x) dx \right]$$

$$= \int_0^{\pi} \frac{(\pi - x)}{1 + \sin x} dx$$
 ...(ii)
[$\because \sin(\pi - x) = \sin x$]
Adding eqs. (i) and (ii), we get

$$2I = \pi \int_0^\pi \frac{dx}{1 + \sin x} \qquad \dots (iii)$$

$$\Rightarrow 2I = 2\pi \int_0^{\frac{\pi}{2}} \frac{dx}{1+\sin x}$$
$$\left[\because \int_0^{2a} f(x)dx = 2\int_0^a f(x)dx, \text{ if } f(2a-x) = f(x) \right]$$

58. (b) Required area =
$$\int_{0}^{\frac{\pi}{4}} \tan x \, dx$$

= $\ln |\sec x|_{0}^{\frac{\pi}{4}} = \ln \sqrt{2} = \frac{\ln 2}{2}$
59. (b) $\int_{0}^{2} e^{\ln x} dx = \int_{0}^{2} x \, dx = \left|\frac{x^{2}}{2}\right|_{0}^{2} = 2$
60. (b) Let $y = \sqrt{\frac{1+\cos x}{1-\cos x}}$
 $= \frac{\sqrt{2}\cos \frac{x}{2}}{\sqrt{2}\sin \frac{x}{2}} = \cot \frac{x}{2}$
 $\frac{dy}{dx} = -\csc^{2} \frac{x}{2} \cdot \frac{1}{2} = -\frac{1}{2} \csc^{2} \frac{x}{2}$
61. (a) $I = \int_{0}^{1} \frac{e^{\tan^{-1}x}}{1+x^{2}} dx$
Let $\tan^{-1}x = t$
 $\frac{1}{1+x^{2}} dx = dt$
Lower limit $\rightarrow t = \tan^{-1} 0 = 0$
upper limit $\rightarrow t = \tan^{-1}, =\pi/4$
 $\therefore \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} e^{t} - dt = \left[e^{t}\right]_{0}^{\frac{\pi}{4}}$
 $e^{\pi/4} - e^{0} \Rightarrow e^{\pi/4} - 1$
 $= (-a \cos \theta, -b \sin \theta)$
62. (a) $I_{1} = \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$
 $= \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$
 $= \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$
 $Hence, I_{1} = I_{2}$
 $\therefore I_{1} - I_{2} = 0$
63. (c) Adding I_{1} and I_{2}
 $I_{1} + I_{2} = \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} dx$

$$\Rightarrow I = \pi \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \left(\frac{2\tan\frac{x}{2}}{1 + \tan^{2}\frac{x}{2}}\right)}$$

$$\Rightarrow I = \pi \int_{0}^{\frac{\pi}{2}} \frac{\sec^{2}\frac{x}{2}dx}{\tan^{2}\frac{x}{2} + 1 + 2\tan\frac{x}{2}}$$

$$\Rightarrow I = \pi \int_{0}^{\frac{\pi}{2}} \frac{\left(\sec^{2}\frac{x}{2}\right)dx}{\left(\tan\frac{x}{2} + 1\right)^{2}}$$

Let $\tan\frac{x}{2} + 1 = t$

$$\Rightarrow \sec^{2}\frac{x}{2} \cdot \frac{1}{2}dx = dt$$

$$\Rightarrow \sec^{2}\frac{x}{2}dx = 2dt$$

When $x = 0$, then $t = 1$ and when $x = \frac{\pi}{2}$, then $t = 2$

$$\therefore I = 2\pi \int_{1}^{2} \frac{dt}{t^{2}} = 2\pi \left[\frac{t^{-2+1}}{-2+1}\right]_{1}^{2} = -2\pi \left[\frac{1}{t}\right]_{1}^{2}$$

$$= -2\pi \left[\frac{1}{2} - 1\right]$$

$$= -2\pi \left(-\frac{1}{2}\right) = \pi$$

According to the explanation, $I = \pi$
Let $I_{1} = \int_{0}^{\pi} \frac{(\pi - x)dx}{1 + \sin x}$

$$= \int_0^{\pi} \frac{[\pi - (\pi - x)]dx}{1 + \sin(\pi - x)}$$
$$\left[\because \int_0^a f(x)dx = \int_0^a f(a - x)dx \right]$$
$$I_1 = \int_0^{\pi} \frac{x \, dx}{1 + \sin x} = \pi \qquad [\because \sin(\pi - x) = \sin x]$$

69. (b) From eq. (iii).

67. (c)

68. (a)

$$2I = \pi \int_0^{\pi} \frac{dx}{1 + \sin x}$$
$$\Rightarrow \int_0^{\pi} \frac{dx}{1 + \sin x} = \frac{2}{\pi}I$$
$$\Rightarrow \int_0^{\pi} \frac{dx}{1 + \sin x} = \frac{2}{\pi} \times \pi = 2 \qquad (\therefore I = \pi)$$

Sol. (70 -71)
Consider I =
$$\int_0^{\pi} \ln(\sin x) dx$$

I = $\int_0^{\pi} \ln(\sin x) dx$
= $2\int_0^{\frac{\pi}{2}} \ln(\sin x) dx$...(i)
 $\left[\because \int_0^{2a} f(x) dx = 2\int_0^a f(x) dx, \text{if } f(2a - x) = f(x) \right]$
= $2\int_0^{\frac{\pi}{2}} \ln\left[\sin\left(\frac{\pi}{2} - x\right) \right] dx$
 $\left(\because \int_0^a f(x) dx = \int_0^a f(a - x) dx \right)$

$$= 2 \int_{0}^{\frac{\pi}{2}} \ln(\cos x) dx \qquad ...(ii)$$

70. (d) From eq. (i),

$$I = 2 \int_0^{\frac{\pi}{2}} \ln(\sin x) dx$$
$$\Rightarrow \int_0^{\frac{\pi}{2}} \ln(\sin x) dx = \frac{1}{2} I$$

71. (a) From eq. (ii), we have

$$I = 2\int_{0}^{\frac{\pi}{2}} \ln(\cos x) dx$$

$$\Rightarrow \int_{0}^{\frac{\pi}{2}} \ln(\cos x) dx = \frac{1}{2}I$$

72. (c) Let I =
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{a^{2} \cos^{2} x + b^{2} \sin^{2} x}$$

= $\int_{0}^{\frac{\pi}{2}} \frac{\sec^{2} x \, dx}{a^{2} + b^{2} \tan^{2} x}$
[divide numerator and denominate

[divide numerator and denominator by $\cos^2 x$] Put tan x = t $\Rightarrow \sec^2 x dx = dt$

When x = 0, then t = 0 and when x =
$$\frac{\pi}{2}$$
, then t = ∞
 \therefore I = $\int_{-\infty}^{\infty} \frac{dt}{dt} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dt}{dt}$

$$\therefore I = \int_0^{\infty} \frac{a}{a^2 + b^2 t^2} = \frac{1}{b^2} \int_0^{\infty} \frac{a}{\left(\frac{a}{b}\right)^2 + t^2}$$
$$= \frac{1}{b^2} \frac{1}{\left(\frac{a}{b}\right)} \left[\tan^{-1} \left(\frac{bt}{a}\right) \right]_0^{\infty}$$

$$\left[\because \int \frac{\mathrm{d}x}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C \right]$$
$$= \frac{1}{ab} [\tan^{-1}(\infty) - \tan^{-1}(0)]$$
$$= \frac{1}{ab} \left[\frac{\pi}{2} - 0 \right] = \frac{\pi}{2ab}$$

73. (d) Area of $\triangle ABC = 3$ sq. unit

$$a=5$$

 \therefore Option (d) is correct.

For (74-75)

 $x^2 + y^2 = 4$ and $x = \sqrt{3}y$

 $P(\sqrt{3}, 1) = First quadrant$

 \dot{Y}' The point of intersection of the line and the circle in the first quadrant is $(\sqrt{3}, 1)$.

Area of \triangle OPA = Area of \triangle OPB + Area of PAB

$$= \frac{1}{2} \times OB \times PB = \frac{1}{2} \times \sqrt{3} \times 1 = \frac{\sqrt{3}}{2}$$

Area of PAB $\int_{\sqrt{3}}^{2} y \, dx$
$$= \int_{\sqrt{3}}^{2} \sqrt{4 - x^2} \, dx = \left[\frac{x}{2}\sqrt{4 - x^2} + \frac{4}{2}\sin^{-1}\frac{x}{2}\right]_{\sqrt{3}}^{2}$$
$$\left[2 \times \frac{\pi}{2} - \frac{\sqrt{3}}{2}[\sqrt{4 - 3}] - 2\sin^{-1}\frac{\sqrt{3}}{2}\right]$$
$$= \pi - \frac{\sqrt{3}}{2} - \frac{2\pi}{3} = \frac{\pi}{3} - \frac{\sqrt{3}}{2}$$

74. (a)

75. (a) Area enclosed by x-axis, the line $x = \sqrt{3}y$, and the circle $x^2 + y^2 = 4$ in the first quadrant

$$=\frac{\sqrt{3}}{2}+\frac{\pi}{3}-\frac{\sqrt{3}}{2}=\frac{\pi}{3}$$

76. (a)

$$y = \sin x$$

Area of shaded region =
$$\int_0^{\frac{\pi}{4}} (\cos x - \sin x) dx$$

$$= \left[\sin x + \cos x\right]_{0}^{\frac{\pi}{4}}$$
$$= \left[\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right) - (0+1)\right]$$
$$= \left(\sqrt{2} - 1\right) \text{ sq. units.}$$

78. (a)
$$I_m = \int_0^{\pi} \frac{\sin 2 mx}{\sin x} dx$$

 $\therefore I_1 = \int_0^{\pi} \frac{\sin 2x}{\sin x} dx = \int_0^{\pi} \frac{2 \sin x \cos x}{\sin x} dx$
 $= 2 \int_0^{\pi} \cos x dx = 2 [\sin x]_0^{\pi} = 2 [\sin \pi - \sin 0]$
 $= 2(0) = 0$

79. (d)
$$I_2 = \int_0^{\pi} \frac{\sin 4x}{\sin x} dx = \int_0^{\pi} \frac{2 \sin 2x \cos 2x}{\sin x} dx$$

= $2 \int_0^{\pi} \frac{2 \sin x \cos x \cos 2x}{\sin x} dx$
= $4 \int_0^{\pi} \cos x (1 - 2 \sin^2 x) dx$

$$= 4 \int_{0}^{\pi} \cos x \, dx - 8 \int_{0}^{\pi} \cos x \sin^{2} x \, dx = 0$$

Let sin x = t
 $\cos x \, dx = dt$
= 4(sin $\pi - \sin 0) - 0 = 0$
 $I_{3} = \int_{0}^{\pi} \frac{\sin 6x}{\sin x} \, dx$
 $= \int_{0}^{\pi} \frac{2[3 \sin x - 4 \sin^{3} x] \cos 3x}{\sin x} \, dx$
 $= \int_{0}^{\pi} 2(3 - 4 \sin^{2} x) \cos 3x \, dx$
 $= \int_{0}^{\pi} 6 \cos 3x \, dx - \int_{0}^{\pi} 8 \sin^{2} x \cos 3x \, dx$
 $= \frac{6 \sin 3x}{3} \int_{0}^{\pi} - 8 \cdot \frac{1}{2} \left[\int_{0}^{\pi} \sin x (\sin 4x - \sin 2x) \, dx \right]$
 $= 6 - \frac{8}{2} \left[\int_{0}^{\pi} (\sin x \sin 4x - \sin x \cdot \sin 2x) \, dx \right]$
 $= -2 \left[\frac{2 \sin 3x}{3} - \frac{\sin 5x}{5} - \sin x \right]_{0}^{\pi} = 0$
Hence, $I_{2} + I_{3} = 0 + 0 = 0$
80. (a) $I_{m} = \int_{0}^{\pi} \frac{\sin 2mx}{\sin x} \, dx$
 $= \int_{0}^{\pi} \frac{\sin 2m(\pi - x)}{\sin (\pi - x)} \, dx$
 $= \int_{0}^{\pi} \frac{\sin (2m\pi - 2mx)}{\sin x} \, dx$
 $= \int_{0}^{\pi} \frac{-\sin 2mx}{\sin x} \, dx$
 $I_{m} = -\int_{0}^{\pi} \frac{\sin 2mx}{\sin x} \, dx$
 $I_{m} = I_{m-1} = 0$ is the only correct statement.
82. (b) Area of triangle
 $\Delta AOB = \frac{1}{2} \times \frac{c}{b} \times \frac{c}{a} = \frac{c^{2}}{2ab}$

$$ax + by - c = 0$$

$$ax - by - c = 0$$
Total area

$$= 4 \times \operatorname{area} \Delta AOB$$

$$= 4 \times \frac{c^2}{2ab}$$
83. (d) $a + b = 0 \Rightarrow a = -b$

$$I = \int_{-a}^{b} \frac{x^7 + \sin x}{\cos x}$$
Using property
$$\int_{-a}^{a} f(x) dx = \begin{cases} 2a \\ 0 \\ 0 \end{cases} ; if f(x) is even$$

$$f(x) = \frac{x^7 + \sin x}{\cos x}$$

$$I = \frac{c^2}{b} \int_{-a}^{2} f(x) dx = \frac{ax^7 - \sin x}{\cos x}$$

$$f(-x) = \frac{(-x)^7 + \sin(-x)}{\cos(-x)} = \frac{-x^7 - \sin x}{\cos x}$$

$$= -\left[\frac{x^7 + \sin x}{\cos x}\right]$$

$$= -f(x)$$
So f(x) is odd hence

$$I = 0$$
84. (a)
$$\int_{a}^{b} \frac{|x|}{a} dx$$
when $x \ge 0$

$$\Rightarrow \int_{a}^{b} \frac{x}{x} dx$$

$$\Rightarrow \int_{a}^{b} (1) dx$$

$$= [x]_{a}^{b} = |b| - |a|$$
when $x < 0$; as $0 < a < b$; x will not lie between a and b so

$$\int_{a}^{b} \frac{|x|}{x} dx = 0 \text{ for } x < 0$$

м-382

85. (c)
$$\int_{0}^{2\pi} \sin^{5}\left(\frac{x}{4}\right) dx = \int_{0}^{2\pi} \left(1 - \cos^{2}\frac{x}{4}\right) \left(1 - \cos^{2}\frac{x}{4}\right) \sin\frac{x}{4} dx$$
Put $\cos\left(\frac{x}{4}\right) = t$

$$\Rightarrow -\sin\left(\frac{x}{4}\right) . \frac{dx}{4} = dt$$

$$\Rightarrow \sin\left(\frac{x}{4}\right) dx = -4dt$$

$$\Rightarrow \int_{0}^{2\pi} \sin^{5}\left(\frac{x}{4}\right) dx = -4\int (1 - t^{2})(1 - t^{2}) dt$$

$$= -4\int (1 + t^{4} - 2t^{2}) dt$$

$$= -4\left[\cos\left(\frac{x}{4}\right) + \frac{\cos^{5}\left(\frac{x}{4}\right)}{5} - \frac{2\cos^{3}\left(\frac{x}{4}\right)}{3}\right]_{0}^{2\pi}$$

$$= -4\left[(0 + 0 - 0) - \left(1 + \frac{1}{5} - \frac{2}{3}\right)\right] = \frac{32}{15}$$
86. (a)
$$\int_{-1}^{1} x |x| dx$$

$$= \int_{-1}^{0} x (-x) dx + \int_{0}^{1} x x dx$$

$$= -\int_{-1}^{0} x^{2} dx + \int_{0}^{1} x x dx$$

$$= -\int_{-1}^{0} x^{2} dx + \int_{0}^{1} x^{2} dx$$

$$= -\left[\frac{x^{3}}{3}\right]_{-1}^{0} + \left[\frac{x^{3}}{3}\right]_{0}^{1}$$

$$= -\frac{1}{3} + \frac{1}{3} = 0$$

87. (d) Area = $\int y \, dx$

$$= \int_{0}^{1} \left(1 - \sqrt{x}\right)^2 dx$$

[\cdots curve makes the intercept of 1 on both axes]

$$= \int_{0}^{1} \left(1 + x - 2\sqrt{x}\right) dx$$

$$= \left[x\right]_{0}^{1} + \frac{1}{2}\left[x^{2}\right]_{0}^{1} - \frac{4}{3}\left[x^{\frac{3}{2}}\right]_{0}^{1}$$

$$= 1 + \frac{1}{2} - \frac{4}{3} = \frac{3}{2} - \frac{4}{3} = \frac{1}{6} \text{ sq unit}$$
88. (c) $A = \int_{0}^{\pi} \frac{\sin x}{\sin x + \cos x} dx$
Using property
 $A = \int_{0}^{\pi} \frac{\sin(\pi - x)}{\sin(\pi - x) + \cos(\pi - x)} dx$
 $A = \int_{0}^{\pi} \frac{\sin x}{\sin x - \cos x} dx = B$
 $A = B$
89. (b) $B = \int_{0}^{\pi} \frac{\sin^{2} x + \sin x \cos x}{(\sin x + \cos x)} dx$
 $= -\int_{0}^{\pi} \frac{\sin^{2} x + \sin x \cos x}{\cos 2x} dx$
 $= \frac{-1}{2} \int_{0}^{\pi} \frac{2 \sin^{2} x}{\cos 2x} dx - \frac{1}{2} \int_{0}^{\pi} \frac{2 \sin x \cos x}{\cos 2x} dx$
 $= \frac{-1}{2} \int_{0}^{\pi} \sec 2x dx - \frac{1}{2} \int_{0}^{\pi} \tan 2x dx$
 $= \frac{-1}{2} \left[\frac{\log|\sec 2x + \tan 2x|}{2} \right]_{0}^{\pi} + \frac{1}{2} [x]_{0}^{\pi} - \frac{1}{2} \left[\frac{\log|\sec 2x|}{2} \right]_{0}^{\pi}$

90. (b)
$$\int_{1/3}^{1/2} g(x) dx$$

$$g(x) = \begin{cases} 2, & \text{if } \frac{1}{3} < x \le \frac{1}{2} \\ 3, & \text{if } x = \frac{1}{3} \end{cases}$$

As g(x) is a gretest integer function so value of g(x) in integral limit will be

So
$$\int_{1/3}^{1/2} g(x) dx = \int_{1/3}^{1/2} 2 dx$$

= $2 [x]_{1/3}^{1/2} = 2 \left[\frac{1}{2} - \frac{1}{3} \right] = \frac{1}{3}$

Definite Integration & Its Application

91. (a)
$$\int_{1/3}^{1} f(x) dx = \int_{1/3}^{1/2} f(x) dx + \int_{1/2}^{1} f(x) dx \dots(1)$$
94. (d)
$$\int_{0}^{4} \int_{0}^{4} f(x) dx = \int_{1/3}^{4} f(x) dx + \int_{1/2}^{1} f(x) dx \dots(1)$$
94. (d)
$$\int_{0}^{4} \int_{0}^{4} f(x) dx = \int_{1/3}^{4} f(x) dx + \int_{1/2}^{1} f(x) dx \dots(1)$$
The value of g(x) in value $\left(\frac{1}{2}, \frac{1}{3}\right)$ will be 2 and in range
$$\left(\frac{1}{2}, 1\right)$$
it will be 1
form (1)
$$\int_{1/3}^{1} f(x) dx = \int_{1/3}^{1/2} xg(x) dx + \int_{1/2}^{1} xg(x) dx.$$

$$= \int_{1/3}^{1/2} x \cdot 2 dx + \int_{1/2}^{1} x \times 1 dx.$$
95. (b) Si
$$= \left[x^{2}\right]_{1/3}^{1/2} + \left[\frac{x^{2}}{2}\right]_{1/2}^{1}$$
92. (c)
$$\int_{-2}^{2} x dx - \int_{-2}^{2} [x] dx - \int_{-1}^{0} [x] dx - \int_{0}^{1} [x] dx - \int_{0}^{2} [x] dx$$

$$= \left[\frac{x^{2}}{2}\right]_{-2}^{2} - \int_{-1}^{-1} [x] dx - \int_{-1}^{0} [x] dx - \int_{1}^{2} [x] dx$$

$$= \frac{1}{2} [4-4] - (-2) - (-1) - 0 - (1)$$
96. (b) I
97. (c)
97. (c)
97. (c)
97. (c)
97. (c)
97. (c)
98. (c)
97. (c)
98. (c)
99. (c

(d)
$$\int_{0}^{4\pi} |\cos x| dx = 4\int_{0}^{\pi} |\cos x| dx$$
$$= 4\left[\int_{0}^{\pi/2} |\cos x| dx - \int_{\pi/2}^{\pi} |\cos x| dx\right]$$
$$= 4\left[(\sin x)_{0}^{\pi/2} - (\sin x)_{\pi/2}^{\pi}\right]$$
$$= 4\left[\sin \frac{\pi}{2} - 0 - \sin \pi + \sin \frac{\pi}{2}\right]$$
$$= 4\left[2\sin \frac{\pi}{2}\right] = 8$$
(b) Since $|y| = \begin{cases} y \quad y > 0 \\ -y \quad y < 0 \\ 0 \quad y = 0 \end{cases}$ For $y > 0 \Rightarrow y = 1 - x^{2}$
For $y < 0 \Rightarrow y = 1 - x^{2}$
For $y < 0 \Rightarrow y = x^{2} - 1$
For $y < 0 \Rightarrow y = x^{2} - 1$
For $y = 0 \Rightarrow x = \pm 1$
So area under the curve
 $= 4 \times \text{Area under the region OABO (symmetry)}$
$$= 4 \times \left[x - \frac{x^{3}}{3}\right]_{0}^{1} \int (-1, 0) + \frac{y^{2} = 1 - y}{x^{2} = 1 + y}$$
$$= 4\left(1 - \frac{1}{3}\right) = 4 \times \frac{2}{3} = \frac{8}{3} \text{ sq. units}$$
(b) $I = \int_{0}^{\pi/2} \frac{dx}{3\cos x + 5}$ $I = \int_{0}^{\pi/2} \frac{dx}{3\cos x + 5}$ $I = \int_{0}^{\pi/2} \frac{(1 + \tan^{2} \frac{x}{2})}{1 + \tan^{2} \frac{x}{2}} + 5$
$$I = \int_{0}^{\pi/2} \frac{(1 + \tan^{2} \frac{x}{2})}{3 - 3\tan^{2} \frac{x}{2} + 5 + 5\tan^{2} \frac{x}{2}}$$
$$I = \int_{0}^{\pi/2} \frac{\sec^{2} \frac{x}{2} dx}{2\tan^{2} \frac{x}{2} + 8}$$
$$I = \frac{1}{2} \int_{0}^{\pi/2} \frac{\sec^{2} \frac{x}{2} dx}{\tan^{2} \frac{x}{2} + 2^{2}}$$

Put
$$\tan \frac{x}{2} = y$$

 $\Rightarrow \frac{1}{2} \sec^2 \frac{x}{2} dx = dy$
 $\Rightarrow I = \frac{1}{0} \frac{dy}{y^2 + 2^2}$
 $\Rightarrow I = \frac{1}{2} \tan^{-1} \left(\frac{1}{2}\right) = 0$
Also $I = \frac{1}{2} \tan^{-1} \frac{1}{2} = k \cot^{-1}(2)$ 100. (c)
 $\left(\because \tan^{-1}(x) = \cot^{-1}\left(\frac{1}{x}\right)\right)$
 $\Rightarrow \frac{1}{2} \tan^{-1}\left(\frac{1}{2}\right) = k \tan^{-1}\left(\frac{1}{2}\right)$
 $\therefore k = \frac{1}{2}$
(d) $I = \frac{3}{1} - (1 - x^4) dx$ $\left(\because |x| = \left\{\frac{x, \quad x \ge 0}{-x, \quad x < 0}\right\}$
 $I = \frac{3}{1} - (1 - x^4) dx$ $\left(\because |x| = \left\{\frac{x, \quad x \ge 0}{-x, \quad x < 0}\right\}$
 $I = \left(\frac{3^5}{5} - 3\right) - \left(\frac{1^5}{5} - 1\right) \Rightarrow I = \frac{232}{5}$
(b)
 $\frac{\pi/2}{0} \frac{d\theta}{1 + \cos \theta} = \frac{\pi/2}{0} \frac{d\theta}{2 \cos^2\left(\frac{\theta}{2}\right)} = \frac{1}{2} \int_{0}^{\pi/2} \sec^2 \frac{\theta}{2} d\theta$
 $= \frac{1}{2} \left[\frac{\tan \theta/2}{1/2}\right]_{0}^{\pi/2}$ 101. (b)
 $= \tan \frac{\pi}{4} - \tan 0$
 $= 1 - 0 = 1$
(b) $I = \frac{3}{0} f(x) \cdot g(x) dx$
 $I = \frac{3}{0} f(a - x) g(a - x) dx$

$$\therefore f(a-x) = f(x) \text{ and } g(a-x) = 2g(x)$$

$$I = \int_{0}^{a} 2 f(x) dx - \int_{0}^{a} f(x) g(x) dx$$

$$I = 2 \int_{0}^{a} f(x) - I$$

$$\Rightarrow \mathcal{Z}I = \mathcal{Z} \int_{0}^{a} f(x) dx$$

$$\therefore I = \int_{0}^{a} f(x) dx$$

100. (c) For area of triangle to be maximum, it should be equilateral triangle.

Area of
$$\triangle$$
 OAB = $\frac{1}{2}$ ab sin θ
Area of \triangle OAB = $\frac{1}{2}$ ab sin θ

$$= \frac{1}{2} a a . sin \theta$$

$$= \frac{1}{2} a^{2} . sin 120^{\circ}$$

$$= \frac{\sqrt{3}}{4} a^{2}$$
Area of triangle OAB, OBC, OAC
= Area of triangle ABC

$$= 3 \times \frac{\sqrt{3}}{4} a^{2} = \frac{3\sqrt{3}}{4} a^{2}$$

$$= \frac{3}{4} \frac{\sqrt{3}}{4} a^{2} = \frac{3\sqrt{3}}{4} a^{2}$$

$$= \frac{1}{2} \left[(\log x)^{2} \right]_{e^{-1}}^{e^{0}} + \frac{1}{2} \left[(\log x)^{2} \right]_{e^{0}}^{e^{2}}$$

$$= 1 \left[(\log x)^{2} \right]_{e^{-1}}^{e^{0}} + \frac{1}{2} \left[(\log x)^{2} \right]_{e^{0}}^{e^{2}}$$

 $= \frac{-1}{2} \left[0 - \left(\log e^{-1} \right)^2 \right] + \frac{1}{2} \left[\left(\log e^2 \right)^2 - 0 \right]$ $= \frac{-1}{2} (-1) + \frac{1}{2} (2)^2$ $= \frac{1}{2} + \frac{4}{2} = \frac{5}{2}$

97.

98.

99.

 $I = \int_{0}^{a} f(x) \cdot \left[2 - g(x)\right] dx$

102. (a)
$$\int_{0}^{2\pi} \sqrt{1 + \sin \frac{x}{2}} \cdot dx$$
$$\sin \frac{x}{2} = \sin 2\left(\frac{x}{4}\right) = 2\sin \frac{x}{4}\cos \frac{x}{4}$$
$$\therefore \int_{0}^{2\pi} \sqrt{\sin^{2} \frac{x}{4} + \cos^{2} \frac{x}{4} + 2\sin \frac{x}{4}\cos \frac{x}{4}}$$
$$= \int_{0}^{2\pi} \sqrt{\left(\sin \frac{x}{4} + \cos \frac{x}{4}\right)^{2}} \cdot dx$$
$$= \int_{0}^{2\pi} \left|\sin \frac{x}{4} + \cos \frac{x}{4}\right| \cdot dx$$
$$= 4\left[-\cos \frac{x}{4} + \sin \frac{x}{4}\right]_{0}^{2\pi}$$
$$= 4\left[-\left(\cos \frac{2\pi}{4} - \cos 0\right) + \sin\left(\frac{2\pi}{4} - \sin 0\right)\right]$$
$$= 4\left[-(-1) + (1)\right] = 4 \times 2 = 8.$$
103. (c) $|x| + |y| = 1$
We know, $|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$
$$\therefore |x| + |y| = 1 \text{ is }$$
$$\begin{cases} x + y = 1 & \text{ for } x > 0, y > 0 \\ -x + y = 1 & \text{ for } x < 0, y < 0 \\ -x - y = 1 & \text{ for } x < 0, y < 0 \end{cases}$$
If we plot graphs of these equations, we get

The curve is symmetrical about x any y-axis. \therefore Area = 4 × Area of AOD

$$= 4 \times \int_{0}^{1} y dx = 4 \times \int_{0}^{1} (1 - x) dx = 4 \left[x - \frac{x^{2}}{2} \right]_{0}^{1}$$
$$= 4 \left[1 - \frac{1^{2}}{2} - \left(0 - \frac{0^{2}}{2} \right) \right]$$
$$= 4 \left(1 - \frac{1}{2} \right) = 4 \times \frac{1}{2} = 2$$

$$104. (a) f(n) = \left[\frac{1}{4} + \frac{n}{1000}\right]$$

$$\sum_{n=1}^{1000} f(n) = \left[\frac{1}{4} + \frac{1}{1000}\right] + \left[\frac{1}{4} + \frac{2}{1000}\right] + \dots + \left[\frac{1}{4} + \frac{1000}{1000}\right]$$

$$= [0.25 + 0.001] + [0.25 + 0.002] + \dots + [0.25 + 1]$$
We get '0' for all values of n from 1 to 750.
From n = 750, we get all the values as 1.
So,

$$\sum_{n=1}^{1000} f(n) = 0 + 0 + 0 + \dots + \left[\frac{1}{4} + \frac{750}{1000}\right] + \left[\frac{1}{4} + \frac{751}{1000}\right] + \dots [1.25]$$

$$= 1 + 1 + 1 + \dots (251 \text{ times})$$

$$= 251.$$

$$105. (d) \int_{0}^{\frac{\pi}{4}} \sqrt{\tan x} \, dx + \int_{0}^{\frac{\pi}{4}} \sqrt{\cot x} \cdot dx$$

$$= \int_{0}^{\frac{\pi}{4}} \left(\sqrt{\tan x} + \sqrt{\cot x}\right) \, dx$$

$$= \int_{0}^{\frac{\pi}{4}} \left(\sqrt{\sin x} + \sqrt{\cot x}\right) \, dx$$

$$= \int_{0}^{\frac{\pi}{4}} \left(\frac{\sin x + \cos x}{\sqrt{\cos x}} \cdot dx\right)$$

$$= \sqrt{2} \int_{0}^{\frac{\pi}{4}} \frac{(\sin x + \cos x)}{(\sqrt{1 - (\sin x - \cos x)^{2}}} \cdot dx$$

$$= \sqrt{2} \int_{0}^{\frac{\pi}{4}} \frac{(\sin x + \cos x)}{(\sqrt{1 - (\sin x - \cos x)^{2}}} \cdot dx$$
Put sin x - cos x = t \Rightarrow (\cos x + \sin x) \, dx = dt
When x = 0, t = -1 and x = $\frac{\pi}{4}$, t = 0.

$$= \sqrt{2} \left[\int_{-1}^{0} \frac{1}{\sqrt{1 - t^{2}}} \cdot dt = \sqrt{2} \left(\sin^{-1} t\right)_{-1}^{0}$$

$$= \sqrt{2} \left[\sin^{-1}(0) - \sin^{-1}(-1)\right]$$

$$= \sqrt{2} \left[0 - \left(-\frac{\pi}{2}\right)\right]$$

м-386

A =
$$(6+x)\sqrt{36-x^2}$$
.
Given, Area of trapezium is maximum.

$$\frac{dA}{dx} = \frac{d}{dx} \left[(6+x)\sqrt{36-x^2} \right]$$

$$= (6+x) \cdot \left(\frac{-2x}{2\sqrt{36-x^2}} \right) + \sqrt{36-x^2}$$

$$= \sqrt{36-x^2} - \frac{x(6+x)}{\sqrt{36-x^2}}$$

$$= \frac{36-x^2-6x-x^2}{\sqrt{36-x^2}} = \frac{36-6x-2x^2}{\sqrt{36-2x^2}}$$

$$\frac{dA}{dx} = 0 \Rightarrow 36-6x-2x^2 = 0$$

$$\Rightarrow 2x^2+6x-36=0$$

$$\Rightarrow x^2+3x-18=0$$

$$\Rightarrow x(x+6)-3(x+6)=0$$

$$(x+6)(x-3)=0$$

$$\Rightarrow x=-6 \text{ or } 3. \text{ Since x cannot be negative. So, x = 3.}$$

$$\therefore \text{ In } \Delta \text{ADE, } \cos \alpha = \frac{x}{6} = \frac{3}{6} = \frac{1}{2} \Rightarrow \alpha = \frac{\pi}{3}.$$
Fourth side, DC = x + 6 + x

108. (d) Fourth side,
$$DC = x + 6 + 3$$

= 12.

109. (c) Area =
$$(6 + x)\sqrt{36 - x^2}$$

= $(6 + 3)\sqrt{36 - 3^2}$
= $9\sqrt{36 - 9}$
= $9\sqrt{27}$
= $9\sqrt{9 \times 3}$
= $27\sqrt{3}$.

110. (a)
$$\int_{0}^{1} e^{x} \sin x \, dx = I$$

$$I = \left(\sin x \cdot e^{x}\right)_{0}^{\pi} - \int_{0}^{\pi} \cos x \cdot e^{x} \cdot dx$$
$$I = \left(\sin \pi \cdot e^{\pi} - \sin 0 \cdot e^{0}\right) - \left\{\left[\cos x \cdot e^{x}\right]_{0}^{\pi} - \int_{0}^{\pi} \sin x \cdot e^{x} \cdot dx\right\}$$
$$I = 0 - \left\{\left(\cos \pi \cdot e^{\pi} - \cos 0 \cdot e^{0}\right) - I\right\}$$
$$I = -\left[-e^{\pi} - 1\right] - I$$
$$\Rightarrow 2I = e^{\pi} + 1 \Rightarrow I = \frac{e^{\pi} + 1}{2}.$$

111.

112.

113.

(b)
$$\int_{1}^{5} x_{1}(n x dx = \left[(nx, \frac{x^{2}}{2} \right]_{1}^{n} - \int_{1}^{5} \frac{1}{x} x^{2} dx$$

$$= \left[(\frac{e^{2}}{2} - 0) - \frac{1}{2} \left(\frac{1}{2} \right) (x^{2})_{1}^{5} = \frac{e^{2}}{2} - \frac{1}{4} (e^{2} - 1) = \frac{2e^{2} - e^{2} + 1}{4}$$

$$= \int_{0}^{1} (1 - x) (1 - (1 - x))^{9} dx \left(\because \int_{0}^{4} f(x) dx = \int_{0}^{4} f(x) dx =$$

119. (b)
$$\int_{0}^{\pi/2} |\sin x - \cos x| dx$$

$$= \int_{0}^{\pi/4} (\sin x - \cos x) dx + \int_{\pi/4}^{\pi/2} (\sin x - \cos x) dx$$

$$= \int_{0}^{\pi/4} (\cos x - \sin x) dx + \int_{\pi/4}^{\pi/2} (\sin x - \cos x) dx$$

$$= (\sin x + \cos x)_{0}^{\pi/4} + (-\cos x - \sin x)_{\pi/4}^{\pi/2}$$

$$= 2\sqrt{2} - 2 = 2(\sqrt{2} - 1)$$

120. (b)
$$\int_{0}^{\pi/2} e^{\sin x} \cdot \cos x dx$$

Let $\sin x = t \Rightarrow \cos x dx = dt$

м-388

$$\therefore \int_{0}^{\frac{\pi}{2}} e^{\sin x} \cdot \cos x \, dx = \int_{0}^{1} e^{t} \cdot dt$$
$$= (e^{t})_{0}^{1} = e^{1} - e^{0} = e^{-1}$$

$$= (e^{t})_{0}^{1} = e^{1} - e^{0} = e - 1$$

121. (b) Area of one of loop between
 $y = c \sin x$ and x-axis

Differential Equation

[2006-I]

10.

- 1. What does the solution of the differential equation xdy ydx = 0 represent ?
 - (a) Rectangular hyperbola
 - (b) Straight line passing through (0, 0)
 - (c) Parabola with vertex at (0, 0)
 - (d) Circle with centre at (0, 0)
- 2. Which one of the following differential equations represents the system of circles touching y-axis at the origin ?

(a)
$$\frac{dy}{dx} = x^2 - y^2$$
 (b) $2xy\frac{dy}{dx} = y^2 - x^2$
(c) $y^2 = y^2 - x^2$ (b) $\frac{dy}{dx} = y^2 - x^2$

(c)
$$2xy\frac{dy}{dx} = x^2 - y^2$$
 (d) $\frac{dy}{dx} = y^2 - x^2$ [2006-I]

3. What is the solution of the differential equation

$$\frac{dy}{dx} = \frac{y}{(x+2y^3)}?$$
(a) $y(1-xy) = cx$ (b) $y^3 - x = cy$
(c) $x(1-xy) = cy$ (d) $x(1+xy) = cy$ [2006-I]
4. If $y^2 = p$ (x) is a polynomial of degree 3, then what is

$$2\frac{d}{dx} \left[y^{3} \frac{d^{2}y}{dx^{2}} \right] \text{ equal to }?$$
(a) p'(x)p'''(x) (b) p''(x)p'''(x)
(c) p(x)p'''(x) (d) A constant [2006-1]

5. What is the degree of the equation

$$\begin{bmatrix} \frac{d^2 y}{dx^2} \end{bmatrix} = \begin{bmatrix} y + \left(\frac{dy}{dx}\right)^2 \end{bmatrix}^{\frac{1}{4}} ?$$
(a) 1 (b) 2
(c) 3 (d) 4 [2006-I]

6. What are the order and degree respectively of the

differential equation
$$y = x \frac{dy}{dx} + \frac{dx}{dy}$$
?
(a) 1,1 (b) 1,2
(c) 2,1 (d) 2,2 [2006-II]
What is the equation of the curve passing through the origin

7. What is the equation of the curve passing through the origin and satisfying the differential equation dy=(ytanx + secx)dx?
(a) y = x cos x
(b) y cos x = x

(a)
$$y = x \cos x$$

(b) $y \cos x = x$
(c) $xy = \cos x$
(d) $y \sin x = x$ [2007-1]

- 19
- 8. What is the solution of the differential equation

$$\frac{dy}{dx} = \sec(x+y) ? \qquad [2007-I]$$

(a)
$$y + \tan(x + y) = c$$
 (b) $y - \tan\left\{\frac{(x + y)}{2}\right\} = c$

(c)
$$y + \tan\left\{\frac{(x+y)}{2}\right\} = c$$
 (d) $y + \tan\left\{\frac{(x-y)}{2}\right\} = c$

9. For what value of k, does the differential equation $\frac{dy}{dx} = ky$ represent the law of natural decay?

(a)
$$-5$$
 (b) 0
(c) 0.01 (d) $(10)^{-1}$ [2007-I]
What is the solution of the differential equation (x + y)
(dx - dy) = dx + dy? [2007-I]
(a) x + y + ln (x + y) = c (b) x - y + ln (x + y) = c

(a) $x+y+\ln(x+y)=c$ (b) $x-y+\ln(x+y)=c$ (c) $y-x+\ln(x+y)=c$ (d) $y-x-\ln(x-y)=c$

11. What is the degree of the differential equation

$$k\frac{d^{2}y}{dx^{2}} = \left[1 + \left(\frac{dy}{dx}\right)^{3}\right]^{3/2}, \text{ where } k \text{ is a constant?}$$
(a) 1 (b) 2
(c) 3 (d) 4 [2007-I]
Under which one of the following conditions does the

12. Under which one of the following conditions does the

solution of
$$\frac{dy}{dx} = \frac{ax+b}{cy+d}$$
 represent a parabola?

(a)
$$a=0, c=0$$
 (b) $a=1, b=2, c \neq 0$

(c) a=0, c ≠ 0, b ≠ 0 (d) a=1, c=1 [2007-I]
13. A radioactive element disintegrates at a rate proportional to the quantity of substance Q present at any time t. What is the differential equation of the disintegration ?

(a)
$$\frac{dQ}{dt} = -Q$$
 (b) $\frac{dQ}{dt} = -kQ, k < 0$
(c) $\frac{dQ}{dt} = -kQ, k > 0$ (d) $\frac{dQ}{dt} = Q$ [2007-II]

14. What is the solution of the differential equation

$$(x+y)(dx-dy) = dx+dy?$$
 [2007-II]
(a) $2 \log (x+y) = c (y-x)$ (b) $(y-x) + \log (x+y) = c$

(c)
$$\left(\frac{y}{x}\right) + \left\lfloor \log\left(\frac{y}{x}\right) \right\rfloor = c$$
 (d) None of these

[2008-11]

NDA Topicwise Solved Papers - MATHEMATICS

What is the only solution of the initial value problem
$$y' = t (1+y), y(0) = 0?$$
 (6)

[2007-II]

(a)
$$y=-1+e^{t^2/2}$$
 (b) $y=1+e^{t^2/2}$
(c) $y=-t$ (d) $y=t$ [2007-II]

16. What is the differential equation of the curve $y = ax^2 + bx$?

(a)
$$x^{2} \frac{d^{2}y}{dx^{2}} - 2x \frac{dy}{dx} + 2y = 0$$

(b) $x^{2} \frac{d^{2}y}{dx^{2}} - y \left(\frac{dy}{dx}\right)^{2} + 2 = 0$
(c) $(1 - x^{2}) \frac{d^{2}y}{dx^{2}} - \left(y \frac{dy}{dx}\right)^{2} = 0$

- (d) None of the above
- 17. What is the degree of the differential equation

$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2} = k \frac{d^2 y}{dx^2}?$$
(a) 4
(b) 3
(c) 2
(d) 1
[2007-II]

18. If $f(x) = \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{\dots \infty}}}}$ then what is f'(x) equal to?

(a)
$$\frac{1}{1-2f(x)}$$
 (b) $\frac{1}{2f(x)-1}$
(c) $\frac{1}{1+2f(x)}$ (d) $\frac{1}{2+f(x)}$ [2007-II]

What is the solution of the differential equation 19.

$$\frac{dy}{dx} = xy + x + y + 1?$$
 [2008-1]

(a)
$$y = \frac{x^2}{2} + x + c$$
 (b) $\log(y+1) = \frac{x^2}{2} + x + c$
(c) $y = x^2 + x + c$ (d) $\log(y+1) = x^2 + x + c$

(d) $\log(y+1) = x^2 + x + c$ What are the order and degree, respectively of the differential 20.

equation
$$\left(\frac{d^2 y}{dx^2}\right)^{5/6} = \left(\frac{dy}{dx}\right)^{1/3}$$
?
(a) 2,1 (b) 2,5
(c) 2, $\frac{5}{6}$ (d) 1, $\frac{1}{3}$ [2008-I]

- What is the solution of the differential equation 21. $-\csc^2(x+y) dy = dx?$ [2008-II] (a) $y - c = \sin(x + y)$ (b) $x - c = \sin(x + y)$ (c) $y - c = \tan(x + y)$ (d) None of the above
- What are the order and degree respectively of the differential 22. equation

$$(d^4y/dx^4)^3\}^{2/3} - 7x(d^3y/dx^3)^2 = 8?$$
 [2008-II]

23. What is the solution of the differential equation [2008-II] $x dy - y dx = xy^2 dx?$

(a)
$$yx^2 + 2x = 2cy$$
 (b) $y^2x + 2y = 2cx$
(c) $y^2x^2 + 2x = 2cy$ (d) None of these

- (c) $y^2x^2 + 2x = 2cy$ (d) None of these What does the solution of the differential equation 24.
 - x dy y dx = 0 represent?
 - (a) Rectangular hyperbola
 - (b) Straight line passing through the origin
 - (c) Parabola whose vertex is at origin
 - (d) Circle whose centre is at origin
- 25. What is the order of the differential equation?

$$\frac{dy}{dx} + y = \frac{1}{\left(\frac{dy}{dx}\right)}$$
 [2008-11]

(c)
$$e^x = t$$
 (d) $x = \sqrt{t}$

What is the solution of the differential equation 27. $\frac{dy}{dx} = e^{x-y} \left(e^{y-x} - e^y \right)?$ [2009-I] (a) $y = x - e^x + c$ (b) $y = x + e^x + c$ (c) $y = e^{x-y} - e^y + c$ (d) None of these 28. What are the degree and order respectively of differential

equation of the family of rectangular hyperbolas whose axis of symmetry are the coordinate axis? [2009-1] (a) 11 (b) 12

29. What does the equation $x \, dy = y \, dx$ represent? [2009-II] (a) A family of circles (b) A family of parabolas

(c) A family of hyperbolas (d) A family of straight lines What is the solution of the differential equation 30.

$$x dy - y dx = xy^{2} dx?$$
(a) $y + x^{-2} = c$
(b) $y^{2} + 2x^{-1} = c$
[2009-II]

(c)
$$y + x^{-1} = c$$
 (d) $x^2 + 2xy^{-1} = c$

31. When *a* and *b* are eliminated from the equation $xy = ae^{x} + be^{x}$ be^{-x} , the resulting differential equation is of [2009-II]

- (a) first order and first degree
- (b) first order and second degree
- (c) second order and first degree
- (d) second order and second degree

32. What is the solution of the differential equation

$$3e^{x} \tan y \, dx + (1 + e^{x}) \sec^{2} y \, dy = 0?$$
 [2010-1]

(a)
$$(1 + e^x) \tan y = c$$
 (b) $(1 + e^x)^3 \tan y = c$

(c)
$$(1 + e^x)^2 \tan y = c$$
 (d) $(1 + e^x) \sec^2 y = c$

where *c* is a constant of integration.

What

Differential Equation

33. What is the differential equation for $y^2 = 4a(x-a)$?

(a)
$$yy' - 2xyy' + y^2 = 0$$
 [2010-I]

(b)
$$yy'(yy'+2x) + y^2 = 0$$

(c)
$$yy'(yy'-2x) + y^2 = 0$$

$$(d) \quad yy' - 2xyy' + y = 0$$

34. What is the degree of the differential equation

$$\frac{d^2 y}{dx^2} - \sqrt{1 + \left(\frac{dy}{dx}\right)^3} = 0?$$
(a) 1 (b) 2
(c) 3 (d) 6

35. The growth of a quantity N(t) at any instant t is given by

$$\frac{dN(t)}{dt} = \alpha N(t)$$
. Given that $N(t) = ce^{kt}$, c is a constant. What
is the value of α ? [2010-I]
(a) c [2010-I]

- (D) K(d) c - k(c) c + k
- 36. What is the solution of the differential equation

$$a\left(x\frac{dy}{dx}+2y\right) = xy\frac{dy}{dx}?$$
 [2010-1]

(a)
$$x^2 = kye^{\frac{y}{a}}$$
 (b) $yx^2 = kye^{\frac{y}{a}}$
(c) $v^2x^2 = kye^{\frac{y^2}{a}}$ (d) None of the above

37. What is the degree of the differential equation [2010-II]

$$\left(1 + \frac{dy}{dx}\right)^4 = \left(\frac{d^2 y}{dx^2}\right)^2 ?$$
(a) 1 (b) 2
(c) 4 (d) 8

38. What is the general solution of $(1+e^x) y \, dy = e^x \, dx \, ?$ [2010-II] (a) $y^2 = \ln [c^2 (e^x + 1)^2]$ (b) $y = \ln [c (e^x + 1)]$ (c) $y^2 = ln [c (e^x + 1)]$ (d) None of these Where 'c' is a constant of integration

39. Which one of the following is the differential equation to family of circles having centre at the origin? [2010-II]

(a)
$$(x^2 - y^2)\frac{dy}{dx} = 2xy$$
 (b) $(x^2 + y^2)\frac{dy}{dx} = 2xy$
(c) $\frac{dy}{dx} = (x^2 + y^2)$ (d) $xdx + ydy = 0$

40. What does the solution of the differential equation

$$x \frac{dy}{dx} = y$$
 represent? [2010-II]

- (a) Family of straight lines through the origin
- (b) Family of circles with their centres at the origin
- (c) Family of parabolas with their vertices at the origin
- (d) Family of straight lines having slope 1 and not passing through the origin
- What does the differential equation $y \frac{dy}{dx} + x = k$ (where k 41. is a constant) represents? [2010-II]
 - (a) A family of circles having centre on the y-axis.
 - (b) A family of circles having centre on the x-axis.
 - (c) A family of circles touching the x-axis
 - (d) A family of ellipses.
- What is the differential equation to family of parabolas 42. having their vertices at the origin and foci on the x-axis?

(a)
$$y = 2xy'$$
 (b) $x = 2yy'$ [2010-II]

(c)
$$xy = y'$$
 (d) $x = yy'$

What is the solution of the differential equation 43.

$$\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1 - x^2}} = 0?$$
(a) $\sin^{-1}y + \sin^{-1}x = C$ (b) $\sin^{-1}y - \sin^{-1}x = C$
(c) $2\sin^{-1}y + \sin^{-1}x = C$ (d) $2\sin^{-1}y - \sin^{-1}x = C$
Where C is a constant.

44. What is the differential equation of all parabolas whose axes are parallel to Y-axis? [2011-1]

(a)
$$\frac{d^3y}{dx^3} = 0$$

(b) $\frac{d^2x}{dy^2} = C$
(c) $\frac{d^3x}{dy^3} = 1$
(d) $\frac{d^3y}{dx^3} = C$

(where C is a constant). 45. If the solution of the differential equation [2011-1]

$$\frac{dy}{dx} = \frac{ax+3}{2y+f}$$

represents a circle, then what is the value of *a*?

(a) 2 (b) 1
(c)
$$-2$$
 (d) -1

What is the degree of the following differential 46. equation? [2011-1]

$$\left(\frac{d^3y}{dx^3}\right)^{2/3} + 4 - 3\frac{d^2y}{dx^2} + 5\frac{dy}{dx} = 0$$

a) 1 (b) 2
c) 3 (d) 4

What does the differential equation $y \frac{dy}{dx} + x = a$ 47. [2011-I]

(where *a* is a constant) represent?

- (a) A set of circles having centre on the Y-axis
- (b) A set of circles having centre on the X-axis
- (c) A set of ellipses
- (d) A pair of straight lines

48. What is the degree of the differential equation

$$\left(\frac{d^3 y}{dx^3}\right)^{2/3} + 4 - 3\left(\frac{d^2 y}{dx^2}\right) + 5\left(\frac{dy}{dx}\right) = 0? \qquad [2011-II]$$

(c) 2/3 (d) Not defined

49. What is the equation of the curve passing through the point

 $\begin{pmatrix} 0, \frac{\pi}{3} \end{pmatrix} \text{ satisfying the differential equation}$ $\sin x \cos y \, dx + \cos x \sin y \, dy = 0? \qquad [2011-II]$ (a) $\cos x \cos y = \frac{\sqrt{3}}{2} \qquad (b) \quad \sin x \sin y = \frac{\sqrt{3}}{2}$

(c)
$$\sin x \sin y = \frac{1}{2}$$
 (d) $\cos x \cos y = \frac{1}{2}$

50. What is the solution of the differential equation

$$\frac{dy}{dx} + \frac{y}{x} = 0?$$
(a) $xy = c$
(b) $x = cy$
(c) $y = cx$
(d) None of the above

51. What is the degree of the differential equation

$$y = x \frac{dy}{dx} + \left(\frac{dy}{dx}\right)^{-1}?$$
 [2012-1]

(a) 1 (b) 2
(c)
$$-1$$
 (d) Degree does not exist.

52. Which one of the following differential equations is not linear? [2012-I]

(a)
$$\frac{d^2y}{dx^2} + 4y = 0$$
 (b) $x\frac{dy}{dx} + y = x^3$
(c) $(x - y)^2 \frac{dy}{dx} = 9$ (d) $\cos^2 x \frac{dy}{dx} + y = \tan x$

53. What is the degree of the differential equation

$$\frac{d^{3}y}{dx^{3}} + 2\left(\frac{d^{2}y}{dx^{2}}\right)^{2} - \frac{dy}{dx} + y = 0$$
? [2012-II]
(a) 6 (b) 3

1

- 54. Consider a differential equation of order m and degree n. Which one of the following pairs is not feasible ?
 (a) (3,2)
 (b) (2,3/2)
 (2012-II]
- (c) (2,4) (d) (2,2) 55. The differential equation representing the family of curves
 - $y = a \sin (\lambda x + \alpha)$ is: [2012-II] $d^2 y$ $d^2 y$

(a)
$$\frac{d^2 y}{dx^2} + \lambda^2 y = 0$$
 (b) $\frac{d^2 y}{dx^2} - \lambda^2 y = 0$
(c) $\frac{d^2 y}{dx^2} + \lambda y = 0$ (d) None of the above

56. The differential equation
$$y\frac{dy}{dx} + x = a$$
 where 'a' is any constant represents : [2012-II]

- (a) A set of straight lines(b) A set of ellipses(c) A set of circles(d) None of the above
- 57. For the differential equation $\left(\frac{dy}{dx}\right)^2 x\left(\frac{dy}{dx}\right) + y = 0$, which one of the following is not its solution? [2012-II]

(a) y=x-1 (b) $4y=x^2$ (c) y=x (d) y=-x-1

- 58. What is the general solution of the differential equation $x^{2} dy + y^{2} dx = 0$? [2012-II] (a) x + y = c (b) xy = c(c) c(x+y) = xy (d) None of the above
 - where c is the constant of integration.
- 59. What is the general solution of the differential equation $e^{x} \tan y \, dx + (1 - e^{x}) \sec^{2} y \, dy = 0$? [2012-II] (a) $\sin y = c (1 - e^{x})$ (b) $\cos y = c (1 - e^{x})$ (c) $\cot y = c (1 - e^{x})$ (d) None of the above where c is the constant of integration

. . .

$$\left(\frac{d^4y}{dx^4}\right)^{3/5} - 5\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 5 = 0 ? \qquad [2013-I]$$
(a) 5 (b) 4
(c) 3 (d) 2

61. The general solution of the differential equation

$$x \frac{dy}{dx} + y = 0$$
 is? [2013-1]
(a) $xy = c$ (b) $x = cy$

(c)
$$x + y = c$$
 (d) $x^2 + y^2 = c$

62. The general solution of the differential equation $ln\left(\frac{dy}{dt}\right) + x = 0$ is? [2013-1]

$$ent\left(\frac{1}{dx}\right) + x = 0 \text{ is?}$$
(a) $y = e^{-x} + c$
(b) $y = -e^{-x} + c$
(c) $y = e^{x} + c$
(d) $y = e^{x} + c$

(c)
$$y = e^{x} + c$$
 (d) $y = -e^{x} + c$

63. The differential equation of the curve $y = \sin x$ is [2013-I]

(a)
$$\frac{d^2y}{dx^2} + y\frac{dy}{dx} + x = 0$$
 (b) $\frac{d^2y}{dx^2} + y = 0$
(c) $\frac{d^2y}{dx^2} - y = 0$ (d) $\frac{d^2y}{dx^2} + x = 0$

64. The degree and order respectively of the differential

equation
$$\frac{dy}{dx} = \frac{1}{x + y + 1}$$
 are [2013-1]

$$\left(\frac{dy}{dx}\right)^2 + \frac{dy}{dx} - \sin^2 y = 0?$$
(a) 1
(b) 2
(c) 3
(d) Undefined

Differential Equation

66. $y = 2\cos x + 3\sin x$ satisfies which of the following differential equations ? [2013-II]

1.
$$\frac{d^2y}{dx^2} + y = 0$$
 2. $\left(\frac{dy}{dx}\right)^2 + \frac{dy}{dx} = 0$

Select the correct answer using the code given below.

- (b) 2 only (a) 1 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- The differential equation of all circles whose centres are at 67. the origin is [2013-II]
 - (a) $\frac{dy}{dx} = \frac{y}{x}$ (b) $\frac{dy}{dx} = \frac{x}{y}$
 - (c) $\frac{dy}{dx} = -\frac{x}{y}$ (d) None of the above
- 68. The solution of $\frac{dy}{dx} = |x|$ is : [2014-I] 1.1

(a)
$$y = \frac{x|x|}{2} + c$$
 (b) $y = \frac{|x|}{2} + c$
(c) $y = \frac{x^2}{2} + c$ (d) $y = \frac{x^3}{2} + c$

Where *c* is an arbitary constant

69. What is the solution of $\frac{dy}{dx} + 2y = 1$ satisfying y(0) = 0? [2014-I]

(a)
$$y = \frac{1 - e^{-2x}}{2}$$
 (b) $y = \frac{1 + e^{-2x}}{2}$
(c) $y = 1 + e^{x}$ (d) $y = \frac{1 + e^{x}}{2}$

- 70. What is the general solution of the differential equation x $dy - y \, dx = y^2$? [2014-I] (b) $v^2 = cx$ (a) x = cy
- (c) x + xy cy = 0(d) None of these **DIRECTIONS (Qs. 71 - 73):** (For the next three (03) items that

follow) : The general solution of the differential equation $(x^2 + x + 1)$ $dy + (y^2 + y + 1) dx = 0$ is (x + y + 1) = A(1 + Bx + Cy + Dxy) where B, C and D are constants and A is parameter. [2014-I] 71. What is *B* equal to ? (a) -1 (b) 1 (c) 2 (d) None of these 72. What is *C* equal to ? (a) 1 (b) -1 (c) 2 (d) None of these 73. What is *D* equal to ? (a) -1 (b) 1 (c) -2 (d) None of these 74. What is the number of arbitrary constants in the particular solution of differential equation of third order? [2014-I] (a) 0 (b) 1 (c) 2 (d) 3

75. Consider the following statements in respect of the differential equation [2014-I]

$$\frac{d^2 y}{dx^2} + \cos\left(\frac{dy}{dx}\right) = 0$$

- 1. The degree of the differential equation is not defined.
- The order of the differential equation is 2. 2.

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2

$$\left(\frac{d^3y}{dx^3}\right)^{3/2} = \left(\frac{d^2y}{dx^2}\right)^2?$$

(a) 1 (b) 2
(c) 3 (d) 4
What is the solution of the equation
$$(2014-III)$$

7. What is the solution of the equation [2014-1]

$$ln \left(\frac{dy}{dy}\right) + n = 0.2$$

(h) 2

(a)
$$y + e^{x} = c$$
 (b) $y - e^{-x} = c$

(c)
$$y + e^{-x} = c$$
 (d) $y - e^{x} = c$

78. Eliminating the arbitrary constants B and C in the expression

$$y = \frac{2}{3C}(Cx-1)^{3/2} + B, \text{ we get}$$
(a) $x\left[1+\left(\frac{dy}{dx}\right)^2\right] = \frac{d^2y}{dx^2}$
(b) $2x\left(\frac{dy}{dx}\right)\frac{d^2y}{dx^2} = 1+\left(\frac{dy}{dx}\right)^2$
(c) $\left(\frac{dy}{dx}\right)\frac{d^2y}{dx^2} = 1$
(d) $\left(\frac{dy}{dx}\right)^2 + 1 = \frac{d^2y}{dx^2}$

79. What is the solution of the differential equation [2015-I]

$$\frac{ydx - xdy}{y^2} = 0?$$
(a) $xy = c$
(b) $y = cx$
(c) $x + y = c$
(d) $x - y = c$
where c is an arbitrary constant.

80. What is the solution of the differential equation [2015-I]

a + c

$$\sin\left(\frac{dy}{dx}\right) - a = 0?$$
(a) $y = x \sin^{-1} a + c$ (b) $x = y \sin^{-1} a + c$
(c) $y = x + x \sin^{-1} a + c$ (d) $y = \sin^{-1} a + c$
where c is an arbitrary constant.

[2016-II]

NDA Topicwise Solved Papers - MATHEMATICS

- 81. What is the solution of the differential equation
 - $\frac{dx}{dy} + \frac{x}{y} y^2 = 0?$ (2015-I] (a) $xy = x^4 + c$ (b) $xy = y^4 + c$ (c) $4xy = y^4 + c$ (d) $3xy = y^3 + c$ where c is an arbitrary constant.
- 82. Consider the following statements: [2015-I]
 - 1. The general solution of $\frac{dy}{dx} = f(x) + x$ is of the form y
 - =g(x)+c, where c is an arbitrary constant.
 - 2. The degree of $\left(\frac{dy}{dx}\right)^2 = f(x)$ is 2.

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 83. The degree of the differential equation [2015-II]

$$\frac{dy}{dx} - x = \left(y - x\frac{dy}{dx}\right)^{-4}$$
 is
(a) 2 (b)
(c) 4 (d)

84. The solution of
$$\frac{dy}{dx} = \sqrt{1 - x^2 - y^2 + x^2 y^2}$$
 is [2015-II]

3

5

(a) $\sin^{-1} y = \sin^{-1} x + c$ (b) $2\sin^{-1} y = \sqrt{1 - x^2} + \sin^{-1} x + c$ (c) $2\sin^{-1} y = x\sqrt{1 - x^2} + \sin^{-1} x + c$

(d)
$$2\sin^{-1} y = x\sqrt{1-x^2} + \cos^{-1} x + c$$

where c is an arbitrary constant.

85. The differential equation of the family of circles passing through the origin and having centres on the x-axis is [2015-II]

(a)
$$2xy\frac{dy}{dx} = x^2 - y^2$$
 (b) $2xy\frac{dy}{dx} = y^2 - x^2$
(c) $2xy\frac{dy}{dx} = x^2 + y^2$ (d) $2xy\frac{dy}{dx} + x^2 + y^2 = 0$

- 86. The order and degree of the differential equation of parabolas having vertex at the origin and focus at (a, 0) where a > 0, are respectively [2015-II]
 (a) 1,1
 (b) 2,1
 (c) 1,2
 (d) 2,2
- 87. What are the order and degree respectively of the differential equation whose solution is $y = cx + c^2 3c^{3/2} + 2$, where c is a parameter? [2016-I] (a) 1,2 (b) 2,2
 - (c) 1,3 (d) 1,4
- 88. Let f(x) be a function such that $f'\left(\frac{1}{x}\right) + x^3 f'(x) = 0$, What is

$$\int_{-1}^{\infty} f(x) dx \text{ equal to?} \qquad [2016-II]$$

(a)	2 f(1)	(b)	0
(c)	2 f(-1)	(d)	4 f(1)

89. What are the degree and order respectively of the differential

equation satisfying
$$e^{y\sqrt{1-x^2+x}\sqrt{1-y^2}} = ce^x$$
,
(where $c \ge 0$, $|x| \le 1$, $|y| \le 1$)?

$$\begin{array}{ll} \left(\text{where } c > 0, \left| x \right| < 1, \left| y \right| < 1 \right)? \\ (a) \quad 1, 1 & (b) \quad 1, 2 \\ (c) \quad 2, 1 & (d) \quad 2, 2 \end{array}$$

- 90. If x dy = y dx + y² dy, y > 0 and y(1)=1, then what is y (-3) equal to? [2016-II]
 (a) 3 only (b) -1 only
 (c) Both -1 and 3 (d) Neither -1 nor 3
- 91. What is the order of the differential equation

$$\frac{dx}{dy} + \int y \, dx = x^3$$
? [2016-11]

92. Which one of the following differential equations represents the family of straight lines which are at unit distance from the origin? [2016-II]

(a)
$$\left(y - x\frac{dy}{dx}\right)^2 = 1 - \left(\frac{dy}{dx}\right)^2$$

(b) $\left(y + x\frac{dy}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$
(c) $\left(y - x\frac{dy}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$
(d) $\left(y + x\frac{dy}{dx}\right)^2 = 1 - \left(\frac{dy}{dx}\right)^2$

93. What is
$$\frac{d^2x}{dy^2}$$
 equal to? [2017-I]
(a) $-\left(\frac{d^2y}{dx^2}\right)^{-1}\left(\frac{dy}{dx}\right)^{-3}$ (b) $\left(\frac{d^2y}{dx^2}\right)^{-1}\left(\frac{dy}{dx}\right)^{-2}$
(c) $-\left(\frac{d^2y}{dx^2}\right)\left(\frac{dy}{dx}\right)^{-3}$ (d) $\left(\frac{d^2y}{dx^2}\right)^{-1}$

94. If xdy = y(dx + ydy); y(1) = 1 and y(x) > 0, then what is y(-3) equal to? [2017-I] (a) 3 (b) 2 (c) 1 (d) 0

95. What are the degree and order respectively of the

differential equation $y = x \left(\frac{dy}{dx}\right)^2 + \left(\frac{dx}{dy}\right)^2$? [2017-I] (a) 1,2 (b) 2,1 (c) 1,4 (d) 4,1

- 96. What is the differential equation corresponding to $y^2 - 2ay + x^2 = a^2$ by eliminating a? [2017-I] (a) $(x^2 - 2y^2)p^2 - 4pxy - x^2 = 0$
 - (b) $(x^2 2y^2)p^2 + 4pxy x^2 = 0$
 - (c) $(x^2+2y^2)p^2-4pxy-x^2=0$
 - (d) $(x^2+2y^2)p^2-4pxy+x^2=0$

where $p = \frac{dy}{dx}$.

- 97. What is the general solution of the differential equation $ydx - (x + 2y^2) dy = 0?$ [2017-I] (a) $x = y^2 + cy$ (b) $x = 2cv^2$ (c) $x = 2y^2 + cy$ (d) None of the above
- 98. What is the solution of the differential equation
 - $\ln\!\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) a = 0?$ [2017-1] (a) $y = xe^a + c$ (b) $x = ye^a + c$ (c) $y = \ln x + c$ (d) $x = \ln y + c$
- The general solution of $\frac{dy}{dx} = \frac{ax + h}{by + k}$ represents a circle 99.

only when [2017-II] (b) $a = -b \neq 0$ (a) a = b = 0(c) $a = b \neq 0, h = k$ (d) $a = b \neq 0$

- 100. The order and degree of the differential equation
 - $\left[1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right]^3 = \rho^2 \left[\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right]^2$ are respectively [2017-II] (a) 3 and 2(b) 2 and 2 (c) 2 and 3 (d) 1 and 3
- 101. The differential equation of minimum order by eliminating the arbitrat constants A and C in the equatic y = A[sin(x+C) + cos(x+C)] is [2017-II] (a) $y'' + (\sin x + \cos x)y' = 1$
 - (b) $y'' = (\sin x + \cos x)y'$
 - (c) $y'' = (y')^2 + \sin x \cos x$
 - (d) y'' + y = 0
- 102. The solution of the differential equation $\frac{dy}{dx} = \frac{y\phi'(x) y^2}{\phi(x)}$ [2017-II] is

(a)
$$y = \frac{x}{\phi(x) + c}$$
 (b) $y = \frac{\phi(x)}{x} + c$
(c) $y = \frac{\phi(x) + c}{x}$ (d) $y = \frac{\phi(x)}{x + c}$

- 103. What is the solution of the differential equation x dy - y dx = 0?[2018-I]
 - (a) xy=c(b) y = cx(c) x + y = c(d) x - y = c
- 104. Which one of the following differential equations has a [2018-I] periodic solution?

(a)
$$\frac{d^2x}{dt^2} + \mu x = 0$$
 (b) $\frac{d^2x}{dt^2} - \mu x = 0$

(c)
$$x \frac{dx}{dt} + \mu t = 0$$
 (d) $\frac{dx}{dt} + \mu xt = 0$
where $\mu > 0$.

- 105. The order and degree of the differential equation $y^2 = 4a (x - a)$, where 'a' is an arbitrary constant, are respectively [2018-I] (a) 1,2 (b) 2,1 (c) 2,2 (d) 1,1
- 106. What is the solution of (1 + 2x) dy (1 2y) dx = 0?
 - (a) x y 2xy = c(b) y x 2xy = c(c) y + x 2xy = c(d) x + y + 2xy = c

equation
$$\left(\frac{d^3y}{dx^3}\right)^2 = y^4 + \left(\frac{dy}{dx}\right)^5$$
? [2018-I]

(c)
$$3,2$$
 (d) $5,4$

108. The differential equation of the family of curves $y = p \cos x$ (ax) + q sin (ax), where p, q are arbitrary constants, is [2018-11]

(a)
$$\frac{d^2y}{dx^2} - a^2y = 0$$
 (b) $\frac{d^2y}{dx^2} - ay = 0$
(c) $\frac{d^2y}{dx^2} + ay = 0$ (d) $\frac{d^2y}{dx^2} + a^2y = 0$

109. The equation of the curve passing through the point

$$(-1, -2) \text{ which satisfies } \frac{dy}{dx} = -x^2 - \frac{1}{x^3} \text{ is } [2018-II]$$

(a) $17x^2 y - 6x^2 + 3x^5 - 2 = 0$
(b) $6x^2 y + 17x^2 + 2x^5 - 3 = 0$
(c) $6xy - 2x^2 + 17x^5 + 3 = 0$
(d) $17x^2 y + 6xy - 3x^5 + 5 = 0$

110. What is the order of the differential equation whose solution is $y = a \cos x + b \sin x + ce^{-x} + d$, where a, b, c and d are arbitrary constants? [2018-II] (a) 1 (b) 2

111. What is the solution of the differential equation ln $\langle 1 \rangle$

$$\left(\frac{dy}{dx}\right) = ax + by?$$
(2018-11]
(a) $a e^{ax} + b e^{by} = c$
(b) $\frac{1}{a}e^{ax} + \frac{1}{b}e^{by} = c$
(c) $a e^{ax} + b e^{-by} = c$
(d) $\frac{1}{a}e^{ax} + \frac{1}{b}e^{-by} = c$

112. If $u = e^{ax} \sin bx$ and $v = e^{ax} \cos bx$, then what is u

$$\frac{du}{dx} + v \frac{dv}{dx} \text{ equal to?} \qquad [2018-II]$$
(a) a e^{2ax}
(b) (a² + b²)e^{ax}
(c) ab e^{2ax}
(d) (a + b)e^{ax}

113. If y = sin(lnx), then which one of the following is correct? [2018-II]

(a)
$$\frac{d^2y}{dx^2} + y = 0$$

(b)
$$\frac{d^2y}{dx^2} = 0$$

(c)
$$x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = 0$$

(d)
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 0$$

114. What is the solution of the differential equation

$$\frac{dx}{dy} = \frac{x+y+1}{x+y-1} ?$$
(a) $y-x+4 \ln (x+y) = c$
(b) $y+x+c \ln (x+y) = c$
(c) $y-x+\ln (x+y) = c$
(d) $y+x+2 \ln (x+y) = c$

115. The solution of the differential equation [2019-I]

$$\frac{dy}{dx} = \cos((y-x) + 1)$$
 is

- (a) $e^{x}[\sec(y-x) \tan(y-x)] = c$
- (b) $e^{x}[\sec(y-x) + \tan(y-x)] = c$
- (c) $e^{x} \sec(y-x) \tan(y-x) = c$
- (d) $e^{x} = c \sec(y-x) \tan(y-x)$

116. If $y = a \cos 2x + b \sin 2x$, then [2019-1]

(a)
$$\frac{d^2y}{dx^2} + y = 0$$
 (b) $\frac{d^2y}{dx^2} + 2y = 0$

(c)
$$\frac{d^2y}{dx^2} - 4y = 0$$
 (d) $\frac{d^2y}{dx^2} + 4y = 0$

117. The differential equation of the system of circles touching the y-axis at the origin is [2019-I]

(a)
$$x^{2} + y^{2} - 2xy\frac{dy}{dx} = 0$$
 (b) $x^{2} + y^{2} + 2xy\frac{dy}{dx} = 0$

(c)
$$x^2 - y^2 + 2xy\frac{dy}{dx} = 0$$
 (d) $x^2 - y^2 - 2xy\frac{dy}{dx} = 0$

118. Consider the following in respect of the differential equation :

$$\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 + 9y = x \qquad [2019-I]$$

1. The degree of the differential equation is 1.

2. The order of the differential equation is 2.

Which of the above statements is/are correct?

(a) 1 only (b) 2 only

- (c) Both 1 and 2 (d) Neither 1 nor 2
- 119. What is the general solution of the differential equation

$$\frac{dy}{dx} + \frac{x}{y} = 0?$$
(a) $x^2 + y^2 = c$
(b) $x^2 - y^2 = c$
(c) $x^2 + y^2 = cxy$
(d) $x + y = c$

ANSWER KEY																			
1	(b)	13	(c)	25	(c)	37	(b)	49	(d)	61	(a)	73	(c)	85	(b)	97	(c)	109	(b)
2	(b)	14	(b)	26	(b)	38	(a)	50	(a)	62	(b)	74	(d)	86	(a)	98	(a)	110	(d)
3	(b)	15	(a)	27	(a)	39	(d)	51	(b)	63	(b)	75	(c)	87	(d)	99	(b)	111	(d)
4	(c)	16	(a)	28	(a)	40	(a)	52	(a)	64	(a)	76	(c)	88	(c)	100	(b)	112	(a)
5	(d)	17	(c)	29	(d)	41	(b)	53	(d)	65	(a)	77	(c)	89	(a)	101	(d)	113	(c)
6	(b)	18	(b)	30	(d)	42	(a)	54	(b)	66	(a)	78	(b)	90	(a)	102	(d)	114	(c)
7	(a)	19	(b)	31	(c)	43	(a)	55	(a)	67	(c)	79	(b)	91	(b)	103	(b)	115	(a)
8	(b)	20	(b)	32	(b)	44	(a)	56	(c)	68	(a)	80	(a)	92	(c)	104	(a)	116	(c)
9	(a)	21	(d)	33	(c)	45	(c)	57	(c)	69	(a)	81	(c)	93	(c)	105	(*)	117	(c)
10	(c)	22	(c)	34	(b)	46	(b)	58	(c)	70	(*)	82	(c)	94	(a)	106	(a)	118	(c)
11	(b)	23	(a)	35	(b)	47	(b)	59	(d)	71	(a)	83	(d)	95	(d)	107	(c)	119	(a)
12	(c)	24	(b)	36	(d)	48	(b)	60	(c)	72	(b)	84	(c)	96	(a)	108	(d)		

HINTS & SOLUTIONS

1. (b) Given that x dy - ydx = 0Dividing both the sides by x^2

$$\Rightarrow \frac{xdy - ydx}{x^2} = 0$$
$$\Rightarrow d\left(\frac{y}{x}\right) = 0$$

 $\Rightarrow \quad \frac{y}{x} = c \Rightarrow y = cx, \text{ where } c \text{ is a constant.}$

Thus, it a straight line passing through (0, 0). Aliter :

Given,
$$x dy - y dx = 0$$

$$\Rightarrow \frac{dy}{y} = \frac{dx}{x}$$

Integrating both the sides, $\int \frac{dy}{y} = \int \frac{dx}{x} + \log c$

$$log y = log x + log c where c is constant \Rightarrow y = cx$$

2. (b) Since, circle is touching y-axis at origin its center lies on x-axis. Let the centre be (a, 0). Its radius = a

$$(x-a)^2 + y^2 = a^2$$

$$x^2 + a^2 - 2ax + y^2 = a^2$$

$$\Rightarrow x^2 + y^2 - 2ax = 0$$
...(i)
$$a = \frac{x^2 + y^2}{2x}$$

Differentiating both sides

Now,
$$2x + 2y \frac{dy}{dx} - 2a = 0$$

$$\Rightarrow 2x + 2y \frac{dy}{dx} - \frac{x^2 + y^2}{x} = 0$$

$$\Rightarrow 2x^2 + 2x y \frac{dy}{dx} - x^2 - y^2 = 0$$

$$\Rightarrow 2xy \frac{dy}{dx} = y^2 - x^2$$
3. (b) $y^3 - x = cy$

$$\Rightarrow 3y^2 \frac{dy}{dx} - 1 = c \frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} (3y^2 - c) = 1$$

$$\Rightarrow \frac{dy}{dx} \left(3y^2 - \frac{y^3 - x}{y} \right) = 1$$

$$\Rightarrow \frac{dy}{dx} \left(\frac{3y^3 - y^3 + x}{y} \right) = 1$$

$$\Rightarrow \frac{dy}{dx} = \frac{y}{x + 2y^3}$$

4. (c) Given that $y^2 = p(x)$

Differentiating

$$\Rightarrow 2yy_1 = p'(x)$$
 here $y_1 =$

$$\Rightarrow 2y_1 = \frac{p'(x)}{v}$$

Differentiating again,

$$\Rightarrow 2y_2 = \frac{yp''(x) - p'(x)y_1}{y^2}, \left[y_2 = \frac{d^2y}{dx^2} \right]$$

$$\Rightarrow 2y_2 = \frac{yp''(x) - \frac{p'(x) \cdot p'(x)}{2y}}{y^2}$$

$$= \frac{2y^2 p''(x) - p'(x))^2}{2y^3}$$

$$\Rightarrow 2y^3 y_2 = \frac{1}{2} [2y^2 p''(x) - (p'(x))^2]$$

$$\Rightarrow 2y^3 y_2 = \frac{1}{2} [2p(x) p''(x) - (p'(x))^2]$$

$$\Rightarrow 2\frac{d}{dx} (y^3 y_2)$$

$$= \frac{1}{2} [2p'(x) p''(x) + 2p(x) p'''(x) - 2p'(x) p''(x)]$$

$$= p(x) p'''(x)$$

(d) The given differential equation is :

5.

6.

$$\frac{d^2 y}{dx^2} = \left[y + \left(\frac{dy}{dx}\right)^2 \right]^{1/4}$$

This can be re-written as by squaring both the sides to the power 4 to make it a polynomial of derivative.

$$\left[\frac{d^2 y}{dx^2}\right]^4 = \left[y + \left(\frac{dy}{dx}\right)^2\right]$$

Power of highest derivatives 4, So, degree of the equation is 4.

(b) The given differential equation is

$$y = x \frac{dy}{dx} + \frac{dx}{dy}$$

dy

dx

7.

8.

Multiplying both the sides by $\frac{dy}{dx}$ We get $\left(\frac{dy}{dx}\right)y = x\left(\frac{dy}{dx}\right)^2 + 1$ $\Rightarrow x\left(\frac{dy}{dx}\right)^2 - y\left(\frac{dy}{dx}\right) + 1 = 0$ Hence, order and degree of differential equation are 1 and 2. (a) The differential equation $dy = (y \tan x + \sec x) dx \ can be written as$ $\frac{dy}{dx} = y \tan x + \sec x$ or, $\frac{dy}{dx} - y \tan x = \sec x$ which is of the form $\frac{dy}{dx} + P(x).y = Q(x)$ Here $P(x) = -\tan x$ and $Q(x) = \sec x$ Integrating factor IF = $e^{\int P(x)dx}$ $IF = e^{\int -\tan x \, dx} = e^{\int -\frac{\sin x}{\cos x} dx}$ Putting $\cos x = t$ $-\sin x \, dx = dt$ If = $e^{\int \frac{dt}{t}} = e^{\log_e t} = t = \cos x$ The solution is $y.Q(x) = \int I.F.Q(x)dx + c$ or, y.sec $x = \int \cos x \cdot \sec x \, dx + c$ or, y.sec $x = \int dx + c$ or, y.sec x = x + cSince the curve passes through the origin. $0 = 0 + c \implies c = 0$ and $y \sec x = x$ or, $y = x \cos x$ (b) In the equation $\frac{dy}{dx} = \sec(x+y)$ Let x + y = vSo, $1 + \frac{dy}{dx} = \frac{dv}{dx}$ or $\frac{dy}{dx} = \frac{dv}{dx} - 1$ and $\frac{dv}{dx} - 1 = \sec v$ $\frac{\mathrm{d}v}{\mathrm{d}x} = 1 + \sec v = \frac{1 + \cos v}{\cos v}$

or, $\frac{\cos v}{1 + \cos v} dv = dx$ $\cos v = \cos^2 \frac{v}{2} - \sin^2 \frac{v}{2}$ and $1 + \cos v = 2\cos^2 \frac{v}{2}$ so, $\left(\frac{2\cos^2\frac{v}{2} - 2\sin^2\frac{v}{2}}{2\cos^2\frac{v}{2}}\right) dv = dx$ $\left(1-\tan^2\frac{v}{2}\right)dv = 2dx$ or, $\left\{1 - \left(\sec^2 \frac{v}{2} - 1\right)\right\} dv = 2dx$ or, $\left(2 - \sec^2 \frac{v}{2}\right) dv = 2 dx$ Integrating on both the sides $2\int dv - \int \sec^2 \frac{v}{2} dv = 2\int dx + c_1$ where c_1 is a constant. $2v - 2\tan \frac{v}{2} = 2x + c_1$ $2(x+y)-2 \tan \frac{x+y}{2} = 2x+c_1$ or, $2x + 2y - 2\tan\frac{x+y}{2} = 2x + c_1$ $y - \tan\left(\frac{x+y}{2}\right) = \frac{c_1}{2} = c,$ [c is a constant] so, y - tan $\frac{x+y}{2} = c$ (a) $\frac{dy}{dx} = ky$ or $\frac{dy}{y} = kdx$ Integrating both the sides $\int \frac{dy}{y} = k \int dx + \log c$ (where c is a constant) $\log y = kx + \log c \implies \log y - \log c = kx$ or, $\log\left(\frac{y}{c}\right) = kx$ or, $\frac{y}{c} = e^{kx}$

or, $y = c.e^{kx}$

The equation will show a decay. If value of k is negative. Only option (a) shows negative value of k.

10. (c) Differential equation is $(z_1 + z_2)(z_2 - z_3) = z_3 + z_4$

(x + y) (dx - dy) = dx + dydividing by dx on both the sides

$$(x+y)\left(1-\frac{dy}{dx}\right) = 1 + \frac{dy}{dx}$$

Putting x + y = v

$$1 + \frac{dy}{dx} = \frac{dv}{dx}$$
 and $\frac{dy}{dx} = \frac{dv}{dx} - 1$

The equation changes to

$$v\left\{1 - \left(\frac{dv}{dx} - 1\right)\right\} = \frac{dv}{dx}$$
$$v\left(2 - \frac{dv}{dx}\right) = \frac{dv}{dx}$$
$$2v - v\frac{dv}{dx} = \frac{dv}{dx}$$
$$2v = (1 + v)\frac{dv}{dx}$$
$$\left(\frac{1 + v}{v}\right)dv = 2dx$$
or,
$$\left(\frac{1}{v} + 1\right)dv = 2dx$$

Integrating on both the sides,

$$\int \frac{dv}{v} + \int dv = 2 \int dx + c$$

log v + v = 2x + c
Putting v = x + y
log(x + y) + x + y = 2x + c
or, log(x + y) + y - x = c
or, y - x + log(x + y) = c

11. (b) In the given equation,

$$K \cdot \frac{d^2 y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^3\right]^{3/2}$$

Squaring both the sides,

$$K^{2}\left(\frac{d^{2}y}{dx^{2}}\right)^{2} = \left[1 + \left(\frac{dy}{dx}\right)^{3}\right]^{3}$$

Degree of a differential equation is the highest power of the highest derivative in equation when derivatives are expressed as polynomial. Here degree of differential equation is 2.

(c) Given:
$$\frac{dy}{dx} = \frac{ax+b}{cy+d}$$

12.

14.

or, (cy+d) dy = (ax+b)dxIntegrating both the sides.

c.
$$\int y dy + d \int dy = a \int x dx + b \int dx + K$$
 [K is constant]

integration]

or,
$$c.\frac{y^2}{2} + d.y = a\frac{x^2}{2} + b.x + K$$

or, $cy^2 + 2d.y = ax^2 + 2b.x + 2K$ This equation will represent a parabola when either, the coefficient of x^2 or the coefficient of y^2 is zero, but not both. Thus either c = 0 or a = 0 but not both. From the choice given, a = 0, $c \neq 0$ and $b \neq 0$.

13. (c) A radioactive element disintegrates at a rate proportional to the quantity of substance Q present at any time t.

$$\Rightarrow \quad \frac{dQ}{dt} \propto -Q$$
$$\Rightarrow \quad \frac{dQ}{dt} = -kQ, k > 0 \text{ is}$$

$$\Rightarrow \quad \frac{dQ}{dt} = -kQ, k > 0 \text{ is a constant}$$

This is required differential equation.

(b) Given differential equation is:

$$(x + y) (dx - dy) = dx + dy$$

$$\Rightarrow (x + y) dx - (x + y) dy = dx + dy$$

$$\Rightarrow (x + y - 1) dx = (x + y + 1) dy$$

$$\Rightarrow \frac{dy}{dx} = \frac{x + y - 1}{x + y + 1}$$
Let $x + y = v$ and $\frac{dy}{dx} = \frac{dv}{dx} - 1$

$$\therefore \frac{dv}{dx} - 1 = \frac{v - 1}{v + 1}$$

$$\Rightarrow \frac{dv}{dx} = \frac{v - 1}{v + 1} + 1$$

$$\Rightarrow \frac{dv}{dx} = \frac{v - 1 + v + 1}{v + 1}$$

$$\Rightarrow \frac{v + 1}{2v} dv = dx$$

$$\Rightarrow \frac{1}{2} \int 1 dv + \frac{1}{2} \int \frac{1}{v} dv = \int 1 dx$$

$$\Rightarrow \frac{1}{2} v + \frac{1}{2} \log v = x + c_1$$

$$\Rightarrow (y - x) + \log (x + y) = c$$

$$(\because 2c_1 = c = costant)$$

м-400

NDA Topicwise Solved Papers - MATHEMATICS

15. (a) Given, equation is : y' = t(1 + y)i.e., $\frac{dy}{dt} = t(1 + y)$

$$\Rightarrow \int \frac{1}{1+y} dy = \int t dt \Rightarrow \log(1+y) = \frac{t^2}{2} + c$$

As per initial conditions
 $y(0) = 0$ when $t = 0, y = 0$
 $\Rightarrow \log 1 = c \Rightarrow c = 0$
 $\therefore \log(1+y) = \frac{t^2}{2} \Rightarrow 1 + y = e^{t^2/2}$
 $\Rightarrow y = -1 + e^{t^2/2}$
which is required solution.
Given, equation is :

16. (a) Given, equation is: $y=ax^2 + bx$ (1) Differentiating w.r.t. x,

$$\Rightarrow \quad \frac{dy}{dx} = 2ax + b \qquad \dots (2)$$

Differentiation g w.r.t. x,

$$\Rightarrow \frac{d^2 y}{dx^2} = 2a$$

$$\Rightarrow a = \frac{1}{2} \frac{d^2 y}{dx^2} \qquad \dots (3)$$

From (2) and (3)

$$b = \frac{dy}{dx} - x \cdot \frac{d^2 y}{dx^2},$$

Putting values of a and b in equation (1):

$$y = \frac{1}{2} \frac{d^2 y}{dx^2} \cdot x^2 + x \left(\frac{dy}{dx} - x \frac{d^2 y}{dx^2} \right)$$
$$\Rightarrow \quad 2y = x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 2x^2 \frac{d^2 y}{dx^2}$$
$$\Rightarrow \quad x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$$

17. (c) The given differential equation is

$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2} = k \frac{d^2y}{dx^2}$$

To express it as a polynomial of derivatives we square both side,

$$\Rightarrow \left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = k^2 \left(\frac{d^2y}{dx^2}\right)^2$$

Highest derivative has power = 2Degree of differential equation = 2. 18. (b) Given function is :

$$f(x) = \sqrt{x + \sqrt{x + \sqrt{x\sqrt{\infty}}}}$$

$$\Rightarrow f(x) = \sqrt{x + f(x)} \Rightarrow (f(x))^2 = x + f(x)$$

On differentiating both sides wrt. x, we get

$$2f(x) f'(x) = 1 + f'(x)$$

$$f'(x) \{2f(x) - 1\} = 1$$

$$f'(x) = \frac{1}{2f(x) - 1}$$

$$f'(x) = \frac{1}{2f(x) - 1}$$

19. (b) The given differential equation is :

$$\frac{dy}{dx} = xy + x + y + 1 \implies \frac{dy}{dx} = (x+1)(y+1)$$

Separating variables,

$$\Rightarrow \frac{1}{(1+y)} dy = (x+1)dx \Rightarrow \log(1+y) = \frac{x^2}{2} + x + c$$

20. (b) Given differential equation is :

$$\left(\frac{\mathrm{d}^2 \mathrm{y}}{\mathrm{d} \mathrm{x}^2}\right)^{5/6} = \left(\frac{\mathrm{d} \mathrm{y}}{\mathrm{d} \mathrm{x}}\right)^{1/3}$$

Raising both the side to power of 6, to make it a polynomial of derivatives.

$$\Rightarrow \left(\frac{d^2 y}{dx^2}\right)^5 = \left(\frac{dy}{dx}\right)^{6/3} \Rightarrow \left(\frac{d^2 y}{dx^2}\right)^5 = \left(\frac{dy}{dx}\right)^2$$

Highest derivative has power of 5. So, the order and degree of given differential equation are 2 and 5 respectively.

21. (d)
$$-\csc^2(x+y)dy = dx$$

$$\Rightarrow \frac{dy}{dx} = -\sin^{2}(x+y)$$

Put $x + y = t$

$$\Rightarrow 1 + \frac{dy}{dx} = \frac{dt}{dx} \Rightarrow \frac{dy}{dx} = \frac{dt}{dx} - 1$$

$$\therefore \frac{dt}{dx} - 1 = -\sin^{2}(t)$$

$$\Rightarrow \frac{dt}{dx} = 1 - \sin^{2}t \Rightarrow \frac{dt}{dx} = \cos^{2}t = \frac{1}{\sec^{2}t}$$

$$\Rightarrow \int \sec^{2}t \, dt = \int dx \Rightarrow \tan t = x - c$$

22. (c) $\left\{ \left(\frac{d^{4}y}{dx^{4}}\right)^{3} \right\}^{\frac{2}{3}} - 7x \left(\frac{d^{3}y}{dx^{3}}\right)^{2} = 8$

$$\Rightarrow \left(\frac{d^{4}y}{dx^{4}}\right)^{2} - 7x \left(\frac{d^{3}y}{dx^{3}}\right)^{2} = 8$$

 \therefore The order and degree of the given differential equation are 4 and 2 respectively.

Differential Equation

23. (a) Given,
$$x \, dy - y \, dx = xy^2 dx$$

$$\Rightarrow \frac{x \, dy - y \, dx}{y^2} = x \, dx \Rightarrow \frac{y \, dx - x \, dy}{y^2} = -x \, dx$$

$$\Rightarrow \int d\left(\frac{x}{y}\right) = -\int x \, dx \Rightarrow \frac{x}{y} = \frac{-x^2}{2} + c = \frac{-x^2 + 2c}{2}$$

$$\Rightarrow yx^2 + 2x = 2cy$$
24. (b) $x \, dy - y \, dx = 0$

$$\Rightarrow x \, dy = y \, dx$$

$$\Rightarrow \int \frac{1}{y} \, dy = \int \frac{1}{x} \, dx$$

$$\Rightarrow \log y = \log x + \log c$$

$$\Rightarrow \log y = \log x + \log c$$

$$\Rightarrow \log y - \log c$$

 $\Rightarrow y = cx$

Thus, the solution of equation x dy - y dx = 0 represents straight line passing through the origin.

25. (c)
$$\frac{dy}{dx} + y = \frac{1}{\left(\frac{dy}{dx}\right)} \Rightarrow \left(\frac{dy}{dx}\right)^2 + y\left(\frac{dy}{dx}\right) = 1$$

Hence required order of differential equation = 1

26. (b) Rate of growth of bacteria ∞ number of bacteria present at that time

$$\Rightarrow \frac{dx}{dt} \propto x \Rightarrow \frac{dx}{dt} = x \quad (\because \text{Proportional constant} = 1)$$

$$\Rightarrow \int \frac{1}{x} dx = \int dt$$

$$\Rightarrow \log x = t + \log c$$

$$\Rightarrow \log x - \log c = t$$

$$\Rightarrow \log \left(\frac{x}{c}\right) = t$$

$$\Rightarrow \frac{x}{c} = e^{t}$$

$$x = ce^{t}$$
Given differential equation is

27. (a) Given differential equation is

$$\frac{dy}{dx} = e^{x-y} \left(e^{y-x} - e^y \right) = e^{-y} \cdot e^y \left(e^x \cdot e^{-x} - e^x \right)$$
$$\Rightarrow \int 1 dy = \int (1 - e^x) dx$$
$$\Rightarrow \quad y = x - e^x + c$$

28. (a) The equation of family of rectangular hyperbola is $xy = c^2$.

On differentiating w.r.t. x, we get

$$y + x\frac{dy}{dx} = 0$$

Thus, the order and degree of differential equation are 1 and 1 respectively.

29. (d) Given equation is x dy = y dxBy separating the variable we get

$$\frac{dy}{dx} = \frac{dx}{dx}$$

On integrating both sides, we get

$$\int \frac{dy}{y} = \int \frac{dx}{x}$$

$$\Rightarrow \log y = \log x + \log c$$

$$\Rightarrow y = cx$$

It represents a family of straight lines.

30. (d) Given differential equation is $x dy - y dx = xy^2 dx$

Which can be rewritten as $\frac{x \, dy - y \, dx}{y^2} = x \, dx$

$$\Rightarrow -d\left(\frac{x}{y}\right) = x \, dx$$

On integrating both sides, we get

$$\int -d\left(\frac{x}{y}\right) = \int x \, dx$$

$$-\frac{x}{y} = \frac{-c}{2} + \left(\frac{-c}{2}\right) \qquad \left(\because \frac{-c}{2} \text{ is constant}\right)$$

$$\Rightarrow \frac{c}{2} = \frac{x^2}{2} + \frac{x}{y} \Rightarrow \frac{c}{2} = \frac{x^2y + 2x}{2y}$$

$$\Rightarrow c = \frac{x^2y}{y} + \frac{2x}{y} \Rightarrow c = x^2 + \frac{2x}{y}$$

$$\Rightarrow x^2 + 2xy^{-1} = c$$
Given equation is
$$xy = ae^x + be^{-x} \qquad \dots \dots \dots (1)$$
Differentiate both side, w.r.t. 'x'

$$x\frac{dy}{dx} + y = ae^x - be^{-x}$$

31. (c)

Again differentiate both side w.r.t 'x'

$$x\frac{d^2y}{dx^2} + \frac{dy}{dx} + \frac{dy}{dx} = ae^x + be^{-x}$$

$$\Rightarrow x \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = xy \text{ (from (1))}$$

Hence, this is the differential equation of second order and first degree.

32. (b) $3e^x \tan y \, dx + (1+e^x) \sec^2 y \, dy = 0$

By separating the variables, we get

$$3e^{x}dx = \frac{-(1+e^{x})\sec^{2} y}{\tan y}dy$$

$$\Rightarrow \frac{3e^x}{1+e^x}dx = -\frac{\sec^2 y}{\tan y}dy$$

Integrate on both sides,

$$\Rightarrow \int \frac{3e^x}{1+e^x} dx + \int \frac{\sec^2 y}{\tan y} dy = 0$$

$$\Rightarrow 3 \log (1+e^x) + \log \tan y = \log c$$

$$\Rightarrow \log (1+e^x)^3 \tan y = \log c$$

$$(\because \log m + \log n = \log mn)$$

$$\Rightarrow (1+e^x)^3 \tan y = c$$

33. (c) Given curve is $y^2 = 4a (x - a)$ On differentiating w.r.t. x, we get 2yy' = 4a

$$\Rightarrow a = \frac{yy'}{2}$$

On putting the value of a in Eq. (i), we get

$$y^{2} = 4\left(\frac{yy'}{2}\right)\left(x - \frac{yy'}{2}\right) = yy'(2x - yy')$$
$$\Rightarrow yy'(yy' - 2x) + y^{2} = 0$$

34. (b) Given differential equation is $\frac{d^2 y}{dx^2} - \sqrt{1 + \left(\frac{dy}{dx}\right)^3} = 0$

$$\Rightarrow \frac{d^2 y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^3}$$

On squaring both the sides,

$$\left(\frac{d^2 y}{dx^2}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^3$$

Since, degree of the differential equation is the power of highest order derivative.

Therefore from above it is clear that degree of equation is 2.

35. (b) Given $N(t) = ce^{kt}$ Diff. both side w.r.t. 't'

$$\therefore \quad \frac{dN(t)}{dt} = \frac{d}{dt}ce^{kt} = k(ce^{kt})$$
$$= k[N(t)] \qquad (by Defn. of N(t))$$
But $\frac{dN(t)}{dt} = \alpha N(t) \qquad (given)$

$$\Rightarrow \alpha = k$$

36. (d) Given differential equation is $a\left(x\frac{dy}{dx}+2y\right) = xy\frac{dy}{dx}$

$$\Rightarrow ax\frac{dy}{dx} - xy\frac{dy}{dx} = -2ay$$

$$\Rightarrow (xy - ax)\frac{dy}{dx} = 2ay$$
$$\Rightarrow x(y - a)\frac{dy}{dx} = 2ay$$
$$\Rightarrow x(y - a)dy = 2ay dx$$
$$\Rightarrow \frac{(y - a)}{y}dy = \frac{2a}{x}dx$$
$$\Rightarrow \left(1 - \frac{a}{y}\right)dy = \frac{2a}{x}dx$$
$$dy - \frac{a}{y}dy = \frac{2a}{x}dx$$

Integrate on both side

...(i)

38.

39.

$$\int dy - a \int \frac{1}{y} \, dy = 2a \int \frac{1}{x} \, dx$$

$$y - a \log y = 2a \log x + \log c$$

 $\Rightarrow y = a \log x^2 yc$
 $\Rightarrow x^2 y = ke^{y/a}$

$$(:: c = k = \text{constant})$$

37. (b) The given differential equation is

$$\left(1 + \frac{dy}{dx}\right)^4 = \left(\frac{d^2y}{dx^2}\right)^2$$

From above it is clear that degree of given differential equation is 2.

Because degree is the power of highest order derivative.(a) The given differential equation is

The given differential equation

$$(1+e^{x})y\,dy=e^{x}dx$$

By separating the variable, we get

$$ydy = \frac{e^x}{1+e^x}dx$$

Integrating on both the sides,

$$\Rightarrow \int y dy = \int \left(\frac{e^x}{1+e^x}\right) dx$$

$$\Rightarrow \frac{y^2}{2} = \log(1 + e^x) + \log c$$

$$\Rightarrow y^2 = 2 \log[c(1 + e^x)]$$

$$(\because \log m + \log n = \log mn)$$

$$\Rightarrow y^2 = \log[c^2(1 + e^x)^2]$$

(d) The equation of family of circles having centres at the origin is x² + y² = r² where 'r' is the radius. Differentiate both side w.r.t. x, we get

$$2x + 2y\frac{dy}{dx} = 0$$

40.

... (ii)

2xdx + 2y dy = 0 $\Rightarrow xdx + ydy = 0.$ which is required differential equation. (a) Given differential equation is $x\frac{dy}{dx} = y$ By separating the variables, we get $\frac{dy}{y} = \frac{dx}{x}$ Intergrate both the sides, we get $\int \frac{dy}{y} = \int \frac{dx}{x}$ $\Rightarrow \log y = \log x + \log c$ $\Rightarrow y = xc$ which is a family of straight lines through the origin.

41. (b) Given differential equation is
$$y \frac{dy}{dx} + x = k$$

$$\Rightarrow y \frac{dy}{dx} = k - x$$

$$\Rightarrow y dy = (k - x) dx$$

Integrate on both side, we get

$$\int y dy = \int (k - x) dx$$

$$\Rightarrow \frac{y^2}{2} = kx - \frac{x^2}{2} + c$$

$$\Rightarrow x^2 + y^2 - 2 kx - c = 0$$
Which represents a family of circles whose centre lies on the x-axis.
42. (a) Let the equation of parabola is
$$y^2 = 4ax$$
...(i)
On differentiating w.r.t.x, we get

On differentiating w.r.t.x, we get 2yy' = 4a

$$\Rightarrow \frac{1}{2}yy' = a$$

put the value of 'a'in equation (i), we get

$$y^2 = \frac{4}{2}yy'x$$

 $\Rightarrow y=2xy'$ 43. (a) The differential equation is

$$\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1 - x^2}} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\sqrt{\frac{1 - y^2}{1 - x^2}}$$

$$\Rightarrow \frac{dy}{\sqrt{1 - y^2}} = \frac{-dx}{\sqrt{1 - x^2}}$$

$$\Rightarrow \int \frac{1}{\sqrt{1 - y^2}} dy + \int \frac{1}{\sqrt{1 - x^2}} dx = 0$$

$$\Rightarrow \sin^{-1} y + \sin^{-1} x = C$$

(a) The general equation of all parabolas where axes are parallel to *Y*-axis, is $y = Ax^2 + Bx + C$...(i) where A, B and C are arbitrary constants.

On differentiating eq. (i) w.r.t. x, we get

$$\frac{dy}{dx} = 2\mathbf{A}x + \mathbf{B}$$

On differentiating eq. (ii) w.r.t. x, we get

$$\frac{d^2y}{dx^2} = 2A$$
... (iii)

On differentiating eq. (iii) w.r.t. x, we get

$$\frac{d^3y}{dx^3} = 0$$

45. (c) Given differential equation is

$$\frac{dy}{dx} = \frac{ax+3}{2y+f}$$

44.

By separating the variable we get (2y+f) dy = (ax+3) dxIntegrate on both side,

$$\int (2y+f) dy = \int (ax+3) dx$$

$$\Rightarrow y^2 + fy = \frac{ax^2}{2} + 3x$$

This equation represents a circle, if

$$-1 = \frac{a}{2} \Rightarrow a = -2$$

46. (b) The given differential equation can be rewritten as

$$\left(\frac{d^3y}{dx^3}\right)^2 = \left(3\frac{d^2y}{dx^2} - 5\frac{dy}{dx} - 4\right)^3$$

Degree of differential equation is 2.
 (: Degree is the power of the highest order derivative)

47. (b) Given differential equation is

$$\frac{ydy}{dx} + x = a$$

$$\Rightarrow ydy + xdx = adx$$

Integrate on both sides, we get

$$\int y \, dy + \int x \, dx = \int a \, dx$$

$$\Rightarrow \frac{y^2}{2} + \frac{x^2}{2} = ax + c$$

where *c* is a constant of integration.

 $\Rightarrow y^2 + x^2 - 2ax = c$

This represents a circle whose centre is on the X-axis.

$$\Rightarrow \log xy = \log \Rightarrow xy = c$$

51. (b) Given differential equation is

$$y = x \frac{dy}{dx} + \left(\frac{dy}{dx}\right)^{-1}$$

Multiply by $\frac{dy}{dx}$

$$y\frac{dy}{dx} = x\left(\frac{dy}{dx}\right)^2 + 1$$

Since power of highest order derivative is 2. \therefore degree = 2

52. (a) Differential equation given in option (a) is not linear

because differential coefficient $\frac{dy}{dx}$ has exponent 2.

53. (d) Given differential equation

$$\frac{d^3y}{dx^3} + 2\left(\frac{d^2y}{dx^2}\right) - \frac{dy}{dx} + y = 0$$

Since exponent of highest order derivative is 1 therefore degree = 1

54. (b) Degree of differential equation is always a positive integer.

$$\therefore \quad \left(2, \frac{3}{2}\right) \text{ can not be the feasible.}$$

55. (a) Let $y = a \sin(\lambda x + \alpha)$

$$\Rightarrow \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \lambda \ \mathrm{a} \ \mathrm{cos} \left(\lambda \ \mathrm{x} + \alpha\right)$$

Again differentiating on both side we get

$$\frac{d^2y}{dx^2} = -\lambda^2 a \sin(x+\alpha)$$

 $\Rightarrow \quad \frac{d^2y}{dx^2} + \lambda^2 \ y = 0 \ \text{Required equation.}$

56. (c) Given diff. equation is

$$y\frac{dy}{dx} + x = a$$

$$\Rightarrow y\frac{dy}{dx} = a - x$$

$$\Rightarrow y dy = (a - x) dx$$

$$\int y dy = \int (a - x) dx$$

$$\Rightarrow \frac{y^2}{2} = ax - \frac{x^2}{2} + k$$

$$\Rightarrow x^2 + y^2 - 2 ax = 2k$$

Which represents a set of circles.

48. (b) Degree of a differential equation is the power to which the highest derivative is raised when it is expressed as polynomial of derivatives. Given equation is

$$\left(\frac{d^3y}{dx^3}\right)^{2/3} - 3\left(\frac{d^2y}{dx^2}\right) + 5\left(\frac{dy}{dx}\right) + 4 = 0$$
$$\Rightarrow \left(\frac{d^3y}{dx^3}\right)^{2/3} = 3\frac{d^2y}{dx^2} - 5\frac{dy}{dx} - 4$$

Cube on both side,

$$\left(\frac{d^3y}{dx^3}\right)^2 = \left[3\frac{d^2y}{dx^2} - 5\frac{dy}{dx} - 4\right]^3$$

Hence, degree = 2

(d) Given differential equation is $\sin x \cos y \, dx + \cos x \sin y \, dy = 0$ $\Rightarrow \sin x \cos y \, dx = -\cos x \sin y \, dy$

$$\Rightarrow \frac{\sin x}{\cos x} \, dx = -\frac{\sin y}{\cos y} \, dy$$

Integrate on both side

$$\int \frac{\sin x}{\cos x} \, dx = -\int \frac{\sin y}{\cos y} \, dy$$

 $\Rightarrow -\log(\cos x) = \log(\cos y) + \log c$ where $\log c$ is constant of integration. $\Rightarrow -\log c = \log(\cos y) + \log(\cos x)$ $\frac{1}{c} = \cos y \cos x$...(1)

Since, this curve passing through $\left(0, \frac{\pi}{3}\right)$

 \therefore it satisfies equation (1)

So,
$$\frac{1}{c} = \cos \frac{\pi}{3} \cdot \cos 0$$

 $\frac{1}{c} = \frac{1}{2} \times 1 \Longrightarrow c = 2$

Hence, required equation of curve is $\cos x \cos y = \frac{1}{2}$

50. (a)
$$\frac{dy}{dx} + \frac{y}{x} = 0$$

 $\Rightarrow \frac{dy}{dx} = \frac{-y}{x} \Rightarrow \frac{dy}{y} = -\frac{dx}{x}$
 $\Rightarrow \frac{dy}{y} + \frac{dx}{x} = 0 \Rightarrow \grave{O}\frac{dy}{y} + \grave{O}\frac{dx}{x} = 0$
 $\Rightarrow \log y + \log x = \log c$

Differential Equation

58.

57. (c) Given differential equation is

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 - x\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) + y = 0$$

From the options only option (c) does not satisfy the given diffequation.

Hence, y = x is not a solution of given diffequation. (c) Given differential equation is $x^2 dy + y^2 dx = 0$

$$\Rightarrow x^{2} dy = -y^{2} dx$$

$$\Rightarrow \frac{dy}{y^{2}} + \frac{dx}{x^{2}} = 0$$

$$\Rightarrow \int y^{-2} dy + \int x^{-2} dx = 0$$

$$\Rightarrow \frac{y^{-2+1}}{-2+1} + \frac{x^{-2+1}}{-2+1} = a \text{ where 'a' is a constant}$$

integration

$$\Rightarrow -\frac{1}{y} - \frac{1}{x} = a$$

-(x + y) = axy \Rightarrow c(x + y) = xy
where c = $-\frac{1}{a}$ is a constant of integration.

59. (d) Given diff equation can be written as

$$\frac{e^{x}}{1-e^{x}} dx = -\frac{\sec^{2} y}{\tan y} dy$$

On integrating both the sides, we get

$$\int \frac{e^{x}}{1-e^{x}} dx = -\int \frac{\sec^{2} y}{\tan y} dy$$

$$\Rightarrow -\log (1-e^{x}) = -\log (\tan y) + \log c$$

$$\Rightarrow \log (\tan y) = \log c + \log (1-e^{x})$$

$$\Rightarrow \log (\tan y) = \log [c (1-e^{x})]$$

$$\Rightarrow \tan y = c (1-e^{x})$$

.

Where 'c' is the constant of integration.

60. (c) Consider differential equation

$$\left(\frac{d^4y}{dx^4}\right)^{\frac{3}{5}} - 5\frac{d^3y}{dx^3} + 6\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 5 = 0$$
$$\Rightarrow \left(\frac{d^4y}{dx^4}\right)^{\frac{3}{5}} = 5\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 8\frac{dy}{dx} - 5$$
$$\Rightarrow \left(\frac{d^4y}{dx^4}\right)^3 = \left(5\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 8\frac{dy}{dx} - 5\right)^5$$

So, highest order derivative = 4, degree = 3 61. (a) Given differential equation is

$$x\frac{dy}{dx} + y = 0$$

 $\Rightarrow xdy = -y dx$ $\Rightarrow \frac{dy}{y} = -\frac{dx}{x}$ On integrating both side we get $\ell n y = -\ell n x + \ell nc$ $\Rightarrow \left(y = \frac{c}{x}\right)$ 62. (b) Let $\ell n\left(\frac{dy}{dx}\right) + x = 0 \Rightarrow \ell n\left(\frac{dy}{dx}\right) = -x$ $\Rightarrow \frac{dy}{dx} = e^{-x}$ Integrate both the side, $y = -e^{-x} + c$ 63. (b) Given curve is $y = \sin x$ Differentiate both the sides w.r.t 'x'. $\Rightarrow \frac{dy}{dx} = \cos x \Rightarrow \frac{d^2 y}{c} = -\sin x$

 \Rightarrow xdy+ydx=0

$$\Rightarrow \frac{dy}{dx} = \cos x \Rightarrow \frac{d^2 y}{dx^2} = -\sin x$$
$$\frac{d^2 y}{dx^2} = -\sin x$$

$$\Rightarrow \frac{d^2 y}{dx^2} = -y$$

$$\therefore \quad y + \frac{d^2 y}{dx^2} = 0$$

of

- 64. (a) Since order of the highest derivative in the given diff. equation is 1 and exponent of the derivative is also 1 therefore degree and order is (1, 1).
- 65. (a) Highest order derivative, present in the differential $\begin{pmatrix} dy \end{pmatrix}$

equations is
$$\left(\frac{1}{dx}\right)$$
, therefore its order is one.

66. (a)
$$y = 2\cos x + 3\sin x$$

$$\frac{dy}{dx} = -2\sin x + 3\cos x$$
$$\frac{d^2y}{dx} = -2\cos x - 3\sin x$$
$$= -(2\cos x + 3\sin x)$$
$$= -y$$
$$\frac{d^2y}{dx^2} + y = 0$$
67. (c) $x^2 + y^2 = r^2$

 $x^2 + y^2 = r^2$ [equation of circle] Differentiating both sides w.r.t. x.

$$2x + 2y\frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = -\frac{x}{y}$$
$$68. \quad (a) \quad \frac{dy}{dx} = |x|$$

$$\frac{dy}{dx} = x \text{ for } x \ge 0 \text{ ; } \frac{dy}{dx} = -x \text{ for } x < 0$$

$$\int dy = \int x \, dx$$

$$y = \frac{x^2}{2} + C_1 \qquad \dots(i); \int dy = -1 x \, dx$$

$$y = -\frac{x^2}{2} + C_1 \qquad \dots(ii); \int dy = -1 x \, dx$$

$$y = -\frac{x^2}{2} + C_1 \qquad \dots(ii)$$
From (i) and (ii)
$$y = \frac{x \mid x \mid}{2} + C$$
69. (a)
$$\frac{dy}{dx} + 2y = 1 \implies \frac{dy}{dx} = 1 - 2y$$

$$\int \frac{dy}{1 - 2y} = \int dx$$

$$-\frac{1}{2} \log |1 - 2y| = x + C$$
at $x = 0, y = 0$

$$-\frac{1}{2} \log |1 - 2y| = x + C$$
at $x = 0, y = 0$

$$-\frac{1}{2} \log |1 - 2y| = x + C$$
at $x = 0, y = 0$

$$-\frac{1}{2} \log |1 - 2y| = x + C$$

$$1 - 2y = e^{-2x}$$

$$y = \frac{1 - e^{-2x}}{2}$$
70. (*) Differential equation $x \, dy - y \, dx = y^2$

$$\therefore d\left(\frac{x}{y}\right) = 0$$

$$\frac{x}{y} = C \therefore x = Cy$$

For (71-73)

$$(x^{2} + x + 1) dy + (y^{2} + y + 1) dx = 0$$

$$(x^{2} + x + 1) dy = -(y^{2} + y + 1) dx$$

$$\frac{dx}{(1 + x + x^{2})} + \frac{dy}{(1 + y + y^{2})} = 0$$

$$\Rightarrow \int \frac{dx}{(x + \frac{1}{2})^{2} + (\frac{\sqrt{3}}{2})^{2}} + \int \frac{dy}{(y + \frac{1}{2})^{2} + (\frac{\sqrt{3}}{2})^{2}} = 0$$

$$\Rightarrow \frac{2}{\sqrt{3}} \tan^{-1} (\frac{2x + 1}{\sqrt{3}}) + \frac{2}{\sqrt{3}} \tan^{-1} (\frac{2y + 1}{\sqrt{3}})$$

$$= \frac{2}{\sqrt{3}} \tan^{-1} (C_{1})$$

$$\Rightarrow \tan^{-1} \left\{ \frac{(\frac{2x + 1}{\sqrt{3}}) + (\frac{2y + 1}{\sqrt{3}})}{1 - (\frac{2x + 1}{\sqrt{3}})(\frac{2y + 1}{\sqrt{3}})} \right\} = \tan^{-1} C_{1}$$

$$\left[\because \tan^{-1} x + \tan^{-1} y = \tan^{-1} (\frac{x + y}{1 - xy}) \right]$$

$$\Rightarrow \frac{\sqrt{3}[(2x+1)+(2y+1)]}{3-(2x+1)(2y+1)} = C_1$$

$$\Rightarrow \frac{2\sqrt{3}(x+y+1)}{-4xy-2y-2x+2} = C_1$$

$$\Rightarrow 2\sqrt{3}(x+y+1) = C_1(2-2x-2y-4xy)$$

$$\Rightarrow 2\sqrt{3}(x+y+1) = 2C_1(1-x-y-2xy)$$

$$\Rightarrow (x+y+1) = \frac{C_1}{\sqrt{3}}(1-x-y-2xy)$$

$$(x+y+1) = A(1+Bx+Cy+Dxy)$$

(a) B=-1
(b) C=-1

72. (b) C 73. (c) D = -2

71.

dx dx

0

- (d) Particular solution of D. ε . of third order have three 74. arbitary constant.
- 75. (c) Statement 1: Differential equation is not a polynomial equation in its derivatives. So, its degree is not defined. Statement 2 : The highest order derivative in the given polynomial is 2.
- 76. (c) Consider the given differential equation,

$$\left(\frac{d^3y}{dx^3}\right)^{\frac{3}{2}} = \left(\frac{d^2y}{dx^2}\right)^2 \qquad \dots(i)$$

In order to find degree, differential equation should be free from fractional indices.

Now, squaring eqn (i) both sides, we get

$$\left(\frac{d^3y}{dx^3}\right)^3 = \left(\frac{d^2y}{dx^2}\right)^4$$

Since, the power of highest order derivative is 3, therefore degree = 3.

77. (c) Consider the given differential equation

$$\ln\left(\frac{dy}{dx}\right) + x = 0$$
$$\implies \ln\left(\frac{dy}{dx}\right) = -x$$

 $\Rightarrow \frac{dy}{dx} = e^{-x}$

on separating the variables, we get $dy = e^{-x} dx$, on integrating both sides, we get

$$\int dy = \int e^{-x} dx$$

$$\Rightarrow y = \frac{e^{-x}}{-1} + C = -e^{-x} + C$$
$$\Rightarrow y + e^{-x} = C$$
78. (b)
$$y = \frac{2}{3C}(Cx-1)^{\frac{3}{2}} + B$$

On differentiating both sides w.r.t. x, we get

$$\frac{dy}{dx} = \frac{2}{3C} \cdot \frac{3}{2} (Cx - 1)^{\frac{1}{2}} \cdot C + 0 = (Cx - 1)^{\frac{1}{2}}$$
$$\frac{dy}{dx} = (Cx - 1)^{\frac{1}{2}}$$

On squaring both sides, we get

$$\left(\frac{dy}{dx}\right)^2 = Cx - 1$$
$$\Rightarrow \left(\frac{dy}{dx}\right)^2 + 1 = Cx \qquad \dots(i)$$

Now, on differentiating w.r.t. x, we get

$$2\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) \cdot \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \mathrm{C}$$

From eq. (i)

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + 1 = 2x\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$$

79. (b)
$$\frac{y \, dx - x \, dy}{y^2} = 0$$

 \therefore y dx - x dy = 0

$$\frac{dy}{y} = \frac{dx}{x}$$

.

.:

80.

Now integrating both sides,

$$\int \frac{dy}{y} = \int \frac{dx}{x}$$

$$\Rightarrow \log y = \log x + \log c$$

$$\Rightarrow \log y = \log c x$$

$$\therefore y = cx$$

$$\therefore Option (b) is correct.$$

(a) $\sin\left(\frac{dy}{dx}\right) - a = 0$
 $\sin\left(\frac{dy}{dx}\right) = a$

 $\Rightarrow \frac{dy}{dx} = \sin^{-1} a$ $dy = \sin^{-1} a dx$ Now integrating both sides,

$$\int dy = \int \sin^{-1} a \, dx$$
$$y = x \sin^{-1} a + c$$

 \therefore Option (a) is correct.

81. (c)
$$\frac{dx}{dy} + \frac{x}{y} - y^2 = 0$$

 $\frac{dx}{dy} + \frac{x}{y} = y^2$
This is a linear differential equation of the form
 $\frac{dx}{dy} + P_1 x = Q_1$
Here, $P = \frac{1}{y}$ and $Q = y^2$
 \therefore I.F. $= e^{\int P dy} = e^{\int \frac{1}{y} dy} = e^{\log y} = y$
So, required solution is
 $x \cdot y = \int y^2 \cdot y \, dy + c$
 $xy = \int y^3 dy + c$
 $xy = \frac{y^4}{4} + c$
 $4xy = y^4 + c$
 \therefore Option (c) is correct.
82. (c) Statement 1:
 dy

The general solution of $\frac{dy}{dx} = f(x) + x$ Now integrating on both side

$$\int \frac{\mathrm{d}y}{\mathrm{d}x} = \int \left[f\left(x\right) + x \right] \mathrm{d}x$$

 \therefore y=f(x)+C

82.

Statement 1 is correct. *:*.. Statement 2:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{f}(\mathbf{x}) + \mathbf{c}$$

Squaring both sides,

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2} = \left(f\left(x\right) + c\right)^{2}$$

$$\left(\frac{dy}{dx}\right)^{2} = \left[f(x)^{2} + 2c f(x) + c^{2}\right]$$

Hence, the differential equation is of order -1 and degree –2.

both Statements 1 and 2 are correct. *.*...

Option (c) is correct. *:*..

83. (d)
$$\therefore \frac{dy}{dx} - x = \left(y - x\frac{dy}{dx}\right)^{-4}$$

 $\Rightarrow \left(\frac{dy}{dx} - x\right)\left(y - x.\frac{dy}{dx}\right)^{4} = 1$

 \therefore Order of the above differential equation = 1 & degree = 5

84. (c)
$$\therefore \frac{dy}{dx} = \sqrt{1 - x^2 - y^2 + x^2 y^2}$$
$$\frac{dy}{dx} = \sqrt{(1 - x^2)(1 - y^2)}$$
$$\Rightarrow \frac{dy}{\sqrt{1 - y^2}} = \sqrt{1 - x^2} dx$$
$$= \int \frac{dy}{\sqrt{1 - y^2}} = \int \sqrt{1 - x^2} dx$$
 [integrating b/s]
$$= \sin^{-1}\left(\frac{y}{1}\right) = \frac{x}{2}\sqrt{1 - x^2} + \frac{1}{2}\sin^{-1}\left(\frac{x}{1}\right) + c$$
$$= 2\sin^{-1} y = x\sqrt{1 - x^2} + \sin^{-1} x + c$$
85. (b) Eq. of family of circles passing through the origin & having centres on the x-axis is :

$$x^2 + y^2 + 2gx = 0 \qquad \dots (1)$$

$$2x + 2y \cdot \frac{dy}{dx} + 2g = 0$$
 [on differentiating]

 $\Rightarrow g = -\left\lfloor x + y \frac{dy}{dx} \right\rfloor$

Putting the value of (g) in eq. (1) we get;

$$2xy\frac{dy}{dx} = y^2 - x^2$$

86. (a) The eq. of parabolas having vertex at (0, 0) & focus at (a, 0), where (a > 0) is: $y^2 = 4ax$...(1)

$$2y.\frac{dy}{dx} = 4a$$
 [on differentiating]

On putting the value of (4a) in eq. (1) we get,

$$2x \cdot \frac{dy}{dx} - y = 0$$

in order =1 & degree = 1.

87. (d) Given:

Solution of differential equation is

$$y = cx + c^2 - 3c^{\frac{3}{2}} + 2 \qquad \dots (1)$$

To find order and degree of differential equation, we will find differential equation first. Now differentiating equation (1) w.r.t. x and putting

Now differentiating equation (1) w.r.t. x and putting value of c to remove it, we get

$$\frac{dy}{dx} = c$$

$$y = x\frac{dy}{dx} + \left(\frac{dy}{dx}\right)^2 - 3\left(\frac{dy}{dx}\right)^{\frac{3}{2}} + 2$$

$$\Rightarrow (y-2)^2 + \left(\frac{dy}{dx}\right)^4 + (2x-9)\left(\frac{dy}{dx}\right)^3$$

$$+(x^{2}-2y+4)\left(\frac{dy}{dx}\right)^{2}+(-2xy+4x)\frac{dy}{dx}=0$$

Hence order of differential equation is 1 and degree is 4.

(c)
(a)
$$e^{y(\sqrt{1-x^2}+x\sqrt{1-y^2})-x=c}$$

 $\Rightarrow y\sqrt{1-x^2}+x\sqrt{1-y^2}-x=\log c$
 $\Rightarrow \frac{dy}{dx}\sqrt{1-x^2}+y.\frac{1}{\cancel{2}\sqrt{1-x^2}}(-\cancel{2}x)+\sqrt{1-y^2}$
 $+x.\frac{1}{\cancel{2}\sqrt{1-y^2}}(-\cancel{2}y).\frac{dy}{dx}-1=0$

88.

89.

90.

$$\Rightarrow \frac{dy}{dx}\sqrt{1-x^{2}} - \frac{xy}{\sqrt{1-x^{2}}} + \sqrt{1-y^{2}} - \frac{xy}{\sqrt{1-y^{2}}} \cdot \frac{dy}{dx} = 1$$

Degree = 1, order =
$$1$$

(a) Given,
$$xdy = ydx + y^2 dy$$

$$\Rightarrow 1 = \frac{y}{x} \frac{dx}{dy} + \frac{y^2}{x}$$

$$\Rightarrow \frac{dx}{dy} + y = \frac{x}{y}$$
$$\Rightarrow \frac{dx}{dy} - \frac{x}{y} = -y \qquad \dots(1)$$

$$P = -\frac{1}{y}, \ Q = -y$$

IF =
$$e^{\int Pdy} = e^{\int -\frac{1}{y}dy} = e^{-\log y} = \frac{1}{y}$$

Now, Solution of d.E.

$$\mathbf{x}(\text{I.F.}) = \int (\text{Q.I.F.}) \, \mathrm{d}y$$
$$\frac{x}{y} = \int \frac{1}{y} (-y) \, \mathrm{d}y + C$$

$$\Rightarrow \frac{x}{v} = \int -1 \, dy + C$$

$$\Rightarrow \frac{x}{y} = -y + C$$

$$y(1) = 1$$

$$\frac{1}{1} = -1 + C \Rightarrow C = 2$$

$$\Rightarrow \frac{x}{y} = -y + 2 \Rightarrow x = -y^{2} + 2y$$

$$\Rightarrow y(-3) \Rightarrow -3 = -y^{2} + 2y$$

$$\Rightarrow y^{2} - 2y - 3 = 0$$

$$\Rightarrow y = \frac{+2 \pm \sqrt{4 + 12}}{2} = \frac{2 \pm 4}{2}$$

$$\Rightarrow y = 3, -1$$
Since $y > 0$ so $y = 3$.
91. (b) $\frac{dx}{dy} + \int y \cdot dx = x^3 \Rightarrow \int y \cdot dx = x^3 - \frac{dx}{dy}$

$$\Rightarrow 1 + \frac{dy}{dx} \left(\int y \cdot dx\right) = x^3 \cdot \frac{dy}{dx}$$
Differentiate both sides w.e.t. x

$$\Rightarrow 0 + \frac{dy}{dx} (y) + \left(\int y \cdot dx\right) \left(\frac{d^2y}{dx^2}\right) = x^3 \cdot \frac{d^2y}{dx^2} + \frac{dy}{dx} (2x^2)$$

$$\Rightarrow y \cdot \frac{dy}{dx} + \frac{d^2y}{dx^2} \left[x^3 - \frac{dx}{dy}\right] = x^3 \cdot \frac{d^2y}{dx^2} + 2x^2 \frac{dy}{dx}$$

$$\Rightarrow y \frac{dy}{dx} + x^3 \frac{d^2y}{dx^2} - \left(\frac{dx}{dy}\right) \left(\frac{d^2y}{dx^2}\right) = x^3 \frac{d^2y}{dx^2} + 2x^2 \frac{dy}{dx}$$

$$\Rightarrow y \frac{dy}{dx} - \frac{dx}{dy} \cdot \frac{d^2y}{dx^2} = 2x^2 \cdot \frac{dy}{dx}$$
Multiplying both side by $\frac{dy}{dx}$

$$y \left(\frac{dy}{dx}\right)^2 - \frac{d^2y}{dx^2} = 2x^2 \left(\frac{dy}{dx}\right)^2$$

$$\Rightarrow \frac{d^2y}{dx^2} + (2x^2 - y) \left(\frac{dy}{dx}\right)^2 = 0$$
Order = 2, degree = 1.
92. (c) $y = mx + c$ (Equation of straight line)
$$\frac{dy}{dx} = m \text{ and } mx - y + c = 0 \text{ is at unit distance from origin.}$$

$$\therefore \frac{|m(0) - (0) + c|}{\sqrt{m^2 + (-1)^2}} = 1 \Rightarrow c = \sqrt{1 + m^2}$$
Now:
$$\left[y - x\frac{dy}{dx}\right]^2 = [mx + c - xm]^2 \Rightarrow c^2 = 1 + m^2$$
also,
$$\left[y + x\frac{dy}{dx}\right]^2 = [mx + c + mx]^2 = [2mx + \sqrt{1 + m^2}]^2$$
also, $1 - \left(\frac{dy}{dx}\right)^2 = 1 - m^2$ and $1 + \left(\frac{dy}{dx}\right)^2 = 1 + m^2$

$$\Rightarrow \left[y - x\frac{dy}{dx}\right]^2 = 1 + \left(\frac{dy}{dx}\right)^2$$

93. (c) Let
$$y = f(x) \Rightarrow \frac{dy}{dx} = f^{1}(x) \Rightarrow \frac{dx}{dy} = \frac{1}{f'(x)}$$

$$\frac{d^{2}x}{dy^{2}} = \frac{\frac{-d}{dy}f'(x)}{(f'(x))^{2}} \qquad \dots (i)$$

$$\frac{\frac{-d}{dy}f'(x)}{(f'(x))^{2}} = \frac{\frac{-d}{dy}\left(\frac{dy}{dx}\right) \cdot \frac{dx}{dx}}{(f'(x))^{2}} = \frac{\frac{-d}{dx}\left(f'(x)\right) \cdot \frac{dx}{dy}}{\left(\frac{dy}{dx}\right)^{2}}$$

$$\Rightarrow \frac{-f'(x) \cdot \frac{dx}{dy}}{\left(\frac{dy}{dx}\right)^{2}} = \frac{-\left(\frac{d^{2}y}{dx^{2}}\right)}{\left(\frac{dy}{dx}\right)^{3}} = \frac{-d^{2}y}{dx^{2}}\left(\frac{dy}{dx}\right)^{-3}$$
94. (a) $x \, dy = y dx + y^{2} \, dy$

$$\Rightarrow x \cdot \frac{dy}{dx} = y + y^{2} \cdot \frac{dy}{dx} \Rightarrow \frac{y - x \cdot \frac{dy}{dx}}{y^{2}} = \frac{-dy}{dx}$$
Integrating both sides
$$\frac{x}{y} = -y + c$$
Given, $x = 1, y = 1$

$$\Rightarrow \frac{1}{1} = -1 + c \Rightarrow c = 2$$

$$\therefore \frac{x}{y} + y = 2$$

$$\Rightarrow x + y^{2} = 2y$$

$$\Rightarrow x - 3 + y^{2} - 2y = 0$$

$$\Rightarrow y^{2} - 2y - 3 = 0$$

$$y = 3, -1$$

$$\therefore y = 3$$
95. (d) $y = x \left(\frac{dy}{dx}\right)^{2} + \left(\frac{dy}{dx}\right)^{2}$

$$= x \left(\frac{dy}{dx}\right)^{2} + x^{2} = a^{2}$$

$$\Rightarrow y \left(\frac{dy}{dx}\right)^{2} = x \cdot \left(\frac{dy}{dx}\right)^{4} + 1$$
96. (a) $y^{2} - 2ay + x^{2} = a^{2}$

$$\Rightarrow y^{2} - 2(y)(a) + a^{2} + x^{2} = a^{2} + a^{2}$$

$$\Rightarrow (y - a)^{2} + x^{2} = 2a^{2}$$

$$\therefore (i)$$
Diff writs

$$2(y - a) \cdot y^{1} + 2x = 0$$

100. (b) Degree of a differential equation is power of the highest order derivative. In the given differential equation,

$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = \rho^2 \left[\frac{d^2y}{dx^2}\right]^2$$

order = 2 and degree = 2.

101. (d)
$$y=A[\sin (x + c) + \cos (x + c)]$$

 $y'=A[\cos(x + c) - \sin(x + c)]$
 $y''=-A[\sin(x + c) + \cos(x + c)]$
 $= -y$
 $\therefore y'' + y = 0$

102. (d)
$$\frac{dy}{dx} = \frac{y\varphi'(x) - y^2}{\varphi(x)} = \frac{y\varphi'(x)}{\varphi(x)} - \frac{y^2}{\varphi(x)}$$
$$\Rightarrow \frac{dy}{dx} = \frac{y^2 \cdot \varphi'(x)}{y \cdot \varphi(x)} - \frac{y^2}{\varphi(x)}$$
$$\Rightarrow \frac{1}{y^2} \left(\frac{dy}{dx}\right) = \frac{\varphi'(x)}{y \cdot \varphi(x)} - \frac{1}{\varphi(x)}$$
$$\Rightarrow \frac{1}{y^2} \left(\frac{dy}{dx}\right) - \frac{1}{y} \cdot \frac{\varphi'(x)}{\varphi(x)} = \frac{-1}{\varphi(x)}$$
$$\text{Let } t = \frac{-1}{y} \Rightarrow \frac{dt}{dx} = \frac{1}{y^2} \left(\frac{dy}{dx}\right)$$
$$\Rightarrow \frac{dt}{dx} + t \cdot \frac{\varphi'(x)}{\varphi(x)} = \frac{-1}{\varphi(x)}$$
$$\text{I.F} = e^{\int \frac{\varphi'(x)}{\varphi(x)} \cdot dx} = e^{\log \varphi(x)} = \varphi(x)$$

Solution of differential equation is

$$t \cdot \phi(x) = \int \frac{-1}{\phi(x)} \times \phi(x) \cdot dx$$
$$\Rightarrow \frac{-1}{y} \phi(x) = -x - c \Rightarrow \frac{\phi(x)}{y} = x + c \Rightarrow y = \frac{\phi(x)}{x} + c.$$

103. (b)
$$xdy - ydx = 0.$$

 $\Rightarrow xdy = ydx$
 $\Rightarrow \frac{dy}{y} = \frac{dx}{x}$
 $\Rightarrow \log y = \log x + \log c$
 $\Rightarrow \log y - \log x = \log c$
 $\Rightarrow \log\left(\frac{y}{x}\right) = \log c$
 $\Rightarrow \frac{y}{x} = c \Rightarrow y = cx.$

$$\Rightarrow (y-a).p = -x \qquad \left(\text{Let } \frac{dy}{dx} = y^{1} = P \right)$$
$$\Rightarrow y-a = \frac{-x}{p} \qquad \dots (ii)$$

$$\Rightarrow a = y + \frac{x}{p} \qquad ...(iii)$$

(i)
$$\Rightarrow \left(\frac{-x}{p}\right)^2 + x^2 = 2\left(y + \frac{x}{p}\right)^2$$

(from (ii) (iii))

$$= 2\left(\frac{\left(py+x\right)^2}{p^2}\right)$$

$$\Rightarrow \frac{x^2 + p^2 x^2}{p^2} = \frac{2\left(p^2 y^2 + x^2 + 2pxy\right)}{p^2}$$

$$\Rightarrow x^2 + p^2 x^2 - 2p^2 y^2 - 2x^2 - 4pxy = 0$$

$$\Rightarrow (x^2 - 2y^2)p^2 - 4pxy - x^2 = 0$$

$$\Rightarrow ydx - (x + 2y^2)dy = 0$$

$$\Rightarrow ydx - xdy - 2y^2dy = 0$$

$$\Rightarrow y - x \cdot \frac{dy}{dt} = 2y^2 \cdot \frac{dy}{dt}$$

$$\Rightarrow y - x \cdot \frac{dy}{dx} = 2y \cdot \frac{dy}{dx}$$

$$\Rightarrow \frac{y - x}{y^2} = 2 \cdot \frac{dy}{dx}$$

Integrating

$$\Rightarrow \frac{x}{y} = 2y + c$$

$$\Rightarrow x = 2y^{2} + cy$$
98. (a) $\ln\left(\frac{dy}{dx}\right) - a = 0$

$$\Rightarrow \ln\left(\frac{dy}{dx}\right) = a \qquad \Rightarrow \frac{dy}{dx} = e^{a}$$

$$\Rightarrow \int dy = \int e^{a} . dx \qquad \Rightarrow y = e^{a} . x + c$$
99. (b) $\frac{dy}{dx} = \frac{ax + h}{by + k}$

$$\Rightarrow (by + k)dy = (ax + h)dx$$
Intergrating, we get $\int (by + k) dy = \int (ax + h) dx$

$$\Rightarrow \frac{by^{2}}{2} + ky = \frac{ax^{2}}{2} + hx$$

$$\Rightarrow by^{2} + 2ky = ax^{2} + 2hx$$

$$\Rightarrow ax^{2} - by^{2} + 2hx - 2ky = 0$$
This represents circle only when $a = -b \neq 0$.

97.

104. (a)
105. (*)
106. (a)
$$(1+2x) dy-(1-2y) dx = 0 \Rightarrow (1+2x) dy=(1-2y) dx$$

 $\Rightarrow \frac{dy}{1-2y} = \frac{dx}{1+2x}$
Integrating both sides, $\int \frac{dy}{1-2y} = \int \frac{dx}{1+2x}$
 $\Rightarrow \frac{-1}{2} \log(1-2y) = \frac{1}{2} \log(1+2x) + \frac{1}{2} \log c$
 $\Rightarrow \log(1-2y) + \log(1+2x) = \log c$
 $\Rightarrow (1+2x) (1-2y) = c$
 $\Rightarrow 1+2x-2y-4xy = c$
 $\Rightarrow x-y-2xy=4xy = c$
 $\Rightarrow x-y-2xy=c$.
107. (c) $\left(\frac{d^3y}{dx^3}\right)^2 = y^4 + \left(\frac{dy}{dx}\right)^5$
order = 3, degree = 2
108. (d) $y = p \cos ax + q \sin ax$
 $\Rightarrow \frac{d^2y}{dx^2} = -p a^2 \cos ax - qa^2 \sin ax = -a^2y$
 $\Rightarrow \frac{d^2y}{dx^2} + a^2y = 0$
109. (b) $\frac{dy}{dx} = -x^2 - \frac{1}{x^3}$
 $\Rightarrow \int dy = \int \left(-x^2 - \frac{1}{x^3}\right) dx$
 $\Rightarrow y = -\frac{x^3}{3} + \frac{1}{2x^2} + c$
Putting (-1, -2), we get
 $-2 = \frac{1}{3} + \frac{1}{2x^2} - \frac{17}{6}$
 $\Rightarrow 6x^2y = -2x^5 + 3 - 17x^2$
 $\Rightarrow 6x^2y = -2x^5 + 3 - 17x^2$
 $\Rightarrow 6x^2y = -2x^5 + 3 - 17x^2$
 $\Rightarrow 6x^2y + 17x^2 + 2x^5 - 3 = 0$
100. (d) Order = 4 (\because No. of arbitrary constants = 4)
111. (d) $\frac{dy}{dx} = e^{ax} + by = e^{ax} \cdot e^{by}$
 $\Rightarrow e^{ax} dx - e^{-by} dy = 0$
Integrating both sides,

$$\frac{1}{a}e^{ax} + \frac{1}{b}e^{-by} = c$$

112. (a)
$$u \frac{du}{dx} + v \frac{dv}{dx} = e^{ax} \sin bx [ae^{ax} \sin bx + be^{ax} \cos bx] + e^{ax} \cos bx [ae^{ax} \cos bx - be^{ax} \sin bx] = e^{2ax} [a \sin^{2} bx + b \sin bx \cos bx + a \cos^{2} bx - b \sin bx \cos bx] = ae^{2ax} 113. (c) $y = \sin (\log x)$
 $\Rightarrow \frac{dy}{dx} = \frac{\cos(\log x)}{x}$
 $\Rightarrow x(\frac{dy}{dx}) = \cos(\log x)$
Again differentiating,
 $x \frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = -\frac{\sin \log x}{x} = \frac{-y}{x}$
 $\Rightarrow x^{2} \frac{d^{2}y}{dx^{2}} + x \frac{dy}{dx} + y = 0$
114. (c) Let $t = x + y \Rightarrow \frac{dt}{dy} = \frac{dx}{dy} + 1$
 $\text{So, } \frac{dt}{dy} = \frac{t + 1 + t - 1}{t - 1} = \frac{2t}{t - 1}$
 $\Rightarrow \int \frac{t - 1}{t} dt = 2\int dy$
 $\Rightarrow t - \log t = 2y + C_{1}$
 $\Rightarrow y - x + \log(x + y) = -C_{1} = C$
115. (a) $\frac{dy}{dx} = \cos(y - x) + 1$...(1)
Let $y - x = t \Rightarrow \frac{dy}{dx} - 1 = \frac{dt}{dx}$
 $\therefore (1) \Rightarrow \frac{dt}{dx} + 1 = \cos t + 1$
 $\Rightarrow \frac{dt}{dx} = \cos t$
 $\Rightarrow \sec t \cdot dt = 1 \cdot dx$
 $\Rightarrow \int \sec t \cdot dt = \int 1 \cdot dx$
 $\Rightarrow \log |\sec t - \tan t| = x + c$
 $\Rightarrow -\log |\sec t - \tan t| = x + c$
 $\Rightarrow \log |\sec t - \tan t| = x + c$
 $\Rightarrow \log |\sec t - \tan t| = x - c$
 $\Rightarrow e^{x}(\sec (y - x) - \tan (y - x)) = c$.$$

116. (c) The equation of circle touching y-axis at origin is $(x - \alpha)^2 + (y - 0)^2 = \alpha^2$

$$\Rightarrow x^{2} + \alpha^{2} - 2\alpha x + y^{2} = \alpha^{2}$$
$$\Rightarrow x^{2} + y^{2} - 2\alpha x = 0$$
$$\Rightarrow x + \frac{y^{2}}{x} - 2\alpha = 0$$
$$x \cdot 2y \cdot \frac{dy}{d} - y^{2}$$

Differentiating,
$$1 + \frac{x \cdot 2y \cdot \frac{dy}{dx} - y^2}{x^2} = 0$$

$$\Rightarrow x^2 + 2xy.\frac{dy}{dx} - y^2 = 0$$

117. (c) The equation of circle touching y-axis at origin is $(x - \alpha)^{2} + (y - 0)^{2} = \alpha^{2}$ $\Rightarrow x^{2} + \alpha^{2} - 2\alpha x + y^{2} = \alpha^{2}$ $\Rightarrow x^{2} + y^{2} - 2\alpha x = 0$ $\Rightarrow x + \frac{y^{2}}{x} - 2\alpha = 0$

Differentiating,
$$1 + \frac{x \cdot 2y \cdot \frac{dy}{dx} - y^2}{x^2} = 0$$

$$\Rightarrow x^{2} + 2xy \cdot \frac{dy}{dx} - y^{2} = 0$$
118. (c)
$$\frac{d^{2}y}{dx^{2}} + 2\left(\frac{dy}{dx}\right)^{2} + 9y = x$$
Order =2
Degree = 1
119. (a)
$$\frac{dy}{dx} + \frac{x}{y} = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{-x}{y}$$

$$\Rightarrow y \, dy + x \, dx = 0$$

$$\Rightarrow \frac{y^{2}}{2} + \frac{x^{2}}{2} + c = 0$$

$$\Rightarrow y^{2} + x^{2} + 2c = 0$$

$$\Rightarrow x^{2} + y^{2} = c.$$

Matrices & Determinants

1.
$$A_{(\alpha)} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}, A_{(\beta)} = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}.$$
Which one of the following is correct ?
(a) $A_{(-\alpha)} A_{(-\beta)} = A_{(\alpha + \beta)}$
(b) $A_{(-\alpha)} A_{(\beta)} = A_{(\beta - \alpha)}$
(c) $A_{(\alpha)} + A_{(-\beta)} = A_{(-(\beta - \alpha))}$
(d) $A_{(\alpha)} + A_{(-\beta)} = A_{(\alpha + \beta)}$ [2006-1]
2. If $f(x) = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & 4 \sin 2x \\ \sin^2 x & 1 + \cos^2 x & 4 \sin 2x \\ \sin^2 x & \cos^2 x & 1 + 4 \sin 2x \end{vmatrix}$
What is the maximum value of $f(x)$?
(a) 2 (b) 4
(c) 6 (d) 8 [2006-1]
3. If the matrix $\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is singular, then what is one
of the values of θ ?
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$
(c) π (d) 0 [2006-1]
4. For what values of k, does the system of linear equations
 $x + y + z = 2, 2x + y - z = 3, 3x + 2y + kz = 4$
have a unique solution ?
(a) $k = 0$ (b) $-1 < k < 1$
(c) $-2 < k < 2$ (d) $k \neq 0$ [2006-1]
5. Let $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$
If $AB = BA$, then what is the value of x ?
(a) -1 (b) 0
(c) 1 (d) Any real number
[2006-1] 1

- interchanging any two of its rows, then what is |A + B| equal to
 - (a) 2|A| (b) 2|B|(c) 0 (d) |A|-|B| [2006-I]

7.	Let $A = (a_{ij})_{n \times n}$ and $adj A$	$=(\alpha_{ij})$)			
	If $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 2 & 3 & -1 \end{bmatrix}$, what	is the	value of α_{23} ?			
	(a) 1	(b)	- 1			
	(c) 8	(d)	- 8	[2006-I]		
8.	Let A and B be two invertib What is adj (AB) equal to ?	le squa	are matrices each	n of order n.		
	(a) $(adj A) (adj B)$	(b)	(adj A) + (adj H	3)		
	(c) $(adj A) - (adj B)$	(d)	(adj B) (adj A)	[2006-1]		
9.	M is a matrix with real ent	ries gi	ven by			
	$\mathbf{M} = \begin{bmatrix} 4 & \mathbf{k} & 0 \\ 6 & 3 & 0 \\ 2 & \mathbf{t} & \mathbf{k} \end{bmatrix}$		·			
	Which of the following cor of M?	ndition	s guarantee the i	nvertibility		
	1. $k \neq 2$	2.	k ≠ 0			
	3. $t \neq 0$	4.	t ≠ 1			
	Select the correct answer using the code given below :					
	(a) 1 and 2	(b)	2 and 3			
	(c) 1 and 4	(d)	3 and 4	[2006-I]		
10.	Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ be a squ	are ma	trix of order 3. T	hen for any		
	positive integer n, what is	A ⁿ eq	ual to ?			
	(a) A	(b)	3 ⁿ A			
	(c) (3^{n-1}) A	(d)	3A	[2006-I]		
11.	Let A and B be two matrices such that AB is defined. If $AB = 0$, then which one of the following can be definitely concluded ?					
	(a) $A = 0$ or $B = 0$					
	(b) $A=0$ and $B=0$					
	(c) A and B are non-zero	squar	e matrices			
	(d) A and B cannot both	be not	n-singular	[2006-I]		
12.	If A is a matrix of order $p \times s \times t$, under which one of tAB exist?	q and the fol	B is a matrix of lowing conditio	order ons does		
	(a) $p = t$	(b)	$\mathbf{p} = \mathbf{s}$			

(a) p = t (b) p = s(c) q = t (d) q = s [2006-II]

13. If A is a square matrix such that
$$A - A^{T} = 0$$
, then which
one of the following is correct ?
(a) A must be a null matrix
(b) A must be a unit matrix
(c) A must be a scalar matrix
(d) None of the above [2006-II]
14. What is the largest value of a third order determinant
whose elements are 0 or 1 ?
(a) 0 (b) 1
(c) 2 (d) 3 [2006-II]
15. What is the inverse of $A = \begin{bmatrix} 1+i & 1+i \\ -1+i & 1-i \end{bmatrix}$?
(a) $\frac{1}{4} \begin{bmatrix} 1-i & -1-i \\ 1-i & 1+i \end{bmatrix}$ (b) $\frac{1}{4} \begin{bmatrix} 1+i & -1+i \\ 1+i & -1-i \end{bmatrix}$
(c) $\frac{1}{4} \begin{bmatrix} 1+i & 1-i \\ -1-i & 1+i \end{bmatrix}$ (d) $\frac{1}{4} \begin{bmatrix} 1+i & 1-i \\ -1-i & -1+i \end{bmatrix}$
[2006-II]
16. In respect of the equation

 $\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ c - 5 \end{bmatrix}$

correctly match List I with List II and select the correct answer using the code given below the lists:

	List I		List II				
		(Value	of c)		(Nature of the Equation)		
	A.	5			1.	The equation has no solution	
	B.	10			2.	The equation has a unique solution	
	C.	15			3.	The equation has an infinite set of solutions	
					4.	The equation has two infi nite sets of independent solutions	
	Cod	le:					
		Α	В	С			
	(a)	4	2	3			
	(b)	1	1	3			
	(c)	2	2	4			
	(d)	4	1	3		[2006-II]	
17.	IfA	$-1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$	$\begin{bmatrix} & -2 \\ 2 & 2 \end{bmatrix}$,	what	is de	t (A) ?	
	(a)	2			(b) -2	
	(c)	$\frac{1}{2}$			(d	$-\frac{1}{2}$ [2006-II]	
18.	From folle (a) (b)	m the ma owing ca B = C for B = C, i	trix equa n be con or any ma fA is sing	tion A clude trix A gular	AB= ed? A	AC, which one of the	

(c)
$$B = C$$
, if A is non-singular

(d) A = B = C for any matrix A [2006-II]

		a	b c		
19.	What is the value of	b	c a	if $a^3 + b^3 + c^3 =$	0?
		c	a b		
	(a) 0		(b) 1	
	(c) 3 abc		(d) -3 abc	[2006-II]
20.	If $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ is a 2 ×	2 ma	ıtrix a	and $f(x) = x^2 - x + 2$	2 is a
	polynomial, then what	at is f	(A) '	?	
	(a) $\begin{bmatrix} 1 & 7 \\ 1 & 7 \end{bmatrix}$		(b)	$) \begin{bmatrix} 2 & 6 \\ 0 & 8 \end{bmatrix}$	
	(c) $\begin{bmatrix} 2 & 6 \\ 0 & 6 \end{bmatrix}$		(d	$) \begin{bmatrix} 2 & 6 \\ 0 & 7 \end{bmatrix}$	[2006-11]
21.	If A is a non-null row	matr	ix wi	th 5 columns and I	3 is a non-
	null column matrix w	ith 5	rows	, how many rows a	re there
	in $A \times B$?			-	
	(a) 1		(b)) 5	

(c) 10 (d) 25 [2006-II] **DIRECTIONS (Qs. 22-23) :** The following questions consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully

- and select the answer.
 (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is not the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true

22. Assertion(A): If
$$A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, then $(A + B)^2$

 $= A^{2} + B^{2} + 2 AB.$ **Reason(R):** In the above AB = BA

23. Assertion(A): If
$$A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \cos \alpha & \sin \alpha \end{pmatrix}$$
 and

$$\mathbf{B} = \begin{pmatrix} \cos \alpha & \cos \alpha \\ \sin \alpha & \sin \alpha \end{pmatrix}, \text{ then AB} \neq 1.$$

Reason(R): The product of two matrices can never be equal to an identity matrix.

24. If A is any 2 × 2 matrix such that
$$\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} A = \begin{bmatrix} -1 & 0 \\ 6 & 3 \end{bmatrix}$$

then what is A equal to?
(a) $\begin{bmatrix} -5 & 1 \\ -2 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} -5 & -2 \\ 1 & 2 \end{bmatrix}$
(c) $\begin{bmatrix} -5 & -2 \\ 2 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 5 & 2 \\ -2 & -1 \end{bmatrix}$ [2007-I]
25. If A is a 3 × 3 matrix such that |A|=4, then what is A(adj A) equal to?
 $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ [4 & 0 & 0]

(a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$

16 0 0 0 16 0 (c) 0 0 16

(d) Cannot be determined, as data is insufficient

[2007-I]

33.

34.

35.

26. If A =
$$\begin{bmatrix} x & x^2 & 1+x^2 \\ y & y^2 & 1+y^2 \\ z & z^2 & 1+z^2 \end{bmatrix}$$
 where x, y, z are distinct what is |A|?

(a) 0

(b)
$$x^2y-y^2x+xyz$$

(c)
$$(x-y)(y-z)(z-x)$$

(d) xyz

27. Under which of the following condition(s), will the matrix

$$A = \begin{bmatrix} 0 & 0 & q \\ 2 & 5 & 1 \\ 8 & p & p \end{bmatrix}$$
 be singular?
1. $q = 0$
2. $p = 0$
3. $p = 20$
Select the correct answer using the code given below:
(a) 1 and 2 (b) 3 only
(c) 1 and 3 (d) 1 or 3 [2007-I]
28. Consider the following statements:
1. If det A= 0, then det (adj A) = 0
2. If A is non- singular, then det(A⁻¹) = (det A)⁻¹
(a) 1 only (b) 2 only
(c) Both 1 and 2 (d) Neither 1 nor 2 [2007-I]
29. Let A be an m × n matrix. Under which one of the following conditions does A⁻¹ exist?
(a) m = n only (b) m = n and det A ≠ 0
(c) m = n and det A= 0 (d) m ≠ n [2007-I]
30. Let A and B be two matrices of order n × n. Let A be non-singular and B be singular. Consider the following:

- 30 n-
 - AB is singular 1.
 - 2 AB is non-singular
 - 3. A⁻¹B is singular
 - 4. $A^{-1}B$ is non singular

Which of the above is/ are correct?

- (a) 1 and 3 (b) 2 and 4 only
- (c) 1 only (d) 3 only [2007-I] 31. Let A be a square matrix of order $n \times n$ where $n \ge 2$. Let B be a matrix obtained from A with first and second rows interchanged. Then which one of the following is correct? (a) $\det A = \det B$ (b) $\det A = -\det B$

(c)
$$A=B$$
 (d) $A=-B$ [2007-1]

32. What should be the value of k so that the system of linear equations x-y+2z=0, kx-y+z=0, 3x+y-3z=0 does not possess a unique solution? (a) 0 (h) 2

The matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$ satisfies which one of the following polynomial equations? (a) $A^2 + 3A + 2I = 0$ (b) $A^2 + 3A - 2I = 0$ (c) $A^2 - 3A - 2I = 0$ (d) $A^2 - 3A + 2I = 0$ [2007-II] For how many values of k, will the system of equations (k+1)x+8y=4k and kx+(k+3)y=3k-1, have an infinite number of solutions? (a) 1 (b) 2 (c) 3 (d) None of the above [2007-II] For what value of p, is the system of equations : $p^{3}x + (p+1)^{3}y = (p+2)^{3}$ px + (p+1)y = p+2x + y = 1consistent ? (a) p = 0(b) p = 1(d) For all p > 1 [2007-II] (c) p = -136. If $A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$, then what is the value of x? (b) $\frac{1}{2}$ (a) $-\frac{1}{2}$ (c) 1 (d) 2 [2007-II] 37. Let $A = [a_{ij}]_{m \times m}$ be a matrix and $C = [c_{ij}]_{m \times m}$ be another matrix where c_{ii} is the cofactor of a_{ii} . Then, what is the value of | AC | ? (a) $|A|^{m-1}$ (b) $|A|^{m}$ (c) $|A|^{m+1}$ (d) Zero [2007-II] 38. If ω is the cube root of unity, then what is one root of the equation -2x $-\omega = 0?$ 2 ω 0 ω (a) 1 (b) -2(c) 2 [2007-II] (d) ω $\begin{bmatrix} 2 & 2 \end{bmatrix}$

39. If
$$A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$
, then what is A^n equal to ?

(a)
$$\begin{bmatrix} 2^n & 2^n \\ 2^n & 2^n \end{bmatrix}$$
 (b) $\begin{bmatrix} 2n & 2n \\ 2n & 2n \end{bmatrix}$

(c)
$$\begin{bmatrix} 2^{2n-1} & 2^{2n-1} \\ 2^{2n-1} & 2^{2n-1} \end{bmatrix}$$
 (d) $\begin{bmatrix} 2^{2n+1} & 2^{2n+1} \\ 2^{2n+1} & 2^{2n+1} \end{bmatrix}$ [2007-II]

м-41	16		
40.	If the least number of zeroes in a lower triangular matrix is 10, then what is the order of the matrix 2		
	(a) 3×3 (b) 4×4		
	(c) 5×5 (d) 10×10 [2007-II]		(
41.	If the inverse of $\begin{bmatrix} 1 & p & q \\ 0 & x & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is $\begin{bmatrix} 1 & -p & -q \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then what is	47.	Ι
	$\frac{1}{2}$		
	(a) 1 (b) Zero		
	$\frac{1}{1}$		ļ
	(c) -1 (d) $p q$ [2007-II]		(
		48	1
42.	If $AB = \begin{bmatrix} 4 & 11 \\ 4 & 5 \end{bmatrix}$ and $A = \begin{bmatrix} 5 & 2 \\ 1 & 2 \end{bmatrix}$, then what is the value of	10.	(
			(
	the determinant of the matrix B? (a) A (b) 6	49.	l
	(a) 4 (b) - 0		E
	(c) $-\frac{1}{4}$ (d) -28 [2007-II]		(
43	4 The determinant		(
чЭ.			(
	a+b+c $a+b$ a	50.	I
	$\begin{vmatrix} 4a+3b+2c & 3a+2b & 2a \end{vmatrix}$		6
	10a + 6b + 3c 6a + 3b 3a		(
	is independent of which one of the following?		
	(a) a and b (b) b and c (c) $(b) = b = b = b = c$	51.	Ι
	(c) a and c (d) All of these $[200/-II]$;
44.	If $X = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$, and I is a 2 × 2 identity matrix, then $X^2 - 2X$		1 (
	+ 3I equals to which one of the following ?	52.	Ī
	(a) $-I$ (b) $-2X$		S
45	(c) 2X (d) 4X [2008-1] If the matrix B is the adjoint of the square matrix A and q is		2
чэ.	the value of the determinant of A, then what is AB equal to		- (
	?		(
	$()$ $(1)_{I}$		(
	(a) α (b) $\left(\frac{-}{\alpha}\right)^{1}$	53.	S
	(c) I (d) αΙ [2008-I]		
16	where I is identity matrix		
46.	what is the determinant		h
	bc a a^2		t
	$\begin{vmatrix} ca & b & b^2 \end{vmatrix}$ equal to ?		
	$ab c c^2$		(
	$ 1 \ a^2 \ a^3 $		
	$\begin{vmatrix} 1 & a & a^2 \\ & & 2 \end{vmatrix} \qquad \qquad \begin{vmatrix} 1 & b^2 & b^3 \end{vmatrix}$		(
	(a) $\begin{vmatrix} 1 & b & b^2 \end{vmatrix}$ (b) $\begin{vmatrix} 1 & c & c \\ 1 & c^2 & c^3 \end{vmatrix}$		
	$ 1 c c^2 $		

(c) $\begin{vmatrix} 1 & a & a^3 \\ 1 & b & b^3 \\ 1 & c & c^3 \end{vmatrix}$ (d) $\begin{vmatrix} a & a^2 & a^3 \\ b & b^2 & b^3 \\ c & c^2 & c^3 \end{vmatrix}$ [2008-I] If $x^2 + y^2 + z^2 = 1$, then what is the value of
$\begin{vmatrix} 1 & z & -y \\ -z & 1 & x \\ y & -x & 1 \end{vmatrix} = ?$
(a) 0 (b) 1 (c) 2 (d) $2-2xyz$ [2008-1] If $ A_{n \times n} = 3$ and $ adjA = 243$, what is the value of n? (a) 4 (b) 5
(c) 6 (d) 7 [2008-I] Under what condition does A (BC) = (AB) C hold, where A, B, C are three matrices ?
 (a) AB and BC both must exist (b) Only Ab must exist (c) Only BC must exist (d) Always true [2008-1] If A is matrix of order 3 × 2 and B is matrix of order 2 × 3, then what is kAB equal to (where k is any scalar quantity)?
(a) $k AB $ (b) $k^2 AB $ (c) $k^3 AB $ (d) $ AB $ [2008-1]
If $\begin{bmatrix} 5 & 0 \\ 0 & 7 \end{bmatrix}^{-1} \begin{bmatrix} x \\ -y \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, then which one of the following
is correct ? (a) $x=5$, $y=14$ (b) $x=-5$, $y=14$ (c) $x=-5$, $y=-14$ (d) $x=5$, $y=-14$ [2008-1] Which one of the following statements is correct ? The system of linear equations, 2x+3y=4 and $4x+6y=7$, has (a) no solution (b) a unique solution
(b) a unique solution (c) exactly 3 solutions (d) an infinite number of solutions [2008-1] Suppose the system of equations $a_1x + b_1y + c_1z = d_1$ $a_2x + b_2y + c_2z = d_2$ $a_3x + b_3y + c_3z = d_3$ has a unique solution (x_0, y_0, z_0) . If $x_0 = 0$, then which one of
the following is correct? $\begin{vmatrix} a_1 & b_1 & c_1 \end{vmatrix}$
(a) $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$ (b) $\begin{vmatrix} d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix} = 0$
(c) $\begin{vmatrix} d_1 & a_1 & c_1 \\ d_2 & a_2 & c_2 \\ d_3 & a_3 & c_3 \end{vmatrix} = 0$ (d) $\begin{vmatrix} d_1 & a_1 & b_1 \\ d_2 & a_2 & b_2 \\ d_3 & a_3 & b_3 \end{vmatrix} = 0$

[2008-I]

54. If a, b, c are in GP, then what is the value of a + b $\begin{vmatrix} b & c & b+c \\ a+b & b+c & 0 \end{vmatrix}$ (a) 0 (b) 1 (c) -1 (d) None of these [2008-I] 55. If adj $A = \begin{bmatrix} a & 0 \\ -1 & b \end{bmatrix}$ and $ab \neq 0$, then what is the value of [2008-II] (a) 1 (b) *ab* (c) $1/\sqrt{ab}$ (d) 1/ab If l + m + n = 0, then the system of equations [2008-11] 56. -2x+y+z=lx-2y+z=mx+y-2z=nhas (a) a trivial solution (b) no solution (c) a unique solution (d) infinitely many solutions 57. If $(a_1/x) + (b_1/y) = c_1, (a_2/x) + (b_2/y) = c_2$ [2008-11] $\Delta_1 = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}, \ \Delta_2 = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}, \qquad \Delta_3 = \begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix},$ then (x, y) is equal to which one of the following? (a) $\left(\Delta_2 / \Delta_1, \Delta_3 / \Delta_1\right)$ (b) $\left(\Delta_3 / \Delta_1, \Delta_2 / \Delta_1\right)$ (c) $\left(-\Delta_1/\Delta_2, -\Delta_1/\Delta_3\right)$ (d) $\left(-\Delta_1/\Delta_2, -\Delta_1/\Delta_3\right)$ What is the value of $\begin{vmatrix} \sin 10^\circ & -\cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ \end{vmatrix}$? [2008-II] 58. (b) 1 (a) 0 (c) -1 (d) 1/2 59. If $\begin{vmatrix} 2 & 4 & 0 \\ 0 & 5 & 16 \end{vmatrix} = 20$, then what is the value of p? $0 \quad 0 \quad 1+p$ [2008-11] (a) 0 (b) 1 (c) 2 (d) 5 60. If A and B are two matrices such that AB = A and BA = B, then which one of the following is correct? [2008-II] (a) $(A^T)^2 = A^T$ (b) $(A^T)^2 = B^T$ (c) $(A^T)^2 = (A^{-1})^{-1}$ (d) None of the above 61. If $\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$, then what is the matrix A? [2008-II] 67. (a) $\begin{vmatrix} 1 & -3 \\ 0 & 1 \end{vmatrix}$ (b) $\begin{vmatrix} 2 & 2 \\ 0 & 2 \end{vmatrix}$ (c) $\begin{bmatrix} -4 & -1 \\ 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & -4 \\ 0 & 1 \end{bmatrix}$

62. Under which one of the following condition does the system of equations [2009-1] kx+y+z=k-1x + ky + z = k - 1x + y + kz = k - 1have no solution? (a) k = 1(b) $k \neq -2$ (d) k = -2(c) k = 1 or k = -263. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$ where *a*, *b* are natural numbers, then which one of the following is correct? [2009-1] (a) There exist more than one but finite number of B's such that AB = BAThere exists exactly one B such that AB = BA(c) There exist infinitely many B's such that AB = BA(d) There cannot exist any B such that AB = BAConsider a matrix $M = \begin{bmatrix} 3 & 4 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & k \end{bmatrix}$ and the following 64. statements Statement A: Inverse of M exists. Statement **B** : $k \neq 0$ Which one of the following in respect of the above matrix and statement is correct? [2009-1] (a) A implies B, but B does not imply A (b) B implies A, but A does not imply B (c) Neither A implies B nor B implies A (d) A implies B as well as B implies A 65. If $\begin{vmatrix} y & x & y+z \\ z & y & x+y \\ x & z & z+x \end{vmatrix} = 0$, then which one of the following is [2009-I] correct? (a) Either x + y = z or x = y(b) Either x + y = -z or x = z(c) Either x + z = y or z = y(d) Either z + y = x or x = y[2009-I] What is the value of k, if 66 $\begin{vmatrix} k & b+c & b^{2}+c^{2} \\ k & c+a & c^{2}+a^{2} \\ k & a+b & a^{2}+b^{2} \end{vmatrix} = (a-b) (b-c) (c-a)?$ (a) 1 (b) -1 (c) 2 (d) 0 Which one of the following is correct in respect of the matrix [2009-1]

$$A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

does not exist (b) $A = (-1)$

(a) A^{-1} does not exist (b) A = (-1)I(c) A is a unit matrix (d) $A^2 = I$ 68. If $A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$, then what is A (adj A) equal to ? [2009-I] (a) $\begin{bmatrix} 0 & 10 \\ 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$ $\begin{bmatrix} 1 & 10 \\ 10 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1 \\ 1 & 10 \end{bmatrix}$ (c) What is the inverse of $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$? 69. [2009-I] (a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ 74. (c) $\begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ Consider the following statements in respect of symmetric 70. matrices A and B [2009-I] 1. AB is symmetric. 2. $A^2 + B^2$ is symmetric. Which of the above statement(s) is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 The following item consists of two statements, one labelled 71. the Assertion (A) and the other labelled the Reason (R). You are to examine these two statements carefully and 76. decide if the Assertion (A) and Reason (R) are individually true and if so, whether the reason is a correct explanation of the Assertion. Select your answer using the codes given below. Assertion (A): $M = \begin{bmatrix} 5 & 10 \\ 4 & 8 \end{bmatrix}$ is invertible. [2009-1] **Reason (R) :** M is singular. 77. (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true but R is not the correct explanation of A (c) A is true but R is false (d) A is false but R is true If X and Y are the matrices of order 2×2 each and 72.

$$2X - 3Y = \begin{bmatrix} -7 & 0 \\ 7 & -13 \end{bmatrix} \text{ and } 3X + 2Y = \begin{bmatrix} 9 & 13 \\ 4 & 13 \end{bmatrix}, \text{ then what}$$

is Y equal to? [2009-II]

(a) $\begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & 2 \\ 1 & -5 \end{bmatrix}$ 73. If a, b, c, are non-zero real numbers and [2009-II] $\begin{bmatrix} 1+a & 1 & 1\\ 1 & 1+b & 1\\ 1 & 1 & 1+c \end{bmatrix} = 0,$ then what is the value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$? (b) 1 (a) 2 (c) -1 (d) 0 If a matrix A is symmetric as well as anti-symmetric, then [2009-II] which one of the following is correct? (a) A is a diagonal matrix (b) A is a null matrix (c) A is a unit matrix (d) A is a triangular matrix 75. If $A = \begin{bmatrix} 1 & -2 & -3 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix}$, then which one of the following is [2009-II] correct? (a) A is symmetric matrix (b) A is anti-symmetric matrix (c) A is singular matrix (d) A is non-singular matrix $A = \begin{vmatrix} 2a & 3r & x \\ 4b & 6s & 2y \\ -2c & -3t & -z \end{vmatrix} = \lambda \begin{vmatrix} a & r & x \\ b & s & y \\ c & t & z \end{vmatrix}, \text{ then what is the value}$ of λ ? [2009-II] (b) -12 (a) 12 (c) 7 (d) -7 What is the value of $\begin{vmatrix} 1-i & \omega^2 & -\omega \\ \omega^2 + i & \omega & -i \\ 1-2i-\omega^2 & \omega^2 - \omega & i-\omega \end{vmatrix}$, where ω is the cube root of unity? [2009-II] (a) -1 (b) 1 (c) 2 (d) 0 78. If $A = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$, where ω is cube root of unity, then what is A^{100} equal to? [2009-II] (a) A (b) –*A* (c) Null matrix (d) Identity matrix

79.	A matrix X has $(a+b)$ rows and $(a+2)$ of Y has $(b+1)$ rows and $(a+3)$ column exist, then what are the values of a, b	columns; and a matrix ns. If both XY and YX respectively?
	(a) 3 2 (b) 2 3	[2009-11]
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07
	(c) 2,4 (u) 4,5	86.
	a b c	
80.	If $\begin{vmatrix} l & m & n \\ p & q & r \end{vmatrix} = 2$, then what is the value	ue of the determinant 87.
	$\begin{vmatrix} 6a & 3b & 15c \end{vmatrix}$	
	2l m 5n?	[2010]]]
	2p q 5r	[2010-1]
	(-) 10 (-) 20	88.
	(a) 10 (b) 20	
	(c) 40 (d) 60	
81.	Let $A = \begin{bmatrix} 5 & 6 & 1 \\ 2 & -1 & 5 \end{bmatrix}$. Let there exist	a matrix B such that
	$\begin{bmatrix} 35 & 49 \end{bmatrix}$	
	$AB = \begin{vmatrix} 29 & 13 \end{vmatrix}$. What is <i>B</i> equal to?	[2010-I]
		_
	(a) $\begin{bmatrix} 5 & 1 & 4 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	6 3 89.
	$ \begin{bmatrix} a \\ 2 \\ 6 \\ 3 \end{bmatrix} \qquad \begin{bmatrix} b \\ 5 \\ 5 \end{bmatrix} $	1 4
	(c) $\begin{bmatrix} 5 & 2 \\ 1 & 6 \\ 4 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix}$	5 1 4
87	Consider the following statements	- [2010]] 90.
62.		[2010-1]
	1. If $A' = A$; then A is a singular matrix	trix , where A' is the
	transpose of A .	13 T 11 1 T
	2 If A is a square matrix such that A	$I^{\circ} = I$, then A is
	Non-singular. Which of the statements given above	is/are correct?
	(a) 1 only (b) 2 on	15/are correct? 1v 91.
	(c) Both 1 and 2 (d) Neit	her 1 nor 2
83	If the system of equations $2x + 3y = 7$ and	d 2ax + (a + b) v = 28
00.	has infinitely many solutions, then which	th one of the following
	is correct?	[2010-I] 92.
	(a) $a = 2b$ (b) $b = 2$	2a
	(c) $a = -2b$ (d) $b = -2b$	-2a
84.	If the lines $3y+4x=1$, $y=x+5$ and $5y+$	bx = 3 are concurrent,
	then what is the value of <i>b</i> ?	<i>[2010-I]</i> 93.
	(a) 1 (b) 3	
07	(c) 6 (d) 0	FA 0.1 0 -7
85.	What is the value of	[2010-1]
	$ \cos 15^\circ \sin 15^\circ _{\odot} \cos 45^\circ \cos 15^\circ _{\odot}$	
	$\left \cos 45^\circ \sin 45^\circ\right ^{\times} \left \sin 45^\circ \sin 15^\circ\right ^2$	

	(a) $\frac{1}{4}$	(b)	$\frac{\sqrt{3}}{2}$	
	(c) $-\frac{1}{4}$	(d)	$-\frac{3}{4}$	
6.	Let A be an $n \times n$ matrix. If value of s?	det (λ	$\lambda A) = \lambda^s \det (A),$, what is the [2010-I]
	(a) 0	(b)	1	
7.	(c) -1 If A be a real skew- symme $A^2 + I = 0$, I being the identities of A, then what is the order	(d) etric r ty mat	<i>n</i> matrix of order trix of the same of ?	n such that order as that [2010-1]
	(a) 3	(b)	Odd	. ,
	(c) Prime number	(d)	Even	
8.	Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a_{ij} \end{bmatrix}$, wh	ere i,	j=1, 2, If its inv	verse matrix
	is $[b_{ij}]$, what is b_{22} ?			[2010-I]
	(a) -2	(b)	1	
	(c) $\frac{3}{2}$	(d)	$-\frac{1}{2}$	
	$\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$			
9.	If $\begin{bmatrix} 1 & -5 & 2 \\ 2 & -8 & 5 \\ 4 & 2 & \lambda \end{bmatrix}$ is not an in	vertil	ole matrix, then	what is the
	value of λ ?			[2010-II]
	(a) -1 (c) 1	(b) (d)	0 2	
0.	If $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} i & 0 \\ 0 & -1 \end{bmatrix}$	$\begin{bmatrix} 0\\-i \end{bmatrix}, C$	$C = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix},$	
	then which one of the follo	wing	is not correct?	[2010-II]
	(a) $A^2 = B^2$	(b)	$B^2 = C^2$	
	(c) $AB = C$	(a)	AB = BA	
1.	If $x + iy = \begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix}$,	then	what is $x - iy$ equivalent equivalent of the set of t	qual to?
	(a) $3+i$ (c) $3i$	(b) (d)	1+3i	[2010-II]
2.	If $ A = 8$, where A is square	e mat	rix of order 3, t	hen what is
	adj A equal to?			[2010-II]
	(a) 16	(b)	24	
2	(c) 64 Consider the following ste	(d)	512	of a squara
5.	matrix A and its transpose A	₁ T	ints in respect	[2010-11]
	1. $A + A^{T}$ is always symmetry	netrio	2.	L= • 1 • 11
	2. $A - A^{T}$ is always anti-	symn	netric	
	Which of the statements g	iven a	above is/are cor	rect?
	(a) 1 only	(b)	2 only	
	(c) Both 1 and 2	(d)	Neither 1 nor 2	2

94. If a matrix A is such that [2010-II] 102. Find the value of k in which the system of equations $3A^3 + 2A^2 + 5A + I = 0$ kx + 2y = 5 and 3x + y = 1 has no solution? [2011-I] Then what is A^{-1} equal to? (a) 0 (b) 3 (a) $-(3A^2+2A+5)$ (b) $3A^2 + 2A + 5I$ (d) 15 (c) 6 (c) $3A^2 - 2A - 5I$ (d) $(3A^2 + 2A - 5I)$ 103. If the matrix Let A and B be matrices of order 3×3 . If AB = 0, then which 95. $A = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$ of the following can be concluded? [2010-II] (a) A = 0 and B = 0(b) |A| = 0 and |B| = 0(c) Either |A| = 0 or |B| = 0 (d) Either A = 0 or B = 0is such that $A^2 = I$, then which one of the following is correct? If A is a square matrix, then what is $adj A^T - (adj A)^T$ equal 96. [2011-I] [2010-II] to? (a) $\alpha = 0, \beta = 1 \text{ or } \alpha = 1, \beta = 0$ (a) 2|A|(b) 2|A|I(b) $\alpha = 0, \beta \neq 1 \text{ or } \alpha \neq 1, \beta = 1$ (c) Null Matrix (d) Unit Matrix (c) $\alpha = 1, \beta \neq 0 \text{ or } \alpha \neq 1, \beta = 1$ 97. What is the value of (d) $\alpha \neq 0, \beta \neq 0$ ω 2ω-104. If $A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ $\begin{vmatrix} 2 & 0 & 2\omega \\ 2 & 2\omega^2 & 4\omega^3 \\ 3 & 3\omega^3 & 6\omega^4 \end{vmatrix},$ such that $A^2 = B$, then what is the value of α ? [2011-I] (a) -1 (b) 1 where ω is the cube root of unity? [2010-II] (c) 2 (d) 4 (a) 0 (b) 1 105. $A = \begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$, then which of the (c) 2 (d) 3 If the matrix 98. $A = \begin{bmatrix} 2-x & 1 & 1\\ 1 & 3-x & 0\\ -1 & -3 & -x \end{bmatrix}$ following is/are correct? [2011-I] I. AB is defined II. BA is defined III. AB = BASelect the correct answer using the codes given below. is singular, then what is the solution set S? [2011-I] (a) Only I (b) Only II (a) $S = \{0, 2, 3\}$ (b) $S = \{-1, 2, 3\}$ (c) Both I and II (d) I, II and III (c) $S = \{1, 2, 3\}$ (d) $S = \{2, 3\}$ 106. The simultaneous equations 3x + 5y = 7 and 6x + 10y = 1899. Consider the following statements. [2011-1] [2011-II] have L The inverse of a square matrix, if it exists, is unique. (a) no solution II. If A and B are singular matrices of order n, then AB is (b) infinitely many solutions also a singular matrix of order n. (c) unique solution Which of the statements given above is/are correct? (d) any finite number of solutions (a) Only I (b) Only II (c) Both I and II (d) Neither I nor II 107. The roots of the equation $\begin{vmatrix} x & \alpha & 1 \\ \beta & x & 1 \\ \beta & \gamma & 1 \end{vmatrix} = 0$ are independent of 100. What is the value of the determinant [2011-1] |x+1 + x+2 + x+4| $\begin{vmatrix} x+3 & x+5 & x+8 \\ x+7 & x+10 & x+14 \end{vmatrix}$? [2011-II] (b) β (a) α (b) $x^2 + 2$ (a) x+2(d) α , β and γ (c) γ (c) 2 (d) -2 108. What is the value of the determinant 101. If 5 and 7 are the roots of the equation x 4 5 $\begin{vmatrix} b-c & c+a & b \\ c-a & a+b & c \end{vmatrix}$? [2011-I] $\begin{bmatrix} 7 & x & 7 \\ 5 & 0 \end{bmatrix} = 0$, then what is the third root? [2011-II] 5 8 x(a) $a^3 + b^3 + c^3$ (b) 3bc (a) -12(b) 9 (c) $a^3 + b^3 + c^3 - 3abc$ (d) 0 (c) 13 (d) 14

м-420

109. If $\begin{vmatrix} p & q \\ 0 & p & q \end{vmatrix} = 0$, then which one of the following is [2011-II] correct? (a) *p* is one of the cube roots of unity (b) q is one of the cube roots of unity (c) $\frac{p}{a}$ is one of the cube roots of unity (d) None of the above 110. If $a^{-1} + b^{-1} + c^{-1} = 0$ such that $\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = \lambda$, [2011-II] then what is λ equal to? (a) -abc(b) *abc* (c) 0 (d) 1 111. Consider the following statements in respect of the square matrices A and B of same order: [2011-II] 1. A and B are non-zero and $AB = 0 \implies$ either |A| = 0 or |B| = 02. $AB = 0 \implies A = 0 \text{ or } B = 0$ Which of the above statements is/are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 112. For what value of *x* does $(1 \quad 3 \quad 2) \begin{pmatrix} 1 \quad 3 \quad 0 \\ 3 \quad 0 \quad 2 \\ 2 \quad 0 \quad 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \\ x \end{pmatrix} = (0) \text{ hold}?$ [2011-II] (a) −1 (b) 1 (c) 9/8 (d) -9/8113. Consider the following statements: [2012-1] 1. every zero matrix is a square matrix. 2. A matrix has a numerical value. A unit matrix is a diagonal matrix. 3. Which of the above statements is/are correct? (a) 2 only (b) 3 only (c) 2 and 3 (d) 1 and 3 114. If a matrix A has inverses B and C, then which one of the following is correct? [2012-I] (a) B may not be equal to C (b) B should be equal to C (c) B and C should be unit matrices (d) None of the above 115. If $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ then what is determinant of [2012-I] AB? (a) 0 (b) 1 (d) 20 (c) 10

116. What is $\begin{vmatrix} a & ab & ac \\ ab & -b^2 & bc \\ ac & bc & -c^2 \end{vmatrix}$ equal to? [2012-I] (b) $4a^{2}bc$ (a) 4abc (d) $-4a^2b^2c^2$ (c) $4a^2b^2c^2$ 117. A and B are two matrices such that AB = A and BA = B then what is B^2 equal to? [2012-1] (a) B (b) A (c) I (d) -I where I is the identity matrix 118. The sum and product of matrices A and B exist. Which of the following implications are necessarily true? 1. A and B are square matrices of same order. 2. A and B are non-singular matrices Select the correct answer using the code given below: (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 119. If A is a square matrix such that $A^2 = I$ where I is the identity matrix, then what is A^{-1} equal to? [2012-1] (a) A+1 (b) Null matrix (d) Transpose of A (c) A 120. If two rows of a determinant are identical, then what is the value of the determinant? [2012-1] (a) 0 (b) 1 (c) -1 (d) can be any real value 121. If $\begin{vmatrix} 8 & -5 & 1 \\ 5 & x & 1 \\ 6 & 3 & 1 \end{vmatrix} = 2$ then what is the value of x? [2012-I] (a) 4 (b) 5 (c) 6 (d) 8 122. What is the order of the product $\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ [2012-1] (a) 3×1 (b) 1×1 (d) 3×3 (c) 1×3 123. If $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$, then what is $B^{-1}A^{-1}$ equal to? [2012-I] (a) $\begin{bmatrix} 1 & -3 \\ -1 & 2 \end{bmatrix}$ (b) $\begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 3 \\ -1 & -2 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & -3 \\ 1 & -2 \end{bmatrix}$

124.	If each element in a row of a determinant is multiplied by the same factor r, then the value of the determinant : [2012-II]	132.	If A and B are two non-singular square matrices such that $AB = A$, then which one of the following is correct?
	(a) is multiplied by r ³ . (b) is increased by 3r		[2013-1]
125	(c) remains unchanged (d) is multiplied by r The inverse of a diagonal matrix is a: [2012 II]		(a) B is an identity matrix (b) $B = A^{-1}$
123.	(a) symmetric matrix (b) skew-symmetric matrix		(c) $B = A^2$ (d) Determinant of B is zero
	(c) diagonal matrix (d) None of the above	133.	What is the value of the minor of the element 9 in the
			determinant
			10 19 2
126.	If $A = \begin{bmatrix} 5 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 6 & 8 \end{bmatrix}$, then which one of the		
			9 24 2
	following is correct ? [2012-II]		(2) -9 (b) -7
	(a) B is the inverse of A (b) B is the adjoint of A		
	(c) B is the transpose of A(d) None of the above		(c) / (u) 0
			1 t-1 1
127	If the sum of the metrices $\begin{bmatrix} x \\ y \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is the metric.	134.	The roots of the equation $\begin{vmatrix} t - 1 & 1 \end{vmatrix} = 0$ are
127.	In the sum of the matrices $\begin{bmatrix} x \\ -x \end{bmatrix}$, $\begin{bmatrix} y \\ -x \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is the matrix		1 1 t-1
	[10]		(a) $1,2$ (b) $-1,2$ [2013-I]
	5		(c) $1,-2$ (d) $-1,-2$
	$\begin{bmatrix} 0 \\ 5 \end{bmatrix}$, then what is the value of y? [2012-11]		
	(a) -5 (b) 0 (d) 10	135.	The value of the determinant p in in [2013-1]
128	(c) 5 (d) 10 If the matrix AB is a zero matrix then which one of the		n p m
120.	following is correct? [2012-II]		(a) is a perfect cube (b) is a perfect square
	(a) A must be equal to zero matrix or B must be equal to		(c) has linear factor (d) is zero
	zero matrix.	136.	The determinant of a orthogonal matrix is: [2013-I]
	(b) A must be equal to zero matrix and B must be equal to		(a) ± 1 (b) 2
	Zero matrix.		(c) 0 (d) ± 2
	zeromatrix.	137.	If D is determinant of order 3 and D' is the determinant
	(d) None of the above		obtained by replacing the elements of D by their cofactors,
			then which one of the following is correct? [2013-I]
120	If the matrix $\begin{bmatrix} \alpha & 2 & 2 \\ 2 & 0 & 4 \end{bmatrix}$ is not invertible then :		(a) $D' = D^2$ (b) $D' = D^3$
129.	If the matrix -3 0 4 is not invertible, then .		(c) $D' = 2D^2$ (d) $D' = 3D^3$
		138.	Consider the following statements:
	(a) $\alpha = -5$ (b) $\alpha = 5$ [2012-II]		1. A matrix is not a number
	(c) $\alpha = 0$ (d) $\alpha = 1$		2. Two determinants of different order may have the same
	$\begin{bmatrix} -2 & 1 & -2 \end{bmatrix}$		value.
			Which of the above statements is/are correct? [2013-I]
130.	The value of the determinant $\begin{vmatrix} y^2 & 1 & z^2 + x^2 \end{vmatrix}$ is : [2012-II]		(a) 1 only (b) 2 only
	$\begin{vmatrix} z^2 & 1 & x^2 + y^2 \end{vmatrix}$		(c) Both 1 and 2 (d) Neither 1 nor 2
		139	Consider the following statements [2013-III]
	(a) U (b) $x^2 + y^2 + z^2$ (c) $x^2 + x^2 + z^2 + 1$ (d) None of the above		1. The product of two non-zero matrices can never be
131	(c) $x + y + z + 1$ (d) None of the above A square matrix $[a_n]$ such that $a_n = 0$ for $i \neq i$ and $a_n = k$ where		identity matrix.
1.71.	k is a constant for $i = j$ is called : [2012-III]		2. The product of two non-zero matrices can never be
	(a) diagonal matrix, but not scalar matrix		Zeromatrix. Which of the above statements is/are correct?
	(b) scalar matrix		(a) 1 only (b) 2 only
	(c) unit matrix		(c) Both 1 and 2 (d) Neither 1 nor 2

(d) None of the above

(c) Both 1 and 2 (d) Neither 1nor 2

140.	Consider the following statements : [20)13-II]	(a) 0 (b) <i>abc</i>
	$\begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$		(c) $ab + bc + ca$ (d) $abc (a+b+c)$
	1. The matrix $\begin{vmatrix} a & 2a & 1 \end{vmatrix}$ is singular.	147.	Consider the following statements in respect of the matrix
	$\begin{pmatrix} b & 2b & 1 \end{pmatrix}$		$\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$
	$\begin{pmatrix} c & 2c & 1 \end{pmatrix}$		$A = \begin{bmatrix} 2 & 3 & 0 \end{bmatrix}$ [2014-1]
	2. The matrix $\begin{vmatrix} a & 2a & 1 \end{vmatrix}$ is non-singular.		
	$\begin{pmatrix} b & 2b & 1 \end{pmatrix}$		1. The matrix A is skew-symmetric.
	Which of the above statements is/are correct ?		2. The matrix A is synthetic.
	(a) 1 only (b) 2 only		Which of the above statements is/are correct?
	(c) Both 1 and 2 (d) Neither 1 nor 2		(a) 1 only (b) 3 only
141.	The cofactor of the element 4 in the determinant		(c) 1 and 3 (d) 2 and 3
	1 2 3		
	4 5 6 is [20) <i>[3-II]</i>	$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -4 \end{bmatrix}$
	5 8 9	148.	Consider two matrices $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 & -4 \end{bmatrix}$.
	(a) 2 (b) 4		
	(c) 6 (d) -6		Which one of the following is correct ? [2014-I]
142	If A is a square matrix of order 3 with $ A \neq 0$ then whi	ich one	(a) B is the right inverse of A
· · _ ·	of the following is correct?)13-111	(b) B is the left inverse of A
	$(x) = \frac{1}{2} \frac{1}{2$	-]	(c) B is the both sided inverse of A
	(a) $ aajA = A $ (b) $ adjA = A ^{-1}$	1/10	(d) None of the above $\int 2014_{-}II$
	(c) $ adiA = A ^3$ (d) $ adiA ^2 = A $	149.	
			x + a b c
143.	If $A = \begin{pmatrix} l & 0 \\ 0 & -i \end{pmatrix}, B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, C = \begin{pmatrix} 0 & l \\ -i & 0 \end{pmatrix}$		$\begin{vmatrix} a & x+b & c \end{vmatrix} = 0$ is :
	$\begin{pmatrix} 0 & -l \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \end{pmatrix}$ $\begin{pmatrix} l & 0 \end{pmatrix}$		$\begin{vmatrix} a & b & x+c \end{vmatrix}$
	where $i = \sqrt{-1}$, then which one of the following is con-	rrect?	(a) abc (b) $a+b+c$
	[20)1 3- II]	(c) $-(a+b+c)$ (d) $-abc$
	(a) $AB = -C$ (b) $AP = C$	150.	If A is any matrix, then the product AA is defined only when
	(b) $AB = C$ (c) $A^2 = B^2 = C^2 = I$ where <i>I</i> is the identity matrix		A is a matrix of order $m \times n$ where : [2014-I]
	(d) $BA \neq C$		(a) $m > n$ (b) $m < n$
	(2 1)		(c) $m = n$ (d) $m \le n$
144.	If $2A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$, then what is A^{-1} equal to ? [20]	0 <i>13-II]</i> 151.	The determinant of an odd order skew symmetric matrix is
			always: [2014-1]
	(a) $\begin{pmatrix} 2 & -1 \end{pmatrix}$ (b) $\frac{1}{-1}\begin{pmatrix} 2 & -1 \end{pmatrix}$		(a) Zero (b) One (c) Negative (d) Depends on the matrix
		152	If any two adjacent rows or columns of a determinant are
	1(2 -1)	102.	intercharged in position, the value of the determinant :
	(c) $\frac{-3}{4} \begin{pmatrix} -3 & 2 \end{pmatrix}$ (d) None of these		[2014-I]
	(2, 2) $(5, 2)$ $(1, 1)$		(a) Becomes zero (b) Remains the same
145.	If $\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \times \begin{pmatrix} 3 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 17 & \lambda \end{pmatrix}$, then what is λ equ	al to ?	(c) Changes its sign (d) Is doubled
	[20]	153.	If $a \neq b \neq c$ are all positive, then the value of the determinant
	(a) 7 (b) -7	/15-11j	$\begin{vmatrix} a & b & c \end{vmatrix}$
	(c) 9 (d) -9		b c a is [2014-II]
146.	What is the value of the determinant[20]	01 <i>3-II]</i>	$\begin{vmatrix} c & a & b \end{vmatrix}$
	$\begin{vmatrix} 1 & bc & a(b+c) \end{vmatrix}$		
	$\begin{vmatrix} 1 & ca & b(c+a) \end{vmatrix}$?		(a) non-negative (b) non-positive
	$\begin{vmatrix} 1 & ab & c(a+b) \end{vmatrix}$		(c) negative (d) positive

м-423

154. Let A and B be two matrices such that AB = A and BA = B. Which of the following statements are correct? [2014-II] 1. $A^2 = A$ 2. $B^2 = B$ $(AB)^2 = AB$ 3. Select the correct answer using the code given below : (a) 1 and 2 only(b) 2 and 3 only(c) 1 and 3 only (d) 1, 2 and 3 1 155. If $\begin{vmatrix} 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x + iy$, where $i = \sqrt{-1}$, then what is x *[2014-II]* 1 equal to? (a) 3 (b) 2 (d) 0 (c) 1 156. If the matrix A is such that $\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$, then what is A equal to? [2014-II] (a) $\begin{pmatrix} 1 & 4 \\ 0 & -1 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} -1 & 4 \\ 0 & -1 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & -4 \\ 0 & -1 \end{pmatrix}$ 157. Consider the following statements : [2014-II] 1 1. Determinant is a square matrix. 2. Determinant is a number associated with a square matrix. Which of the above statements is/are correct? (a) 1 only (b) 2 only (d) Neither 1 nor 2 (c) Both 1 and 2 158. If A is an invertible matrix, then what is det (A^{-1}) equal to ? 1 [2014-II] (b) $\frac{1}{\det A}$ (a) det A1 (d) None of the above (c) 1 159. From the matrix equation AB = AC, Where A, B, C are the square matrices of same order, we can conclude B = Cprovided [2014-II] (a) A is non-singular. (b) A is singular. (c) *A* is symmetric. (d) A is skew symmetric. 160. If $A = \begin{pmatrix} 4 & x+2 \\ 2x-3 & x+1 \end{pmatrix}$ is symmetric, then what is x equal 1 to? [2014-II] (a) 2 (b) 3 (c) -1 (d) 5

161. If $\begin{vmatrix} a & b \\ b & 0 & a \end{vmatrix} = 0$, then which one of the following is correct?

NDA Topicwise Solved Papers - MATHEMATICS

	(a)	$\frac{a}{b}$ is one of the cube re-	oots of unity.	
	(b)	$\frac{a}{b}$ is one of the cube ro	bots of -1 .	
	(c)	<i>a</i> is one of the cube roo	ots of unity.	
	(d)	<i>b</i> is one of the cube roo	ots of unity.	
62.	If A $ A =$	and B are square matrix -1, $ B = 3$, then what is	ces of second order 3AB equal to ?	r such that [2014-II]
	(a)	3	(b) –9	
	(c)	-27	(d) None of these	
63.	Whic	h one of the following ma	atrices is an element	ary matrix? <i>[2015-I]</i>
		[1 0 0]	$\begin{bmatrix} 1 & 5 & 0 \end{bmatrix}$	
	(a)		(b) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	
		$\begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	
		1 0 0	$\left[0 1 0 \right]$	
	(c)		(d) 0.52	
64.	If A =	$ \begin{bmatrix} 2 & 7 \\ 1 & 5 \end{bmatrix} $ then that is $A = \begin{bmatrix} 2 & 7 \\ 1 & 5 \end{bmatrix} $	+ $3A^{-1}$ equal to?	[2015-1]
	(a)	31	(b) 5 <i>I</i>	
	(c)	71	(d) None of thes	se
	where	e I is the identity matrix	order 2.	
65.	Then	matrix $\begin{bmatrix} 0 & -4+i \\ 4+i & 0 \end{bmatrix}$ is		[2015-I]
	(a)	symmetric	(b) skew-symme	tric
	(c)	Hermitian	(d) skew-Hermit	ian
66.	Cons	ider the following in	respect of two no	n-singular
	matri	$\cos A$ and B of same ord	er:	[2015-1]
	1. 2	$\det (A + B) = \det A + \det A$	et <i>B</i>	
	2. Whie	$(A+B)^{-1} = A^{-1} + B^{-1}$	rraat?	
	(a)	1 only	(b) 2 only	
	(c)	Both 1 and 2	(d) Neither 1 nor	2
			n] [-	<i>"</i>]
67.	If	$X = \begin{bmatrix} 5 & -4 \\ 1 & -1 \end{bmatrix}, B = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $A = \begin{bmatrix} p \\ r \end{bmatrix}$	$\begin{bmatrix} q \\ s \end{bmatrix}$ satisfy
	the ec	quation $AX = B$, then the	e matrix A is equal to	o <i>[2015-I]</i>

(a)
$$\begin{bmatrix} -7 & 26 \\ 1 & -5 \end{bmatrix}$$
 (b) $\begin{bmatrix} 7 & 26 \\ 4 & 17 \end{bmatrix}$
(c) $\begin{bmatrix} -7 & -4 \\ 26 & 13 \end{bmatrix}$ (d) $\begin{bmatrix} -7 & 26 \\ -6 & 23 \end{bmatrix}$

168. Let $A = \begin{bmatrix} x + y & y \\ 2x & x - y \end{bmatrix}, B = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ If AB = C, then what is A^2 equal to? [2015-I] (a) $\begin{bmatrix} 6 & -10 \\ 4 & 26 \end{bmatrix}$ (b) $\begin{bmatrix} -10 & 5 \\ 4 & 24 \end{bmatrix}$ (c) $\begin{bmatrix} -5 & -6 \\ -4 & -20 \end{bmatrix}$ (d) $\begin{bmatrix} -5 & -7 \\ -5 & 20 \end{bmatrix}$ 169. The value of 1 $\begin{vmatrix} 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix}$ is [2015-I] (a) x+y(b) x - y(c) *xy* (d) 1 + x + y170. If $E(\theta) = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$, then $E(\alpha)E(\beta)$ is equal to [2015-1] (b) $E(\alpha - \beta)$ (a) $E(\alpha\beta)$ (d) $-E(\alpha+\beta)$ (c) $E(\alpha + \beta)$ 171. The matrix A = $\begin{bmatrix} 1 & 3 & 2 \\ 1 & x-1 & 1 \\ 2 & 7 & x-3 \end{bmatrix}$ will have inverse for every real number *x* except for [2015-II] (a) $x = \frac{11 \pm \sqrt{5}}{2}$ (b) $x = \frac{9 \pm \sqrt{5}}{2}$ (c) $x = \frac{11 \pm \sqrt{3}}{2}$ (d) $x = \frac{9 \pm \sqrt{3}}{2}$ a 1 1 172. If the value of the determinant $\begin{vmatrix} 1 & b & 1 \\ 1 & 1 & c \end{vmatrix}$ is positive, where [2015-II] $a \neq b \neq c$, then the value of abc (a) cannot be less than 1 (b) is greater than -8(c) is less than -8(d) must be greater than 8 173. Consider the following statements in respect of the determinant [2015-II] $\cos^2\frac{\alpha}{2}$ $\sin^2\frac{\alpha}{2}$

 $\begin{vmatrix} \cos^2 \frac{\alpha}{2} & \sin^2 \frac{\alpha}{2} \\ \sin^2 \frac{\beta}{2} & \cos^2 \frac{\beta}{2} \end{vmatrix}$

where α , β are complementary angles

1. The value of the determinant is
$$\frac{1}{\sqrt{2}} \cos\left(\frac{\alpha - \beta}{2}\right)$$
.

2. The maximum value of the determinant is
$$\frac{1}{\sqrt{2}}$$
.

Which of the above statements is/ are correct? (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 174. If $A = \begin{bmatrix} 1 & 0 & -2 \\ 2 & -3 & 4 \end{bmatrix}$, then the matrix X for which 2X + 3A =0 holds true is [2015-II] (a) $\begin{bmatrix} -\frac{3}{2} & 0 & -3 \\ -3 & -\frac{9}{2} & -6 \end{bmatrix}$ (b) $\begin{bmatrix} \frac{3}{2} & 0 & -3 \\ 3 & -\frac{9}{2} & -6 \end{bmatrix}$ (c) $\begin{vmatrix} \frac{3}{2} & 0 & 3 \\ 3 & \frac{9}{2} & 6 \end{vmatrix}$ (d) $\begin{vmatrix} -\frac{3}{2} & 0 & 3 \\ -3 & \frac{9}{2} & -6 \end{vmatrix}$ 175. If $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{bmatrix}$ then which of the following is/are correct? [2015-II] 1. A and B commute. 2. *AB* is a null matrix. Select the correct answer using the code given below: (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 176. If A is an invertible matrix of order n and k is any positive real number, then the value of $[det(kA)]^{-1}$ det A is [2015-II] (a) k^{-n} (b) k^{-1} (c) k^n (d) nk $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ 177. If A is an orthogonal matrix of order 3 and $B = \begin{bmatrix} -3 & 0 & 2 \end{bmatrix}$, 2 5 0 then which of the following is/are correct? [2015-II] 1. $|AB| = \pm 47$ AB = BASelect the correct answer using the code given below : (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 178. If a, b, c are real numbers, then the value of the determinant $\begin{vmatrix} 1-a & a-b-c & b+c \end{vmatrix}$ $\begin{vmatrix} 1-b & b-c-a & c+a \end{vmatrix}$ is [2015-II] 1-c c-a-b a+b(a) 0 (b) (a-b)(b-c)(c-a)(c) $(a+b+c)^2$ (d) $(a+b+c)^3$ **DIRECTIONS (Qs. 179 - 180) :** For the next two (2) items that follow.

Consider the function

$$f(\mathbf{x}) = \begin{vmatrix} \mathbf{x}^3 & \sin \mathbf{x} & \cos \mathbf{x} \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}, \text{ where p is a constant.}$$

179.	What is the value of f'(0)?	[2016-I]
	(a) p^3	(b) $3p^3$
	(c) $6p^3$	(d) $-6p^3$
180.	What is the value of p for wh	nich f"(0)=0? [2016-1]
	(a) $-\frac{1}{6}$ or 0	(b) -1 or 0
	(c) $-\frac{1}{6}$ or 1	(d) -1 or 1
181.	If A is a square matrix, then	n what is $adj(A^{-1}) - (adj A)^{-1}$
	equal to?	[2016-1]
	(a) 2 A	(b) Null matrix
	(c) Unit matrix	(d) None of the above
182.	Consider the following	in respect of the matrix
	$\mathbf{A} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$	[2016-I]
	1. $A^2 = -A$	
	$2. A^{2} = 4A$	anna atl
	which of the above $1s/are co$	(b) 2 cm/c
	(a) 1 only (a) $\text{Doth } 1 \text{ ond } 2$	(b) 2 only (d) Noither 1 nor 2
102	(c) Both 1 and 2 Which of the following deter	(d) Neither 1 hor 2
165.	which of the following deter	
		[2010-1]
	41 1 5	
	1 79 7 9	
	1. 29 5 3	
	$\begin{vmatrix} 1 & a & b+c \end{vmatrix}$	
	$1 \mathbf{b} \mathbf{c} + \mathbf{a}$	
	2. $\begin{vmatrix} 1 & 0 & 0 + a \\ 1 & 1 & 1 \end{vmatrix}$	
	$\begin{vmatrix} 1 & c & a+b \end{vmatrix}$	

3.
$$\begin{vmatrix} 0 & c & b \\ -c & 0 & a \\ -b & -a & 0 \end{vmatrix}$$

Select the correct answer using the code given below.

- (a) 1 and 2 only (b) 2 and 3 only (c) 1 2 and 3 only
- (c) 1 and 3 only (d) 1, 2 and 3 184. The system of linear equations kx + y + z = 1, x + ky + z = 1 and
- x + y + kz = 1 has a unique solution under which one of the following conditions? [2016-I]

(a)	$k \neq 1$ and $k \neq -2$	(b)	$k \neq 1$ and $k \neq 2$
(c)	$k \neq -1$ and $k \neq -2$	(d)	$k \neq -1$ and $k \neq 2$

 185. If A is semy square matrix of order 3 and det A= 5, then what is det[$(2A)^{-1}$] equal to?
 [2016-II]

 (a) 1/10
 (b) 2/5

 (c) 8/5
 (d) 1/40

186. What is $[x \ y \ z] \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$ equal to ? [2016-11]

(a)
$$[ax + hy + gz h + b + f g + f + c]$$

(b) $\begin{bmatrix} a & h & g \\ hx & by & fz \\ g & f & c \end{bmatrix}$
(c) $\begin{bmatrix} ax + hy + gz \\ hx + by + fz \\ gx + fy + cz \end{bmatrix}$

(d) [ax+hy+gz hx+by+fz gx+fy+cz]

DIRECTIONS (Qs. 187-188) : *Consider the following for the next two (02) items that follow:*

Let $ax^3 + bx^2 + cx + d = \begin{vmatrix} x+1 & 2x & 3x \\ 2x+3 & x+1 & x \\ 2-x & 3x+4 & 5x-1 \end{vmatrix}$ then 187. What is the value of c? (a) -1 (b) 34 (c) 35 (d) 50 188. What is the value of $a + b + c + d$? (a) 62 (b) 63 (c) 65 (d) 68 189. If $m = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $n = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, then what is the value of the determinant of m $cos\theta - n sin\theta$? [2016-II] (a) -1 (b) 0 (c) 1 (d) 2 190. If $f\{x\} = \begin{bmatrix} cos x - sinx & 0 \\ sinx & cosx & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then which of the following are correct ? [2016-II] 1. $f(\theta) \times f(\phi) = f(\theta + \phi)$ 2. The value of the determinant of the matrix $f(\theta) \times f(\phi)$ is 1. 3. The determinant of $f(x)$ is an even function.												[2016-1	<i>I]</i>
Let $ax^3 + bx^2 + cx + d = \begin{vmatrix} n & 1 & 2n & 0n \\ 2x + 3 & x + 1 & x \\ 2 - x & 3x + 4 & 5x - 1 \end{vmatrix}$ then 187. What is the value of c? (a) -1 (b) 34 (c) 35 (d) 50 188. What is the value of a + b + c + d? (a) 62 (b) 63 (c) 65 (d) 68 189. If m= $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and n = $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, then what is the value of the determinant of m cos θ - n sin θ ? [2016-II] (a) -1 (b) 0 (c) 1 (d) 2 190. If f{x}= $\begin{bmatrix} \cos x - \sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then which of the following are correct ? [2016-II] 1. f(θ)×f(ϕ) = f(θ + ϕ) 2. The value of the determinant of the matrix f(θ)× f(ϕ) is 1. 3. The determinant of f(x) is an even function.							x+1	2x	3	x			
187. What is the value of c? (a) -1 (b) 34 (c) 35 (d) 50 188. What is the value of a + b + c + d? (a) 62 (b) 63 (c) 65 (c) 65 (d) 68 189. If m= $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and n = $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, then what is the value of the determinant of m cos θ - n sin θ ? (a) -1 (b) 0 (c) 1 (c) 1 (Let	ax ³ -	$+bx^2$	+ cx +	- d =	2x+3	x +1		x	ther	ı	
187. What is the value of c? (a) -1 (b) 34 (c) 35 (d) 50 188. What is the value of $a + b + c + d$? (a) 62 (b) 63 (c) 65 (d) 68 189. If $m = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $n = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, then what is the value of the determinant of m $\cos\theta - n \sin\theta$? [2016-II] (a) -1 (b) 0 (c) 1 (d) 2 190. If $f\{x\} = \begin{bmatrix} \cos x - \sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then which of the following are correct ? [2016-II] 1. $f(\theta) \times f(\phi) = f(\theta + \phi)$ 2. The value of the determinant of the matrix $f(\theta) \times f(\phi)$ is 1. 3. The determinant of $f(x)$ is an even function.					•		2_x 3	$\mathbf{x} + 4$	5v	_1		-	
(a) -1 (b) 34 (c) 35 (d) 50 188. What is the value of $a + b + c + d$? (a) 62 (b) 63 (c) 65 (d) 68 189. If $m = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $n = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, then what is the value of the determinant of m $\cos\theta - n \sin\theta$? [2016-II] (a) -1 (b) 0 (c) 1 (d) 2 190. If $f\{x\} = \begin{bmatrix} \cos x - \sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then which of the following are correct ? [2016-II] 1. $f(\theta) \times f(\phi) = f(\theta + \phi)$ 2. The value of the determinant of the matrix $f(\theta) \times f(\phi)$ is 1. 3. The determinant of $f(x)$ is an even function.	187.	Wh	at is	the va	lue o	f c?	2 A.		JA	1			
(c) 35 (d) 50 188. What is the value of $a + b + c + d$? (a) 62 (b) 63 (c) 65 (d) 68 189. If $m = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $n = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, then what is the value of the determinant of m $\cos\theta - n \sin\theta$? [2016-II] (a) -1 (b) 0 (c) 1 (d) 2 190. If $f\{x\} = \begin{bmatrix} \cos x - \sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then which of the following are correct ? [2016-II] 1. $f(\theta) \times f(\phi) = f(\theta + \phi)$ 2. The value of the determinant of the matrix $f(\theta) \times f(\phi)$ is 1. 3. The determinant of $f(x)$ is an even function.		(a)	-1					(b)	34			
188. What is the value of $a + b + c + d$? (a) 62 (b) 63 (c) 65 (d) 68 189. If $m = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $n = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, then what is the value of the determinant of m $\cos\theta - n \sin\theta$? [2016-II] (a) -1 (b) 0 (c) 1 (b) 0 (c) 1 (c) 1		(c)	35					(d)	50			
(a) 62 (b) 63 (c) 65 (d) 68 189. If m= $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and n = $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, then what is the value of the determinant of m cos θ – n sin θ ? [2016-II] (a) -1 (b) 0 (c) 1 (b) 0 (c) 1 (c)	188.	Wh	at is	the va	lue o	fa+	b + c +	d ?					
(c) 65 (d) 68 189. If $m = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $n = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, then what is the value of the determinant of m $\cos\theta - n \sin\theta$? [2016-II] (a) -1 (b) 0 (c) 1 (d) 2 190. If $f\{x\} = \begin{bmatrix} \cos x - \sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then which of the following are correct ? [2016-II] 1. $f(\theta) \times f(\phi) = f(\theta + \phi)$ 2. The value of the determinant of the matrix $f(\theta) \times f(\phi)$ is 1. 3. The determinant of $f(x)$ is an even function.		(a)	62					(b)	63			
189. If $m = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $n = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, then what is the value of the determinant of $m \cos\theta - n \sin\theta$? [2016-II] (a) -1 (b) 0 (c) 1 (d) 2 190. If $f\{x\} = \begin{bmatrix} \cos x - \sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then which of the following are correct ? [2016-II] 1. $f(\theta) \times f(\phi) = f(\theta + \phi)$ 2. The value of the determinant of the matrix $f(\theta) \times f(\phi)$ is 1. 3. The determinant of $f(x)$ is an even function.		(c)	65					(d)	68			
determinant of m $\cos\theta - n \sin\theta$? [2016-II] (a) -1 (b) 0 (c) 1 (d) 2 190. If $f\{x\} = \begin{bmatrix} \cos x - \sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then which of the following are correct ? [2016-II] 1. $f(\theta) \times f(\phi) = f(\theta + \phi)$ 2. The value of the determinant of the matrix $f(\theta) \times f(\phi)$ is 1. 3. The determinant of $f(x)$ is an even function.	189.	If n	$n = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} $	and n	$=\begin{bmatrix}0\\-\end{bmatrix}$	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$, then	wh	nat is	s the	value of th	ne
(a) -1 (b) 0 (c) 1 (d) 2 190. If $f{x} = \begin{bmatrix} \cos x - \sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then which of the following are correct ? [2016-II] 1. $f(\theta) \times f(\phi) = f(\theta + \phi)$ 2. The value of the determinant of the matrix $f(\theta) \times f(\phi)$ is 1. 3. The determinant of $f(x)$ is an even function.		dete	ermir	ant o	f m co	osθ –	n sin0	?				[2016-II	[]
(c) 1 (d) 2 190. If $f\{x\} = \begin{bmatrix} \cos x - \sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then which of the following are correct ? 1. $f(\theta) \times f(\phi) = f(\theta + \phi)$ 2. The value of the determinant of the matrix $f(\theta) \times f(\phi)$ is 1. 3. The determinant of $f(x)$ is an even function.		(a)	-1				(b) 0					
190. If $f{x} = \begin{bmatrix} \cos x - \sin x & 0\\ \sin x & \cos x & 0\\ 0 & 0 & 1 \end{bmatrix}$, then which of the following are correct ? [2016-II] 1. $f(\theta) \times f(\phi) = f(\theta + \phi)$ 2. The value of the determinant of the matrix $f(\theta) \times f(\phi)$ is 1. 3. The determinant of $f(x)$ is an even function.		(c)	1				((d) 2					
correct ? [2016-II] 1. $f(\theta) \times f(\phi) = f(\theta + \phi)$ 2. The value of the determinant of the matrix $f(\theta) \times f(\phi)$ is 1. 3. The determinant of $f(x)$ is an even function.	190.	If f	`{x}=	$\begin{bmatrix} \cos x \\ \sin x \\ 0 \end{bmatrix}$	x — s co (inx sx)	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}$, the	en whi	ich	oft	he fo	llowing a	re
 f(θ)×f(φ) = f(θ+φ) The value of the determinant of the matrix f(θ) × f(φ) is 1. The determinant of f(x) is an even function. 		corr	rect?									[2016-II]	1
 The value of the determinant of the matrix f(θ) × f(φ) is 1. The determinant of f(x) is an even function. 		1.	f(θ)×f(d) = f	$(\theta +$	(
3. The determinant of $f(x)$ is an even function.		2.	The	value	ofthe	dete	rminan	t of th	em	natri	x f(θ	$) \times f(\phi)$ is	1.
		3.	The	deter	mina	nt of	f(x) is a	an eve	n f	unc	tion.		
Select the correct answer using the code given below:	Select the correct answer using the code g											below:	
(a) 1 and 2 only (b) 2 and 3 only		(a)	1 an	d 2 or	nly		((b) 2 and 3 only					
(c) 1 and 3 only (d) 1, 2 and 3		(c)	1 an	d 3 or		((d) 1, 2 and 3						
191. Which of the following are correct in respect of the system	191.	Wh	ich o	f the f	follov	ving	are cor	rect in	ı re	espe	ect of	the syste	m
		ofe	quati	ons x	+ y +	z=8,	, x –y +	2z = 6	an	nd 32	х –у-	+5z = k?	
of equations $x + y + z = 8$, $x - y + 2z = 6$ and $3x - y + 5z = k$?		1.	The	yhave	e no s	oluti	on.ifk	= 15.				[2016-I	[]
of equations $x + y + z = 8$, $x - y + 2z = 6$ and $3x - y + 5z = k$? 1. They have no solution. if $k = 15$. [2016-II]		2.	The	y have	e infir	nitely	many	soluti	ons	s, if	$\mathbf{k} = 2$	20.	
of equations $x + y + z = 8$, $x - y + 2z = 6$ and $3x - y + 5z = k$? 1. They have no solution. if $k = 15$. [2016-II] 2. They have infinitely many solutions, if $k = 20$.		3.	The	y have	e unic	jue s	olution	, 11 K =	= 2:		1		
		ofe	quati	ons x	+ y +	z =8.	x - y +	2z = 6	an	1 d 3	x – y -	+5z = k?	
of equations $x + y + z = 8$, $x - y + 2z = 6$ and $3x - y + 5z = k$?		1.	The	v have	e no s	oluti	on.ifk	= 15.			2	[2016-II	[]
of equations $x + y + z = 8$, $x - y + 2z = 6$ and $3x - y + 5z = k$? 1. They have no solution. if $k = 15$. [2016-II]		2.	The	y have	e infir	nitely	/ many	soluti	ons	s, if	k = 2	20.	
of equations $x + y + z = 8$, $x - y + 2z = 6$ and $3x - y + 5z = k$? 1. They have no solution. if $k = 15$. [2016-II] 2. They have infinitely many solutions, if $k = 20$.		3.	The	y have	e unic	jue s	olution	, if k =	= 2:	5			
 of equations x + y + z =8, x -y +2z = 6 and 3x -y +5z = k? 1. They have no solution. if k = 15. [2016-II] 2. They have infinitely many solutions, if k = 20. 3. They have unique solution, if k = 25 		C 1	1	·				.1	1		1	1	

Select the correct answer using the code given below:

- (a) 1 and 2 only (b) 2 and 3 only
- (c) 1 and 3 only (d) 1, 2 and 3

$$\begin{aligned} 192 \ A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}, \text{ then which of the following} \\ 18 \text{ are corrected}? \\ 101 \ A = \begin{bmatrix} 1/2 \\ 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}, \text{ then which of the following} \\ 12017-4] \\ \text{ If AB = C, then what is A^2 equal to? \\ 2017-4] \\ \text{ If AB = C, then what is A^2 equal to? \\ 2017-4] \\ \text{ (a) } \begin{bmatrix} 4 & 8 \\ -4 & -6 \end{bmatrix} \\ (b) \begin{bmatrix} 4 & -4 \\ -4 \end{bmatrix} \\ (c) \begin{bmatrix} 4 & -8 \\ -4 & -6 \end{bmatrix} \\ (b) \begin{bmatrix} 4 & -4 \\ -4 \end{bmatrix} \\ (c) \begin{bmatrix} 4 & -8 \\ -4 & -6 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -6 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 4 & -8 \\ -4 & -6 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8 \end{bmatrix} \\ (c) \begin{bmatrix} 2 & -8 \\ -4 & -8$$

206.	If $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then the value of A^4 is [2017-I] (a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$	(a) $(\alpha - \beta)(\beta - \gamma)(\alpha - \gamma)$ (b) $(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)$ (c) $(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)(\alpha + \beta + \gamma)$ (d) 0
207. 208.	$\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ The matrix A has x rows and x + 5 columns. The matrix B has y rows and 11 - y columns. Both AB and BA exist. What are the values of x and y respectively? $\begin{bmatrix} 2017-II \end{bmatrix}$ (a) 8 and 3 (b) 3 and 4 (c) 3 and 8 (d) 8 and 8 If A is a square matrix, then the value of adj A ^T - (adj A) ^T is equal to $\begin{bmatrix} 2017-II \end{bmatrix}$ (a) A (b) 2 A I, where I is the identity matrix (c) null matrix whose order is same as that of A (d) unit matrix whose order is same as that of A	(d) $= 0^{-1}$ 213. The adjoint of the matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$ is [2017-II] (a) $\begin{bmatrix} -1 & 6 & 2 \\ -2 & 1 & -4 \\ 6 & 3 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 6 & -2 \\ -2 & 1 & 4 \\ 6 & -3 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 6 & 1 & 2 \\ 4 & -1 & 2 \\ 6 & 3 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} -6 & 2 & 1 \\ 4 & -2 & 1 \\ 3 & 1 & -6 \end{bmatrix}$ 214. If $A = \begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix}$, then which one of the following is correct?
209.	The value of the determinant $\begin{vmatrix} \cos^2 \frac{\theta}{2} & \sin^2 \frac{\theta}{2} \\ \sin^2 \frac{\theta}{2} & \cos^2 \frac{\theta}{2} \end{vmatrix}$ for all values	(a) $A^2 = -2A$ (b) $A^2 = -4A$ (c) $A^2 = -3A$ (b) $A^2 = -4A$ (c) $A^2 = -4A$
210.	of θ , is [2017-II] (a) 1 (b) $\cos \theta$ (c) $\sin \theta$ (d) $\cos 2\theta$ If a, b, c are non-zero real numbers, then the inverse of the matrix $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$ is equal to [2017-II]	215. If $p + q + r = a + b + c = 0$, then the determinant $\begin{vmatrix} qc & ra & pb \\ rb & pc & qa \end{vmatrix}$ equals [2017-II] (a) 0 (b) 1 (c) $pa + qb + rc$ (d) $pa + qb + rc + a + b + c$ 216. What is the inverse of the matrix [2018-I] $A = \begin{pmatrix} cos \theta & sin \theta & 0 \\ -sin \theta & cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$?
	(a) $\begin{bmatrix} a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & 0 & c^{-1} \end{bmatrix}$ (b) $\frac{1}{abc} \begin{bmatrix} a^{-1} & 0 & 0 \\ 0 & b^{-1} & 0 \\ 0 & 0 & c^{-1} \end{bmatrix}$	(a) $\begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} \cos\theta & 0 & -\sin\theta\\ 0 & 1 & 0\\ \sin\theta & 0 & \cos\theta \end{pmatrix}$
	(c) $\frac{1}{abc}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (d) $\frac{1}{abc}\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix}$	(c) $ \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} $ (d) $ \begin{pmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} $
211.	The system of equations $kx + y + z = 1$, $x + ky + z = k$ and $x + y + kz = k^2$ has no solution if k equals [2017-II] (a) 0 (b) 1 (c) -1 (d) -2	217. If A is a 2×3 matrix and AB is a 2×5 matrix, then B must be a [2018-I] (a) 3×5 matrix (b) 5×3 matrix (c) 3×2 matrix (d) 5×2 matrix
212.	The value of the determinant $\begin{vmatrix} 1 - \alpha & \alpha - \alpha^2 & \alpha^2 \\ 1 - \beta & \beta - \beta^2 & \beta^2 \\ 1 - \gamma & \gamma - \gamma^2 & \gamma^2 \end{vmatrix}$ is equal to [2017-II]	218. If $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ and $A^2 - kA - I_2 = O$, where I_2 is the 2 × 2 identity matrix, then what is the value of k? [2018-I] (a) 4 (b) -4 (c) 8 (d) -8

219. A square matrix A is called orthogonal if [2018-II] (a) $\Lambda = \Lambda^2$

(a)
$$A = A^2$$

(b) $A' = A^{-1}$
(c) $A = A^{-1}$
(d) $A = A'$

Where A' is the transpose of A.

220. For a square matrix A, which of the following properties hold?

1.
$$(A^{-1})^{-1} = A$$

- $2. \quad \det(A^{-1}) = \frac{1}{\det A}$
- 3. $(\lambda A)^{-1} \lambda A^{-1}$ where λ is a scalar

Select the correct answer using the code given below:

- (a) 1 and 2 only(b) 2 and 3 only
- (c) 1 and 3 only (d) 1, 2 and 3
- 221. Which one of the following factors does the expansions of

the determinant
$$\begin{pmatrix} x & y & 3 \\ x^2 & 5y^3 & 9 \\ x^3 & 10y^3 & 27 \end{pmatrix}$$
 contain? [2018-II]
(a) x-3 (b) x-y

(c) Y-3(d) x - 3y

222. What is the adjoint of the matrix

$$\begin{pmatrix} \cos(-\theta) - \sin(-\theta) \\ -\sin(-\theta)\cos(-\theta) \end{pmatrix}?$$
 [2018-II]

(a)
$$\begin{pmatrix} \cos\theta - \sin\theta\\ -\sin\theta\cos\theta \end{pmatrix}$$
 (b) $\begin{pmatrix} \cos\theta\sin\theta\\ \sin\theta\cos\theta \end{pmatrix}$

(c)
$$\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$
 (d) $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$

- 223. If A and B are two invertible square matrices of same order, then what is $(AB)^{-1}$ equal to? [2018-II]
 - (a) $B^{-1}A^{-1}$ (b) $A^{-1}B^{-1}$ (c) $B^{-1}A$ (d) $A^{-1}B$

224. If a + b + c = 0, then one of the solution of [2018-II]

$$\begin{vmatrix} a - x & c & b \\ c & b - x & a \\ b & a & c - x \end{vmatrix} = 0 \text{ is}$$

(a) $x = a$
(b) $x = \sqrt{\frac{3(a^2 + b^2 + c^2)}{2}}$

(c)
$$x = \sqrt{\frac{2(a^2 + b^2 + c^2)}{3}}$$

(d) $x = 0$

M-4	129
$\begin{pmatrix} 2\\ -8 \end{pmatrix}$	4) x)
2018-	II]
2018-	·II]
	2018-

- (b) is consistent, with a unique solution
- (c) is consistent, with infinitely many solutions
- (d) has its solution lying along x-axis in three dimensional space
- 227. If u, v and w (all positive) are the pth, qth and rth terms of a GP, the determinant of the matrix [2018-II]

$$\begin{pmatrix} \ln u & pl \\ \ln v & ql \\ \ln w & rl \end{pmatrix}$$
 is

(a) 0

[2018-II]

- (b) 1
- (c) (p-q)(q-r)(r-p)
- (d) $\ln u \times \ln v \times \ln w$
- 228. Consider the following in respect of matrices A, B and C of same order: [2018-II]
 - 1. (A+B+C)' = A'+B'+C'
 - 2. (AB)' = A'B'
 - 3. (ABC)' = C'B'A'

Where A' is the transpose of the matrix A. Which of the above are correct?

- (b) 2 and 3 only (a) 1 and 2 only
- (c) 1 and 3 only (d) 1, 2 and 3
- 229. Let matrix B be the adjoint of a square matrix A, $\ell\,$ be the identity matrix of same order as A. If $k \neq 0$ is the determinant of the matrix A, then what is AB equal to? [2018-II]
 - (a) ℓ (b) k *l*
 - (c) $k^2 \ell$ (d) $(1/k)\ell$

230. What is the determinant of the matrix $\begin{pmatrix} x & y & y+z \\ z & z & z+x \\ y & z & x+y \end{pmatrix}$?

[2018-II]

(a)
$$(x-y)(y-z)(z-x)$$
 (b) $(x-z)(z-x)$
(c) $(y-z)(z-x)$ (d) $(z-x)^2(x+y+z)$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 + \sin A & 1 + \sin B & 1 + \sin C \\ \sin A + \sin^2 A & \sin B + \sin^2 B & \sin C + \sin^2 C \end{vmatrix} = 0,$$

then which one of the following is correct? [2018-II]

- (a) The triangle ABC is isosceles
- (b) The triangle ABC is equilateral
- (c) The triangle ABC is scalene
- (d) No conclusion can be drawn with regard to the nature of the triangle
- 232. Consider the following in respect of matrices A and B of same order: [2018-II]
 - 1. $A^2 B^2 = (A + B) (A B)$
 - 2. $(A-I)(I+A)=0 \Leftrightarrow A^2=I$

Where I is the identity matrix and O is the null matrix.

- Which of the above is/are correct?
- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 233. What is the area of the triangle with vertices [2018-II]

$$\begin{pmatrix} x_1, \frac{1}{x_1} \end{pmatrix}, \begin{pmatrix} x_2, \frac{1}{x_2} \end{pmatrix}, \begin{pmatrix} x_3, \frac{1}{x_3} \end{pmatrix}?$$
(a) $|(x_1 - x_2)(x_2 - x_3)(x_3 - x_1)|$
(b) 0
 $|(x_1 - x_2)(x_2 - x_3)(x_3 - x_1)|$

(c)
$$\left| \frac{x_1 x_2 x_3}{x_1 x_2 x_3} \right|$$

(d)
$$\frac{(x_1 - x_2)(x_2 - x_3)(x_3 - x_1)}{2x_1x_2x_3}$$

234.	If B = $\begin{bmatrix} 3 & 2 & 0 \\ 2 & 4 & 0 \\ 1 & 1 & 0 \end{bmatrix}$, then wh	at is adjoint of B equ	al to ?
			[2019-I]
	(a) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -2 & -1 & 8 \end{bmatrix}$	(b) $\begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & -1 \\ 0 & 0 & 8 \end{bmatrix}$	
	(c) $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	(d) It does not exi	st
235.	If $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then the mat	trix A is/an	[2019-I]
	(a) Singular matrix	(b) Involutory mat	rix
	(c) Nilpotent matrix	(d) Idempotent ma	trix
236.	If A is an identity matrix of	order 3, then its inve	erse (A ⁻¹) [2019-1]
	(a) is equal to null matrix	(b) is equal to A	
2 27	(c) is equal to 3A	(d) does not exist	
237.	A is a square matrix of order	3 such that its determ	111111111111111111111111111111111111
	what is the determinant of $(a) = 64$	(b) 26	[2019-1]
	(a) 04 (c) 32	(d) 4	
238.	If A is a square matrix of or	der $n > 1$, then which	one of the
	following is correct?	,	[2019-1]
	(a) $\det(-A) = \det A$	(b) det $(-A) = (-1)$	ⁿ det A
	(c) $\det(-A) = -\det A$	(d) $\det(-A) = n d$	et A
DIR	ECTION (Qs. 239 - 240) :	Consider the follow	ring for the
next	02 (two) items :		
Let A	A and B be (3×3) matrices wi	th det $A = 4$ and det E	3 = 3.
239.	What is det (2AB) equal to	?	[2019 - I]

(a) 96 (b) 72 (c) 48 (d) 36
240. What is det
$$(3AB^{-1})$$
 equal to ? [2019-I]
(a) 12 (b) 18 (c) 36 (d) 48

ANSWER KEY																			
1	(d)	25	(b)	49	(a)	73	(c)	97	(a)	121	(d)	145	(b)	169	(c)	193	(b)	217	(a)
2	(c)	26	(c)	50	(c)	74	(b)	98	(a)	122	(b)	146	(a)	170	(c)	194	(c)	218	(a)
3	(a)	27	(d)	51	(c)	75	(d)	99	(a)	123	(b)	147	(a)	171	(a)	195	(c)	219	(b)
4	(d)	28	(c)	52	(a)	76	(b)	100	(d)	124	(d)	148	(b)	172	(b)	196	(b)	220	(a)
5	(b)	29	(b)	53	(b)	77	(d)	101	(a)	125	(c)	149	(c)	173	(c)	197	(d)	221	(a)
6	(c)	30	(b)	54	(a)	78	(a)	102	(c)	126	(c)	150	(c)	174	(d)	198	(b)	222	(a)
7	(c)	31	(b)	55	(a)	79	(b)	103	(a)	127	(b)	151	(a)	175	(b)	199	(a)	223	(a)
8	(d)	32	(d)	56	(d)	80	(d)	104	(b)	128	(c)	152	(c)	176	(a)	200	(d)	224	(d)
9	(a)	33	(c)	57	(c)	81	(c)	105	(d)	129	(a)	153	(c)	177	(a)	201	(c)	225	(b)
10	(c)	34	(c)	58	(b)	82	(b)	106	(a)	130	(a)	154	(d)	178	(a)	202	(d)	226	(b)
11	(c)	35	(c)	59	(b)	83	(b)	107	(a)	131	(b)	155	(d)	179	(d)	203	(b)	227	(a)
12	(d)	36	(b)	60	(a)	84	(c)	108	(c)	132	(a)	156	(a)	180	(a)	204	(a)	228	(c)
13	(d)	37	(c)	61	(d)	85	(c)	109	(c)	133	(b)	157	(b)	181	(b)	205	(b)	229	(b)
14	(c)	38	(b)	62	(c)	86	(d)	110	(b)	134	(b)	158	(b)	182	(b)	206	(a)	230	(d)
15	(a)	39	(c)	63	(c)	87	(a)	111	(a)	135	(c)	159	(a)	183	(d)	207	(c)	231	(a)
16	(b)	40	(b)	64	(d)	88	(d)	112	(d)	136	(a)	160	(d)	184	(a)	208	(c)	232	(b)
17	(d)	41	(a)	65	(b)	89	(c)	113	(b)	137	(a)	161	(b)	185	(d)	209	(b)	233	(d)
18	(c)	42	(b)	66	(a)	90	(d)	114	(b)	138	(c)	162	(c)	186	(d)	210	(a)	234	(a)
19	(c)	43	(b)	67	(d)	91	(d)	115	(a)	139	(d)	163	(b)	187	(c)	211	(d)	235	(b)
20	(b)	44	(c)	68	(b)	92	(c)	116	(c)	140	(a)	164	(c)	188	(b)	212	(b)	236	(b)
21	(a)	45	(d)	69	(b)	93	(c)	117	(a)	141	(c)	165	(d)	189	(c)	213	(b)	237	(d)
22	(a)	46	(b)	70	(b)	94	(a)	118	(a)	142	(b)	166	(d)	190	(d)	214	(b)	238	(b)
23	(c)	47	(c)	71	(d)	95	(d)	119	(c)	143	(a)	167	(a)	191	(a)	215	(a)	239	(a)
24	(c)	48	(c)	72	(c)	96	(c)	120	(a)	144	(d)	168	(a)	192	(d)	216	(a)	240	(c)

HINTS & SOLUTIONS

3.

1. (d) As given
$$A(\alpha) = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

and $A(\beta) = \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}$
Hence,
 $A(\alpha) \cdot A(\beta) = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}$
 $= \begin{bmatrix} \cos \alpha \cos \beta - \sin \alpha \sin \beta & -\cos \alpha \sin \beta - \sin \alpha \cos \beta \\ \sin \alpha \cos \beta + \cos \alpha \sin \beta & \sin \alpha \sin \beta + \cos \alpha \cos \beta \end{bmatrix}$
 $= \begin{vmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{vmatrix} = A_{(\alpha + \beta)}$
2. (c) $f(x) = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & 4 \sin 2x \\ \sin^2 x & 1 + \cos^2 x & 4 \sin 2x \\ \sin^2 x & \cos^2 x & 1 + 4 \sin 2x \end{vmatrix}$
Applying $C_1 \rightarrow C_1 + C_2$

$$= \begin{vmatrix} 2 & \cos^2 x & 4\sin 2x \\ 2 & 1 + \cos^2 x & 4\sin 2x \\ 1 & \cos^2 x & 1 + 4\sin 2x \end{vmatrix}$$

(Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$)

$$= \begin{vmatrix} 2 & \cos^2 x & 4\sin 2x \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix}$$

 $f(x) = 2 + 4\sin 2x$

$$\therefore -1 \le \sin 2x \le 1, \text{ maximum value of } \sin 2x = 1$$

Thus, maximum value of $f(x) = 2 + 4 = 6$

(a) A matrix is singular if value of its determinant is zero.

Given that matrix
$$\begin{bmatrix} \cos\theta & \sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$
 is singular,

$$\begin{vmatrix} \cos\theta & \sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = 0 \Rightarrow \cos^2 \theta - \sin^2 \theta = 0 = \cos \frac{\pi}{2}$$
$$\Rightarrow \cos 2\theta = \cos \frac{\pi}{2} \Rightarrow \theta = \frac{\pi}{4}$$
The given system of equations is

$$x+y+z=2$$
 ...(i)
2 x+y-z=3 ...(ii)

and
$$3x+2y+kz=4$$
 ...(iii)

This system has a unique solution if

$$\begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & k \end{vmatrix} \neq 0$$

Applying
$$C_2 \rightarrow C_2 - C_1$$
 and $C_3 \rightarrow C_3 - C_1$
We get $\begin{vmatrix} 1 & 0 & 0 \\ 3 & -1 & -3 \end{vmatrix} \neq 0$

$$\Rightarrow -1(k-3) - 3 \neq 0 \text{ or } -k+3 - 3 \neq 0 \Rightarrow k \neq 0$$

5. (b) As given
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 and $B = \begin{vmatrix} 1 & x \\ 0 & 1 \end{vmatrix}$
 $AB = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & x \\ 0 & -1 \end{bmatrix}$
and $BA = \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -x \\ 0 & -1 \end{bmatrix}$
Given that $AB = BA$
We have, $\begin{bmatrix} 1 & x \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -x \\ 0 & -1 \end{bmatrix}$
 $\Rightarrow x = -x \Rightarrow 2x = 0 \Rightarrow x = 0$
6. (c) Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$

Let rows 1 and 2 be interchanged.

and B =
$$\begin{bmatrix} d & e & f \\ a & b & c \\ g & h & i \end{bmatrix}$$

A + B =
$$\begin{bmatrix} a+d & b+e & c+f \\ a+d & b+e & c+f \\ 2g & 2h & 2i \end{bmatrix}$$

|A+B| =
$$\begin{vmatrix} a+d & b+e & c+f \\ a+d & b+e & c+f \\ 2g & 2h & 2i \end{vmatrix}$$

= 0 (since two rows are identical)

7. (c)
$$\therefore A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 2 & 3 & -1 \end{bmatrix}$$

Since, adj $A = (\alpha_{ij})$ so, $\alpha_{ij} = a_{ji}$ of A.

$$\therefore \alpha_{23} = a_{32} = (-1)^{2+3} \begin{vmatrix} 1 & 3 \\ 4 & 4 \end{vmatrix} = -(4-12) = 8$$

8. (d) Since, A and B be two invertible square matrices each of order n, then $(AB)^{-1} = (B^{-1}) (A^{-1})$

$$\Rightarrow \frac{\mathrm{adj}(\mathrm{AB})}{|\mathrm{AB}|} = \frac{\mathrm{adj} \mathrm{B}}{|\mathrm{B}|} \cdot \frac{\mathrm{adj} \mathrm{A}}{|\mathrm{A}|}$$

Since $|\mathrm{AB}| = |\mathrm{B}||\mathrm{A}|$
adj $(\mathrm{AB}) = (\mathrm{adj} \mathrm{B}) (\mathrm{adj} \mathrm{A})$

9. (a) As given M =
$$\begin{bmatrix} 4 & k & 0 \\ 6 & 3 & 0 \\ 2 & t & k \end{bmatrix}$$

10.

M will be invertible, if

$$\begin{bmatrix} 4 & k & 0 \\ 6 & 3 & 0 \\ 2 & t & k \end{bmatrix} \neq 0$$

$$\Rightarrow k \neq 0 \text{ or } k (12 - 6k) \neq 0$$

$$\Rightarrow k \neq 0, k \neq 2$$

Thus, statement (1) and (2) are correct.

(c) Given matrix is
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

So, $A^2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix} = 3 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
and $A^3 = 3 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $= 3 \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix} = 9 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
 $= 3^2 A$

Similarly $A^4 = 3^3 A$. Hence, $A^n = 3^{n-1} A$

- 11. (c) Since, AB is defined, neither A nor B is singular i.e., they are non-zero matrix and if AB = 0 both A and B are square matrix. So, A and B are non-zero square matrices.
- 12. (d) If A is a matrix of order p × q and B is a matrix of order s × t, then AB will exist when the number of column in A is equal to the number of rows in B ⇒ q = s

$$\Rightarrow q =$$

13.

(d) Since, A is a square matrix and A^{T}

 $A - A^{T} = 0 \implies A = A^{T}.$

A is a symmetric matrix. Considering following two points.

1. No two rows or two columns should be identical and

4.

(d)

2. There should be two 1's and one 0, in every row or column. Such determinant can be found. (c) In the third order determinant $\begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$ which 14. satisfied these conditions. Its value is 2, which is largest if the elements of a determinant are 0 or 1. 15. (a) We know that If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $adj A = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ and |A| = ad - bc $A^{-1} = \frac{adjA}{|A|} if |A| \neq 0$ So, $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{|A|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ Given that $A = \begin{bmatrix} 1+i & 1+i \\ -1+i & 1-i \end{bmatrix}$ Then adj A = $\begin{bmatrix} 1-i & -1-i \\ 1-i & 1+i \end{bmatrix}$ and, $|A| = \begin{vmatrix} 1+i & 1+i \\ -1+i & 1-i \end{vmatrix}$ $=(1-i^2)-(i^2-1)=(1-i^2-i^2+1)=1+1+1+1=4$ \Rightarrow A⁻¹ = $\frac{1}{4} \begin{bmatrix} 1-i & -1-i \\ 1-i & 1+i \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ c-5 \end{bmatrix} \Rightarrow \begin{bmatrix} 2x+3y \\ 4x+6y \end{bmatrix} = \begin{bmatrix} 5 \\ c-5 \end{bmatrix}$ 16. $\Rightarrow 2x+3y=5$...(1) and 4x + 6y = c - 5...(2) \Rightarrow Solving equation (1) and (2) c = 15 Now, if c = 15, equations 1 and 2 becomes \Rightarrow 2x+3y=5 and 4x+6y=10 This shows that the equation has an infinite set of solutions. For other values of c, equation has no solution. 17. (d) We know that det (A) = $\frac{1}{\det(A^{-1})}$ $\mathbf{A}^{-1} = \begin{bmatrix} 1 & -2 \\ -2 & 2 \end{bmatrix}$

$$\Rightarrow |\mathbf{A}^{-1}| = \begin{vmatrix} 1 & -2 \\ -2 & 2 \end{vmatrix} = 2 - 4 = -2 \Rightarrow \det(\mathbf{A}) = -\frac{1}{2}$$

18. (c) If AB = AC, then B = C, if A is non-singular. 19. (c) $\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ = $a (bc - a^2) - b (b^2 - ac) + c (ab - c^2)$ = $abc - a^3 - b^3 + abc + abc - c^3 = 3abc - (a^3 + b^3 + c^3)$ Given that $a^3 + b^3 + c^3 = 0$ $\Rightarrow \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 3abc.$ 20. (b) Given that, $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ $A^2 = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 + 6 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} 1 & 8 \\ 0 & 9 \end{bmatrix}$ Since, $f(x) = x^2 - x + 2$ Putting A in place of x $f(A) = A^2 - A + 2I$ $= \begin{bmatrix} 1 & 8 \\ 0 & 9 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 - 1 + 2 & 8 - 2 + 0 \\ 0 - 0 + 0 & 9 - 3 + 2 \end{bmatrix}$ $= \begin{bmatrix} 2 & 6 \\ 0 & 8 \end{bmatrix}$

21. (a) If there is matrix of m rows and n columns and another with n rows and k columns, their product will be a matrix of m rows and k column.A is a non-null matrix with one row and 5 columns and B is a non-null matrix with 5 rows and one column.

Therefore number of row in $A \times B$ is 1.

22.

(a)
$$A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 $AB = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 $= \begin{pmatrix} 2+0 & 0+3 \\ 1+0 & 0+4 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$
 $BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$
 $= \begin{pmatrix} 2+0 & 3+0 \\ 0+1 & 0+4 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$
Also,
 $A + B = \begin{pmatrix} 3 & 3 \\ 1 & 5 \end{pmatrix}$
 $(A + B)^2 = \begin{pmatrix} 9+3 & 9+15 \\ 3+5 & 3+25 \end{pmatrix} = \begin{pmatrix} 12 & 24 \\ 8 & 28 \end{pmatrix}$
 $A^2 = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 4+3 & 6+12 \\ 2+4 & 3+16 \end{pmatrix} = \begin{pmatrix} 7 & 18 \\ 6 & 19 \end{pmatrix}$
 $B^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 $A^2 + B^2 + 2AB$

$$\Rightarrow \begin{bmatrix} a+2c & b+2d \\ 0+3c & 0+3d \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 6 & 3 \end{bmatrix}$$
$$\Rightarrow 3c = 6 \text{ or } c = 2$$
$$3d = 3 \text{ or } d = 1,$$
$$a+2 \times 2 = -1 \text{ or } a = -5$$
$$b+2 \times 1 = 0, b = -2$$
$$So, A = \begin{bmatrix} -5 & -2 \\ 2 & 1 \end{bmatrix}$$
$$(cdi A)$$

25.

(b) We know that
$$A^{-1} = \frac{(adjA)}{|A|}$$

or, $A A^{-1} = \frac{A \cdot Ad_j A}{|A|}$
or, $I_n = \frac{A \cdot Ad_j A}{|A|}$
 $A (adj A) = |A| I_n = |A| \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$

26. (c)
$$A = \begin{bmatrix} x & x^{2} & 1+x^{2} \\ y & y^{2} & 1+y^{2} \\ z & z^{2} & 1+z^{2} \end{bmatrix}$$
$$|A| = \begin{vmatrix} x & x^{2} & 1+x^{2} \\ y & y^{2} & 1+y^{2} \\ z & z^{2} & 1+z^{2} \end{vmatrix}$$

$$\begin{aligned} & \text{Applying } R_1 \rightarrow R_1 - R_2 \text{ and } R_2 \rightarrow R_2 - R_3 \\ & |A| = \begin{vmatrix} x - y & (x - y)(x + y) & (x - y)(x + y) \\ y - z & (y - z)(y + z) & (y - z)(y + z) \\ z & z^2 & 1 + z^2 \end{vmatrix} \\ & = (x - y) (y - z) \begin{vmatrix} 1 & x + y & x + y \\ 1 & y + z & y + z \\ z & z^2 & 1 + z^2 \end{vmatrix} \\ & \text{Applying } C_3 \rightarrow C_3 - C_2 \\ & |A| = (x - y) (y - z) \begin{vmatrix} 1 & x + y & 0 \\ 1 & y + z & 0 \\ z & z^2 & 1 \end{vmatrix} \\ & = (x - y) (y - z) [1 \{y + z - (x + y)] \\ & = (x - y) (y - z) (z - x) \end{aligned}$$

27. (d)
$$A = \begin{bmatrix} 0 & 0 & q \\ 2 & 5 & 1 \\ 8 & p & p \end{bmatrix}$$

Matrix A will be singular, when |A|=0, |A| will be zero when either one row or one column is zero.

$$= \begin{pmatrix} 7 & 18 \\ 6 & 19 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + 2 \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$
$$= \begin{pmatrix} 12 & 24 \\ 8 & 28 \end{pmatrix} = (A + B)^{2}$$
So, Assertion A is correct
R is AB = BA
Hence, R is correct.
Since this leads from Assersion A, then both A and R
are individually true and R is the correct explanation
of A.
23. (c) $A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \cos \alpha & \sin \alpha \end{pmatrix}$ $B = \begin{pmatrix} \cos \alpha & \cos \alpha \\ \sin \alpha & \sin \alpha \end{pmatrix}$ $AB = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \cos \alpha & \sin \alpha \end{pmatrix} \begin{pmatrix} \cos \alpha & \cos \alpha \\ \sin \alpha & \sin \alpha \end{pmatrix}$ $\begin{pmatrix} \cos^{2} \alpha + \sin^{2} \alpha & \cos^{2} \alpha + \sin^{2} \alpha \\ \cos^{2} \alpha + \sin^{2} \alpha & \cos^{2} \alpha + \sin^{2} \alpha \end{pmatrix}$
$$= \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \neq I,$$
So, A is true. Since product of two matrix may be
equal to identity matrix.
so, R is false and A is true.
24. (c) Let $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} = B$

Then BA =
$$\begin{bmatrix} -1 & 0 \\ 6 & 3 \end{bmatrix}$$

 $\Rightarrow A = B^{-1} \begin{bmatrix} -1 & 0 \\ -6 & 3 \end{bmatrix}$
 $|B| = 3,$
adj B = $\begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix}$
B⁻¹ = $\frac{1}{3} \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix}$
 $\Rightarrow A = \frac{1}{3} \begin{bmatrix} 3 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 6 & 3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -3 - 12 & -6 \\ 6 & 3 \end{bmatrix}$
 $= \begin{bmatrix} -5 & -2 \\ 2 & 1 \end{bmatrix}$
Aliter:
LetA = $\begin{bmatrix} a & b \\ c & d \end{bmatrix},$
then $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 6 & 3 \end{bmatrix}$

(1) For q = 0

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 5 & 1 \\ 8 & p & p \end{bmatrix}$$

$$\Rightarrow |A|=0$$

$$\therefore A \text{ is singular.}$$
(2) For p = 0

$$\begin{bmatrix} 0 & 0 & q \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 5 & 5 \\ 8 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow |A| = q \begin{vmatrix} 2 & 5 \\ 8 & 0 \end{vmatrix} = -40q$$

∴ A is not singular.

(3) For
$$p = 20$$

$$|\mathbf{A}| = \mathbf{q} \begin{vmatrix} 2 & 5 \\ 8 & 20 \end{vmatrix} = 40 - 40 = 0$$

- \therefore A is singular. Thus codes (1) or (3) are correct.
- 28. (c) We know that, adj A and A has same value of determinant, if det A = 0, then det (adj A) = 0

so, statement (1) is correct.

Also If A is a matrix the determinant of A^{-1} equals inverse of determinant A, so, $det(A^{-1}) = (det A)^{-1}$, if A is non singular; Statement 2 is correct.

Thus both (1) and (2) are correct.

(b) Let a be an m \times n matrix, then A⁻¹ will exist if m = n since 29. only square matrix has determinant and det A $\neq 0$

$$[\text{Since } A^{-1} = \frac{\text{adj } A}{|A|}]$$

- 30. (b) If A is non-singular and B is singular, then AB and $A^{-1}B$ are non-singular. Statements (2) and (4) are correct.
- 31. (b) A be a square matrix of order $n \times n$ where $n \ge 2$. B be a matrix obtained from A with first and second rows interchanged. Then, det A = - det B. Since interchanging any two rows makes the sign change with same value.

$$x-y+2x = 0$$
 ...(i)
 $kx-y+z = 0$...(ii)
 $3x+y-3x = 0$...(iii)

System of equations posses a unique solution, if

$$|\mathbf{A}| = \begin{vmatrix} 1 & -1 & 2 \\ \mathbf{k} & -1 & 1 \\ 3 & 1 & -3 \end{vmatrix} \neq \mathbf{0}$$

Applying $C_1 \rightarrow C_1 + C_2$ and $C_2 \rightarrow C_2 + \frac{1}{2}C_3$

$$A = \begin{vmatrix} 0 & 0 & 2 \\ k-1 & -\frac{1}{2} & 1 \\ 4 & -\frac{1}{2} & -3 \end{vmatrix} = -\frac{1}{2} \begin{vmatrix} 0 & 0 & 2 \\ k-1 & -1 & 1 \\ 4 & -1 & -3 \end{vmatrix}$$

L

$$= \frac{1}{2} \times 2[(k-1)(-1) - (4)(-1)], 0$$
$$\Rightarrow -(-k+1+4) \neq 0 \Rightarrow k-5 \neq 0 \Rightarrow k \neq 5$$

Thus, the system does not posses unique solution, if k = 5

33. (c) Given that,
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$$

34.

T.

$$\therefore \qquad A^2 = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 1+4 & 2+4 \\ 2+4 & 4+4 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 6 \\ 6 & 8 \end{bmatrix}$$

Let $A^2 + xA + yI = 0$ where x and y are constant.

$$\Rightarrow \begin{bmatrix} 5 & 6 \\ 6 & 8 \end{bmatrix} + \begin{bmatrix} x & 2x \\ 2x & 2x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 5+x+y & 6+2x \\ 6+2x & 8+2x+y \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
So, $6+2x=0 \Rightarrow x=-3$
 $5+x+y=0 \Rightarrow y=-5-x=-2$
 $\Rightarrow A^2-3A-2I=0$

(c) System of equation is given as : (k+1)x+8y=4k....(1) and kx + (k+3)y = 3k - 1....(2) Here, $a_1 = k + 1$, $b_1 = 8$, $c_1 = 4k$, $a_2 = k$, $b_2 = k + 3$ and $c_2 = 3k - 1$

Such a system of equations will have infinite number of solution, if

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

i.e.,
$$\frac{k+1}{k} = \frac{8}{k+3} = \frac{4k}{3k-1}$$

Taking last two we get
$$8(3k-1) = 4k(k+3)$$
$$\Rightarrow 24k-8 = 4k^2 + 12k$$
$$\Rightarrow 4k^2 - 12k + 8 = 0$$
$$\Rightarrow k^2 - 3k + 2 = 0$$
$$\Rightarrow (k-1)(k-2) \ge 0$$
$$\Rightarrow k = 1, 2$$

Taking first two (k+1)(k+3) = 8k

=

$$\Rightarrow k^{2} + 4k + 3 - 8k = 0 \Rightarrow k^{2} - 4k + 3 = 0$$

$$\Rightarrow (k-1) (k-3) = 0$$

So, k = 1,3.
Combining both, k = 1, 2, 3.
Thus, this system have 3 values of k.
35. (c) The given system of equations are :

$$p^{3}x + (p+1)^{3}y = (p+2)^{3} \qquad \dots(1)$$

$$px + (p+1)y = (p+2) \qquad \dots(2)$$

$$x + y = 1 \qquad \dots(3)$$

This system is consistent, if values of x and y from first
two equation satisfy the third equation.

$$which \Rightarrow \begin{vmatrix} p^{3} & (p+1)^{3} & (p+2)^{3} \\ p & (p+1) & (p+2) \\ 1 & 1 & 1 \end{vmatrix} = 0$$

Applying $C_{2} \rightarrow C_{2} - C_{1}$

$$\Rightarrow \begin{vmatrix} p^{3} & (p+1)^{3} - p^{3} & (p+2)^{3} - p^{3} \\ p & 1 & 2 \\ 1 & 0 & 0 \end{vmatrix} = 0$$

$$\Rightarrow 2(p+1)^{3} - 2p^{3} - (p+2)^{3} + p^{3} = 0$$

$$\Rightarrow 2(p^{3}+1+3p^{2}+3p) - 2p^{3} - (p^{3}+8+12p+6p^{2}) + p^{3} = 0$$

$$\Rightarrow 2p^{3}+2+6p^{2}+6p-2p^{3} - p^{3} - 8 - 12p - 6p^{2} + p^{3} = 0$$

$$\Rightarrow -6 - 6p = 0$$

$$\Rightarrow p = -1$$

36. (b) Given matrices are :

$$A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix} \text{ and } A^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2x & 0 \\ 0 & 2x \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow 2x = 1$$

37. (c) Let $A = [a_{ij}]_{m \times m}$ be a matrix and $C = [c_{ij}]_{m \times m}$ be another matrix where cij is the cofactor of a_{ij} .

: The value of
$$|AC| = |A|^{m+1}$$

38. (b) Given matrix is :

$$\begin{vmatrix} x^2 & -2x & -2\omega^2 \\ 2 & \omega & -\omega \\ 0 & \omega & 1 \end{vmatrix} = 0$$

By $C_2 \rightarrow C_2 + C_3$, we get

$$\Rightarrow \begin{vmatrix} x^{2} & -2x - 2\omega^{2} & -2\omega^{2} \\ 2 & 0 & -\omega \\ 0 & 1 + \omega & 1 \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} x^{2} & -2x - 2\omega^{2} & -2\omega^{2} \\ 2 & 0 & -\omega \\ 0 & -\omega^{2} & 1 \end{vmatrix} = 0$$

$$[\because 1 + \omega = -\omega^{2}]$$

$$\Rightarrow \omega^{2} \begin{vmatrix} x^{2} & -2\omega^{2} \\ 2 & -\omega \end{vmatrix} + 1 \begin{vmatrix} x^{2} & -2x - 2\omega^{2} \\ 2 & -0 \end{vmatrix} = 0$$

$$\Rightarrow \omega^{2} (-\omega x^{2} + 4\omega^{2}) - (-4x - 4\omega^{2}) = 0$$

$$\Rightarrow -x^{2} + 4\omega + 4x + 4\omega^{2} = 0$$

$$\Rightarrow -x^{2} + 4\omega - 4x - 4 - 4\omega = 0 \Rightarrow -x^{2} - 4x - 4 = 0$$

$$\Rightarrow (x + 2)^{2} = 0 \Rightarrow x = -2$$

39. (c) Given matrix is:
$$A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 4+4 & 4+4 \\ 4+4 & 4+4 \end{bmatrix} = \begin{bmatrix} 2^{3} & 2^{3} \\ 2^{3} & 2^{3} \end{bmatrix}$$
$$A^{3} = \begin{bmatrix} 8 & 8 \\ 8 & 8 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 16+16 & 16+16 \\ 16+16 & 16+16 \end{bmatrix}$$
$$= \begin{bmatrix} 32 & 32 \\ 32 & 32 \end{bmatrix} = \begin{bmatrix} 2^{5} & 2^{5} \\ 2^{5} & 2^{5} \end{bmatrix}$$

Going this way we get

$$A^{4} = \begin{bmatrix} 2^{7} & 2^{7} \\ 2^{7} & 2^{7} \end{bmatrix} \implies A^{n} = \begin{bmatrix} 2^{2n-1} & 2^{2n-1} \\ 2^{2n-1} & 2^{2n-1} \end{bmatrix}$$

40. (b) Number of zeroes in a lower triangular matrix of order $n \times n$ is

$$1+2+3+....+n = \frac{n(n+1)}{2}$$

Number of zeros = 10

$$\Rightarrow \frac{n(n+1)}{2} = 10 \Rightarrow n^2 + n - 20 = 0$$

$$\Rightarrow (n+5)(n-4) = 0 \Rightarrow n = 4 \text{ or } -5$$

(-5 is meaningless)
$$\Rightarrow n = 4. \Rightarrow \text{ order of the matrix is } 4 \times 4$$

41. (a) Let
$$A = \begin{bmatrix} 1 & p & q \\ 0 & x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} 1 & -p & -q \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$AA^{-1} = I$$

$$\Rightarrow \begin{bmatrix} 1 & p & q \\ 0 & x & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -p & -q \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow x = 1$$
42. (b) Given that, $AB = \begin{bmatrix} 4 & 11 \\ 4 & 5 \end{bmatrix}$ and $A = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$
Let $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

$$\Rightarrow \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 4 & 11 \\ 4 & 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3a + 2c & 3b + 2d \\ a + 2c & b + 2d \end{bmatrix} = \begin{bmatrix} 4 & 11 \\ 4 & 5 \end{bmatrix}$$

$$\Rightarrow 3a + 2c = 4 \text{ and } a + 2c = 4 \qquad \dots(1)$$
and $3b + 2d = 11 \text{ and } b + 2d = 5 \qquad \dots(2)$
From equation set (1) $a = 0$ and $c = 2$ and from equation set (2), $b = 3$ and $d = 1$

$$\Rightarrow B = \begin{bmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix}$$
Hence $|B| = \begin{vmatrix} 0 & 3 \\ 2 & 1 \end{bmatrix} = 0 - 6 = -6$
43. (b) Let $D = \begin{vmatrix} a + b + c & a + b & a \\ 4a + 3b + 2c & 3a + 2b & 2a \\ 10a + 6b + 3c & 6a + 3b & 3a \end{vmatrix}$
By $R_2 \rightarrow R_2 - 2R_1$ and $R_3 \rightarrow R_3 - 3R_1$, we get :
$$\Rightarrow \begin{vmatrix} a + b + c & a + b & a \\ 2a + b & a & 0 \\ 7a + 3b & 3a & 0 \end{vmatrix}$$
By $C_1 \rightarrow C_1 - C_2$ gives :
$$\Rightarrow \begin{vmatrix} c & a + b & a \\ a + b & a & 0 \\ 4a + 3b & 3a & 0 \end{vmatrix}$$
Again by $R_3 \rightarrow R_3 - 3R_2$, we get :
$$D = \begin{vmatrix} c & a + b & a \\ a + b & a & 0 \\ a & 0 & 0 \end{vmatrix}$$

= $-a^3$ which is independent of b and c.

44. (c) Given matrix is:

$$X = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
$$\therefore X^{2} = \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -2 - 6 \\ 0 & 9 \end{bmatrix} = \begin{bmatrix} 1 & -8 \\ 0 & 9 \end{bmatrix}$$

So, the given expression is :

$$X^{2}-2X+3I = \begin{bmatrix} 1 & -8 \\ 0 & 9 \end{bmatrix} - 2\begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} + 3\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -8 \\ 0 & 9 \end{bmatrix} + \begin{bmatrix} -2 & +4 \\ 0 & -6 \end{bmatrix} + \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 1-2+3 & -8+4 \\ 0 & 9-6+3 \end{bmatrix} = \begin{bmatrix} 2 & -4 \\ 0 & 6 \end{bmatrix} = 2\begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix} = 2X$$

45. (d) Since, adjoint of the square matrix A is $B \Rightarrow \frac{B}{|A|} = A^{-1}$

$$\Rightarrow \frac{AB}{|A|} = AA^{-1} = I$$
$$\Rightarrow AB = |A|I \Rightarrow AB = \alpha I$$
(b)
$$\begin{vmatrix} bc & a & a^{2} \\ ca & b & b^{2} \\ ab & c & c^{2} \end{vmatrix}$$

46.

 $R_1 \rightarrow aR_1,\,R_2 \rightarrow bR_2,\,R_3 \rightarrow cR_3$ and divide whole determinant by abc

$$= \frac{1}{abc} \begin{vmatrix} abc & a^{2} & a^{3} \\ abc & b^{2} & b^{3} \\ abc & c^{2} & c^{2} \end{vmatrix}$$
$$= \frac{abc}{abc} \begin{vmatrix} 1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & b^{2} & c^{2} \end{vmatrix} = \begin{vmatrix} 1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & b^{2} & c^{3} \end{vmatrix}$$
$$= \begin{vmatrix} 1 & z & -y \\ -z & 1 & x \\ y & -x & 1 \end{vmatrix}$$
$$= Expanding along R_{1}$$
$$\Rightarrow D = 1 \begin{vmatrix} 1 & x \\ -x & 1 \end{vmatrix} - z \begin{vmatrix} -z & x \\ y & 1 \end{vmatrix} - y \begin{vmatrix} -z & 1 \\ -z & 1 \end{vmatrix}$$

$$= (1 + x^{2}) - z(-z - xy) - y(xz - y)$$

$$= 1 + x^{2} + z^{2} + xyz - xyz + y^{2}$$

$$= 1 + x^{2} + y^{2} + z^{2} = 1 + 1 = 2$$
48. (c) As given : $|A_{n \times n}| = 3$ and $|adjA| = 243$
Dterminant of adjoint A is given by :
 $|adjA| = |A_{n \times n}|^{n-1}$
 $\Rightarrow 243 = 3^{n-1} \Rightarrow 3^{5} = 3^{n-1} \Rightarrow n-1 = 5 \Rightarrow n = 6$
49. (a) AB and BC both must exit, to hold the condition
A (BC) = (AB) C
50. (c) As given of A and B are 3×2 and 2×3 respectively.
 \Rightarrow order of AB is 3×3
 $\Rightarrow |kAB| = k^{3} |AB|$
51. (c) The given equation is : $\begin{bmatrix} 5 & 0 \\ 0 & 7 \end{bmatrix}^{-1} \begin{bmatrix} x \\ -y \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$
Multiplying both sides by $\begin{bmatrix} 5 & 0 \\ 0 & 7 \end{bmatrix}$, we get
 $\begin{bmatrix} 5 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 7 \end{bmatrix}^{-1} \begin{bmatrix} x \\ -y \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$
 $\Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -x \\ -y \end{bmatrix} = \begin{bmatrix} -5 \\ 14 \end{bmatrix}$
 $\Rightarrow x = -5$ and $y = -14$

- 52. (a) Slope of both the lines are same and intercepts are different. So, the given equations represent the two parallel lines. Hence the system of linear equations has no solution.
- 53. (b) The given system of equations is

$$\begin{aligned} a_1 x + b_1 y + c_1 z &= d_1 \\ a_2 x + b_2 y + c_2 z &= d_2 \\ and a_3 x + b_3 y + c_3 z &= d_3 \end{aligned}$$
Let $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$

This system has a unique solution x_0 , y_0 , z_0 if $\Delta \neq 0$

and
$$x_0 = \frac{\Delta x}{\Delta} = 0 \implies \Delta x = 0$$

$$\Rightarrow \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix} = 0$$

54. (a) Since, a, b, c are in GP. $\Rightarrow b^2 = ac$ Explanding the determinant we get,

$$\begin{vmatrix} a & b & a+b \\ b & c & b+c \\ a+b & b+c & 0 \end{vmatrix}$$

= $a \begin{vmatrix} c & b+c \\ b+c & 0 \end{vmatrix} - b \begin{vmatrix} b & b+c \\ a+b & 0 \end{vmatrix} + (a+b) \begin{vmatrix} b & c \\ a+b & b+c \end{vmatrix}$
= $-a (b+c)^2 + b (a+b) (b+c) + (a+b) (b^2+bc-ac-bc)$
= $-a (b^2+c^2+2bc) + b (ab+ac+b^2+bc)$
= $-ab^2 - ac^2 - 2abc + ab^2 + 2abc + b^2c \quad (\because b^2 = ac)$
= $-ac^2 + b^2c = -ac^2 + ac.c.$
= $-ac^2 + ac^2 = 0$
(a) For 2 × 2 matrix,
 $|A| = |adjA|$
= $(ab-0) = ab$
 $\therefore A^{-1} = \frac{adjA}{|A|} = \frac{1}{ab} \cdot \begin{pmatrix} a & 0 \\ -1 & b \end{pmatrix}$
 $|A^{-1}| = \frac{1}{ab} (ab) = 1$
(d) Here, $A = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix}$,
 $B = \begin{bmatrix} 1 \\ m \\ n \end{bmatrix}$ and $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$
 $\therefore |A| = -2 \begin{vmatrix} -2 & 1 \\ 1 & -2 & -1 \end{vmatrix} + 1 \begin{vmatrix} 1 & 1 \\ 1 & -2 & 1 \end{vmatrix}$
 $= -2 (4-1) - 1 (-2-1) + (1+2)$
 $= -6 + 3 + 3 = 0$
Now, adj $A = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$
 $\therefore (adjA) \cdot B = 0$
So, the given system of equations has an infinitely many solutions.

57. (c) Let $\frac{1}{x} = u, \frac{1}{y} = v$

55.

56.

 $\therefore a_1 u + b_1 v = c_1$ and $a_2 u + b_2 v = c_2$ Using the method of cross multiplication

$$\frac{u}{b_1c_2 - b_2c_1} = \frac{v}{c_1a_2 - c_2a_1} = \frac{-1}{a_1b_2 - a_2b_1}$$
$$\Rightarrow \frac{\frac{1}{x}}{\begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix}} = \frac{\frac{1}{y}}{\begin{vmatrix} c_1 & a_1 \\ c_2 & a_2 \end{vmatrix}} = \frac{-1}{\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}}$$

$$\frac{1}{x} = \frac{1}{y} = -\frac{1}{\Delta_1}$$

$$\therefore \frac{1}{x} = -\frac{\Delta_2}{\Delta_1}$$
and $\frac{1}{y} = -\frac{\Delta_3}{\Delta_1}$

$$\Rightarrow x = -\frac{\Delta_1}{\Delta_2} \text{ and } y = -\frac{\Delta_1}{\Delta_3}$$
58. (b) $\begin{vmatrix} \sin 10^\circ & -\cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ \end{vmatrix} \end{vmatrix}$

$$= \sin 10^\circ \cos 80^\circ + \sin 80^\circ \cos 10^\circ$$

$$= \sin 10^\circ \cos 80^\circ + \sin 80^\circ \cos 10^\circ$$

$$= \sin 10^\circ \sin 10^\circ + \cos 10^\circ \cos 10^\circ$$

$$= \sin^2 10^\circ + \cos^2 10^\circ = 1$$
59. (b) $\begin{vmatrix} 2 & 4 & 0 \\ 0 & 5 & 16 \\ 0 & 0 & 1 + p \end{vmatrix} = 20$
On expanding along C_1 ,
 $2 \{5(1+p)-0\}=20$
 $\Rightarrow 1+p=2$
 $\Rightarrow p=1$
60. (a) Let A and B be two matrices such that $AB = A$ and BA

$$= B$$
Now, consider $AB = A$
Take Transpose on both side
 $(AB)^T = A^T$
 $\Rightarrow A^T = B^T \cdot A^T$...(1)
Now, BA = B
Take, Transpose on both side
 $(BA)^T = B^T$
 $\Rightarrow B^T = A^T \cdot B^T$...(2)
Now, from equation (1) and (2), we have
 $A^T = (A^T \cdot B^T) A^T$
 $A^T = A^T (AB^T) (\because (AB)^T = B^T = B^T A^T)$
 $= A^T \cdot A^T$
Thus, $A^T = (A^T)^2$
61. (d) Let $B = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$

Now, BA = C

...(1)

...(2)

64.

 $\Rightarrow B^{-1} BA = B^{-1}C$ $\Rightarrow A = B^{-1}C$ $=\begin{bmatrix}1 & -3\\0 & 1\end{bmatrix}\begin{bmatrix}1 & -1\\0 & 1\end{bmatrix}=\begin{bmatrix}1 & -4\\0 & 1\end{bmatrix}$ 62. (c) The given system of equations are kx + y + z = k - 1x + ky + z = k - 1x + y + kz = k - 1 $A = \begin{bmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{bmatrix}, B = \begin{bmatrix} k - 1 \\ k - 1 \\ k - 1 \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ Now, $|A| = \begin{vmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{vmatrix}$ $=k(k^{2}-1)-1(k-1)+1(1-k)$ $=k^{3}-k-k+1+1-k$ $=k^{3}-3k+2$ The given system of equations has no solution, if |A|=0 $\Rightarrow k^3 - 3k + 2 = 0$ $\Rightarrow (k-1)^2 (k+2) = 0$ $\Rightarrow k = 1 \text{ or } k = -2$ 63. (c) $AB = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} a & 2b \\ 3a & 4b \end{bmatrix}$ and $BA = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a & 2a \\ 3b & 4b \end{bmatrix}$ If AB = BA $\Rightarrow \begin{bmatrix} a & 2b \\ 3a & 4b \end{bmatrix} = \begin{bmatrix} a & 2a \\ 3b & 4b \end{bmatrix} \Rightarrow a = b$ From the above it is clear that there exist infinitely many B's such that AB = BA. $\begin{bmatrix} 3 & 4 & 0 \end{bmatrix}$

(d) Given
$$M = \begin{bmatrix} 3 & 4 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & k \end{bmatrix}$$

Now $|M| = \begin{vmatrix} 3 & 4 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & k \end{vmatrix} = k(3-8) = -5k$

From statement II, $k \neq 0$ then inverse of M exist (statement I). Thus, statement A implies B as well as B implies A.

65. (b) Given,
$$\begin{vmatrix} y & x & y+z \\ z & y & x+y \\ x & z & z+x \end{vmatrix} = 0$$

Applying $R_1 \rightarrow R_1 + R_2 + R_3$
 $\Rightarrow \begin{vmatrix} x+y+z & x+y+z & 2(x+y+z) \\ z & y & x+y \\ x & z & z+x \end{vmatrix} = 0$
 $\Rightarrow (x+y+z) \begin{vmatrix} 1 & 1 & 2 \\ z & y & x+y \\ x & z & z+x \end{vmatrix} = 0$
Applying $C_2 \rightarrow C_1 - C_2, C_3 \rightarrow C_3 - 2C_1$
 $\Rightarrow (x+y+z) \begin{vmatrix} z & y & x+y \\ z & z-y & x+y-2z \\ z-x & z-x \end{vmatrix} = 0$
 $\Rightarrow (x+y+z) \begin{vmatrix} z & y & x+y - 2z \\ z-x & z-x \end{vmatrix} = 0$
 $\Rightarrow (x+y+z) (z-x) (z-y-x-y+2z) = 0$
 $\Rightarrow x+y=-z \text{ or } z=x$
66. (a) Let $\begin{vmatrix} k & b+c & b^2+c^2 \\ k & a+b & a^2+b^2 \end{vmatrix} = \Delta$
 $= k \begin{vmatrix} 1 & 1 & 1 \\ b+c & c+a & a+b \\ b^2+c^2 & c^2+a^2 & a^2+b^2 \end{vmatrix}$
Applying $C_2 \rightarrow C_2 - C_1, C_3 \rightarrow C_3 - C_1$
 $= k \begin{vmatrix} 1 & 0 & 0 \\ b+c & a-b & a-c \\ b^2+c^2 & a^2-b^2 & a^2-c^2 \end{vmatrix}$
 $= k (a-b) (a-c) \begin{vmatrix} 1 & 1 \\ a+b & a+c \end{vmatrix}$
 $= k (a-b) (a-c) \begin{vmatrix} 1 & 1 \\ a+b & a+c \end{vmatrix}$

67. (d) Given,
$$A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

 $\therefore |A| = \begin{vmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{vmatrix} = -1(-1) = 1 \neq 0$
 $\therefore A^{-1}$ exists
Now, $A^2 = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$
 $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $\Rightarrow A^2 = I$
68. (b) Let $A = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}$
We have
If A is a square matrix of order n then
 $A(adj A) = |A| \cdot I_n$
Here, $n = 2$
 $\therefore A(adj A) = I_2 |A|$
 $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{vmatrix} 3 & 2 \\ 1 & 4 \end{vmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} (12 - 2) = 10 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $= \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$
69. (b) $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
 $\therefore |A| = [0(0) - 0(0) + 1(-1)] = -1$
and $adj A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$
Hence, $A^{-1} = \frac{1}{|A|} adj A$
 $= -\frac{1}{1} \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

70.

71.

72.

(b) We know, a matrix A is said to be symmetric matrix if

$$A' = A$$
 where 't' represents the transpose.
Consider $(AB)' = B'A'$
Since, $(AB)' \neq AB$
 \therefore AB is not symmetric.
and consider $(A^2 + B^2)' = (A')^2 + (B')^2 = A^2 + B^2$
 $\therefore A^2 + B^2$ is symmetric.
(d) (A) Consider $M = \begin{bmatrix} 5 & 10 \\ 4 & -9 \end{bmatrix}$
 $\therefore A^2 + B^2 = 1$
 $\therefore A^2 + B^2 = A^2 + B^2$
 $\therefore A^2 + B^2 = 3$
 $\therefore A^2 + B^2 = 3$
(d) (A) Consider $M = \begin{bmatrix} 5 & 10 \\ 4 & -9 \end{bmatrix}$
 $\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = -1$
74. (b) Since, matrix A is symmetric and anti-symmetric therefore
 $A' = A \text{ and } A' = -A$
 $\Rightarrow A = -A \Rightarrow 2A = 0$
 $\Rightarrow A \text{ is a null matrix}$
75. (d) Here we see that its diagonal elements are not zero, so it is not anti-symmetric matrix.
Now, $|A| = 1 (1+4) + 2 (2+6) - 3 (4-3)$
 $= 5 + 16 - 3 = 18 \neq 0$

Hence, it is non-singular matrix.

76. (b) Given,
$$\begin{vmatrix} 2a & 3r & x \\ 4b & 6s & 2y \\ -2c & -3t & -z \end{vmatrix} = \lambda \begin{vmatrix} a & r & x \\ b & s & y \\ c & t & z \end{vmatrix}$$

Taking 2 common from C_1 and 3 from C_2 in LHS

 $18 \neq 0$

$$\therefore 2 \times 3 \begin{vmatrix} a & r & x \\ 2b & 2s & 2y \\ -c & -t & -z \end{vmatrix} = \lambda \begin{vmatrix} a & r & x \\ b & s & y \\ c & t & z \end{vmatrix}$$

Taking 2 common from R_2 and -1 from R_3 in LHS

$$\therefore -12 \begin{vmatrix} a & r & x \\ b & s & y \\ c & t & z \end{vmatrix} = \lambda \begin{vmatrix} a & r & x \\ b & s & y \\ c & t & z \end{vmatrix}$$
$$\Rightarrow \lambda = -12$$

77. (d) Let
$$\Delta = \begin{vmatrix} 1-i & \omega^2 & -\omega \\ \omega^2 + i & \omega & -i \\ 1-2i-\omega^2 & \omega^2 -\omega & i-\omega \end{vmatrix}$$

Applying $R_3 \rightarrow R_1 - R_2 - R_3$

$$= \begin{vmatrix} 1-i & \omega^{2} & -\omega \\ \omega^{2}+i & \omega & -i \\ 0 & 0 & 0 \end{vmatrix} = 0$$

(:: one row of determinant is zero)

78. (a) Given,
$$A = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix}$$

Now, $A^2 = \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix} \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix} = \begin{bmatrix} \omega^2 & 0 \\ 0 & \omega^2 \end{bmatrix}$
 $A^3 = \begin{bmatrix} \omega^2 & 0 \\ 0 & \omega^2 \end{bmatrix} \begin{bmatrix} \omega & 0 \\ 0 & \omega \end{bmatrix} = \begin{bmatrix} \omega^3 & 0 \\ 0 & \omega^3 \end{bmatrix}$

$$A' = A \text{ where 'r' represents the transpose.}$$
Consider $(AB)' = B'A'$
Since, $(AB)' \neq AB$
 \therefore AB is not symmetric.
and consider $(A^2 + B^2)' = (A')^2 + (B')^2 = A^2 + B^2$
 $\therefore A^2 + B^2$ is symmetric.
(d) (A) Consider $M = \begin{bmatrix} 5 & 10 \\ 4 & 8 \end{bmatrix}$
Now, $|M| = \begin{vmatrix} 5 & 10 \\ 4 & 8 \end{vmatrix} = 40 - 40 = 0$
Since, $|M| = 0$
 \therefore *M* is not invertible.
(R) Since, determinant of *M* is zero therefore *M* is singular matrix.
Therefore, A is false and R is true.
(c) Let *X* and *Y* be two matrices of order 2×2 each.
Given, $2X - 3Y = \begin{bmatrix} -7 & 0 \\ -7 & 0 \\ -7 & -10 \end{bmatrix}$...(i)

Given,
$$2X - 3Y = \begin{bmatrix} 7 & -13 \end{bmatrix}$$
 ...(1)
and $3X + 2Y = \begin{bmatrix} 9 & 13 \\ 4 & 13 \end{bmatrix}$...(ii)

On multiplying Eq. (i) by 3 and Eq. (ii) by 2, we get

$$6X - 9Y = \begin{bmatrix} -21 & 0\\ 21 & -39 \end{bmatrix} \qquad \dots (iii)$$
$$6X + 4Y = \begin{bmatrix} 18 & 26\\ 8 & 26 \end{bmatrix} \qquad \dots (iv)$$

On subtracting Eqs. (iii) from (iv), we get

$$13Y = \begin{bmatrix} 39 & 26 \\ -13 & 65 \end{bmatrix} \implies Y = \begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix}$$
73. (c) Given
$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = 0$$

Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$

$$\Rightarrow \begin{vmatrix} 1+a & -a & -a \\ 1 & b & 0 \\ 1 & 0 & c \end{vmatrix} = 0$$

$$\Rightarrow \text{ Expanding along } R_3, 1(ab) + c (b+ab+a) = 0$$

$$\Rightarrow ab+bc+ca+abc = 0$$

symmetric and anti-symmetric

Similarly,
$$A^{100} = \begin{bmatrix} \omega^{100} & 0 \\ 0 & \omega^{100} \end{bmatrix}$$

 $= \begin{bmatrix} (\omega^3)^{33} \cdot \omega^1 & 0 \\ 0 & (\omega^3)^{33} \cdot \omega^1 \end{bmatrix}$
 $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} (: \omega^3 = 1) = \mathbf{A}$
79. (b) The order of a given matrices are
 $[X]_{(a+b) \times (a+2)}$ and $[Y]_{(b+1) \times (a+3)}$
As $[XY]$ and $[XY]$ exist
 $\therefore a+2=b+1$ and $a+3=a+b$
 $\Rightarrow a+3=a+b$
 $\Rightarrow b=3$
Hence, $a=3+1-2=2$
80. (d) Let $\begin{vmatrix} a & b & c \\ l & m & n \\ p & q & r \end{vmatrix} = 2$
80. (d) Let $\begin{vmatrix} a & b & c \\ l & m & n \\ p & q & r \end{vmatrix} = 2 × 5 \begin{vmatrix} 3a & 3b & 3c \\ l & m & n \\ p & q & r \end{vmatrix}$
 $= 10 \times 3 \begin{vmatrix} a & b & c \\ l & m & n \\ p & q & r \end{vmatrix} = 30 \times 2 = 60$
81. (c) $A = \begin{bmatrix} 5 & 6 & 1 \\ 2-1 & 5 \end{bmatrix}$ and let $B = \begin{bmatrix} 5 & 2 \\ 1 & 6 \\ 4 & 3 \end{bmatrix}$
 $\therefore AB = \begin{bmatrix} 5 & 6 & 1 \\ 2-1 & 5 \end{bmatrix}$ and let $B = \begin{bmatrix} 5 & 2 \\ 1 & 6 \\ 4 & 3 \end{bmatrix}$
 $= \begin{bmatrix} 25+6+4 & 10+36+3 \\ 10-1+20 & 4-6+15 \end{bmatrix}$
 $= \begin{bmatrix} 25+6+4 & 10+36+3 \\ 10-1+20 & 4-6+15 \end{bmatrix}$
 $= \begin{bmatrix} 35 & 49 \\ 29 & 13 \end{bmatrix}$
Hence, option (c) is correct.
ALTERNATE SOLUTION
Given $A = \begin{bmatrix} 5 & 6 & 1 \\ 2-1 & 5 \end{bmatrix}_{2\times3}$ and $AB = \begin{bmatrix} 35 & 49 \\ 29 & 13 \end{bmatrix}_{2\times2}$

Since, order of $A = 2 \times 3$ and order of $AB = 2 \times 2$ \therefore order of $B = 3 \times 2$ Let $B = \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$ $\therefore AB = \begin{bmatrix} 5 & 6 & 1 \\ 2 & -1 & 5 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \\ e & f \end{bmatrix}$ $\begin{bmatrix} 35 & 49 \\ 29 & 13 \end{bmatrix} = \begin{bmatrix} 5a + 6c + e & 5b + 6d + f \\ 2a - c + 5e & 2b - d + 5f \end{bmatrix}$ $\Rightarrow 5a + 6c + e = 35$ 5b + 6d + f = 492a - c + 5e = 292b - d + 5f = 13On solving above four equations we get a = 5, b = 2, c = 1, d = 6, e = 4 and f = 3.Hence $B = \begin{bmatrix} 5 & 2 \\ 1 & 6 \\ 4 & 3 \end{bmatrix}$

82. (b) If A' = A where A' is transpose of matrix then |A| = |A'|

But it is not neccessary that |A| = 0i.e. *A* is singular matrix Hence, statement 1 is wrong. Given $A^3 = I$ $|A^3| = |I| = 1$

 $\Rightarrow |A| = 1$

Thus, *A* is non-singular matrix. Hence, only statement 2 is correct.

83. (b) The given system of equations has infinitely many solution, then

$$\frac{2}{2a} = \frac{3}{a+b} = \frac{7}{28}$$

$$\Rightarrow a = 4 \text{ and } 12 = a+b$$

$$\Rightarrow a = 4 \text{ and } b = 8 \Rightarrow b = 2a$$
ALTERNATE SOLUTION : Given equations are
$$2x + 3y = 7$$

$$2ax + (a+b)y = 28$$

$$\begin{bmatrix} 2 & 3 \end{bmatrix}$$

Matrix form by these equations is $\begin{vmatrix} 2 & 3 \\ 2a & (a+b) \end{vmatrix}$
3y + 4x = 1

and 5y + bx = 3

3y + 4x - 1 = 0x+5-y=0 and bx + 5y - 3 = 0

4 3 -1

 $\Rightarrow b=6.$

is 0.

y = x + 5

As we know if value of determinant is zero then system 87. of equations have infinitely many solutions. So, $\begin{vmatrix} 2 & 3 \\ 2a & a+b \end{vmatrix} = 0$ 88. $\Rightarrow 2a+2b-3\times 2a=0$ $\Rightarrow 2a+2b-6a=0$ $\Rightarrow 2b - 4a = 0 \Rightarrow b = 2a$ 84. (c) The equation of given lines are ...(i) ...(ii) ...(iii) On solving Eqs. (i) and (ii), we get x = -2 and y = 3If these lines are concurrent, then these values must satisfy the third equation $15-2b=3 \implies 2b=12 \implies b=6$ **ALTERNATE SOLUTION:** 89. Given equation of lines are Since, the given lines are concurrent : The value of determinant made by coeff of equations *ie*, $\begin{vmatrix} 4 & 5 & 1 \\ 1 & -1 & 5 \\ b & 5 & -3 \end{vmatrix} = 0$ 90. $\Rightarrow 4(3-25)-3(-3-5b)-1(5+b)=0$ $\Rightarrow -88+4+14b=0$ $\Rightarrow -84 = -14b$ (a) Consider $\left|\cos 15^\circ \sin 15^\circ\right| \left|\cos 45^\circ \cos 15^\circ\right|$ in 15° 15°) (os B)

85. (c) Consider
$$|\cos 45^\circ \sin 45^\circ|^{\times} |\sin 45^\circ \sin 45^\circ| = (\sin 45^\circ \cos 15^\circ - \cos 45^\circ \sin 15^\circ) \times (\cos 45^\circ \sin 15^\circ - \sin 45^\circ \cos 45^\circ - \sin 45^\circ 45^$$

(a) We know if A is a real skew-symmetric matrix of order nsuch that $A^2 + I = 0$, then order of A is 3.

(d) Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

 $|A| = 4 \times 1 - 2 \times 3 = 4 - 6 = -2$
 $\therefore A^{-1} = -\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$
 $\Rightarrow \begin{bmatrix} b_{ij} \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$
 $\Rightarrow b_{22} = \frac{1}{2}$
(c) Since, the matrix $\begin{bmatrix} 1 & -3 & 2 \\ 2 & -8 & 5 \\ 4 & 2 & \lambda \end{bmatrix}$ is not an invertible matrix.
therefore it's determinant is zero.
 $\Rightarrow \begin{bmatrix} 1 & -3 & 2 \\ 2 & -8 & 5 \\ -4 & 2 & \lambda \end{bmatrix} = 0$

$$\Rightarrow \begin{bmatrix} 2 & -8 & 5 \\ 4 & 2 & \lambda \end{bmatrix} = 0$$

$$\Rightarrow 1(-8\lambda-10)+3(2\lambda-20)+2(4+32)=0$$

$$\Rightarrow -8\lambda-10+6\lambda-60+72=0$$

$$\Rightarrow -2\lambda+2=0 \Rightarrow \lambda=1$$

(d) Let $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, B = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, C = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}$
Now, $A^2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \dots (1)$
 $B^2 = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \dots (2)$
From (1) and (2), we have
 $A^2 = B^2$
Now, $C^2 = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
......(3)
From (2) and (3), we have $B^2 = C^2$
Now, $AB = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix} = C$
Now, we find
 $BA = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \neq C$
Hence $AB \neq BA$

91. (d) Let
$$x + iy = \begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix}$$

⇒ $x + iy = 6i (3i^2 + 3) + 3i (4i + 20) + 1 (12 - 60i) \\ = -12 + 60i + 12 - 60i = 0 (\because i^2 = -1)$
⇒ $x + iy = 0$
⇒ $x = 0$ and $y = 0$
Hence, $x - iy = 0 - i (0) = 0$
92. (c) Let |A| = 8 and A is a square matrix of order 3.
We know that |ad] A| = |A|^{n-1}. I where
'n' is the order of the matrix A.
∴ |ad] A| = 8^{3-1} = 8^2 = 64
93. (c) We know, that A matrix 'A' is said to be symmetric
 $A = A^{T}$ and anti- symmetric if $A = -A^{T}$
Now, consider $(A - A^{T})^{T} = A^{T} + (A^{T})^{T} = A^{T} + A$
⇒ $A + A^{T}$ is always symmetric
Now, consider $(A - A^{T})^{T} = A^{T} - (A^{T})^{T} = A^{T} - A$
 $= -(A - A^{T})$
⇒ $A - A^{T}$ is always anti- symmetric.
94. (a) Let A be a matrix such that $3A^{3} + 2A^{2} + 5A + 1 = 0$
Post multiply by A^{-1} on both the sides, we get
 $3A^{3} A^{-1} + 2A^{2}A^{-1} + 5AA^{-1} + 1A^{-1} = 0$
⇒ $3A^{2} + 2A + 51 + A^{-1} = 0$
⇒ $3A^{2} + 2A + 51 + A^{-1} = 0$
⇒ $A^{-1} = -(3A^{2} + 2A + 51)$
95. (d) If $AB = 0$, then it may be concluded that either
 $A = 0$ or $B = 0$
But, it should be noticed that it is not necessary that
either $A = 0$ or $B = 0$.
96. (c) We know (adj $A^{T}) = (adj A)^{T}$
⇒ $(adj A^{T}) - (adj A)^{T} = \text{Null matrix}$
97. (a) Consider $\begin{vmatrix} 1 & \omega & 2\omega^{2} \\ 2 & 2\omega^{2} & 4\omega^{3} \\ 3 & 3\omega^{3} & 6\omega^{4} \end{vmatrix} = \begin{vmatrix} 1 & \omega & 2\omega^{2} \\ 2 & 2\omega^{2} & 4 \\ 3 & 3 & 6\omega \end{vmatrix}$
 $(\because \omega^{3} = 1 \text{ and } \omega^{4} = \omega)$
 $= 2 \times 3 \begin{vmatrix} 1 & \omega^{2} & 2 \\ 1 & \omega^{2} & 2 \\ 1 & 1 & 2\omega \end{vmatrix}$
 $= 6 [1 (2\omega^{3} - 2) - \omega(2\omega - 2) + 2\omega^{2} (1 - \omega^{2})] = 6 [0 - 2\omega^{2} - 2\omega + 2\omega^{2} - 2\omega] = 0$
98. (a) Let $A = \begin{bmatrix} 2 - x & 1 & 1 \\ 1 & 3 - x & 0 \\ -1 & -3 & -x \end{bmatrix}$
Since, this matrix is singular.
 $\therefore |A| = 0$

that

 $\Rightarrow \begin{vmatrix} 2-x & 1 & 1 \\ 1 & 3-x & 0 \\ -1 & -3 & -x \end{vmatrix} = 0$ Applying $R_2 \rightarrow R_2 + R_3$ $\Rightarrow \begin{vmatrix} 2-x & 1 & 1 \\ 0 & -x & -x \\ -1 & -3 & -x \end{vmatrix} = 0$ $\Rightarrow (2-x)(x^2-3x)-1(-x)+1(-x)=0$ \Rightarrow (2-x) (x) (x-3) = 0 $\Rightarrow x = 2, 0, 3$ Hence, solution set $S = \{0, 2, 3\}$ 99. (a) The inverse of a square matrix if it exists, is unique but if A and B are singular matrices of order n, then AB is not a singular matrices of order n. Hence, only statement I is correct. (d) Let $\Delta = \begin{vmatrix} x+1 & x+2 & x+4 \\ x+3 & x+5 & x+8 \\ x+7 & x+10 & x+14 \end{vmatrix}$ 100. By applying $C_2 \rightarrow C_2 - C_1, C_3 \rightarrow C_3 - C_1$ $= \begin{vmatrix} x+1 & 1 & 3 \\ x+3 & 2 & 5 \\ x+7 & 3 & 7 \end{vmatrix}$ By applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_2$, we get $= \begin{vmatrix} x+1 & 1 & 3 \\ 2 & 1 & 2 \\ 4 & 1 & 2 \end{vmatrix}$ =(x+1)(0)-1(4-8)+3(2-4)=4-6=-2101. (a) Given, $\begin{vmatrix} x & 4 & 5 \\ 7 & x & 7 \\ 5 & 8 & x \end{vmatrix} = 0$ $\Rightarrow x(x^2-56)-4(7x-35)+5(56-5x)=0$ $\Rightarrow x^3 - 56x - 28x + 140 + 280 - 25x = 0$ $\Rightarrow x^3 - 109x + 420 = 0$ \Rightarrow (x-5)(x-7)(x+12)=0 $\Rightarrow x = -12$ Hence, the third root is -12. 102. (c) We know, System of a pair of linear equations in two variables

are given as - 0 \sim

$$a_1x + b_1y + c_1 = 0$$
 ... (i)
and $a_2x + b_2y + c_2 = 0$... (ii)

м-445

This system has no solution if

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

Now, on comparing given equations with (i) and (ii), we get

> 0] 1

> > 5]

 $a_1 = k, a_2 = 3, b_1 = 2, b_2 = 1, c_1 = -5, c_2 = -1$ For no solution,

$$\frac{k}{3} = \frac{2}{1} \implies k = 6$$

103. (a) Let $A = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$

$$\therefore \quad A^{2} = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$$
$$= \begin{bmatrix} \alpha^{2} + \beta^{2} & 2\alpha\beta \\ 2\alpha\beta & \alpha^{2} + \beta^{2} \end{bmatrix}$$

Now,
$$A^2 = I$$

104.

105.

$$\Rightarrow \begin{bmatrix} \alpha^{2} + \beta^{2} & 2\alpha\beta \\ 2\alpha\beta & \alpha^{2} + \beta^{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$\Rightarrow \alpha^{2} + \beta^{2} = 1, \qquad \alpha\beta = 0$$
$$\Rightarrow \alpha = 0, \beta = 1$$
or $\beta = 0, \alpha = 1$
(b) Let $A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$
$$\Rightarrow A^{2} = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$$

$$\Rightarrow A^2 = \begin{bmatrix} \alpha^2 & 0 \\ \alpha + 1 & 1 \end{bmatrix}$$

But it is given that

 $A^2 = B$

$$\Rightarrow \begin{bmatrix} \alpha^2 & 0\\ \alpha+1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 2 & 1 \end{bmatrix}$$
$$\Rightarrow \alpha+1=2$$
$$\Rightarrow \alpha=1$$

(d) Let $A = \begin{bmatrix} 3 & 1\\ 0 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1\\ 0 & 2 \end{bmatrix}$
Now, $AB = \begin{bmatrix} 3 & 1\\ 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1\\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 5\\ 0 & 8 \end{bmatrix}$
and $BA = \begin{bmatrix} 1 & 1\\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1\\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 5\\ 0 & 8 \end{bmatrix}$

 \Rightarrow AB = BA

Hence, all the three statements are correct.

106. (a) Given system of equations 3x + 5y = 7 and 6x + 10y = 18This system can be written as AX = B where

$$A = \begin{pmatrix} 3 & 5 \\ 6 & 10 \end{pmatrix}, X = \begin{pmatrix} x \\ y \end{pmatrix}, B = \begin{pmatrix} 7 \\ 18 \end{pmatrix}$$

Now, $|A| = 30 - 30 = 0$
and (adj A) $B = \begin{pmatrix} 10 & -5 \\ -6 & 3 \end{pmatrix} \begin{pmatrix} 7 \\ 18 \end{pmatrix} = \begin{pmatrix} -20 \\ -96 \end{pmatrix} \neq 0$

: system of equations is inconsistent.

 \Rightarrow system of equations have no solution.

107. (a) Given
$$\begin{vmatrix} x & \alpha & 1 \\ \beta & x & 1 \\ \beta & \gamma & 1 \end{vmatrix} = 0$$

 $\Rightarrow x (x - \gamma) - \alpha (0) + 1 (\gamma \beta - x \beta) = 0$
 $\Rightarrow x^2 - x\gamma + \gamma \beta - x\beta = 0$
 $\Rightarrow x^2 - (\gamma + \beta)x + \gamma \beta = 0$
 $\Rightarrow x = \frac{(\gamma + \beta) \pm \sqrt{\gamma^2 + \beta^2 - 2\gamma \beta}}{2}$

(: roots of Quad. eqn. $ax^2 + bx + c = 0$ are

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a})$$

$$\Rightarrow x = \frac{(\gamma + \beta) \pm (\gamma - \beta)}{2}$$

$$\Rightarrow x = \frac{\gamma + \beta + \gamma - \beta}{2}, \frac{\gamma + \beta - \gamma + \beta}{2}$$

$$\Rightarrow x = \gamma, \beta.$$

Hence, roots of the equation $\begin{vmatrix} x & \alpha & 1 \\ \beta & x & 1 \\ \beta & \gamma & 1 \end{vmatrix} = 0$ are

independent of α .

108. (c) Given
$$\begin{vmatrix} a-b & b+c & a \\ b-c & c+a & b \\ c-a & a+b & c \end{vmatrix}$$

 $C_1 \rightarrow C_1 - C_3.$
 $= \begin{vmatrix} -b & b+c & a \\ -c & c+a & b \\ -a & a+b & c \end{vmatrix}$

$$C_{2} \rightarrow C_{2} + C_{1}.$$

$$= \begin{vmatrix} -b & c & a \\ -c & a & b \\ -a & b & c \end{vmatrix} = (-1) \begin{vmatrix} b & c & a \\ c & a & b \\ a & b & c \end{vmatrix}$$

$$= -1 \left[b \left(ac - b^{2} \right) - c \left(c^{2} - ab \right) + a \left(bc - a^{2} \right) \right]$$

$$= - \left[abc - b^{3} - c^{3} + abc + abc - a^{3} \right]$$

$$= a^{3} + b^{3} + c^{3} - 3abc.$$
109. (c) Let
$$\begin{vmatrix} p & -q & 0 \\ 0 & p & q \\ q & 0 & p \end{vmatrix} = 0$$

$$\Rightarrow p(p^{2}) + q (-q^{2}) + 0 = 0$$

$$\Rightarrow p^{3} - q^{3} = 0$$

$$\Rightarrow p^{3} = q^{3}$$

$$\Rightarrow \frac{p^{3}}{q^{3}} = 1 \Rightarrow \left(\frac{p}{q} \right)^{3} = 1$$

$$\Rightarrow \frac{p}{q} \text{ is one of the cube roots of unity.}$$
110. (b) Let $a^{-1} + b^{-1} + c^{-1} = 0$

$$\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$$

$$\Rightarrow \frac{bc + ac + ab}{abc} = 0$$

$$\Rightarrow ab + bc + ca = 0 \qquad \dots(1)$$

$$Consider \begin{vmatrix} 1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c \end{vmatrix} = \lambda$$

$$\Rightarrow (1 + a) (c + b) + bc) - c - b = \lambda$$

 $\Rightarrow bc + ac + ab + abc = \lambda$ $\Rightarrow abc = \lambda \qquad (using (1))$

111. (a) If the matrix AB is zero then it is not necessary that either A = 0 or B = 0therefore statement 2 is incorrect. Let AB = 0 $\Rightarrow |AB| = 0$

$$\Rightarrow |A||B| = 0 \Rightarrow \text{either } |A| = 0 \text{ or } |B| = 0$$

112. (d) Given

 $\begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 & 0 \\ 3 & 0 & 2 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \\ x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

$$\Rightarrow (1+9+4 \quad 3 \quad 6+2) \begin{pmatrix} 0\\3\\x \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$
$$\Rightarrow (14 \quad 3 \quad 8) \begin{pmatrix} 0\\3\\x \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$
$$\Rightarrow 9+8x=0 \Rightarrow x = \frac{-9}{8}$$
Hence, for $x = \frac{-9}{8}$

$$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 & 0 \\ 3 & 0 & 2 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \\ x \end{pmatrix} = (0)$$
 holds.

113. (b) Only statement - 3 is correct

Unit matrix =
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

114. (b) Since, Inverse is unique.∴ B should be equal to C.

115. (a) Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$
 $AB = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \Rightarrow AB = \begin{bmatrix} 3 & 0 \\ 5 & 0 \end{bmatrix}$
So, $|AB| = 0$ (:: one column is zero)
 $|-a^2$ ab ac

116. (c) Consider
$$\begin{vmatrix} -a^2 & ab & ac \\ ab & -b^2 & bc \\ ac & bc & -c^2 \end{vmatrix}$$

Take out 'a', 'b' and 'c' common from R_1 , R_2 and R_3 respectively.

$$= abc \begin{vmatrix} -a & b & c \\ a & -b & c \\ a & b & -c \end{vmatrix}$$

Now, take out 'a', 'b' and 'c' common from C_1, C_2 and C_3 respectively.

$$= a^{2}b^{2}c^{2}\begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 + R_1$, $R_3 \rightarrow R_3 + R_1$

$$= a^{2}b^{2}c^{2}\begin{vmatrix} -1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{vmatrix} = a^{2}b^{2}c^{2}\left[(-1)(-4)\right]$$

 $=4a^{2}b^{2}c^{2}$.

- 117. (a) Given AB = A and BA = BConsider B = BA = B(AB) ($\because AB = A$) $= (BA).B = B.B = B^{2}$ Hence, $B^{2} = B$ 118. (a) (1) Since sum of matrices axist therefore
- 118. (a) (1) Since sum of matrices exist therefore A and B are square matrices of same order.(2) Non-singularity of A and B does not depend on sum and product of A and B.

119. (c) Let $A^2 = I$ $\Rightarrow A^2 A^{-1} = I A^{-1}$ $\Rightarrow A = A^{-1}$

120. (a) It is a property.

121. (d) Since
$$\begin{vmatrix} 8 & -5 & 1 \\ 5 & x & 1 \\ 6 & 3 & 1 \end{vmatrix} = 2$$

 $\Rightarrow 8(x-3) + 5(5-6) + 1(15-6x) = 2$
 $\Rightarrow 8x - 24 - 5 + 15 - 6x = 2$
 $\Rightarrow 2x = 16$
 $\Rightarrow x = 8$

122. (b) Given
$$\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Consider
$$\begin{bmatrix} x & y & z \end{bmatrix}_{1 \times 3} \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}_{3 \times 3}$$

 \Rightarrow order of product = 1×3

Now, order of product = 1 × 3 and order of
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = 3 \times 1$$

:. Required order =
$$1 \times 1$$

123. (b) $|A| = -1, |B| = 1$

$$A^{-1} = \frac{1}{|A|} Adj A = \frac{1}{-1} \begin{bmatrix} 1 & -1 \\ -2 & 1 \end{bmatrix}^{T} = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}$$
$$B^{-1} = \frac{1}{|B|} adj B = \frac{1}{1} \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}^{T} = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$$
$$B^{-1} A^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 1 & -2 \end{bmatrix}$$

- 124. (d) As we know that if each element of any row (or column) of a determinant is multiplied by the same number, then the value of determinant is multiplied by that number.
- 125. (c) The inverse of a diagonal matrix is a diagonal matrix.
- 126. (c) We have,

$$A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \\ 7 & 8 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} 3 & 5 & 7 \\ 4 & 6 & 8 \end{bmatrix} = B$$

$$\therefore$$
 B is the transpose of A

127. (b) We have,

$$\begin{bmatrix} x \\ x \\ y \end{bmatrix} + \begin{bmatrix} y \\ z \end{bmatrix} + \begin{bmatrix} z \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \\ 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x + y + z \\ x + y \\ y + z \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \\ 5 \end{bmatrix}$$

$$\Rightarrow x + y + z = 10 \qquad \dots (i)$$

$$x + y = 5 \qquad \dots (ii)$$

$$y + z = 5 \qquad \dots (iii)$$
from (ii), $x = 5 - y$
from (iii), $z = 5 - y$
from (ii), $z = 5 - y$

$$\therefore \text{ from (i)},$$

$$5 - y + y + 5 - y = 10$$

$$\Rightarrow 10 - y = 10 \Rightarrow \boxed{y = 0}$$

128. (c) If matrix AB = 0 then it is not necessary that either A is zero matrix or B is zero matrix.

129. (a) Let
$$A = \begin{bmatrix} \alpha & 2 & 2 \\ -3 & 0 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$

 $|A| = \begin{vmatrix} \alpha & 2 & 2 \\ -3 & 0 & 4 \\ 1 & -1 & 1 \end{vmatrix}$
 $|A| = \alpha (0+4) - 2 (-3-4) + 2 (3-0) = 4\alpha + 20$
Since A^{-1} does not exist,
 $\therefore |A| = 0$
 $4 \alpha + 20 = 0$
 $4 \alpha = -20$
 $\alpha = -5$

0

NDA Topicwise Solved Papers - MATHEMATICS

136. (a) Let A be orthogonal matrix, therefore
$$AA^{T} = 1$$

 $\Rightarrow |AA^{T}| = 1 \Rightarrow |A|. |A^{T}| = 1$
 $\Rightarrow |A|^{2} = 1$
 $\Rightarrow |A| = \pm 1$
137. (a) D' = cofactor D
 $\Rightarrow |D'| = |cofactor D|$
 $\Rightarrow |D'| = |D|^{3-1}.$
 $\Rightarrow |D'| = |D|^{2}.$
So D' = D².
138. (c) Both the statements are correct.
139. (d) If B = A⁻¹, then AB = I (identity matrix)
Therefore, statement 1 is false.
 $I = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$ and $A = \begin{bmatrix} 0 & 2\\ 2 & 0 \end{bmatrix}$, then $IA = \begin{bmatrix} 1\\ 0 \end{bmatrix}$

$$\begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} = 0$$

Therefore, statement 2 is not correct.

140. (a) 1.
$$\begin{pmatrix} 1 & 2 & 1 \\ a & 2a & 1 \\ b & 2b & 1 \end{pmatrix} = 2 \begin{pmatrix} 1 & 1 & 1 \\ a & a & 1 \\ b & b & 1 \end{pmatrix} = 2 \begin{vmatrix} 1 & 1 & 1 \\ a & a & 1 \\ b & b & 1 \end{vmatrix} = 0$$

Hence matrix is singular.

2.
$$\begin{vmatrix} c & 2c & 1 \\ a & 2a & 1 \\ b & 2b & 1 \end{vmatrix} = 2 \begin{vmatrix} c & c & 1 \\ a & a & 1 \\ b & b & 1 \end{vmatrix} = 2 \begin{vmatrix} c & c & 1 \\ a & a & 1 \\ b & b & 1 \end{vmatrix} = 0$$

Hence matrix is singular.

141. (c) Co-factor of
$$4 = (-1)^3 (2 \times 9 - 3 \times 8) = -(-6) = 6$$

142. (b) $|adj A| = |A|^{n-1}$ {n is order of square matrix

42. (b)
$$|adj A| = |A|^{n-1}$$
 {n is order of square matrix}
If A is square matrix of order 3, then $|adj A| = |A|^2$

143. (a)
$$AB = \begin{pmatrix} i & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}$$
$$AB = -\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = -C$$
$$144. (d) \quad \text{Given, } 2A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$$
$$A = \begin{pmatrix} 1 & \frac{1}{2} \\ \frac{3}{2} & 1 \end{pmatrix}$$
$$|A| = \frac{1}{4}$$
$$adjA = \begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{3}{2} & 1 \end{pmatrix}$$

(a) Let
$$\Delta = \begin{vmatrix} x^2 & 1 & y^2 + z^2 \\ y^2 & 1 & z^2 + x^2 \\ z^2 & 1 & x^2 + y^2 \end{vmatrix}$$

Applying $C_1 \rightarrow C_1 + C_3$.

$$\Delta = \begin{vmatrix} x^2 + y^2 + z^2 & 1 & y^2 + z^2 \\ x^2 + y^2 + z^2 & 1 & z^2 + x^2 \\ x^2 + y^2 + z^2 & 1 & x^2 + y^2 \end{vmatrix}$$

$$\Delta = \left(x^2 + y^2 + z^2 \right) \begin{vmatrix} 1 & 1 & y^2 + z^2 \\ 1 & 1 & z^2 + x^2 \\ 1 & 1 & x^2 + y^2 \end{vmatrix}$$

$$\Delta = 0 \left[\because C_1 \& C_2 \text{ are identical} \right]$$

131. (b) Scalar Matrix. We know that, $A = [a_{ij}]_{nxn}$ is called a scalar matrix if $a_{ij} = 0$ for $i \neq j$ and $a_{ij} = k$ for i = j [where k is constant]

132. (a) Since, A and B are two non-singular matrices therefore their determinant is non-zero. \therefore A⁻¹ and B⁻¹ defined. Consider AB = A \Rightarrow A⁻¹ AB = A⁻¹ A \Rightarrow B = I

133. (b) Minor of element
$$9 = \begin{vmatrix} 19 & 2 \\ 13 & 1 \end{vmatrix} = 19 - 26 = -7$$

134. (b)
$$1(t-2) - (t-1)[(t-1)^2 - 1] + 1(t-2) = 0$$

 $\Rightarrow (t-2) - t(t-1)(t-2) + (t-2) = 0$
 $\Rightarrow (t-2)[1 - (t-1)(t) + 1] = 0$
 $\Rightarrow (t-2)(t^2 - t - 2) = 0$
 $\Rightarrow (t-2)(t-2)(t+1) = 0$
 $\Rightarrow t=2, t=-1$
Hence, required roots are -1, 2.

135. (c) Consider
$$\begin{vmatrix} m & n & p \\ p & m & n \\ n & p & m \end{vmatrix}$$
$$C_1 \rightarrow C_1 + C_2 + C_3.$$
$$= \begin{vmatrix} m+n+p & n & p \\ p+m+n & m & n \\ n+p+m & p & m \end{vmatrix}$$
Take m + n + p common from C₁.

$$= (m+n+p) \begin{vmatrix} 1 & n & p \\ 1 & m & n \\ 1 & p & m \end{vmatrix}$$
$$= (m+n+p) \left[(m^{2}+n^{2}+p^{2}) - mn - np - pm \right]$$

Hence, value of the determinant has linear factor.

130.

$$A^{-1} = 4 \begin{pmatrix} 1 & -\frac{1}{2} \\ -\frac{3}{2} & 1 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ -6 & 4 \end{pmatrix}$$
145. (b) $\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} \times \begin{pmatrix} 5 & -2 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 17 & \lambda \end{pmatrix}$

$$\begin{pmatrix} 1 & -1 \\ 17 & -7 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 17 & \lambda \end{pmatrix}$$

$$\lambda = -7$$
146. (a) $\begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ac & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix}$
Applying $C_3 \rightarrow C_2 + C_3$

$$\begin{vmatrix} 1 & bc & ab+bc+ac \\ 1 & ac & ab+bc+ac \\ 1 & ab & ab+bc+ac \end{vmatrix}$$

$$= (ab+bc+ac) \begin{vmatrix} 1 & bc & 1 \\ 1 & ac & 1 \\ 1 & ab & 1 \end{vmatrix}$$

$$= (ab+bc+ac) \times 0 = 0$$
147. (a) $A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix} = -\begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix} = -A$

Hence, A is skew symmetric matrix

$$|\mathbf{A}| = \begin{vmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{vmatrix} = 1 (-6) - 2 (-3) = -6 + 6 = 0$$

Therefore A is non-invertible.

148. (b) I. AB =
$$\begin{vmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{vmatrix}_{3 \times 2} \begin{vmatrix} 1 & 2 & -4 \\ 2 & 1 & -4 \end{vmatrix}_{2 \times 3}$$

= $\begin{vmatrix} 5 & 4 & -12 \\ 4 & 5 & -12 \\ 3 & 3 & -8 \end{vmatrix}_{3 \times 3}$

II. BA =
$$\begin{vmatrix} 1 & 2 & -4 \\ 2 & 1 & -4 \\ 2 & 2 & -4 \end{vmatrix}_{2 \times 3} \begin{vmatrix} 1 & 2 \\ 2 & 1 \\ 1 & 1 \end{vmatrix}_{3 \times 2}$$
$$= \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}_{2 \times 2}$$

Here, B is not the right inverse of A but B is the left inverse of A.

149. (c)
$$\begin{vmatrix} x+a & b & c \\ a & x+b & c \\ a & b & x+c \end{vmatrix} = 0$$

Applying, $C_1 \rightarrow C_1 + C_2 + C_3$

$$\begin{vmatrix} (a+b+c+x) & b & c \\ (a+b+c+x) & x+b & c \\ (a+b+c+x) & b & c+x \end{vmatrix} = 0$$

$$(a+b+c+x) \begin{vmatrix} 1 & b & c \\ 1 & x+b & c \\ 1 & b & x+c \end{vmatrix} = 0$$

$$C_2 \rightarrow C_2 - C_1, C_3 \rightarrow C_3 - C_1$$

$$(a+b+c+x) \begin{vmatrix} 1 & b & c \\ 0 & x & 0 \\ 0 & 0 & x \end{vmatrix} = 0$$

$$(a+b+c+x) 1. x^2 = 0$$

$$x = 0, -(a+b+c) \quad (\because x \neq 0)$$

- 150. (c) A A is defined only when A is a matrix of order $m \times n$ where m = n. $A \times A = (m \times n) (m \times n) = (m \times n) (n \times n)$ if m = n $= m \times n = n \times n$ or $m \times m$.
 - = A is a square matrix.
- 151. (a) We know that, elements of principal diagonals of a skew-symmetric matrix are all zero.

$$A = \begin{vmatrix} 0 & a & b \\ -a & 0 & -c \\ -b & c & 0 \end{vmatrix}_{3 \times 3} \implies |A| \begin{vmatrix} 0 & a & b \\ -a & 0 & -c \\ -b & c & 0 \end{vmatrix}$$

= abc - abc = 0

152. (c) If any two adjacent rows or columns of a determinant are interchanged in position, the value of the determinant changes its sign.

153. (c)
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = \begin{vmatrix} a+b+c & b & c \\ a+b+c & c & a \\ a+b+c & a & b \end{vmatrix}$$

$$(\operatorname{Applying } C_1 \rightarrow C_1 + C_2 + C_3) \quad 160. (d) \quad \because A = A'$$

$$= (a + b + c) \begin{vmatrix} 1 & b & c \\ 1 & a & b \end{vmatrix} \qquad \Rightarrow \begin{pmatrix} 4 \\ 2x_- \\ 3x_- \\ x = 5 \end{vmatrix}$$

$$[on taking (a + b + c) common from C_1]$$

$$= (a + b + c) [1 (bc - a^2 - b^2 + a^3 + a^2 - c^2] \\= (a + b + c) [1 (bc - a^2 - b^2 + a^3 + a^2 - c^2] \\= (a + b + c) [-(a^2 + b^2 + c^2 - a^3 - b^2 - c^3)] \qquad a^3 = 1$$

$$= -\frac{1}{2} (a + b + c) [(a - b)^2 + (b - c)^2 + (c - a)^2] \\= (a + b + c) [(a - b)^2 + (b - c)^2 + (c - a)^2] \\= -\frac{1}{2} (a + b + c) [(a - b)^2 + (b - c)^2 + (c - a)^2] \\= ABB \qquad (\because BA = B) \\= AB = A \qquad (\because AB = A) \\Also, B^2 = (BA). (BA) = B. (AB). A \\= BA.A \qquad (\because AB = A) \\Aagain, (AB)^2 = (AB). (AB) = A. (BA) B \\= A.B = A \qquad (\because BA = B) \\= A.B = A \qquad (\because AB = A) \qquad (i - 3) \\BA = A \qquad (\because AB = A) \qquad (i - 3) \\BA = A \qquad (\because AB = A) \qquad (i - 3) \\BA = A \qquad (\because AB = A) \qquad (i - 3) \\BA = A \qquad (\because AB = A) \qquad (i - 3) \\BA = A \qquad (i - 3a + B) \\= -12 + 12 = 0 = x + iy \\\therefore x = 0 \qquad (i - 3a + 1) \\Aagain (AB)^2 = (AB). (AB) = A. (BA) B \qquad = -27 \\BA = A \qquad (i - AB = A) \qquad (i - 3) \\BA = A \qquad (i - AB = A) \qquad (i - AB = A) \qquad (i - 3) \\BA = A = A \qquad (i - AB = A) \qquad (i - 3) \\BA = A = A \qquad (i - AB = A) \qquad (i - 3) \\BA = A = A \qquad (i - AB = A) \qquad (i - 3) \\BA = A = A \qquad (i - AB = A) \qquad (i - 3) \\BA = A = A \qquad (i - AB = A) \qquad (i - A) \\BA = A = A \qquad (i - AB = A) \qquad (i - A) \\BA = A = A \qquad (i - AB = A) \qquad (i - A) \\BA = A = A \qquad (i - AB = A) \qquad (i - A) \\BA = A = A \qquad (i - AB = A) \qquad (i - A) \\BA = A = A \qquad (i - AB = A) \qquad (i - A) \\BA = A = A \qquad (i - AB = A) \qquad (i - A) \\BA = A = A \qquad (i - AB = A) \qquad (i - A) \\BA = A = A \qquad (i - AB = A) \qquad (i - A) \\BA = A = A \qquad (i - AB = A) \qquad (i - A) \\BA = A = A \qquad (i - AB = A) \qquad (i - A =$$

158. (b) det $(A^{-1}) = \frac{1}{\det A}$ 159. (a) From the matrix equation, AB = AC, where A, B and C

are the square matrices of same order. We can conclude B = C provided and A is non-singular.

$$\Rightarrow \begin{pmatrix} 4 & x+2 \\ 2x-3 & x+1 \end{pmatrix} = \begin{pmatrix} 4 & 2x-3 \\ x+2 & x+1 \end{pmatrix}$$

$$\Rightarrow 2x-3=x+2$$

$$\therefore x=5$$
161. (b)
$$\begin{vmatrix} a & b & 0 \\ 0 & a & b \\ b & 0 & a \end{vmatrix}$$

$$= a [a^2 - 0] - b [-b^2] + 0$$

$$= a^3 + b^3 = 0$$

$$\Rightarrow a^3 = -b^3$$

$$\Rightarrow \left(\frac{a}{b}\right)^3 = -1$$
Hence, $\frac{a}{b}$ is one of the cube roots of -1
162. (c) We know that, $|kA| = k^n |A|$, where n is order of matrix A.

$$\therefore |3AB| = 3^2 |A| |B| \qquad (\because |AB| = |A| |B|)$$

$$= 9(-1)(3)$$

$$= -27 \qquad (\because |A| = -1, |B| = 3)$$
163. (b)
$$\begin{bmatrix} 1 & 5 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

An elementary matrix has each diagonal element 1. So, option (b) is correct answer.

(c)
$$A = \begin{bmatrix} 2 & 7 \\ 1 & 5 \end{bmatrix}$$

Now, $A^{-1} = \frac{1}{|A|} adj (A)$
 $= \frac{1}{(10-7)} \begin{bmatrix} 5 & -7 \\ -1 & 2 \end{bmatrix}$
 $= \frac{1}{3} \begin{bmatrix} 5 & -7 \\ -1 & 2 \end{bmatrix}$
 $\Rightarrow 3A^{-1} = \begin{bmatrix} 5 & -7 \\ -1 & 2 \end{bmatrix}$
Now, $A + 3A^{-1} = \begin{bmatrix} 2 & 7 \\ 1 & 5 \end{bmatrix} + \begin{bmatrix} 5 & -7 \\ -1 & 2 \end{bmatrix}$
 $= \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 7I$ where *I* is Identity Matrix.
(d) The given matrix $A = \begin{bmatrix} 0 & -4 + i \\ 4 + i & 0 \end{bmatrix}$

Now, from options: From option (a): For *Symmetric matrix*

165.

т

$$A^{T} = A$$

Now, $A^{T} = \begin{bmatrix} 0 & 4+i \\ -4+i & 0 \end{bmatrix} \neq A$

- \therefore The given matrix is not symmetric
- ... option (a) is wrong. From option (b): For *Skew-symmetric matrix* $A^{T} = -A$

$$= \begin{bmatrix} 0 & 4+i \\ -4+i & 0 \end{bmatrix} \neq -A$$

- .:. Given matrix is not skew-symmetric
- ∴ option (b) is wrong. From option (c): For *Hermitian matrix*

$$A^{T} = \overline{A}$$
, where A is conjugate of matrix A

$$\overline{\mathbf{A}} = \begin{bmatrix} \mathbf{0} & -\mathbf{4} - \mathbf{i} \\ \mathbf{4} - \mathbf{i} & \mathbf{0} \end{bmatrix} \neq \mathbf{A}^{\mathrm{T}}$$

∴ option (c) is wrong.
 From option (d): For *Skew-Hermitian matrix* The diagonal element of a skew-hermitian matrix are pure imaginary or zero.

$$\mathbf{A} = \begin{bmatrix} 0 & -4 + \mathbf{i} \\ 4 + \mathbf{i} & 0 \end{bmatrix}$$

Here, diagonal element indicates that the given matrix is skew-hermitian matrix.

- \therefore option (d) is correct.
- 166. (d) Non-singular matrix is a matrix whose determinate Value is non-zero.

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

Here, A and B are non-singular matrix Now from Statement 1:

$$A + B = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 4 \end{bmatrix}$$
$$det (A + B) = 12 - 4 = 8$$
$$Now det (A) = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1$$
$$and det (B) = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3$$

Now, det $(A+B) = 4 \neq det (A+B)$ Statement 1 is wrong.

Now from Statement 2:

.:.

$$(A+B)^{-1} = \frac{1}{|A+B|} \operatorname{adj} (A+B)$$

= $\frac{1}{8} \begin{bmatrix} 4 & -2 \\ -2 & 3 \end{bmatrix}$

and
$$A^{-1} = \frac{1}{|A|} \operatorname{adj} (A) = \frac{1}{1} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$$

and $B^{-1} = \frac{1}{|B|} \operatorname{adj} (B) = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$
Now, $A^{-1} + B^{-1} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} + \begin{bmatrix} \frac{2}{3} & \frac{-1}{3} \\ \frac{-1}{3} & \frac{2}{3} \end{bmatrix}$

$$= \begin{bmatrix} \frac{8}{3} & \frac{-4}{3} \\ \frac{-4}{3} & \frac{5}{3} \end{bmatrix} \neq (A+B)^{-1}$$

: Statement 2 is wrong

 \therefore Option (d) is correct.

167. (a)
$$X = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix}$ and $A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$
Now, $AX = B$

$$\therefore \begin{bmatrix} p & q \\ r & s \end{bmatrix} \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3p+q & -4p-q \\ 3r+s & -4r-s \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix}$$

$$3p+q=5 \qquad \dots (i)$$

$$-4p-q=2 \qquad \dots (ii)$$

$$3r+s=-2 \qquad \dots (iii)$$

$$-4r-s=1 \qquad \dots (iv)$$

From equations (i) and (ii), we get

$$-p = 7$$

 $p = -7$

...

$$\Rightarrow q=5-3(-7)$$

$$q=26$$
From equations (iii) and (iv),
$$-r=-1$$

$$\therefore r=1$$

$$\Rightarrow s = -2 - 3 = -5$$

$$\therefore s = -5$$

Hence,
$$A = \begin{bmatrix} p & q \end{bmatrix} = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

Hence,
$$A = \begin{bmatrix} r & s \end{bmatrix} = \begin{bmatrix} 1 & -5 \end{bmatrix}$$

-7 26]

 \therefore Option (a) is correct.

168. (a)
$$A = \begin{bmatrix} x + y & y \\ 2x & x - y \end{bmatrix}$$
$$B = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

Here
$$AB = C$$

$$\therefore \begin{bmatrix} x + y & y \\ 2x & x - y \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2(x + y) & -y \\ 4x & -x + y \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$2x + y = 3 \qquad \dots(i)$$

$$3x + y = 2 \qquad \dots(i)$$
From equations (i) and (ii), we get
 $x = -1$ and $y = 5$

$$\therefore A = \begin{bmatrix} 4 & 5 \\ -2 & -6 \end{bmatrix}$$

$$Now, A^2 = \begin{bmatrix} 4 & 5 \\ -2 & -6 \end{bmatrix} \begin{bmatrix} 4 & 5 \\ -2 & -6 \end{bmatrix}$$

$$= \begin{bmatrix} 16 - 10 & 20 - 30 \\ -8 + 12 & -10 + 36 \end{bmatrix} = \begin{bmatrix} 6 & -10 \\ 4 & 26 \end{bmatrix}$$

$$\therefore Option (a) is correct.$$
169. (c)
$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 + x & 1 \\ 1 & 1 & 1 + y \end{vmatrix}$$

$$= [(1 + x) (1 + y) - 1] - 1(1 + y - 1) + 1(1 - 1 - x)$$

$$= 1 + x + y + xy - 1 - y - x$$

$$= xy$$

$$\therefore Option (c) is correct.$$
170. (c)
$$E(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$Now E(\alpha) = \begin{bmatrix} \cos \beta & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$
and
$$E(\beta) = \begin{bmatrix} \cos \beta & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

$$now E(\alpha) E(\beta) = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

$$= \begin{bmatrix} \cos \alpha \cdot \cos \beta & \cos \alpha \sin \beta \\ -\sin \alpha & \cos \beta \\ -\sin \alpha & \cos \beta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \alpha \cdot \cos \beta & -\sin \alpha \sin \beta \\ -\sin \alpha & \cos \beta \\ -\sin \alpha & \cos \beta \end{bmatrix}$$

$$= \begin{bmatrix} \cos (\alpha + \beta) & \sin (\alpha + \beta) \\ -\sin (\alpha + \beta) & \cos (\alpha + \beta) \end{bmatrix}$$

$$= E(\alpha + \beta)$$

$$\therefore Option (c) is correct.$$

м-452

171. (a)
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & x-1 & 1 \\ 2 & 7 & x-3 \end{bmatrix}$$

$$|A| = 1[(x-1)(x-3)-7] - 3[(x-3)-2] + 2[7-2(x-1)] = x^2 - 11x + 29$$
If inverse will not exist then $|A| = 0$

$$x^2 - 11x + 29 = 0$$

$$x = \frac{11 \pm \sqrt{5}}{2}$$
172. (b)
$$\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} > 0$$

$$\Rightarrow a(bc-1) - 1(c-1) + 1(1-b) > 0$$

$$\Rightarrow abc - a - c + 1 + 1 - b > 0$$

$$\Rightarrow abc + 2 - (a + b + c) > 0$$

$$\Rightarrow abc + 2 - (a + b + c) > 0$$

$$\Rightarrow abc > (a + b + c) - 2$$
Let; $a = -1$; $b = 0$ & $c = 1$
Then; $0 > -2$ [which is correct]
Hence, $abc = 0$

$$\therefore After considering all the option; (b) is correct option.s$$
173. (c) $\alpha + \beta = 90^{\circ}$

$$\begin{vmatrix} \cos^2 \frac{\alpha}{2} & \sin^2 \frac{\alpha}{2} \\ \sin^2 \frac{\beta}{2} & \cos^2 \frac{\beta}{2} \end{vmatrix}$$

$$= \cos^2 \frac{\alpha}{2} \cos^2 \frac{\beta}{2} - \sin^2 \frac{\alpha}{2} \sin^2 \frac{\beta}{2}$$

$$= \left(\cos \frac{(\alpha - \beta)}{2} \times \cos \frac{(\alpha + \beta)}{2} \right) \left(\cos \frac{\alpha}{2} \cos \frac{\beta}{2} - \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \right)$$

$$= \cos \frac{(\alpha - \beta)}{2} \times \cos \frac{(\alpha - \beta)}{2}$$
Maximum value of $\cos \left(\frac{\alpha - \beta}{2} \right)$ is 1. So maximum value of determinent is $\left(\frac{1}{\sqrt{2}} \right)$
So both 1 and 2 are correct.
174. (d) $\because 2X + 3A = 0$

$$\Rightarrow x = -\frac{3}{2}A$$

 $\Rightarrow x = \frac{-3}{2} \begin{bmatrix} 1 & 0 & -2 \\ 2 & -3 & 4 \end{bmatrix}$ $\Rightarrow X = \begin{bmatrix} -\frac{3}{2} & 0 & 3 \\ -3 & \frac{9}{2} & -6 \end{bmatrix}$ 175. (b) $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}; B = \begin{bmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{bmatrix}$ $AB = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

$$BA = \begin{bmatrix} -8 & 7 & -10 \\ 48 & -42 & 60 \\ 40 & -35 & 50 \end{bmatrix}$$

as $AB \neq BA$

So A and B are not commute.

176. (a) If A is a matrix that is invertible then det- (kA) will be $k^n \cdot det(A)$, where n is the order.

$$\therefore \quad \left[\det(KA)\right]^{-1}\det(A)$$

$$= \quad \left[\left(K\right)^{n} \times \det(A)\right]^{-1} \cdot \det(A)$$

$$= \quad K^{-n} \times \frac{1}{\det(A)} \times \det(A)$$

= K⁻ⁿ

177. (a) The determinent of a orthogonal matrix is always ± 1 $|A| = \pm 1$

$$B = \begin{bmatrix} 1 & 2 & 3 \\ -3 & 0 & 2 \\ 2 & 5 & 0 \end{bmatrix}$$
$$|B| = -10 - 2(-4) + 3(-15)$$
$$= -47$$
$$|AB| = |A| |B|$$
$$= (\pm 1)(-47)$$
$$= \pm 47$$
$$178. (a) \qquad \begin{vmatrix} 1 - a & a - b - c & b + c \\ 1 - b & b - c - a & c + a \\ 1 - c & c - a - b & a + b \end{vmatrix}$$
$$apply C_2 \rightarrow C_2 + C_3$$

 $|1-a \quad a \quad b+c|$ 1-b b c+a $\begin{vmatrix} 1 \\ 1 - c \\ c \\ a + b \end{vmatrix}$ apply $C_1 \rightarrow C_1 + C_2$ $\begin{vmatrix} 1 & a & b+c \end{vmatrix}$ $\begin{array}{ccc}
1 & b & c+a \\
1 & c & a+b
\end{array}$ apply $C_3 \rightarrow C_2 + C_3$ $(a+b+c)\begin{vmatrix} 1 & a & 1 \\ 1 & b & 1 \\ 1 & c & 1 \end{vmatrix} = 0$ 179. (d) $f(x) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$ $f'(x) = \begin{vmatrix} 3x^2 & \cos x & -\sin x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} + \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ 0 & 0 & 0 \end{vmatrix}$ $+ \begin{vmatrix} x^{3} & \sin x & \cos x \\ 0 & 0 & 0 \\ p & p^{2} & p^{3} \end{vmatrix}$ $f'(x) = \begin{vmatrix} 3x^2 & \cos x & -\sin x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$ $f'(0) = \begin{vmatrix} 0 & \cos 0 & -\sin 0 \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$ $=-6p^{3}$ $f''(x) = \begin{vmatrix} 6x & -\sin x & -\cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$ 180. (a) $|0 \ 0 \ -\cos 0|$ $f''(0) = \begin{vmatrix} 0 & 0 & -\cos \theta \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$ $= -1 (6p^2 + p)$

f''(0) = 0

 $-(6p^2+p)=0$

$$= 8 \begin{vmatrix} 5 & 1 & 5 \\ 9 & 7 & 9 \\ 3 & 5 & 3 \end{vmatrix} = 0$$

: two columns are same so value of determinant is zero.

$$2.\begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix} = \begin{vmatrix} 1 & a+b+c & b+c \\ 1 & a+b+c & c+a \\ 1 & a+b+c & a+b \end{vmatrix} C_2 \rightarrow C_2 + C_3$$
$$= (a+b+c)\begin{vmatrix} 1 & 1 & b+c \\ 1 & 1 & c+a \end{vmatrix} = 0$$

 $= (a+b+c) \begin{vmatrix} 1 & 1 & c+a \\ 1 & 1 & a+b \end{vmatrix}$

: two columns are same so value of determinant is zero.

3.
$$\begin{vmatrix} 0 & c & b \\ -c & 0 & a \\ -b & -a & 0 \end{vmatrix} = 0$$

of determinant is zero.

$$|adj A|^{=} (ad - bc)$$

$$(adj A)^{-1} = \frac{1}{|adj A|} \begin{bmatrix} a & c \\ b & d \end{bmatrix}^{T} = \frac{1}{ad - bc} \begin{bmatrix} a & b \\ c & d \end{bmatrix} ...(2)$$

$$(adj A)^{-1} = \begin{bmatrix} 1 & a \\ b & d \end{bmatrix}^{T} = \frac{1}{ad - bc} \begin{bmatrix} a & b \\ c & d \end{bmatrix} ...(2)$$

$$(b) A = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$AA = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$AA = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$AA = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$AA = \begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = -2\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{2} = -2A$$

$$A^{2} \cdot A = -2\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{2} = -2A$$

$$A^{2} \cdot A = -2\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{3} = 4A$$
Hence $A^{2} \neq -A, A^{3} = 4A$
Hence $A^{2} \neq -A, A^{3} = 4A$
Hence $A^{2} \neq -A, A^{3} = 4A$

$$A^{2} \cdot A = -2\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} C & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{3} = 4A$$

$$A^{2} \cdot A = -2\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{3} = 4A$$

$$A^{2} \cdot A = -2\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{3} = 4A$$

$$A^{2} = -2A$$

$$A^{3} = 4A$$

$$A^{2} = -2A = A^{3} = 4A$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{2} = -2A = A^{2} = -2\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ -2 & -2 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ -2 & -2 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ -2 & -2 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ -2 & -2 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ -2 & -2 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & 2 \end{bmatrix} = 4\begin{bmatrix} -1 & -1 \\ -2 & -2 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix} = 4\begin{bmatrix} -1 & -2 \\ -2 & -2 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix}$$

$$A^{2} = -2\begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix}$$

185. (d) $|A| = 5 \implies |2A| = 2^3 \times 5 = 40$

$$p (6p + 1) = 0$$

$$p = 0 \text{ or } p = -\frac{1}{6}$$
181. (b) Let $[A] = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

$$A^{-1} = \frac{1}{|A|} (adj, A)$$

$$= \frac{1}{(ad - bc)} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}^{T} = \frac{1}{(ad - bc)} \begin{bmatrix} a & b \\ -c & a \end{bmatrix}$$

$$adj(A^{-1}) = \frac{1}{(ad - bc)} \begin{bmatrix} a & c \\ b & d \end{bmatrix}^{T} = \frac{1}{(ad - bc)} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
...(1)
$$adjA = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$|adjA| = (ad - bc)$$

$$(adj A)^{-1} = \frac{1}{|adj}A| \begin{bmatrix} a & c \\ b & d \end{bmatrix}^{T} = \frac{1}{ad - bc} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
...(2)
Subtracting eqn. (1) and (2),
$$adj(A^{-1}) - (adj A)^{-1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$= \text{null matrix.}$$
182. (b) $A = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$

$$AA = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$AA = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = -2 \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{2} = -2A$$

$$A^{2} \cdot A = -2 \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$= -2 \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = 4 \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{3} = 4A$$
Hence $A^{2} \neq -A, A^{3} = 4A$

м-454

 $\Rightarrow |A^{-1}| = \frac{1}{|A|} \Rightarrow |(2A)^{-1}| = \frac{1}{|2A|} = \frac{1}{40}$ 186. (d) $\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$ $= \begin{bmatrix} ax + hy + gz & hx + by + fz & gx + fy + cz \end{bmatrix}$ 187. (c) $ax^3 + bx^2 + cx + d$ =(x+1)[(x+1)(5x-1)-x(3x+4)]-2x[(2x+3)(5x-1)]-x(2-x)] + 3x [(2x+3)(3x+4)-(2-x)(x+1)] \Rightarrow ax³+bx²+cx+d=x³+28x²+35x-1 \Rightarrow c = 35 188. (b) a+b+c+d=63189. (c) $m \cos \theta - n \sin \theta = \begin{bmatrix} \cos \theta & 0 \\ 0 & \cos \theta \end{bmatrix} - \begin{bmatrix} 0 & \sin \theta \\ -\sin \theta & 0 \end{bmatrix}$ $= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ det. $(m \cos \theta - n \sin \theta) = \cos^2 \theta - (-\sin^2 \theta)$ $= \cos^2\theta + \sin^2\theta = 1.$ 190. (d) $f(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} \& f(\phi) \begin{bmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{bmatrix}$ $\left[\cos\theta\cos\phi - \sin\theta\sin\phi - \cos\theta\sin\phi - \sin\theta\cos\phi \quad 0\right]$ $f(\theta) \times f(\phi) = \begin{bmatrix} \sin\theta\cos\phi + \cos\theta\sin\phi & -\sin\theta\sin\phi + \cos\theta\cos\phi & 0\\ 0 & 0 & 1 \end{bmatrix}$ 1 (using Trigonometric Identities) \Rightarrow f(θ) × f(ϕ)=f(θ + ϕ). Also, det, $[f(\theta) \times f(\phi)] = 1 \left[\cos^2(\theta + \phi) - (-\sin^2(\theta + \phi)) \right]$ $=\cos^{2}(\theta + \phi) + \sin^{2}(\theta + \phi) = 1.$ & det.(f(x)) = $(\cos^2 x - (-\sin^2 x)) = \cos^2 x + \sin^2 x = 1$. For x = -x $\det(f(-x)) = \cos^2(-x) + \sin^2(-x) = 1$ Hence, det.(f(-x)) = det.(f(x))Hence, det.(f(x)) is even function. 191. (a) Here $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 \\ 3 & -1 & 5 \end{vmatrix} \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{bmatrix} 8 \\ 6 \\ k \end{vmatrix}$ or AX = B. |A| = 0 (: the system does not have a unique solution) Now, $(Adj A) = \begin{vmatrix} -3 & -6 & 3 \\ 1 & 2 & -1 \\ 2 & 4 & -2 \end{vmatrix}$ and $B = \begin{vmatrix} 8 \\ 6 \\ k \end{vmatrix}$

For
$$k = 15$$
, $(\text{Adj } A)B = \begin{bmatrix} -24 - 36 + 15\\ 8 + 12 - 15\\ 16 + 24 - 30 \end{bmatrix} = \begin{bmatrix} -45\\ 5\\ 10 \end{bmatrix} \neq 0$

(: system is inconsistent i.e., it has no solution)

For
$$k = 20$$
, $(\text{Adj } A)B = \begin{bmatrix} -24 - 36 + 60\\ 8 + 12 - 20\\ 16 + 24 - 40 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} = 0$

(:: system has infinitely many solutions)

192. (d) Here,
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$
 $|A| = 3 - (-2) = 5$ and $|B| = -4 - (-3) = -1$
 $\Rightarrow A^{-1} = \frac{1}{5} \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}$ and $B^{-1} = -1 \begin{bmatrix} -2 & -3 \\ 1 & 2 \end{bmatrix}$
 $AB = \begin{bmatrix} 3 & 5 \\ 1 & 0 \end{bmatrix}$ and $A^{-1}B^{-1} = \frac{1}{5} \begin{bmatrix} 5 & 7 \\ -5 & 8 \end{bmatrix}$
 $\Rightarrow AB(A^{-1}B^{-1}) = \frac{1}{5} \begin{bmatrix} -10 & -61 \\ 5 & 7 \end{bmatrix} \neq 1.$
 $|AB| = 0 - 5 = -5$
 $\therefore (AB)^{-1} = \frac{-1}{5} \begin{bmatrix} 0 & -5 \\ -1 & 3 \end{bmatrix} \neq A^{-1}B^{-1}$
193. (b) $A = \begin{bmatrix} 2 & 3 & 5 \\ 7 & 3 & -2 \\ 2 & 3 & \lambda \end{bmatrix}$ and $B = \begin{bmatrix} 9 \\ 8 \\ \mu \end{bmatrix}$
 $(Adj A) = \begin{bmatrix} 3\lambda + 6 & 15 - 3\lambda & -21 \\ -(7\lambda + 4) & 2\lambda - 10 & 39 \\ 15 & 0 & -15 \end{bmatrix}$

For infinitely many solutions :

$$(\operatorname{Adj} A)B = 0 \Rightarrow \begin{bmatrix} 27\lambda + 54 + 120 - 24\lambda - 21\mu \\ -63\lambda - 36 + 16\lambda - 80 + 39\mu \\ 135 + 0 - 15\mu \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Hence, $\mu = 9$ and $\lambda = 5$.

194.

(c) For unique solution :

$$|A| \neq 0 \implies 2(3\lambda + 6) - 3(7\lambda + 4) + 5(21 - 6) \neq 0$$

 $\implies \lambda \neq 5$.

and μ can have any real value.

195. (c)
$$A = \begin{bmatrix} \alpha & 2 \\ 2 & \alpha \end{bmatrix}$$
, det $(A^3) = 125$
 $|A^3| = 125 \Rightarrow |A| = 5$
 $\therefore \alpha^2 - 4 = 5 \Rightarrow \alpha^2 = 9 \Rightarrow \alpha = \pm 3$

м-456

196. (b) $|B^{-1}AB| = |B^{-1}||A||B|$ \Rightarrow v = -2So, $3x-2=4 \Rightarrow 3x=6 \Rightarrow x=2$ $\therefore \mathbf{A} = \begin{bmatrix} 0 & -2 \\ 2 & 4 \end{bmatrix}, \quad \mathbf{A}^2 = \begin{bmatrix} 0 & -2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 0 & -2 \\ 2 & 4 \end{bmatrix}$ =|A| $\begin{vmatrix} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{vmatrix} = 0$ 197. (d) $=\begin{bmatrix} -4 & -8\\ 8 & 12 \end{bmatrix}$ 201. (c) $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 + xyz & 1 \\ 1 & 1 & 1 + xyz \end{vmatrix} \qquad \begin{array}{c} c_2 \to c_2 - c_1 \\ c_3 \to c_3 - c_1 \end{vmatrix}$ We know, the value of symmetric matrix's determinant $is 0 \mid 0 -a -b \mid$ $\begin{vmatrix} a & 0 & -c \\ b & c & 0 \end{vmatrix} = 0$ $= \begin{vmatrix} 1 & 0 & 0 \\ 1 & xyz & 0 \\ 1 & 0 & xyz \end{vmatrix} = 1(x^2y^2z^2 - 0) = x^2y^2z^2$ In the given matrix, determinant is 0, if x = 0198. (b) $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$ 202. (d) $\begin{vmatrix} x & y & 0 \\ 0 & x & y \\ y & 0 & x \end{vmatrix} = 0 \Rightarrow x (x^2 - 0) - y (0 - y^2) + 0 = 0$ $\mathbf{A}\mathbf{A}^{\mathrm{T}} = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$ $\Rightarrow x^3 + y^3 = 0$ $= \begin{bmatrix} \cos^2 \alpha + \sin^2 \alpha & -\cos \alpha \sin \alpha + \sin \alpha \cos \alpha \\ -\sin \alpha \cos \alpha + \sin \alpha \cos \alpha & \sin^2 \alpha + \cos^2 \alpha \end{bmatrix}$ \Rightarrow x³ = - v³ $\Rightarrow \frac{x^3}{v^3} = -1 \Rightarrow \left(\frac{x}{v}\right)^3 = -1 \Rightarrow \frac{x}{v} = \sqrt{-1}$ $=\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$ 203. (b) determinant of B = 1199. (a) x + 2y + 3z = 1Let 'B' be identity matrix 2x + y + 3z = 2So, B = $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ 5x + 5y + 9z = 4Writing in matrix form, Ax = B $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 5 & 5 & 9 \end{bmatrix}$ If we interchange any 2 rows, determinant will be -1Let, C = $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix}$, |C| = -1|A| = 1(9-15)-2(18-15)+3(10-5) $=-6-2(3)+3(5)=-12+15=3\neq 0$ So, these equations have unique solution Here, number of elements in B and C are equal. 200. (d) $A = \begin{bmatrix} x + y & y \\ x & x - y \end{bmatrix}, B = \begin{bmatrix} 3 \\ -2 \end{bmatrix}, c = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$ $A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ 204. (a) AB = CWe know, $A^n = \begin{bmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 3x + 3y - 2y \\ 3x - 2x + 2y \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$ \Rightarrow 3x + y = 4; x + 2y = -2 $\therefore A^{3} = \begin{bmatrix} \cos 3\theta & \sin 3\theta \\ -\sin 3\theta & \cos 3\theta \end{bmatrix}$ Solving these equations, 3x + y = 43x + 6y = -6(-) (-) (+)-5v = 10

206. (a)
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$A^{4} = A^{2} \cdot A^{2}$$
$$= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

207. (c) Given, Matrix A has x rows and x + 5 columns Matrix B has y rows and 11 – y columns. Also given AB and BA exists. If AB exists, then the number of rows in A most equal to number of columns in B. i.e., x = 11 - y....(1) If BA exists, then the number of rows in B must equal to number of rows in A. i.e., x + 5 = y \Rightarrow 11 - y + 5 = y (from (1)) $\Rightarrow 2y = 16$ \Rightarrow y = 8. $(1) \Rightarrow x = 11 - 8 = 3.$ So, x = 3, y = 8.

208. (c) We know,
$$\operatorname{Adj} A^{T} = (\operatorname{adj} A)^{T}$$

 $\therefore \operatorname{adj} A^{T} - (\operatorname{adj} A)^{T} = \operatorname{adj} A^{T} - \operatorname{adj} A^{T} = 0.$

 $=(1)\left(\cos 2\left(\frac{\theta}{2}\right)\right)$

 $= \cos \theta$.

209. (b) $\begin{vmatrix} \cos^2 \frac{\theta}{2} & \sin^2 \frac{\theta}{2} \\ \sin^2 \frac{\theta}{2} & \cos^2 \frac{\theta}{2} \end{vmatrix} = \left(\cos^4 \frac{\theta}{2} - \sin^4 \frac{\theta}{2} \right)$

$$\begin{bmatrix} \mathbf{p} & \mathbf{r} & \mathbf{c} \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{bmatrix} \\ \mathbf{x} \\ \mathbf{x} \end{bmatrix} \\ \mathbf{x} \\ \mathbf{x} \\$$

210. (a) $A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ a & a \end{bmatrix}$

$$\therefore \operatorname{Adj} A = \begin{bmatrix} 1 & 6 & -2 \\ -2 & 1 & 4 \\ 6 & -3 & 1 \end{bmatrix}$$
214. (b) $A = \begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix}$

$$= \begin{pmatrix} 4+4 & -4-4 \\ -4-4 & 4+4 \end{pmatrix} = \begin{pmatrix} 8 & -8 \\ -8 & 8 \end{pmatrix}$$

$$= -4 \begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix} = -4A$$
215. (a) $\begin{vmatrix} pa & qb & rc \\ qc & ra & pb \\ rb & pc & qa \end{vmatrix} = pa(rqa^2 - p^2bc) - qb(q^2ac - prb^2) +$

$$rc(qpc^2 - r^2ab)$$

$$= pqra^3 - p^2abc - q^3abc + pqrb^3 + pqrc^3 - r^3abc$$

$$= pqr(a^3 + b^3 + c^3) - abc(p^3 + q^3 + r^3)$$
Given, $p + q + r = a + b + c = 0$

$$\Rightarrow p^3 + q^3 + r^3 = 3pqr \text{ and } a^3 + b^3 + c^3 = 3abc.$$

$$\therefore pqr(a^3 + b^3 + c^3) - abc(p^3 + q^3 + r^3) = pqr(3abc) - abc(3pqr) = 0.$$
216. (a) $A = \begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$
We know, $AA^{-1} = I.$
Let us take first option (a) as \overline{A}^{-1} .
$$\begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\theta - \sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos^2\theta + \sin^2\theta & -\sin\theta\cos\theta + \cos\theta\sin\theta & 0 \\ -\sin\theta\cos\theta + \cos\theta\sin\theta & \sin^2\theta + \cos^2\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$
217. (a) $A is 2 \times 3 matrix$
 $AB is 2 \times 5 matrix$

Let 'B' be $m \times n$ matrix

NDA Topicwise Solved Papers - MATHEMATICS

 $\left[A\right]_{2\times 3}\left[B\right]_{m\times n} = \left[AB\right]_{2\times 5}$ number of columns of A = number of rows of B. ∴ m=3 we can observe that n = 5 from the product. So, B is 3×5 matrix. 218. (a) $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ $A^{2} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1+4 & 2+6 \\ 2+6 & 4+9 \end{bmatrix} = \begin{bmatrix} 5 & 8 \\ 8 & 13 \end{bmatrix}$ $\mathbf{A}^2 - \mathbf{k}\mathbf{A} - \mathbf{I}_2 = \begin{bmatrix} 5 & 8 \\ 8 & 13 \end{bmatrix} - \begin{bmatrix} \mathbf{k} & 2\mathbf{k} \\ 2\mathbf{k} & 3\mathbf{k} \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 5-k-1 & 8-2k-0 \\ 8-2k-0 & 13-3k-1 \end{bmatrix}$ $= \begin{bmatrix} 4-k & 8-2k \\ 8-2k & 12-3k \end{bmatrix}$ Given, $A^2 - kA - I_2 = 0$ $\therefore 4 - k = 0 \Longrightarrow k = \overline{4}$ 219. (b) If $A^{-1} = A^{T}$, then A is orthogonal matrix. 220. (a) Statement 1 and 2 are correct. Statement 3 is incorrect because $(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}, \ \lambda \neq 0$ 221. (a) On Applying $C_1 \rightarrow C_1 - C_3$ $\begin{vmatrix} x-3 & y & 3 \\ x^2-9 & 5y^3 & 9 \\ x^3-27 & 10y^5 & 27 \end{vmatrix}$ 1 1

$$(x-3)\begin{vmatrix} 1 & y & 3 \\ x+3 & 5y^3 & 9 \\ x^2+9-3x & 10y^5 & 27 \end{vmatrix}$$

222. (a)
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$(\because \cos(-\theta) = \cos\theta \text{ and } \sin(-\theta) = -\sin\theta)$$

$$adj A = \begin{bmatrix} \cos\theta & -\sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
223. (a) $(AB)^{-1} = B^{-1}A^{-1}$
224. (d) $\begin{vmatrix} a-x & c & b \\ c & b-x & a \\ b & a & c-x \end{vmatrix} = 0$

$$\begin{vmatrix} x - (a+b+c) & c & b \\ c & (a+b+c) & c & b \end{vmatrix}$$

$$-\begin{vmatrix} x - (a+b+c) & b-x & a \\ x - (a+b+c) & a & c-x \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} x & c & b \\ x & b-x & a \\ x & a & c-x \end{vmatrix} = 0$$

{Applying $C_1 \rightarrow C_1 + C_2 + C_3$ }

$$\begin{vmatrix} x & c & b \\ 0 & c+x-b & b-a \\ 0 & c-a & b+x-c \end{vmatrix} = 0$$

{Applying $R_2 \rightarrow R_1 - R_2$ and $R_3 \rightarrow R_1 - R_3$ }
 $x\{(c+x-b)(b+x-c) - (b-a)(c-a)\} = 0$
 $x\{(x^2 - (b-c)^2 - bc + ac + ab - a^2\} = 0$
 $x(x^2 - a^2 - b^2 - c^2 + ab + bc + ca) = 0$
 $x\{x^2 - (a-b)^2 - (b-c)^2 - (c-a)^2\} = 0$
 $\therefore \qquad \boxed{x=0}$

225. (b) A matrix does not have an inverse if |A| = 0

 $\begin{vmatrix} 2 & 4 \\ -8 & x \end{vmatrix} = 0$

$$\Rightarrow x = -16$$
226. (b) Since $\begin{vmatrix} 2 & 1 & -3 \\ 3 & -2 & 2 \\ 5 & -3 & -1 \end{vmatrix} = 26 \neq 0$

$$\Rightarrow \text{ System is consistent with unique solution.}$$
227. (a) Let u, v and w are $p^{\text{th}}, q^{\text{th}}$ and r^{th} term of the G.P. with first term a' and common ratio a' .
then,
 $u = a.(d)^{p-1} \Rightarrow \ln u = \ln(a) + (p-1) \ln(d)$
 $v = a.(d)^{q-1} \Rightarrow \ln v = \ln(a) + (q-1) \ln(d)$
 $w = a.(d)^{r-1} \Rightarrow \ln v = \ln(a) + (r-1) \ln(d)$
Now, $\ln u - \ln v = (p-q) \ln(d)$
 $\ln u - \ln w = (p-r) \ln(d)$
 $\ln u - \ln w = (p-r) \ln(d)$
 $\left| \ln u \quad p \quad 1 \right|$
 $\ln u \quad p \quad 1$
 $\ln u - \ln w \quad (p-r) \quad 0$
 $\{\text{Applying } R_2 \rightarrow R_1 - R_2 \text{ and } R_3 \rightarrow R_1 - R_3\}$
or, $\left| \begin{array}{c} \ln u \quad p \quad 1 \\ (p-q) \ln(d) \quad (p-q) \quad 0 \\ (p-r) \ln(d) \quad (p-r) \quad 0 \end{array} \right|$
 $= (p-q)(p-r)[\ln(d) - \ln(d)] = 0$
228. (c) By property, statement 1 and 3 are correct.
229. (b) B=adj A, 1 = Identity matrix, $|A| = k$
 $AB = A(adj A) = |A|I = kI$.

230. (d) $\begin{vmatrix} x & y & y+z \\ z & x & z+x \\ y & z & x+y \end{vmatrix} = R_1 \rightarrow R_1 + R_2 + R_3$ $= (x+y+z) \begin{vmatrix} 1 & 1 & 2 \\ z & x & z+x \\ y & z & x+v \end{vmatrix}$ $= (x + y + z) (z + x)^2$, (replacing z by x) $\begin{vmatrix} 1 & 1 & 1 \\ 1+\sin A & 1+\sin B & 1+\sin C \\ \sin A+\sin^2 A & \sin B+\sin^2 B & \sin C+\sin^2 C \end{vmatrix}$ 231. (a) $\begin{vmatrix} 1 & 0 & 0 \\ 1 + \sin A & \sin A - \sin B & \sin A - \sin C \\ \sin A + \sin^2 A & \sin^2 A - \sin^2 B & \sin^2 A - \sin^2 C \end{vmatrix} + 0 = 0$ {Applying $C_2 \rightarrow C_1 - C_2$ and $C_3 \rightarrow C_1 - C_3$ } = (sin A – sin B) × (sin A – sin C) 1 0 - sin A 1 1 $1 + \sin A$ = 0 $\sin A + \sin^2 A$ ($\sin A + \sin B$) ($\sin A + \sin C$) $(\sin A - \sin B)(\sin A - \sin C)(\sin B - \sin C) = 0$ \therefore sin A = sin B or sin A = sin C or sin B = sin C either A = B or B = C or A = C. 232. (b) Matrix product is commutative if both are diagonal matrices of same order. $\Rightarrow A^2 - B^2 = (A + B) (A - B)$ is not true. Next, (A - I) (A + I) = 0 \Rightarrow A² + AI - IA - I² = 0(\therefore AI = IA) \Rightarrow A² = I is correct. 233. (d) Area = $\frac{1}{2} \left| x_1 \left(\frac{1}{x_2} - \frac{1}{x_2} \right) + x_2 \left(\frac{1}{x_2} - \frac{1}{x_1} \right) + x_3 \left(\frac{1}{x_1} - \frac{1}{x_2} \right) \right|$ $= \frac{1}{2} \left| \frac{x_1(x_3 - x_2)}{x_2 x_3} + \frac{x_2(x_1 - x_3)}{x_1 x_3} + \frac{x_3(x_2 - x_1)}{x_1 x_2} \right|$ $=\frac{1}{2}\left|\frac{-x_1^2(x_2-x_3)-x_2^2(x_3-x_1)-x_3^2(x_1-x_2)}{x_1x_2x_3}\right|$ $= \left| \frac{(x_1 - x_2)(x_2 - x_3)(x_3 - x_1)}{2(x_1 x_2 x_3)} \right|$

$$= \begin{bmatrix} (1)(1) + (0)(0) & (1)(0) + (0)(1) \\ (0)(1) + (1)(0) & (0)(0) + (1)(1) \end{bmatrix}$$

= $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{A}$
∴ It is involuntary matrix.

236. (b) Given, A is an identity matrix.

 $\therefore A = I$ We know, $I^{-1} = I$ $\therefore A^{-1} = A$

- 237. (d) The determinant of transpose will not change. So, the determinant is equal to 4.
- 238. (b) A is square matrix of order n > 1. det $(-A) = (-1)^n \det A$
- 239. (a) A and B are (3×3) matrices

$$det A = 4$$
$$det B = 3$$

$$\therefore \det (2AB) = (2)^3 |A| |B|$$

= 2³(4) (3) = 8 (4) (3) = 96

$$= 2^{5}(4)(3) = 8(4)(3) = 96$$

240. (c) det
$$(3AB^{-1}) = (3)^3 |A| |B^{-1}|$$

$$=27\frac{|A|}{|B|}=27\times\frac{4}{\cancel{3}}=36$$

234. (a)
$$B = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 4 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

C factor matrix of

$$B = \begin{bmatrix} (4)(0) - (0)(1) & -[(2)(0) - (0)(1)] & (2)(1) - (4)(1) \\ -[2(0) - (0)(1)] & 3(0) - (0)(1) & -[(3)(1) - (2)(1)] \\ 2(0) - 0(4) & -[3(0) - 2(0)] & 3(4) - 2(2) \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & -2 \\ 0 & 0 & -1 \\ 0 & 0 & 8 \end{bmatrix}$$

Adjoint
$$B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -2 & -1 & 8 \end{bmatrix}$$

235. (b)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Probability and Probability Distribution

- 1. From past experience it is known that an investor will invest in security A with a probability of 0.6, will invest in security B with a probability 0.3 and will invest in both A and B with a probability of 0.2. What is the probability that an investor will invest neither in A nor in B?
 - (b) 0.28 (a) 0.7

7.

8.

9.

[2006-I] (c) 0.3 2. Five coins whose faces are marked 2, 3 are thrown. What is the probability of obtaining a total of 12?

(a)
$$\frac{1}{16}$$
 (b) $\frac{3}{16}$
(c) $\frac{5}{16}$ (d) $\frac{7}{16}$ [2006-I]

3. The following question consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer

Assertion (A) : If P (A) =
$$\frac{3}{4}$$
 and P(B) = $\frac{3}{8}$, then
P(A \cup B) $\geq \frac{3}{4}$

Reason (R): $P(A) \le P(A \cup B)$ and $P(B) \le P(A \cup B)$; hence $P(A \cup B) \ge \max \{P(A), P(B)\}$

- (a) Both A and R are individually true, and R is the correct explanation of A.
- Both A and R are individually true but R is not the (b) correct explanation of A.
- (c) A is true but **R** is false.
- (d) A is false but **R** is true. [2006-II] 4. An aircraft has three engines A, B and C. The aircraft crashes if all the three engines fail. The probabilities of failure are 0.03, 0.02 and 0.05 for engines A, B and C respectively. What is the probability that the aircraft will not crash? (a) 0.00003 (b) 0.90 (c) 0.99997 (d) 0.90307 [2006-II]
- A coin is tossed three times. What is the probability of 5. getting head and tail (HTH) or tail and head (THT) alternatively?
 - (a) 1/4 (b) 1/5 (d) 1/8 (c) 1/6 [2006-11]
- 6. The probability that a student passes in mathematics is 4/9and that he passes in physics is 2/5. Assuming that passing in mathematics and physics are independent of each other, what is the probability that he passes in mathematics but fails in physics?

(a)	$\frac{4}{15}$	(b)	$\frac{8}{45}$	
(c)	$\frac{26}{45}$	(d)	$\frac{19}{45}$	[2006-11]

From a pack of 52 cards, two cards are drawn, the first being replaced before the second is drawn. What is the probability that the first is a diamond and the second is a king?

(a)
$$\frac{1}{4}$$
 (b) $\frac{4}{13}$
(c) $\frac{1}{52}$ (d) $\frac{4}{15}$ [2006-II]

What is the probability of having a knave and a queen when two cards are drawn from a pack of 52 cards?

(a)
$$\frac{16}{663}$$
 (b) $\frac{2}{663}$

(c)
$$\frac{4}{663}$$
 (d) $\frac{8}{663}$ [2006-11]

Consider the following statement: "The mean of a binomial distribution is 3 and variance is 4." Which of the following is correct regarding this statement?

- (a) It is always true
- (b) It is sometimes true
- (c) It is never true
- (d) No conclusion can be drawn [2006-II]
- 10. In throwing of two dice, what is the number of exhaustive events ? (a)

$$\begin{array}{cccc}
6 & (b) & 12 \\
26 & (d) & 18 & (20) \\
\end{array}$$

- [2006-II] (c) 36 (d) 18
- What is the probability of getting five heads and seven 11. tails in 12 flips of a balanced coin? (a) $C(12 5)/(2^5)$ (b) C(12.5)/(27)

(a)
$$C(12, 3)/(2^2)$$
 (b) $C(12, 3)/(2^2)$
(c) $C(12, 5)/(2^12)$ (d) $C(12, 7)/(2^6)$ [2007-I]

12. In a lottery, 16 tickets are sold and 4 prizes are awarded. If a person buys 4 tickets, what is the probability of his winning a prize?

(a)
$$\frac{4}{16^4}$$
 (b) $\frac{175}{256}$

(c)
$$\frac{1}{4}$$
 (d) $\frac{81}{256}$ [2007-I]

13. If A and B are any two events such that $P(A \cup B) = \frac{3}{4}$,

P (A
$$\cap$$
 B) = $\frac{1}{4}$ and P(\overline{A}) = $\frac{2}{3}$, where \overline{A} stands for the complementary event of A, then what is P(B)?

(a)
$$\frac{1}{3}$$
 (b) $\frac{2}{3}$

(c)
$$\frac{1}{9}$$
 (d) $\frac{2}{9}$ [2007-I]

14. A card is drawn from a pack of 52 cards and a gambler bets that it is a spade or an ace. Which one of the following are the odds against his winning this bet? (a) 13 to 4

(a)
$$15\,104$$
 (b) $4\,10\,15$
(c) $9\,to\,4$ (d) $4\,to\,9$ [2007-1]

15. A can hit a target 4 times in 5 shots; B can hit a target 3 times in 4 shots; C can hit a target 2 times in 3 shots; All the three fire a shot each. What is the probability that two shots are at least hit? (a) 1/6 (b) 3/5

(c)
$$5/6$$
 (d) $1/3$ [2007-I]

16. A box contains 10 identical electronic components of which 4 are defective. If 3 components are selected at random from the box in succession, without replacing the units already drawn, what is the probability that two of the selected components are defective?

(c) 3/10 [2007-I] (d) 1/40 17. Each of A and B tosses two coins. What is the probability that they get equal number of heads?

(a)
$$\frac{3}{16}$$
 (b) $\frac{5}{16}$

(c)
$$\frac{4}{16}$$
 (d) $\frac{6}{16}$ [2007-II]

6

18. Examples of some random variables are given below :

- 1. Number of sons among the children of parents with five children
- 2. Number of sundays in some randomly selected months with 30 days
- 3. Number of apples in some 3 kg packets, purchased from a retail shop

Which of the above is expected to follow binomial distribution?

- (b) Variable 2 (a) Variable 1
- (c) Variable 3 (d) None of these [2007-II]
- A, B are two events and \overline{A} denotes the complements of A. 19. Consider the following statements [2007-II]
 - 1. $P(A \cup B) \le P(B) + P(A)$

2.
$$P(A) + P(\overline{A} \cup B) \le 1 + P(B)$$

Which of the above statements is/are correct?

(c) Both 1 and 2 (d) Neither 1 nor 2 20. Six text books numbered 1, 2, 3, 4, 5 and 6 are arranged at random. What is the probability that the text books 2 and 3 will occupy consecutive places ?

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{3}$
(c) $\frac{1}{4}$ (d) $\frac{1}{6}$ [2007-II]

What is the probability that in a family of 4 children there 21 will be at least one boy?

(a)
$$\frac{15}{16}$$
 (b) $\frac{3}{8}$
(c) $\frac{1}{16}$ (d) $\frac{7}{8}$ [2008-1]

In a school there are 40% science students and the remaining 22 60% are arts students. It is known that 5% of the science students are girls and 10% of the arts students are girls. One student selected at random is a girl. What is the probability that she is an arts student?

(a)
$$\frac{1}{3}$$
 (b) $\frac{3}{4}$
(c) $\frac{1}{5}$ (d) $\frac{3}{5}$ [2008-1]

Given $P(A \cup B) = \frac{5}{6}$, $P(A \cap B) = \frac{1}{3}$ and $P(\overline{B}) = \frac{1}{2}$. What is 23.

P(A) ?
(a)
$$\frac{1}{6}$$
 (b) $\frac{1}{3}$
(c) $\frac{2}{3}$ (d) $\frac{1}{2}$ [2008-1]

The outcomes of 5 tosses of a coin are recorded in a single 24. sequence as H (head) and T (tail) for each toss. What is the number of elementary events in the sample space?

25. Which of the following numbers is nearest to the probability that three randomly selected persons are born on three different days of the week?

26. One bag contains 5 white balls and 3 black balls and a second bag contains 2 white balls and 4 black balls. One ball is drawn from the first bag and placed unseen in the second bag. What is the probability that a ball now drawn from the second bag is black?

(a)
$$\frac{15}{56}$$
 (b) $\frac{35}{56}$
(c) $\frac{37}{56}$ (d) $\frac{25}{48}$ [2008-1]

If P(A) = 0.8, P(B) = 0.9, P(AB) = p, which one of the following 27. is correct? [2008-II]

(a)
$$0.72 \le p \le 0.8$$
 (b) $0.7 \le p \le 0.8$
(c) $0.72 (d) $0.7$$

Probability and Probability Distribution

28.	The following questions consist of two statements, one	37.	If A and B are two mutually exclusive and exhaustive events
	labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select		with $P(B) = 3P(A)$, then what is the value of $P(\overline{B})$?
	the answer.		[2009-1]
	Assertion (A): For a binomial distribution $B(n, p)$,		(a) $3/4$ (b) $1/4$ (c) $1/3$ (d) $2/3$
	Mean > Variance [2008-II]	38.	Two dice are thrown. What is the probability that the sum of
	Reason (R) : Probability is less than or equal to 1		the faces equals or exceeds 10? [2009-I]
	(a) Both A and R are individually true and R is the correct		(a) $1/12$ (b) $1/4$
	explanation of A		(c) $1/3$ (d) $1/6$
	(b) Both A and R are individually true but R is not the	39.	For a binomial distribution $B(n, p)$, $np = 4$ and variance npq
	correct explanation of A		= 4/3. What is the probability $P(x \ge 5)$ equal to? [2009-I]
	(c) A is true but R is false		(a) $(2/3)^6$ (b) $(1/3)^6$
	(d) A is false but R is true		(c) $(1/3)^{6}$ (d) $(2^{8}/3^{6})$
29.	The chance of winning the race of the horse A is $1/5$ and that	40.	When a card is drawn from a well shuffled pack of cards,
	of horse B is 1/6. What is the probability that the race will be		what is the probability of getting a Queen? [2009-1]
	won by <i>A</i> or <i>B</i> ? [2008-II]		(a) 2/13 (b) 1/13
	(a) 1/30 (b) 1/3		(c) $1/26$ (d) $1/52$
	(c) 11/30 (d) 1/15	41.	The following questions consist of two statements, one
30.	What is the probability of two persons being born on the		labelled as the 'Assertion (A)' and the other as 'Reason
	same day (ignoring date)? [2008-II]		(R)'. You are to examine these two statements carefully
	(a) 1/49 (b) 1/365		and select the answer.
	(c) 1/7 (d) 2/7		Assertion (A): The probability of drawing either an ace or
31.	A coin is tossed. If a head is observed, a number is randomly		a king from a deck of card in a single draw is $\frac{2}{12}$.
	selected from the set $\{1, 2, 3\}$ and if a tail is observed, a		Reason (R) : For two events E_{1} and E_{2} , which are not
	number is randomly selected from the set $\{2, 3, 4, 5\}$. If the		mutually exclusive probability is given by $[2009-1]$
	selected number be denoted by X, what is the probability		$D(E + E) = D(E) + D(E) - D(E \cap E)$
	that $X=3$? [2008-II]		$I(E_1 + E_2) = I(E_1) + I(E_2) = I(E_1 + E_2)$
	(a) $2/7$ (b) $1/5$ (c) $1/6$ (d) $7/24$		(a) Boin A and K are true and K is the correct explanation $of A$
32.	Consider the following statements related to the nature of		(b) Doth A and D are true but D is not the correct evaluation
	Bayes' theorem [2008-11]		(b) Boun A and K are true but K is not the correct explanation of Λ
	I. Bayes' theorem is a formula for computation of a		(c) A is true but R is false
	conditional probability.		(1) $A = C + D = C$
	2. Bayes' theorem modifies an assumed probability of an	10	(d) A is false but K is true
	event in the light of a related event which is observed.	42.	Three letters are randomly selected from the 26 capital letters
	Which of the statements given above is/are correct?		of the English Alphabet. What is the probability that the
	(a) I only (b) 2 only (c) $P_{1}(1, 1, 2)$ (c) 2 only (c) 2 onl		letter 'A' will not be included in the choice? [2009-II]
	(c) Both I and 2 (d) Neither I nor 2		(a) $1/2$ (b) $23/26$
53.	The outcomes of an experiment classified as success A or	10	(c) 12/13 (d) 25/26
	tailure A will follow a binomial distribution, if $[2008-11]$	43.	A coin is tossed 10 times. The number of heads minus the
	(a) $P(A) = 1/2$		number of tails in 10 tosses is considered as the outcome of
	(b) $P(A) = 0$		the experiment. What is the number of points in the sample

- (c) P(A) = 1
- (d) P(A) remains constant in all trials
- If A, B, C are any three arbitrary events, then which one of 34. the following expressions shows that both A and B occur but not *C*? [2009-I]
 - (a) $A \cap \overline{B} \cap \overline{C}$ (b) $A \cap B \cap \overline{C}$

(c)
$$A \cap B \cap C$$
 (d) $A \cap \overline{B} \cap C$

- By Baye's theorem, which one of the following probabilities 35. is calculated? [2009-I]
 - (a) Prior probability
 - (b) Likelihood probability
 - (c) Posterior probability
 - (d) Conditional probability
- Given that P(A) = 1/3, P(B) = 1/4, P(A/B) = 1/6, then what is 36. P(B / A) equal to? [2009-I]

(a)	1/4	-	(b)	1/8	

(c) 3/4 (d) 1/2

- of
- q 7
- е n v

ot

- n
- n
- S e 7
- e of le [2009-11] space?
 - (b) 11 (a) 10
 - (d) 99 (c) 21
- 44. Two numbers are successively drawn from the set $\{1, 2, 3, 4, ...\}$ 5, 6, 7} without replacement and the outcomes recorded in that order. What is the number of elementary events in the random experiment? [2009-II]
 - (b) 42 (a) 49 (c) 21 (d) 14
- 45. The probabilities of two events A and B are given as P(A) = 0.8 and P(B) = 0.7. What is the minimum value of $P(A \cap B)?$ [2009-II] (a) 0 (b) 0.1 (c) 0.5 (d) 1
- 46. Two numbers X and Y are simultaneously drawn from the set { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. What is the conditional probability of exactly one of the two numbers X and Y being even, given (X+Y) = 15?[2009-II] (b) 3/4 (d) 1/4 (a) 1 (c) 1/2

47. Given that P(A) = 1/3, P(B) = 3/4 and $P(A \cup B) = 11/12$ then what is P(B/A)? [2009-II] (a) 1/6 (b) 4/9

(c) 1/2 (d) 1/3

48. The mean and variance of a binomial distribution are 8 and 4 respectively. What is P(X=1) equal to? [2010-I]

(a)
$$\frac{1}{2^{12}}$$
 (b) $\frac{1}{2^8}$
(c) $\frac{1}{2^6}$ (d) $\frac{1}{2^4}$

49. An observed event *B* can occur after one of the three events A_1, A_2, A_3 . If [2010-I] $P(A_1) = P(A_2) = 0.4, P(A_3) = 0.2$ and $P(B/A_1) = 0.25, P(B/A_2)$ $= 0.4, P(B/A_3) = 0.125$, what is the probability of A_1 after observing *B*?

(a)	$\frac{1}{3}$	(b)	$\frac{6}{19}$
(c)	$\frac{20}{57}$	(d)	$\frac{2}{5}$

50. The probability distribution of random variable X with two missing probabilities p_1 and p_2 is given below [2010-I]

X	P(X)
1	k
2	p_1
3	$4\dot{k}$
4	p_{2}
5	$2\bar{k}$

It is further given that $P(X \le 2) = 0.25$ and $P(X \ge 4) = 0.35$. Consider the following statements

 $1.p_1 = p_2$

2. $p_1 + p_2 = P(X=3)$

Which of the statements given above is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2

51. Consider the following statements: [2010-I]

- 1. The probability that there are 53 Sundays in a leap year is twice the probability that there are 53 Sundays in a non-leap year.
- 2. The probability that there are 5 Mondays in the month of March is thrice the probability that there are 5 Mondays in the month of April.

Which of the statements given above is/are correct?

(a)	l only		(b) 2 only
		1.0	(1) 37 1.1 4

- (c) Both 1 and 2 (d) Neither 1 nor 2
- 52. In tossing three coins at a time, what is the probability of getting at most one head? [2010-I]

(a)	$\frac{3}{8}$	(b) $\frac{7}{8}$
(c)	$\frac{1}{2}$	(d) $\frac{1}{8}$

53. Two balls are selected from a box containing 2 blue and 7 red balls. What is the probability that at least one ball is blue? [2010-I]

(a)	$\frac{2}{9}$	(b)	$\frac{7}{9}$
(c)	$\frac{5}{12}$	(d)	$\frac{7}{12}$

54. The probability of guessing a correct answer is $\frac{x}{12}$. If the probability of not guessing the correct answer is $\frac{2}{3}$, then what is x equal to? [2010-1]

- what is x equal to? (a) 2 (b) 3 (c) 4 (d) 6
- 55. Consider the following statements related to a variable X having a binomial distribution $b_x(n, p)$
 - 1. If $p = \frac{1}{2}$, then the distribution is symmetrical.
 - 2. p remaining constant, P(X=r) increases as n increases. Which of the statements given above is/are correct?
 - (a) 1 only (b) 2 only [2010-I] (c) Both 1 and 2 (d) Neither 1 nor 2
- 56. What is the probability of having 53 Sundays or 53 Mondays in a leap year? [2010-II]
 (a) 2/7
 (b) 3/7
- (c) 4/7
 (d) 5/7
 57. Three digital numbers are formed using the digits 0, 2, 4, 6, 8. A number is chosen at random out of these numbers. What is the probability that the number has the same digits? [2010-II]
 - (a) 1/16 (b) 1/25
 - (c) 16/25 (d) 1/645
- 58. A lot of 4 white and 4 red balls is randomly divided into two halves. What is the probability that there will be 2 red and 2 white balls in each half? [2010-II]
 (a) 18/35
 (b) 3/35
 (c) 1/2
 (d) None of these
- 59. Consider the following statements : [2010-II] If *A* and *B* are independent events, then
 - 1. A and \overline{B} are independent.
 - 2. \overline{A} and B are independent.
 - 3. \overline{A} and \overline{B} are independent.
 - Which of the above statements is/are correct? [2010-II] (a) 3 only (b) 1 and 2 only
 - (c) 1,2 and 3 (d) None of these
- 60. An experiment consists of flipping a coin and then flipping it a second time if head occurs. If a tail occurs on the first flip, then a six-faced die is tossed once. Assuming that the outcomes are equally likely, what is the probability of getting one head and one tail? [2011-I]
 - (a) 1/4 (b) 1/36
 - (c) 1/6 (d) 1/8
- 61. A box contains 6 distinct dolls. From this box, 3 dolls are randomly selected one by one with replacement. What is the probability of selecting 3 distinct dolls? [2011-I]
 - (a) 5/54 (b) 12/25
 - (c) 1/20 (d) 5/9

62. If A and B are events such that $P(A \cup B) = 0.5$, $P(\overline{B}) = 0.8$

and $P(A/B) = 0.4$, then what is P	$(A \cap B)$) equal to?
-------------------------------------	--------------	-------------

- (a) 0.08 (b) 0.02 [2011-I] (c) 0.8 (d) 0.2
- 63. In an examination, there are 3 multiple choice questions and each question has 4 choices. If a student randomly selects answer for all the 3 questions, what is the probability that the student will not answer all the 3 questions correctly? [2011-1]

(a) 1/64 (b) 63/64

- (c) 1/12 (d) 11/12
- 64. If A and B are two mutually exclusive events, then what is P(AB) equal to? [2011-I] (a) 0 (b) P(A)+P(B)

(c)
$$P(A)P(B)$$
 (d) $P(A)P\left(\frac{B}{A}\right)$

- 65. There are 4 letters and 4 directed envelopes. These 4 letters are randomly inserted into the 4 envelopes. What is the probability that the letters are inserted into the corresponding envelopes? [2011-I]
 - (a) $\frac{11}{12}$ (b) $\frac{23}{24}$

(c) $\frac{1}{24}$ (d) None of these

66. Two letters are drawn at random from the word 'HOME'. What is the probability that both the letters are vowels?

[2011-II]

(a)	1/6	(b) 5/6
(c)	1/2	(d) $1/3$

- 67. A husband and wife appear in an interview for two vacancies in the same post. The probability of husband's selection is 1/5 and that of wife's selection is 1/3. What is the probability that only one of them will be selected? [2011-II]
 (a) 1/5 (b) 2/5
 - (c) 3/5 (d) 4/5
- 68. There is a point inside a circle. What is the probability that this point is close to the circumference than to the centre? [2011-II](a) 3/4 (b) 1/2
 - (c) 1/4 (d) 1/3
- 69. In a random arrangement of the letters of the word 'UNIVERSITY', what is the probability that two I's do not come together? [2011-II]
 (a) 4/5 (b) 1/5 (c) 1/10 (d) 9/10
- 70. In a class of 125 students 70 passed in Mathematics, 55 passed in Statistics and 30 passed in both. What is the probability that a student selected at random from the class has passed in only one subject? [2011-II]
 (a) 13/25 (b) 3/25 (c) 17/25 (d) 8/25
 - $(a) \quad 15/25 \quad (b) \quad 5/25 \quad (c) \quad 1//25 \quad (d) \quad 8/25$
- 71. Three dice are thrown. What is the probability that the same number will appear on each of them? [2012-I]

(a)
$$\frac{1}{6}$$
 (b) $\frac{1}{18}$ (c) $\frac{1}{24}$ (d) $\frac{1}{36}$

72.	What is the probability that a lea	ap year selected at random
	contains 53 Mondays?	[2012-I]

(a)
$$\frac{1}{7}$$
 (b) $\frac{2}{7}$
(c) $\frac{7}{366}$ (d) $\frac{26}{183}$

- 73. If four dice are thrown together, then what is the probability that the sum of the numbers appearing on them is 25?
 - (a) 0 (b) 1/2 [2012-I] (c) 1 (d) 1/1296
- 74. If P(E) denotes the probability of an event E, then E is called certain event if: [2012-II]
 - (a) P(E)=0 (b) P(E)=1
 - (c) P(E) is either 0 or 1 (d) P(E) = 1/2
- 75. What is the probability that a leap year selected at random will contain 53 Mondays ? [2012-II]
 (a) 2/5 (b) 2/7 (c) 1/7 (d) 5/7
- 76. If A and B are two events such that $P(A \cup B) = \frac{3}{4}$,

$$P(A \cap B) = \frac{1}{4}, P(\overline{A}) = \frac{2}{3}$$
 where \overline{A} is the complement of A, then what is P(B) equal to ? [2012-II]

- (a) 1/3
 (b) 2/3
 (c) 1/9
 (d) 2/9
 77. Three coins are tossed simultaneously. What is the probability that the question has a descent of the second s
 - probability that they will fall two heads and one tail ? (a) 1/3 (b) 1/2 [2012-II] (c) 1/4 (d) 3/8
- 78. Which one of the following is correct ? [2012-II]
 - (a) An event having no sample point is called an elementary event.
 - (b) An event having one sample point is called an elementary event.
 - (c) An event having two sample points is called an elementary event.
 - (d) An event having many sample points is called an elementary event.
- 79. What is the most probable number of successes in 10 trials with probability of success 2/3 ? [2012-II]

DIRECTIONS (Qs. 80-81): For the next two (02) questions that follow

An urn contains one black ball and one green ball. A second urn contains one white and one green ball. One ball is drawn at random from each urn. [2012-II]

- 80. What is the probability that both balls are of same colour ? (a) 1/2 (b) 1/3 (c) 1/4 (d) 2/3
- 81. What is the probability of getting at least one green ball ? (a) 1/2 (b) 1/3 (c) 2/3 (d) 3/4

DIRECTIONS (Qs. 82-83): For the next two (02) questions that follow

Two dice each numbered from 1 to 6 are thrown together. Let A and B be two events given by

- A : even number on the first die.
- ${\bf B}\;:\;$ number on the second die is greater than 4.

м-466

82.	Wha	t is $P(A \cup B)$ equal to 2	2		[2012-II]
	(a)	$\frac{1}{2}$	(b)	$\frac{1}{4}$	
	(c)	$\frac{2}{3}$	(d)	$\frac{1}{6}$	
83.	Wha	at is $P(A \cap B)$ equal to	?		[2012-II]
	(a)	$\frac{1}{2}$	(b)	$\frac{1}{4}$	
	(c)	$\frac{2}{3}$	(d)	$\frac{1}{6}$	
84.	Cons and	sider a random experime two coins. The associate	ent of d sam	throwing to ple space h	ogether a die as [2013-I]

- (a) 8 points (b) 12 points
 - (c) 24 points (d) 36 points
- 85. In throwing a six faced die, let A be the event that an even number occurs, B be the event that an odd number occurs and C be the event that a number greater than 3 occurs. Which one of the following is correct? [2013-I]
 - A and C are mutually exclusive (a)
 - (b) A and B are mutually exclusive
 - (c) B and C are mutually exclusive
 - (d) A, B and C mutually exclusive.
- 86. What is the probability of getting a sum of 7 with two dice?

(a)
$$\frac{1}{6}$$
 (b) $\frac{1}{3}$ [2013-1]
(c) $\frac{1}{12}$ (d) $\frac{5}{36}$

87. Four coins are tossed simultaneously. What is the probability of getting exactly 2 heads? [2013-I]

(a)	$\frac{1}{2}$	(b)	$\frac{1}{4}$
(c)	$\frac{1}{8}$	(d)	$\frac{3}{8}$

88. A bag contains 5 black and 3 white balls. Two balls are drawn at random one after the other without replacement. What is the probability that both are white? [2013-I]

(a)
$$\frac{1}{28}$$

(c)
$$\frac{3}{28}$$
 (d) None of these above

(b)

89. If A and B are any two events such that $P(\overline{A}) = 0.4, P(\overline{B}) = 0.3, P(A \cup B) = 0.9$, then what is the value of $P(\overline{A} \cup \overline{B})$ equal to ? [2013-I]

(a)	0.2	(b)	0.5
(c)	0.6	(d)	0.7

90. A fair coin is tossed repeatedly. The probability of getting a result in the fifth toss different from those obtained in the first four tosses is: [2013-I]

(a)	$\frac{1}{2}$	(b) $\frac{1}{32}$
	31	1

(d) $\frac{1}{16}$ (c) 32

91. If X follows a binomial distribution with parameters n = 100and p = 1/3, then P(X = r) is maximum when [2013-I] (a) r=16 (b) r = 32

NDA Topicwise Solved Papers - MATHEMATICS

- (c) r = 33(d) r = 34
- 92. Two numbers are successively drawn from the set $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$, the second being drawn without replacing the first. The number of elementary events in the sample is:
 - (a) 64 (b) 56 [2013-I] 32 (c) (d) 14
- 93. The binomial distribution has: [2013-1]
 - only one parameter (b) two parameters (a)
 - (c) three parameters (d) four parameters
- 94. A bag contains balls of two colours, 3 black and 3 white. What is the smallest number of balls which must be drawn from the bag, without looking, so that among these three are two of the same colour? [2013-I] (a) 2 (b) 3
 - (c) 4 (d) 5
- 95. If three events A, B, C are mutually exclusive, then which one of the following is correct? [2013-II]

(a)
$$P(A \cup B \cup C) = 0$$
 (b) $P(A \cup B \cup C) = 1$

(c)
$$P(A \cap B \cap C) = 0$$
 (d) $P(A \cap B \cap C) = 1$

96. If A and B are independent events such that

$$P(A) = \frac{1}{5}, P(A \cup B) = \frac{7}{10}$$
, then what is $P(\overline{B})$ equal to?
[2013-II]

(a)	$\frac{2}{7}$	(b)	$\frac{3}{7}$
(c)	$\frac{3}{8}$	(d)	$\frac{7}{9}$

97. In a binomial distribution, the occurrence and the nonoccurrence of an event are equally likely and the mean is 6. The number of trials required is [2013-II] (a) 15 (b) 12

(c)

A die is tossed twice. What is the probability of getting a 98. sum of 10? [2013-II]

(a)
$$\frac{1}{18}$$
 (b) $\frac{1}{6}$
(c) $\frac{1}{12}$ (d) $\frac{5}{12}$

99. Three dice are thrown. What is the probability of getting a triplet? [2013-II]

(a)
$$\frac{1}{6}$$
 (b) $\frac{1}{18}$

(c)
$$\frac{1}{36}$$
 (d) $\frac{1}{72}$

Probability and Probability Distribution

100. Consider the following statements :

- 1. If *A* and *B* are exhaustive events, then their union is the sample space.
 - 2. If *A* and *B* are exhaustive events, then their intersection must be an empty event.

[2013-II]

[2013-II]

- Which of the above statements is/are correct?
- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 101. Which one of the following may be the parameter of a binomial distribution ? [2013-II]

(a)
$$np=2, npq=4$$
 (b) $n=4, p=\frac{3}{2}$

(c) n=8, p=1 (d) np=10, npq=8102. What is the number of outcomes when a coin is tossed and

- then a die is rolled only in case a head is shown on the coin ? [2013-II]
 - (a) 6 (b) 7 (c) 8 (d) None of these

103. If
$$P(A) = \frac{2}{3}$$
, $P(B) = \frac{2}{5}$ and $P(A \cup B) - P(A \cap B) = \frac{2}{5}$, then

- what is $P(A \cap B)$ equal to ?
- (a) $\frac{3}{5}$ (b) $\frac{5}{11}$ (c) $\frac{1}{2}$ (d) None of these
- 104. What is the propability that there are 5 Mondays in the month of February 2016? [2013-II]
 - (a) 0 (b) $\frac{1}{7}$

(c)
$$\frac{2}{7}$$
 (d) None of these

105. In a relay race, there are six teams *A*, *B*, *C*, *D*, *E* and *F*. What is the probability that *A*, *B*, *C* finish first, second, third respectively ? [2013-II]

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{12}$ (c) $\frac{1}{60}$ (d) $\frac{1}{120}$

106. A box contains 3 white and 2 black balls. Two balls are drawn at random one after the other. If the balls are not replaced, what is the probability that both the balls are black? [2014-1]

(c)
$$1/10$$
 (d) None

107. It has been found that if A and B play a game 12 times, A wins 6 times, B wins 4 times and they draw twice. A and B take part in a series of 3 games. The probability that they win alternately, is : [2014-I]
(a) 5/12
(b) 5/36

of these

(c)	19/27	(d)	5/27

DIRECTIONS (Qs. 108-111) : For the next four (04) items that follow

Number of X is randomly selected from the set of odd numbers and Y is randomly selected from the set of even numbers of the set $\{1, 2, 3, 4, 5, 6, 7\}$. Let Z = (X + Y).. [2014-I] 108. What is P(Z=5) equal to ? (a) 1/2 (b) 1/3(b) 1/3

- (c) 1/4 (d) 1/6109. What is P(Z=10) equal to? (a) 0 (b) 1/2
- (c) 1/3 (d) 1/5110. What is P(Z=11) equal to ? (a) 0 (b) 1/4
 - (c) 1/6 (d) 1/12
- 111. What is P(Z is the product of two prime numbers) equal to ? (a) 0 (b) 1/2
 - (c) 1/4 (d) None of these
- 112. Suppose A and B are two events. Event *B* has occurred and it is known that P(B) < 1. What is $P(A|B^c)$ equal to? [2014-II]

(a)
$$\frac{P(A) - P(B)}{1 - P(B)}$$
 (b)
$$\frac{P(A) - P(AB)}{1 - P(B)}$$

(c)
$$\frac{P(A) + P(B^{c})}{1 - P(B)}$$
 (d) None of these

DIRECTIONS (Qs. 113-116) : For the next four (04) items that follow

Consider events A, B, C, D, E of the sample space $S =$	${n : n is an}$
integer such that $10 \le n \le 20$ } given by :	[2014-II]

A is the set of all even numbers.

B is the set of all prime numbers.

C=(15).

D is the set of all integers ≤ 16 .

E is the set of all double digit numbers expressible as a power of 2. 112 + 0 and D and

113. A, B and D are

- (a) Mutually exclusive events but not exhaustive events
- (b) Exhaustive events but not mutually exclusive events
- (c) Mutually exclusive and exhaustive events
- (d) Elementary events
- 114. A, B and C are
 - (a) Mutually exclusive events but not exhaustive events
 - (b) Exhaustive events but not mutually exclusive events
 - (c) Mutually exclusive and exhaustive events
 - (d) Elementary events
- 115. B and C are
 - (a) Mutually exclusive events but not exhaustive events
 - (b) Compound events
 - (c) Mutually exclusive and exhaustive events
 - (d) Elementary events
- 116. C and E are
 - (a) Mutually exclusive events but not elementary events
 - (b) Exhaustive events but not mutually exclusive events
 - (c) Mutually exclusive and exhaustive events
 - (d) Elementary and mutually exclusive events
- 117. For any two events A and B, which one of the following holds ? [2014-II]
 - (a) $P(A \cap B) \le P(A) \le P(A \cup B) \le P(A) + P(B)$
 - (b) $P(A \cup B) \le P(A) \le P(A \cap B) \le P(A) + P(B)$
 - (c) $P(A \cup B) \le P(B) \le P(A \cap B) \le P(A) + P(B)$
 - (d) $P(A \cap B) \le P(B) \le P(A) + P(B) \le P(A \cup B)$

118. The probability that in a random arrangement of the letters of the word 'UNIVERSITY', the two I's do not come together is [2014-II]

(a) 1/10 (d) 0/	5
(c) 1/10 $(d) 9/10$	10

- 119. Threre are 4 white and 3 black balls in a box. In another box, there are 3 white and 4 black balls. An unbiased dice is rolled. If it shows a number less than or equal to 3, then a ball is drawn from the second box, otherwise from the first box. If the ball drawn is black then the possibility that the ball was drawn from the first box is [2014-II]

 (a) 1/2
 (b) 6/7
 - (c) 4/7 (d) 3/7
- 120. Two students X and Y appeared in an examination. The probability that X will qualify the examination is 0.05 and Y will qualify the examination is 0.10. The probability that both will qualify the examination is 0.02. What is the probability that only one of them will qualify the examination ? [2014-II]

- (c) 0.12 (d) 0.11
- 121. A fair coin is tossed four times. What is the probability that at most three tails occur? [2014-II]
 (a) 7/9
 (b) 15/16
 - (c) 13/16 (d) 3/4
- 122. Two men hit at a target with probabilities $\frac{1}{2}$ and $\frac{1}{3}$ respectively. What is the probability that exactly one of them hits the target? [2015-I]
 - (a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{6}$ (d) $\frac{2}{3}$
- 123. Two similar boxes B_i (i = 1, 2) contain (i + 1) red and (5 i 1) black balls. One box is chosen at random and two balls are drawn randomly. What is the probability that both the balls are of different colours? [2015-I]

(a)	$\frac{1}{2}$			(b)	$\frac{3}{10}$
(c)	$\frac{2}{5}$			(d)	$\frac{3}{5}$
	5				2

124. In an examination, the probability of a candidate solving a question is $\frac{1}{2}$. Out of given 5 questions in the examination,

what is the probability that the candidate was able to solve at least 2 questions? [2015-I]

(a)
$$\frac{1}{64}$$
 (b) $\frac{3}{16}$
(c) $\frac{1}{1}$ (d) $\frac{13}{13}$

16 125. If $A \subset B$, then which one of the following is not correct?

(a)
$$P(A \cap \overline{B}) = 0$$
 [2015-1]

(b)
$$P(A | B) = \frac{P(A)}{P(B)}$$

(c) $P(B | A) = \frac{P(B)}{P(A)}$
(d) $P(A | (A \cup B)) = \frac{P(A)}{P(B)}$

126. The mean and the variance in a binomial distribution are
found to be 2 and 1 respectively. The probability
$$P(X=0)$$
 is
[2015-1]

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{4}$
(c) $\frac{1}{8}$ (d) $\frac{1}{16}$

127. If A and B are two events such that $P(A \cup B) = \frac{3}{4}$,

$$P(A \cap B) = \frac{1}{4}$$
 and $P(\overline{A}) = \frac{2}{3}$, then what is $P(B)$ equal to?
[2015-I]

(a)
$$\frac{1}{3}$$
 (b) $\frac{2}{3}$
(c) $\frac{1}{8}$ (d) $\frac{2}{9}$

128. In throwing of two dice, the number of exhaustive events that '5' will never appear on any one of the dice is

(a)
$$\frac{1}{26}$$
 (b) $\frac{1}{221}$
(c) $\frac{4}{223}$ (d) $\frac{1}{13}$

130. Three digits are chosen at random from 1, 2, 3, 4, 5, 6, 7, 8 and 9 without repeating any digit. What is the probability that the product is odd ? *[2015-II]*

(a)
$$\frac{2}{3}$$
 (b) $\frac{7}{48}$
(c) $\frac{5}{42}$ (d) $\frac{5}{108}$

- 131. Two events A and B are such that P(not B) = 0.8, $P(A \cup B) = 0.5$ and P(A|B) = 0.4. Then P(A) is equal to [2015-II] (a) 0.28 (b) 0.32 (c) 0.38 (d) None of the above
- 132. If mean and variance of a Binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than 1 is [2015-II]

(a)
$$\frac{2}{3}$$
 (b) $\frac{4}{5}$
(c) $\frac{7}{8}$ (d) $\frac{11}{16}$

133. Seven unbiased coins are tossed 128 times. In how many throws would you find at least three heads? [2015-II]
(a) 99
(b) 102
(c) 103
(d) 104

134. A coin is tossed five times. What is the probability that heads are observed more than three times ? [2015-II]

(a)	$\frac{3}{16}$	(b)	$\frac{5}{16}$
(c)	$\frac{1}{2}$	(d)	$\frac{3}{32}$

Probability and Probability Distribution

- 135. An unbiased coin is tossed until the first head appears or until four tosses are completed, whichever happens earlier. Which of the following statements is/are correct ? [2015-II]
 - 1. The probability that no head is observed is $\frac{1}{16}$
 - 2. The probability that the experiment ends with three
 - tosses is $\frac{1}{8}$.

Select the correct answer using the code given below:

- (a) 1 only (b) 2 only
- 136. If $x \in [0, 5]$, then what is the probability that $x^2 3x + 2 \ge 0$? [2015-II]

(a)	$\frac{4}{5}$	(b)	$\frac{1}{5}$
(c)	$\frac{2}{5}$	(d)	$\frac{3}{5}$

137. A bag contains 4 white and 2 black balls and another bag contains 3 white and 5 black balls. If one ball is drawn from each bag, then the probability that one ball is white and one ball is black is [2015-II]

(a)
$$\frac{5}{24}$$
 (b) $\frac{13}{24}$
(c) $\frac{1}{4}$ (d) $\frac{2}{3}$

- 138. A problem in statistics is given to three students A, B and C whose chances of solving it independently are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$ respectively. The probability that the problem will be solved is [2015-II]
 - (a) $\frac{1}{12}$ (b) $\frac{11}{12}$ (c) $\frac{1}{2}$ (d) $\frac{3}{4}$
- 139. An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probabilities of an accident involving a scooter driver, car driver and a truck driver are 0.01, 0.03 and 0.15 respectively. One of the insured persons meets with an accident. The probability that the person is a scooter driver is [2015-II]
 - (a) $\frac{1}{52}$ (b) $\frac{3}{52}$ (c) $\frac{15}{52}$ (d) $\frac{19}{52}$
- 140. A coin is tossed 5 times. The probability that tail appears an odd number of times, is [2015-II]

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{3}$

(c)
$$\frac{2}{5}$$
 (d) $\frac{1}{5}$

141. What is the probability that the sum of any two different single digit natural numbers is a prime number? [2015-II]

(a)
$$\frac{5}{27}$$
 (b) $\frac{7}{18}$
(c) $\frac{1}{3}$ (d) None of the above

142. Three dice are thrown simultaneously. What is the probability that the sum on the three faces is at least 5? [2016-I]

 $\frac{17}{18}$ (b) $\frac{53}{54}$

(c) $\frac{103}{108}$ (d) $\frac{215}{216}$

(a)

143. Two independent events A and B have $P(A) = \frac{1}{3}$

and $P(B) = \frac{3}{4}$. What is the probability that exactly one of the two events A or B occurs? [2016-1]

- (a) $\frac{1}{4}$ (b) $\frac{5}{6}$ (c) $\frac{5}{12}$ (d) $\frac{7}{12}$
- 144. A coin is tossed three times. What is the probability of getting head and tail alternately? [2016-I]

(a)
$$\frac{1}{8}$$
 (b) $\frac{1}{4}$

- (c) $\frac{1}{2}$ (d) $\frac{3}{4}$
- 145. A card is drawn from a wel-shuffled deck of 52 cards. What is the probability that it is queen of spade? [2016-1]

(a)	$\frac{1}{52}$	(b)	$\frac{1}{13}$
(c)	$\frac{1}{4}$	(d)	$\frac{1}{8}$

146. If two dice are thrown, then what is the probability that the sum on the two faces is greater than or equal to 4? [2016-I]

(a)	$\frac{13}{18}$				(b)	$\frac{5}{6}$
(c)	$\frac{11}{12}$				(d)	$\frac{35}{36}$
		c	• 1	1 .	.1	

- 147. A certain type of missile hits the target with probability p = 0.3. What is the least number of missiles should be fired so that there is at least an 80% probability that the target is hit? [2016-I] (a) 5 (b) 6
 - (c) 7 (d) None of the above

- 148. For two mutually exclusive events A and B, P(A) = 0.2 and $P(\overline{A} \subseteq B) = 0.3$. What is $P(A | (A \cup B))$ equal to? [2016-I] $\frac{2}{5}$ $\frac{2}{3}$ (b) (a) (c) (d)
- 149. What is the probability of 5 Sundays in the month of December? [2016-I]
 - (b) (a) (d) None of the above (c)
- 150. A point is chosen at random inside a rectangle measuring 6 inches by 5 inches. What is the probability that the randomly selected point is at least one inch from the edge of the rectangle? [2016-I]
 - $\frac{1}{3}$ (b) (a) 3 (c) (d)
- 151. A fair coin is tossed 100 times. What is the probability of getting tails an odd number of times? [2016-I]

(a)	$\frac{1}{2}$	(b) $\frac{3}{8}$
(c)	$\frac{1}{4}$	(d) $\frac{1}{8}$

152. A special dice with numbers 1, -1, 2, -2, 0 and 3 is thrown thrice. What is the probability that the sum of the numbers occurring on the upper face is zero? [2016-11] (a) 1/72 (b) 1/8

(c) 7/72 (d) 25/216

153. There is 25% chance that it rains on any particular day. What is the probability that there is at least one rainy day within a period of 7 days? [2016-II]

(a)
$$1 - \left(\frac{1}{4}\right)^7$$
 (b) $\left(\frac{1}{4}\right)^7$
(c) $\left(\frac{3}{4}\right)^7$ (d) $1 - \left(\frac{3}{4}\right)^7$

- 154. A salesman has a 70% chance to sell a product to any customer. The behaviour of successive customers is independent. If two customers A and B enter, what is the probability that the salesman will sell the product to customer A or B? [2016-II]
 - (a) 0.98 (b) 0.91
 - (c) 0.70 (d) 0.49
- 155. A student appears for tests I, II and III. The student is considered successful if he passes in tests I, II or III or all the three. The probabilities of the student passing in tests I, II and III are m, n and 1/2 respectively. If the probability of the student to be successful is 1/2, then which one of the following is correct? [2016-II]

(b)	n(1+m) = 1
	(b)

- (c) m=1(d) mn = 1
- 156. Three candidates solve a question. Odds in favour of the correct answer are 5:2, 4:3 and 3:4 respectively for the three candidates. What is the probability that at least two of them solve the question correctly? [2016-II] (a) 209/343 (b) 134/343

157. A medicine is known to be 75% effective to cure a patient. If the medicine is given to 5 patients, what is the probability that at least one patient is cured by this medicine? [2016-II]

(a)
$$\frac{1}{1024}$$
 (b) $\frac{243}{1024}$
(c) $\frac{1023}{1024}$ (d) $\frac{781}{1024}$

1

158. For two events, A and B, it is given that P(A)

$$=\frac{3}{5}$$
, P(B) $=\frac{3}{10}$, and P(A | B) $=\frac{2}{3}$. If \overline{A} and \overline{B} are the

complementary events of A and B, then $P(\overline{A} | \overline{B})$ equal to? [2016-II]

(a)	$\frac{3}{7}$	(b)	$\frac{3}{4}$
(c)	$\frac{1}{3}$	(d)	$\frac{4}{7}$

159. A machine has three parts, A, B and C, whose chances of being defective are 0.02, 0.10 and 0.05 respectively. The machine stops working if any one of the parts becomes defective. What is the probability that the machine will not stop working? [2016-II]

160. Three independent events, A_1 , A_2 and A_3 occur with probabilities $P(A_i) = \frac{1}{1+i}$, i = 1, 2, 3. What is the probability

that at least one of the three events occurs? [2016-11]

(a)
$$\frac{1}{4}$$
 (b) $\frac{2}{3}$
(c) $\frac{3}{4}$ (d) $\frac{1}{24}$

161. In a series of 3 one-day cricket matches between teams A and B of a college, the probability of team A winning or drawing are 1/3 and 1/6 respectively. If a win, loss or draw gives 2, 0 and 1 point respectively, then what is the probability that team A will score 5 points in the series?

[2016-II]

(a)
$$\frac{17}{18}$$
 (b) $\frac{11}{12}$

(c)
$$\frac{1}{12}$$
 (d) $\frac{1}{18}$

Probability and Probability Distribution

162.	Let P(X	the random variable X f =2), then what is the val	ollow ue of	P B (6, p). If 16 P(X=4)= p? [2016-II]
	(a)	$\frac{1}{3}$	(b)	$\frac{1}{4}$
	(c)	$\frac{1}{5}$	(d)	$\frac{1}{6}$
163	Ac	ommittee of two person	s is c	ontituted from two men

 163. A committee of two persons is contituted from two men and two women. What is the probability that the committee will have only women?
 [2017-I]

(a)	$\frac{1}{6}$	(b)	$\frac{1}{3}$
(c)	$\frac{1}{2}$	(d)	$\frac{2}{3}$

164. A question is given to three students A, B and C whose chances of solving it are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$ respectively. What is the probability that the question will be solved?

[2017-I]

(a)	$\frac{1}{24}$				(b)	$\frac{1}{4}$
(c)	$\frac{3}{4}$				(d)	$\frac{23}{24}$
T.		1	1			1 D

165. For two dependent events A and B, it is given that P(A) = 0.2 and P(B) = 0.5. If A ⊆ B, then the values of conditional probabilites P(A|B) and P(B|A) are respectively [2017-1]

(a)
$$\frac{2}{5}, \frac{3}{5}$$

(b) $\frac{2}{5}, 1$
(c) $1, \frac{2}{5}$

(d) Information is insufficient

166. A point is chosen at random inside a circle. What is the probability that the point is closer to the centre of the circle than to its boundary? [2017-I]

(a)	$\frac{1}{5}$	(b)	$\frac{1}{4}$
(c)	$\frac{1}{3}$	(d)	$\frac{1}{2}$

167. A card is drawn from a well-shuffled ordinary deck of 52 cards. What is the probability that it is an ace? [2017-I]

(a)	$\frac{1}{13}$			(b)	$\frac{2}{13}$
(c)	$\frac{3}{13}$			(d)	$\frac{1}{52}$
0	· 1 /1	C 11	•		

168. Consider the following statements :

- 1. Two events are mutually exclusive if the occurrence of one event prevents the occurrence of the other.
- The probability of the union of two mutually exclusive events is the sum of their individual probabilities.
 Which of the above statements is/are correct?

(a)	1 only	(b)	2 only
(α)	Both 1 and 2	(d)	Neither 1

- (c) Both 1 and 2(d) Neither 1 nor 2169. If two fair dice are thrown, then what is the probability that
- the sum is neither 8 nor 9? [2017-I]

4 5

6

(a)
$$\frac{1}{6}$$
 (b)
(c) $\frac{3}{4}$ (d)

170. Let A and B are two mutually exclusive events with P(A) =

$$\frac{1}{3} P(B) = \frac{1}{4}$$
. What is the value of P ($\overline{A} \cap \overline{B}$)? [2017-1]
(a) $\frac{1}{6}$ (b) $\frac{1}{4}$
(c) $\frac{1}{3}$ (d) $\frac{5}{12}$

171. The mean and standard deviation of a binomial distribution are 12 and 2 respectively. What is the number of trials? [2017-1]

172. A committee of two persons is selected from two men and two women. The probability that the committee will have exactly one woman is [2017-II]

(a)
$$\frac{1}{6}$$
 (b) $\frac{2}{3}$
(c) $\frac{1}{3}$ (d) $\frac{1}{2}$

173. Let a die be loaded in such a way that even faces are twice likely to occur as the odd faces. What is the probability that a prime number will show up when the die is tossed? [2017-II]

(a)	$\frac{1}{3}$	(b)	$\frac{2}{3}$
(c)	$\frac{4}{9}$	(d)	$\frac{5}{9}$

174. Let the sample space consist of non-negative integers up to 50, X denote the numbers which are multiples of 3 and Y denote the odd numbers. Which of the following is/are correct? [2017-II]

1.
$$P(X) = \frac{8}{25}$$
 2. $P(Y) = \frac{1}{2}$

Select the correct answer using the code given below. (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2

175. For two events A and B, let $P(A) = \frac{1}{2}$, $P(A \cup B) = \frac{2}{3}$ and

$$P(A \cap B) = \frac{1}{6}$$
. What is $P(\overline{A} \cap B)$ equal to? [2017-II]

(a)
$$\frac{1}{6}$$
 (b) $\frac{1}{4}$

(c)
$$\frac{1}{3}$$
 (d) $\frac{1}{2}$

м-472

176. Let A and B be two events with $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{6}$ and

$$P(A \cap B) = \frac{1}{12}$$
. What is $P(B | \overline{A})$ equal to? [2017-II]

(a)
$$\frac{1}{5}$$
 (b) $\frac{1}{7}$
(c) $\frac{1}{8}$ (d) $\frac{1}{10}$

177. In a binomial distribution, the mean is $\frac{2}{3}$ and the variance

is
$$\frac{5}{9}$$
. What is the probability that $X = 2$? [2017-II]

(a)
$$\frac{5}{36}$$
 (b) $\frac{25}{36}$
(c) $\frac{25}{216}$ (d) $\frac{25}{54}$

178. The probability that a ship safely reaches a port is $\frac{1}{3}$. The probability that out of 5 ships, at least 4 ships would arrive safely is [2017-II]

(a)
$$\frac{1}{243}$$
 (b) $\frac{10}{243}$
(c) $\frac{11}{243}$ (d) $\frac{13}{243}$

- 179. What is the probability that at least two persons out of a group of three persons were born in the same month (disregard year)? [2017-II]
 - $\frac{17}{72}$ (b) (a) (d) (c) 144

180. If
$$P(B) = \frac{3}{4}$$
, $P(A \cap B \cap \overline{C}) = \frac{1}{3}$ and $P(\overline{A} \cap B \cap \overline{C}) = \frac{1}{3}$,

then what is $P(B \cap C)$ equal to? [2017-II]

(a)
$$\frac{1}{12}$$
 (b) $\frac{3}{4}$
(c) $\frac{1}{15}$ (d) $\frac{1}{9}$

181. In a multiple-choice test, an examinee either knows the correct answer with probability p, or guesses with probability 1 - p. The probability of answering a question correctly is $\frac{1}{m}$, if he or she merely guesses. If the examinee answers a question correctly, the probability that he or she really knows the answer is [2017-II]

NDA Topicwise Solved Papers - MATHEMATICS

(a)
$$\frac{mp}{1+mp}$$
 (b) $\frac{mp}{1+(m-1)p}$
(c) $\frac{(m-1)p}{1+(m-1)p}$ (d) $\frac{(m-1)p}{1+mp}$

- 182. Five sticks of length 1, 3, 5, 7 and 9 feet are given. Three of these sticks are selected at random. What is the probability that the selected sticks can from a triangle? [2017-II] (a) 0.5 (b) 0.4 (c) 0.3 (d) 0
- 183. Consider the following statements: [2018-I]

$$P(\overline{A} \cup B) = P(\overline{A}) + P(B) - P(\overline{A} \cap B)$$

1.

2.
$$P(A \cap \overline{B}) = P(B) - P(A \cap B)$$

3.

Which of the above statements are correct?

- (a) 1 and 2 only(b) 1 and 3 only
- (d) 1, 2 and 3 (c) 2 and 3 only
- 184. The probabilities that a student will solve Question A and Question B are 0.4 and 0.5 respectively. What is the probability that he solves at least one of the two questions? [2018-I]

g a [2018-I] sum of 7?

(a)
$$\frac{1}{36}$$
 (b) $\frac{1}{6}$
(c) $\frac{7}{12}$ (d) $\frac{5}{12}$

- 186. If A and B are two events such that 2P(A) = 3P(B), where 0 < P(A) < P(B) < 1, then which one of the following is correct? [2018-I]
 - $P(A | B) \leq P(B | A) \leq P(A \cap B)$ (a)
 - (b) $P(A \cap B) \leq P(B|A) \leq P(A|B)$
 - (c) $P(B|A) \leq P(A|B) \leq P(A \cap B)$
 - (d) $P(A \cap B) \le P(A | B) \le P(B | A)$
- 187. A box has ten chits numbered 0, 1, 2, 3, ..., 9. First, one chit is drawn at random and kept aside. From the remaining, a second chit is drawn at random. What is the probability that the second chit drawn is "9"?

(a)
$$\frac{1}{10}$$
 (b) $\frac{1}{9}$
(c) $\frac{1}{90}$ (d) None of the above

90 188. One bag contains 3 white and 2 black balls, another bag contains 5 white and 3 black balls. If a bag is chosen at random and a ball is drawn from it, what is the chance that it is white? [2018-I]

(a)
$$\frac{3}{8}$$
 (b) $\frac{49}{80}$

(d) (c) 13

- $P(A \cap B) = P(B)P(A \mid B)$

(a)	0.6	(b) 0.7
(c)	0.8	(d) 0.9

- 189. Consider the following in respect of two events A and B:
 - [2018-1] I. $P(A \text{ occurs but not } B) = P(A) - P(B) \text{ if } B \subset A$
 - 1. $P(A \text{ occurs but not } B) = P(A) P(B) \text{ if } B \subset A$ 2. $P(A \text{ alone or } B \text{ alone occurs}) = P(A) + P(B) - P(A \cap B)$
 - 3. $P(A \cup B) = P(A) + P(B)$ if A and B are mutually exclusive
 - Which of the above is/are correct?
 - (a) 1 only (b) 1 and 3 only
 - (c) 2 and 3 only (d) 1 and 2 only
- 190. A committee of three has to be chosen from a group of 4 men and 5 women. If the selection is made at random, what is the probability that exactly two members are men?

(a)
$$\frac{5}{14}$$
 (b) $\frac{1}{21}$
(c) $\frac{3}{14}$ (d) $\frac{8}{21}$

191. If two dice are thrown and at least one of the dice shows 5, then the probability that the sum is 10 or more is

(a)	$\frac{1}{6}$		(b)	$\frac{4}{11}$
(c)	$\frac{3}{11}$		(d)	$\frac{2}{11}$

192. Let A, B and C be three mutually exclusive and exhaustive events associated with a random experiment. If P(B) = 1.5 P(A) and P(C) = 0.5P(B), then P(A0 is equal to [2018-II]]

(a)
$$\frac{3}{4}$$
 (b) $\frac{4}{13}$
(c) $\frac{2}{3}$ (b) $\frac{1}{2}$

193. In a bolt factory, machines X, Y, Z manufacture bolts that are respectively 25%, 35% and 40% of the factory's total output. The machines X, Y, Z respectively produce 2%, 4% and 5% defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probability that it was manufactured by machine X? [2018-II]

(a)	$\frac{5}{39}$	(b)	$\frac{11}{39}$
(c)	$\frac{20}{39}$	(d)	$\frac{34}{39}$

194. 8 coins are tossed simultaneously. The probability of getting at least 6 heads is [2018-II]

(a)	$\frac{7}{64}$	(b)	$\frac{57}{64}$
(c)	$\frac{37}{256}$	(d)	$\frac{229}{256}$

195. Three groups of children contain 3 girls and 1 boy; 2 girls and 2 boys; 1 girl and 3 boys. One child is selected at random from each group. The probability that the three selected consist of 1 girl and 2 boys is [2018-II]

(a)
$$\frac{13}{32}$$
 (b) $\frac{9}{32}$

(c)
$$\frac{3}{32}$$
 (d) $\frac{1}{32}$

196. If the probability of simultaneous occurrence of two events A and B is p and the probability that exactly one of A, B occurs is q, then which of the following is/are correct? [2018-II]

$$P\left(\overline{A}\right) + P\left(\overline{B}\right) = 2 - 2p - q$$

2.
$$P(A \cap B) = 1 - p - q$$

1.

[2018-1]

Select the correct answer using the code given below: (a) 1 only (b) 2 only

- (c) Both 1 and 2 (d) Neither 1 nor 2
- 197. Two integers x and y are chosen with replacement from the set (0, 1, 2,, 10). The probability that |x y| > 5 is

(a)
$$\frac{6}{11}$$
 (b) $\frac{35}{121}$
(c) $\frac{30}{121}$ (d) $\frac{25}{121}$

198. From a deck of cards, cards are taken out with replacement. What is the probability that the fourteenth card taken out is an ace ? [2019-I]

(a)
$$\frac{1}{51}$$
 (b) $\frac{4}{51}$
(c) $\frac{1}{52}$ (d) $\frac{1}{13}$

199. If A and B are two events such that P(A) = 0.5, P(B) = 0.6

and P (A \cap B) = 0.4, then what is $P(\overline{A \cup B})$ equal to? [2019-1]

200. A problem is given to three students A, B and C whose probabilities of solving the problem are $\frac{1}{2}, \frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved if they all solve the problem independently? [2019-I]

(a)	$\frac{29}{32}$	(b)	$\frac{27}{32}$
(c)	$\frac{25}{32}$	(d)	$\frac{23}{32}$

201. A pair of fair dice is rolled. What is the probability that the second dice lands on a higher value than does the first ? [2019-1]

(a) $\frac{1}{4}$		(b)	$\frac{1}{6}$
(c) $\frac{5}{12}$	2	(d)	$\frac{5}{18}$
A fair (poin is tossed and an	unh	iased

- 202. A fair coin is tossed and an unbiased dice is rolled together. What is the probability of getting a 2 or 4 or 6 along with head? [2019-I]
 - (a) $\frac{1}{2}$ (b) $\frac{1}{3}$
 - (c) $\frac{1}{4}$ (d) $\frac{1}{6}$

- 203. If A, B, C are three events, then what is the probability that at least two of these events occur together? [2019-I]
 - (a) $P(A \cap B) + P(B \cap C) + P(C \cap A)$
 - (b) $P(A \cap B) + P(B \cap C) + P(C \cap A) P(A \cap B \cap C)$
 - (c) $P(A \cap B) + P(B \cap C) + P(C \cap A) 2P(A \cap B \cap C)$
 - (d) $P(A \cap B) + P(B \cap C) + P(C \cap A) 3P(A \cap B \cap C)$
- 204. If two variables X and Y are independent, then what is the correlation coefficient between them? [2019-I]
 (a) 1
 (b) -1
 - (c) 0 (d) None of the above
- 205. Two independent events A and B are such that $P(A \cup B) =$
 - $\frac{2}{3}$ and P (A \cap B) = $\frac{1}{6}$. If P (B) < P (A), then what is P(B) equal to ? [2019-I]
 - (a) $\frac{1}{4}$ (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) $\frac{1}{6}$
- 206. If two fair dice are rolled then what is the conditional probability that the first dice lands on 6 given that the sum of numbers on the dice is 8 ? [2019-I]
 - (a) $\frac{1}{3}$ (b) $\frac{1}{4}$ (c) $\frac{1}{5}$ (d) $\frac{1}{6}$
- 207. Two symmetric dice flipped with each dice having two sides painted red, two painted black, one painted yellow and the other painted white. What is the probability that both land on the same colour ? [2019-I]
 - (a) $\frac{3}{18}$ (b) $\frac{2}{9}$ (c) $\frac{5}{18}$ (d) $\frac{1}{3}$
- 208. There are n socks in a drawer, of which 3 socks are red. If 2 of the socks are chosen randomly and the probability that both selected socks are red is $\frac{1}{2}$, then what is the value of n?

- (a) 3 (b) 4 (c) 5 (d) 6
- 209. Two cards are chosen at random from a deck of 52 playig cards. What is the probability that both of them have the same value? [2019-I]

(a)
$$\frac{1}{17}$$
 (b) $\frac{3}{17}$

(c)
$$\frac{5}{17}$$
 (d) $\frac{7}{17}$

210. In eight throws of a die, 5 or 6 is considered a success. The mean and standard deviation of total number of successes is respectively given by [2019-I]

(a)	$\frac{8}{3}, \frac{16}{9}$	(b)	$\frac{8}{3},\frac{4}{3}$
(c)	$\frac{4}{3}, \frac{4}{3}$	(d)	$\frac{4}{3}, \frac{16}{9}$

211. A and B are two events such that \overline{A} and \overline{B} are mutually exclusive. If P(A) = 0.5 and P(B) = 0.6, then what is the value of P(A|B)? [2019-I]

(a)	$\frac{1}{5}$	(b)	$\frac{1}{6}$
(c)	$\frac{2}{5}$	(d)	$\frac{1}{3}$

- 212. What is the probability that an interior point in a circle is closer to the centre than to the circumference ? [2019-I]
 - (a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ (d) It can

[2019-I]

(d) It cannot be determined
213. If A and B are two events, then what is the probability of occurrence of either event A or event B? [2019-1]
(a) P(A) + P(D) = (b) P(A + D)

(a) P(A)+P(B) (b) $P(A\cup B)$ (c) $P(A \cap B)$ (d) P(A)P(B)

Probability and Probability Distribution

ANSWER KEY																			
1	(c)	23	(b)	45	(c)	67	(b)	89	(c)	111	(c)	133	(a)	155	(a)	177	(c)	199	(d)
2	(c)	24	(b)	46	(a)	68	(a)	90	(d)	112	(b)	134	(a)	156	(a)	178	(c)	200	(a)
3	(b)	25	(b)	47	(c)	69	(a)	91	(c)	113	(b)	135	(c)	157	(c)	179	(b)	201	(c)
4	(c)	26	(b)	48	(a)	70	(a)	92	(b)	114	(c)	136	(a)	158	(a)	180	(a)	202	(c)
5	(a)	27	(b)	49	(c)	71	(d)	93	(b)	115	(a)	137	(b)	159	(c)	181	(b)	203	(c)
6	(a)	28	(b)	50	(d)	72	(b)	94	(c)	116	(d)	138	(d)	160	(c)	182	(c)	204	(c)
7	(c)	29	(c)	51	(a)	73	(a)	95	(c)	117	(a)	139	(a)	161	(d)	183	(b)	205	(b)
8	(c)	30	(b)	52	(c)	74	(b)	96	(b)	118	(a)	140	(a)	162	(c)	184	(b)	206	(c)
9	(c)	31	(d)	53	(a)	75	(b)	97	(c)	119	(d)	141	(b)	163	(a)	185	(b)	207	(c)
10	(c)	32	(c)	54	(c)	76	(b)	98	(c)	120	(d)	142	(b)	164	(c)	186	(b)	208	(b)
11	(c)	33	(d)	55	(c)	77	(d)	99	(a)	121	(b)	143	(d)	165	(b)	187	(c)	209	(a)
12	(c)	34	(b)	56	(b)	78	(b)	100	(d)	122	(a)	144	(b)	166	(b)	188	(b)	210	(b)
13	(b)	35	(d)	57	(b)	79	(b)	101	(b)	123	(d)	145	(a)	167	(a)	189	(b)	211	(b)
14	(c)	36	(b)	58	(a)	80	(c)	102	(c)	124	(d)	146	(c)	168	(c)	190	(a)	212	(a)
15	(c)	37	(b)	59	(c)	81	(d)	103	(b)	125	(c)	147	(a)	169	(c)	191	(c)	213	(b)
16	(c)	38	(d)	60	(d)	82	(c)	104	(d)	126	(d)	148	(b)	170	(d)	192	(b)		
17	(b)	39	(d)	61	(d)	83	(d)	105	(b)	127	(b)	149	(c)	171	(c)	193	(a)		
18	(b)	40	(b)	62	(a)	84	(c)	106	(b)	128	(c)	150	(d)	172	(b)	194	(c)		
19	(c)	41	(b)	63	(b)	85	(b)	107	(b)	129	(b)	151	(a)	173	(c)	195	(a)		
20	(b)	42	(b)	64	(a)	86	(a)	108	(d)	130	(c)	152	(d)	174	(d)	196	(c)		
21	(a)	43	(b)	65	(c)	87	(d)	109	(a)	131	(c)	153	(d)	175	(a)	197	(c)		
22	(b)	44	(b)	66	(c)	88	(c)	110	(d)	132	(d)	154	(b)	176	(c)	198	(d)		

HINTS & SOLUTIONS

5.

6.

7.

1. (c) As given P(A) = 0.6, P(B) = 0.3 and $P(A \cap B) = 0.2$

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ = 0.6 + 0.3 - 0.2 = 0.9 - 0.2 = 0.7 So, P (neither in A nor in B) = 1 - P(A \cup B) = 1 - 0.7 = 0.3

2. (c) Let E be the event of total of 12. E = (2, 2, 2, 3, 3), (2, 2, 3, 3, 2), (2, 3, 3, 2, 2), (3, 3, 2, 2, 2), (3, 2, 2, 3, 2), (3, 2, 2, 3, 2), (3, 2, 2, 3, 2), (3, 2, 2, 3, 2), (2, 3, 2, 2, 3), (2, 2, 3, 2, 3), (2, 2, 3, 2, 3), (2, 2, 3, 2, 3)

n(E) = 10

Sample sapce contain total possibility = $2^5 = 32$ Hence, n(s) = 32

So,
$$P(E) = \frac{n(E)}{n(S)} = \frac{10}{32} = \frac{5}{16}$$

3. (b) A and R true but R is not correct explanation of A.

4. (c) Since, probabilities of failure for engines A, B and C P(A), P(B) and P(C) are 0.03, 0.02 and 0.05 respectively. The aircraft will crash only when all the three engine fail. So, probability that it crashes = P(A). P(B). P(C) = 0.03 × 0.02 × 0.05 = 0.00003 Hence, the probability that the aircraft will not crash, = 1-0.00003

=0.99997

- (a) Total possible outcomes, S = {HHH, HHT, HTH, THT, TTH, THH, TTT, HTT} and desired outcomes E = {HTH, THT}
 - \Rightarrow n(E)=2 and n(S)=8

Hence, required probability = P(E) = $\frac{n(E)}{n(S)} = \frac{2}{8} = \frac{1}{4}$ (a) Probability of passing in mathematics = $\frac{4}{9}$ Probability of passing in physics = $\frac{2}{5}$ Probability of failure in physics = $1 - \frac{2}{5} = \frac{3}{5}$ Given that both the events are independent. Required probability = $\frac{4}{9} \times \frac{3}{5} = \frac{4}{15}$ (c) Probability of getting a diamond, P(D) = $\frac{13}{52} = \frac{1}{4}$ and probability to king, P(k) = $\frac{4}{52} = \frac{1}{13}$ So, required probability = P(D).P(K) $= \frac{1}{4} \times \frac{1}{13} = \frac{1}{52}$

м-475

8. (c) Required probability
$$=\frac{4}{52} \times \frac{4}{51}$$

[Since, card is not replaced after first draw]

$$=\frac{4}{13\times51}=\frac{4}{663}$$

9. (c) Given, that np = 3 and npq = 4 where p is the probability of success in one trial and q is the probability of failure and n is the number of trials

$$\Rightarrow q = \frac{4}{3}$$

and this is not possible.

Thus, the given statement is never true.

- 10. (c) A dice has six faces. So, in throwing of two dice, the number of exhaustive events is $6 \times 6 = 36$.
- 11. (c) Number of ways of selecting 5 heads cut of total 12 flips= 12_{C_5} .

Probability of getting one head in a coin = $\frac{1}{2}$

Also, probability of getting one tail in a coin = $\frac{1}{2}$

Probability of getting 5 head = $\left(\frac{1}{2}\right)^5$

Probability of getting 7 tails =
$$\left(\frac{1}{2}\right)^7$$

So, required probability

$$= 12_{C_5} \left(\frac{1}{2}\right)^5 \left(\frac{1}{2}\right)^7 = 12_{C_5} \left(\frac{1}{2}\right)^{12} = \frac{12_{C_5}}{2^{12}}$$

12. (c) 16 tickets are sold and 4 prizes are awarded. A person buys 4 tickets, then required probability $=\frac{4}{16}=\frac{1}{4}$

 $\frac{1}{3}$

13. (b) As given,
$$P(A \cup B) = \frac{3}{4}, P(A \cap B) = \frac{1}{4}$$

and
$$P(\overline{A}) = \frac{2}{3}$$

 $P(\overline{A}) = 1 - P(A) = \frac{2}{3} \implies P(A) =$

We know that

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\Rightarrow \frac{3}{4} = \frac{1}{3} + P(B) - \frac{1}{4}$$
$$\Rightarrow 1 - \frac{1}{3} = P(B) \Rightarrow \frac{2}{3} = P(B)$$

14. (c) Probability of getting a spade =
$$\frac{13}{52}$$

Probability of an ace = $\frac{4}{52}$

and probability of getting a spade ace = $\frac{1}{52}$

:. Required probability =
$$\frac{13}{52} + \frac{4}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13}$$

Odds against his winning =
$$\frac{1 - \frac{4}{13}}{\frac{4}{13}} = \frac{\frac{9}{13}}{\frac{4}{13}} = \frac{9}{4}$$

15. (c) Probability of no one hitting the target

$$=\frac{1}{5\times4\times3}=\frac{1}{60}$$

Probability of one hitting the target

$$=\frac{4+3+2}{60}=\frac{9}{60}$$

... Probability of maximum one hit

$$= \frac{1}{60} + \frac{9}{60} = \frac{10}{60} = \frac{1}{60}$$

Probability that two shots are hit at least is the required

probability = $1 - \frac{1}{6} = \frac{5}{6}$

16.

(c) Total number of selecting 3 components out of $10 = {}^{10}C_3$. Out of 3 selected components two defective pieces can be selected in ${}^{4}C_2$ ways and one non-defective piece will be selected in ${}^{6}C_1$ ways, hence,

Required probability =
$$\frac{{}^{6}C_{1} \times {}^{4}C_{2}}{{}^{10}C_{3}} = \frac{6 \times 6 \times 6}{10 \times 9 \times 8} = \frac{3}{10}$$

- 17. (b) If both get one head then it is $\frac{1}{4} \times \frac{1}{4}$
 - and if both get two heads then it is $\frac{1}{2} \times \frac{1}{2}$
 - $\Rightarrow \text{ Prob (getting same number of heads)} = \frac{1}{4} \times \frac{1}{4} + \frac{1}{2} \times \frac{1}{2}$

$$=\frac{1}{16}+\frac{1}{4}=\frac{5}{16}$$

 (b) Number of Sundays in some randomly selected months with 30 days follow binomial distribution.

19. (c) (1) $P(A \cup B) \le P(A) + P(B)$ is correct

and (2) $P(A) + P(\overline{A} \cup B) \le 1 + P(B)$ is also correct

 \Rightarrow Both the given statement are correct.

Probability and Probability Distribution

20. (b) Total number of possible arrangements n(s) = 6!.
Since 2 and 3 occupy consecutive places, so, they are grouped together.
So, there will be 5! such arrangements. But 2 and 3 can be arranged in themselves in 2! ways

Required Probability =
$$\frac{5! \times 2!}{6!} = \frac{2}{6} = \frac{1}{3}$$

21. (a) Total possibility of 4 children, either girl or boy is $2^4 = 16$. Out of these there is one possibility in which there will be no boy and only girls. So, total possibility of at least one boy is 16 - 1 = 15

$$\Rightarrow$$
 P (at least one boy) = $\frac{15}{16}$.

22.

(b) Let there be 100 students. So, there are 40 students of science and 60 students of arts.
5% of 40 = 2 science students (girls) 10% of 60 = 6 science students (girls) Total girls students = 8 If a girl is chosed then

$$P(arts) = \frac{6}{8} = \frac{3}{4}$$

23. (b) As given :
$$P(A \cup B) = \frac{5}{6}, P(A \cap B) = \frac{1}{3}$$

and
$$P(\overline{B}) = \frac{1}{2}$$

 $P(B) = 1 - P(\overline{B}) = 1 - \frac{1}{2} = \frac{1}{2}$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $\Rightarrow \frac{5}{6} = P(A) + \frac{1}{2} - \frac{1}{3}$
 $\Rightarrow \frac{5}{6} = 1 - P(\overline{A}) + \frac{1}{2} - \frac{1}{3}$
 $\Rightarrow P(\overline{A}) = 1 + \frac{1}{2} - \frac{1}{3} - \frac{5}{6}$
 $= \frac{6 + 3 - 2 - 5}{6} = \frac{2}{6} = \frac{1}{3}$

24. (b) A coin has two faces and is tossed 5 times. So, number of elements in the sample space = 10.

25. (b) There are 7 days in a week. If 1st person's birth day falls on any day out of 7. So, probability is $\frac{7}{7}$. Since birthday of second person will fall on any of the remaining six days then its probability $=\frac{6}{7}$. And,

birthday of 3rd person will fall on any of the remaining

5 days so, its probability
$$=\frac{5}{7}$$

 \Rightarrow Probability that all three persons will have different day as their birthday

$$=\frac{7}{7} \times \frac{6}{7} \times \frac{5}{7} = \frac{30}{49} = 0.612 \approx 0.60$$

26. (b) Bag I. has 5 white + 3 black balls. Bag II. has 2 white + 4 black balls.

P (Black)_{1st bag} =
$$\frac{3}{8}$$
 & P (White)_{1st bag} = $\frac{5}{8}$

If one ball is drawn from bag I & placed in bag II, bag II will have 7 balls.

If black ball is drawn, then; bag II contains,

2W + 5 Black balls = 7 balls

P(black ball from bag 1 and black ball from bag 2)

$$=\frac{3}{8}\times\frac{5}{7}=\frac{15}{56}$$

If ball is white then bag II has 3w + 4 black balls P (white ball from bag 1 and black ball from bag 2)

$$=\frac{5}{8}\times\frac{4}{7}=\frac{20}{56}$$

 $\Rightarrow \text{Prob(blackball)}_{\text{bagII}} = \frac{15}{56} + \frac{20}{56} = \frac{35}{56}$

27. (b) We know,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\Rightarrow 0.8 + 0.9 - p \le 1$$

$$\Rightarrow 1.7 - p \le 1$$

$$\Rightarrow 0.7 \le p$$

Now, $P(A) < P(B)$

$$\therefore P(A \cap B) \le P(A)$$

$$\Rightarrow p \le 0.8$$

Hence, $0.7 \le p \le 0.8$
(b) Moon = n on and Variance = nng < nn (

28. (b) Mean = np and Variance = npq < np(: q < 1)

29. (c) Let P (A) be the probability that the race will be won by A and P(B) be the probability that the race will be won by B.

$$\therefore$$
 P(A) = $\frac{1}{5}$ and P(B) = $\frac{1}{6}$

 \therefore Probability that the race will be won by

A or B = P(A) + P (B) =
$$\frac{1}{5} + \frac{1}{6} = \frac{11}{30}$$

30. (b) Required probability =
$$\frac{365}{365} \times \frac{1}{365} = \frac{1}{365}$$

31. (d) Probability that
$$(X = 3) = \frac{1}{2} \times \frac{1}{3} + \frac{1}{2} \times \frac{1}{4} = \frac{7}{24}$$

- 32. (c) Baye's theorem says
 - If $A_1, A_2, ..., A_n$ are (n) mutually exclusive and exhaustive events in sample space S and E is any event is S intersecting events

 A_i (*iz* 1, 2,..., *n*) such that $P(E) \neq 0$ then

$$P(A_i / E) = \frac{P(E / A_i)}{P(E)}$$
$$= \frac{P(A_i)P(E / A_i)}{\sum_{|2|}^{n} P(A_i)P(E / A_i)}$$

Thus, both statement 1 and 2 are correct.

- 33. (d) Given, the outcomes of an experiment classified as success A will follow a binomial distribution if P(A) remains constant in all trials.
- 34. (b) If A, B, C are any three arbitary events then only expression $A \cap B \cap \overline{C}$ will show that both A and B occur but not C.
- 35. (d) By Baye's theorem, we know that, conditional probability is calculated.

36. (b) Given,
$$P(A) = \frac{1}{3}$$
, $P(B) = \frac{1}{4}$, $P\left(\frac{A}{B}\right) = \frac{1}{6}$
But $P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)}$
 $\Rightarrow \frac{1}{6} = \frac{P(A \cap B)}{\frac{1}{4}}$
 $\Rightarrow P(A \cap B) = \frac{1}{24}$
 $\therefore P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)} = \frac{1/24}{1/3} = \frac{1}{8}$

37. (b) A and B are mutually exclusive and exhaustive events with $P(A \cap B) = 0$, $P(A \cup B) = 1$

$$P(A + B) = 0, P(A \cap B) = 1$$

we know that
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$\Rightarrow 1 = P(A) + 3P(A)$$
$$\Rightarrow P(A) = \frac{1}{4} \qquad \therefore P(B) = \frac{3}{4}$$

Hence,
$$P(\overline{B}) = 1 - P(B) = 1 - \frac{3}{4} = \frac{1}{4}$$

38. (d) Let E be the sum of the faces equals or exceeds Then, E = {(5, 5), (4, 6), (6, 4), (5, 6), (6, 5), (6, 6)} $\therefore n(E) = 6$ Hence, $P(E) = \frac{n(E)}{n(S)} = \frac{6}{36} = \frac{1}{6}$

39. (d) Given,
$$np = 4$$
 and $npq = \frac{4}{3}$

$$\therefore \quad 4q = \frac{4}{3} \Longrightarrow q = \frac{1}{3}$$

$$\therefore \quad p = 1 - \frac{1}{3} = \frac{2}{3}$$

$$\Rightarrow \quad n = \frac{4 \times 3}{2} = 6$$
Now, $P(X \ge 5) = {}^{6}C_{5}(p)^{5}(q)^{1} + {}^{6}C_{6}p^{6}q^{0}$

$$= {}^{6}C_{5}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right) + {}^{6}C_{6}\left(\frac{2}{3}\right)^{6}$$

$$= \frac{6 \times 32}{3^{6}} + \frac{64}{3^{6}} = \frac{256}{3^{6}} = \frac{2^{8}}{3^{6}}$$
(b) Since, $n(S) = 52$ and $n(E) = 4$

$$n(E) \quad 4 = 1$$

:.
$$P(E) = \frac{n(E)}{n(S)} = \frac{4}{52} = \frac{1}{13}$$

41. (b) (A) Total no. of cards = 52Total no. of ace cards = 4Total no. of king cards = 4

40.

42.

43.

P(drawn an ace) = $\frac{4}{52}$, P(drawn an king) = $\frac{4}{52}$ Thus, P(drawing either an ace or a king)

$$= P(an ace) + P(a king)$$

$$=\frac{4}{52}+\frac{4}{52}=\frac{8}{52}=\frac{4}{26}=\frac{2}{13}$$

Both A and R are true but R is not the correct explanation of A.

(b) Total no. of letters = 26 No. of selected letters = 3 \therefore No. of ways to select 3 letters out of 26 letters = ${}^{26}C_3$

Since, A will not be include in our choice therefore, Total no. of letters = 26 - 1 = 25

Now, No. of ways to select 3 letters out of 25 letters ${}^{25}C_3$

:. Required Prob =
$$\frac{{}^{25}C_3}{{}^{26}C_3} = \frac{25!}{3!22!} \times \frac{3!23!}{26!} = \frac{23}{26}$$

(b)	Head	Tail
	10	0
	9	1
	8	2
	7	3
	6	4
	5	5
	4	6
	3	7
	2	8
	1	9
	0	10

Hence, total number of points in the sample space is 11.
Probability and Probability Distribution

44. (b) Given set is {1, 2, 3, 4, 5, 6, 7}
Total numbers in set = 7
Since, two numbers are drawn without replacement
∴ Total number of elementary events =
$${}^{7}C_{1} \times {}^{6}C_{1}$$

=7 × 6
=42
45. (c) As we know $P(A \cup B) \le 1$
 $\Rightarrow P(A \cap B) \ge 1.5 - 1$
 $\Rightarrow P(A \cap B) \ge 1.5 - 1$
 $\Rightarrow P(A \cap B) \ge 0.5$
Hence, the minimum value of $P(A \cap B)$ is 0.5.
46. (a) Given, $X + Y = 15$
The total number of ordered pairs which satisfies
 $X + Y = 15$ is
 \therefore (5, 10), (6, 9), (7, 8), (8, 7), (9, 6), (10, 5)
 \therefore n (S) = 6 where S denotes the sample space.
In each above pairs exactly one of the two numbers is
even number.
Therefore $E = ((5, 10), (6, 9), (7, 8), (8, 7), (9, 6), (10, 5)$ }
where E is an event.
 \therefore $n(E) = 6$
 \therefore Required probability $= \frac{n(E)}{n(S)} = \frac{6}{6} = 1$
47. (c) We know $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $\Rightarrow P(A \cap B) = \frac{1}{3} + \frac{3}{4} - \frac{11}{12} = \frac{1}{22} = \frac{1}{6}$
Consider $P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{11/6}{1/3} = \frac{1}{2}$
48. (a) We know that mean and variance of Binomial
distribution are np and npq respectively therefore $np = 8$ and $npq = 4$
On dividing we get
 $q = \frac{npq}{np} = \frac{4}{8} = \frac{1}{2}$ and $p + q = 1 \Rightarrow p = 1 - \frac{1}{2} = \frac{1}{2}$
 $\Rightarrow n\left(\frac{1}{2}\right) = 8 \Rightarrow n = 16$
We know that $P(X = r) = n_{C_{F}} p^{r} q^{n-r}$
therefore
 $P(X = 1) = {}^{16}C_{1}\left(\frac{1}{2}\right)^{16-1}\left(\frac{1}{2}\right)^{1}$
 $= \frac{16}{2^{15}.2} = \frac{1}{2^{12}}$
49. (c) By Baye's theorem
Required probability $= P(A_{1})P(B/A) + P(A)P(B/A)$

$$= \frac{0.4 \times 0.25}{0.4 \times 0.25 + 0.4 \times 0.4 + 0.2 \times 0.125}$$
$$= \frac{0.1}{0.1 + 0.16 + 0.025} = \frac{0.1}{0.285} = \frac{20}{57}$$

50. (d) Let $P(X \le 2) = 0.25$

 $\Rightarrow P(X=1) + P(X=2) = 0.25$ $\Rightarrow k + p_1 = 0.25 (\text{from the table})$ $\Rightarrow p_1 = 0.25 - k \qquad \dots(1)$ and $P(X \ge 4) = 0.35$ $\Rightarrow P(X=4) + P(X=5) = 0.35$ $\Rightarrow p_2 + 2k = 0.35 (\text{from the table})$ $\Rightarrow p_2 = 0.35 - 2k \qquad \dots(2)$ From (1) and (2) $p_1 \ne p_2$ and $p_1 + p_2 = 0.25 - k + 0.35 - 2k = 0.6 - 3k \\ \ne P(X=3)$ Hence, neither 1 nor 2 is correct.

51. (a) Statement 1:

A non leap year has 365 days. i.e., 52 weeks and 1 day. 1 day can be {Sunday}, {Monday}, {Tuesday}, {Wednesday}, {Thursday}, {Friday}, {Saturday} In total, there are 7 possibilities and 1 possibility is Sunday.

 \therefore Required probability = $\frac{1}{7}$

A leap year has 366 days. i.e., 52 weeks and 2 days. 2 days can be {Sun, Mon}, {Mon, Tue}, {Tue, Wed}, {Wed, Thu}, {Thu, Fri}, {Fri, Sat}, {Sat, Sun}. In total, there are 7 possibilities and 2 possibilities have Sundays.

 \therefore Required probability = $\frac{2}{7}$

So, statement 1 is correct.

Statement 2 :

March has 31 days. i.e., 4 complete weeks and 3 days. 3 days can be $\{S, M, T\}$, $\{M, T, W\}$, $\{T, W, Th\}$, $\{W, Th, F\}$, $\{Th, F, Sa\}$, $\{F, Sa, S\}$, $\{Sa, S, M\}$.

In total 7 possibilities, Monday can come in 3 possibilities

:. Required probabilities =
$$\frac{3}{7}$$

April has 30 days. i.e., 4 complete weeks and 2 days. 2 days can be {S, M}, {M, T}, {T, W}, {W, Th}, {Th, F}, {F, Sa}, {Sa, S}.

In total 7 possibilities, Monday can come in 2 possibilities.

$$\therefore$$
 Required probability = $\frac{2}{7}$

: Statement 2 is wrong.

52. (c) Possible samples are as follows

 $\{HHH,\,HTH,\,HHT,\,THH,\,TTH,\,THT,\,HTT,\,TTT\}$

Let A be the event of getting one head. Let B be the event of getting no head. Favourable outcome for

$$A = \{TTH, THT, HTT\}$$

Favourable outcome for

$$B = \{TTT\}$$

м-480

Total no. of outcomes = 8

$$\therefore P(A) = \frac{3}{8}, P(B) = \frac{1}{8}$$

:. Required probability = Probability of getting one head + Probability of getting no head

$$= P(A) + P(B) = \frac{3}{8} + \frac{1}{8} = \frac{4}{8} = \frac{1}{2}$$

53. (a) No. of blue balls =2 No. of red balls = 7 Total no. of balls = 9 Required probability = P (one ball is blue) + P (both ball is blue)

$$=\frac{2}{9}\times\frac{7}{8}+\frac{2}{9}\times\frac{1}{8}=\frac{14}{72}+\frac{2}{72}=\frac{16}{72}=\frac{2}{9}$$

54. (c) Given Probability of guessing a correct answer $=\frac{x}{12}$

and probability of not guessing the correct answer $=\frac{2}{3}$

As we know

P (occurence of an event) + P (non-occurence of an event) = 1

$$\therefore \quad \frac{x}{12} + \frac{2}{3} = 1 \implies \frac{x+8}{12} = 1 \implies x = 12 - 8 = 4$$

55. (c) Both (1) and (2) statements are correct.

56. (b) A leap year has 366 days, in which 2 days may be any one of the following pairs.
(Sunday, Monday), (Monday, Tuesday), (Tuesday, Wednesday), (Wednesday, Thursday), (Thursday, Friday) (Friday, Saturday) (Saturday, Sunday).

 $\therefore \quad \text{Required probability} = \frac{2}{7} + \frac{2}{7} - \frac{1}{7} = \frac{3}{7}$

(By using $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

57. (b) Given digits are 0, 2, 4, 6, 8. Total number of cases = $4 \times 4 \times 4$ (:: We have 4 choices for each number)

$$\therefore$$
 Required probability = $\frac{4}{64} = \frac{1}{16}$

58. (a) Required probability =
$$\frac{{}^{4}C_{2} \times {}^{4}C_{2}}{{}^{8}C_{2}} = \frac{36}{70} = \frac{18}{35}$$

(c) Let A and B are independent events.

$$\Rightarrow P(A \cap B) = P(A) \cdot P(B) \qquad \dots(A)$$
1. Consider $P(A \cap \overline{B}) = P(A) - P(A \cap B)$

$$= P(A) - P(A) P(B)$$
(from A)

$$= P(A) [1-P(B)] = P(A)P(\overline{B})$$

Hence, A and \overline{B} are independent.

59.

60.

- 2. Similarly, \overline{A} and B are independent.
- 3. Consider $P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B})$

$$= 1 - P(A \cap B)$$

= 1 - [P(A) + P(B) - P(A \boxdot B)]
= 1 - P(A) - P(B) + P(A). P(B)
= [1-P(A)] [1-P(B)]
= P(\overline{A}). P(\overline{B})

Hence, \overline{A} and \overline{B} are independent.

(d) Events when a coin is flipped and head occurs are {HT, HH} Events when a coin is flipped and tail occurs are {T1, T2, T3, T4, T5, T6} (:: dice are rolled after tail appears) So, Total number of events = 8 Favourable event = {HT} = 1 \therefore Required probability = $\frac{1}{8}$

61. (d) Required probability =
$$\frac{{}^{6}C_{1} \times {}^{5}C_{1} \times {}^{4}C_{1}}{{}^{6}C_{1} \times {}^{6}C_{1} \times {}^{6}C_{1}}$$

$$=\frac{6\times5\times4}{6\times6\times6}=\frac{5}{9}$$

62. (a) Let
$$P(A \cup B) = 0.5$$
, $P(\overline{B}) = 0.8$, $P\left(\frac{A}{B}\right) = 0.4$
 $P(\overline{B}) = 1 - P(B)$
 $\Rightarrow 0.8 = 1 - P(B)$
 $\Rightarrow P(B) = 1 - 0.8 = 0.2$
Now, $P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)}$
 $\Rightarrow P(B) \times P\left(\frac{A}{B}\right) = P(A \cap B)$
 $\Rightarrow 0.4 \times 0.2 = P(A \cap B)$
 $\Rightarrow 0.08 = P(A \cap B)$

63. (b) Since, probability of answering all the three questions
correctly
$$= \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{64}$$

 \therefore Probability of not answering all the three questions
correctly $= 1 - \frac{1}{64} = \frac{63}{64}$

Probability and Probability Distribution

64. (a) Since, A and B are mutually exclusive events.

$$\therefore$$
 P (AB) = P (A \cap B) = 0
65. (c) Since, 4 letters are randomly inserted into the 4 envelopes therefore
Required probability = $\frac{1}{4!} = \frac{1}{4 \times 3 \times 2} = \frac{1}{24}$
66. (c) Total number of letters = 4
Total number of vowels = 2 (O and E)
Required Probability = $\frac{2}{4} = \frac{1}{2}$
67. (b) Let A = Event of husband's selection
and B = Event of wife's selection
Given : $P(A) = \frac{1}{5} \Rightarrow P(\overline{A}) = 1 - \frac{1}{5} = \frac{4}{5}$
 $P(B) = \frac{1}{3} \Rightarrow P(\overline{B}) = 1 - \frac{1}{3} = \frac{2}{3}$
 $P(Only one of them selected)$
 $= P(A) \times P(\overline{B}) + P(\overline{A}) \times P(B)$
 $= \frac{1}{5} \times \frac{2}{3} + \frac{4}{5} \times \frac{1}{3} = \frac{2}{15} + \frac{4}{15} = \frac{6}{15} = \frac{2}{5}$

68. (a) Let radius of circle be 'r'.

Total possible outcomes = Area of circle = πr^2 Observe the figure, we have to find the probability of point, P in the ring which will be closer to circumference.

Area of ring = Area of outer circle – Area of inner circle

$$= \pi r^2 - \pi \left(\frac{r}{2}\right)^2 = \pi r^2 - \frac{\pi r^2}{4} = \frac{3\pi r^2}{4}$$

So, favourable outcome = $\frac{3\pi r^2}{4}$.

$$\therefore \text{ Required probability} = \frac{\frac{3}{4}\pi r^2}{\pi r^2} = \frac{3}{4}$$

69. (a) Total number of words formed by letters of UNIVERSITY

$$=\frac{10!}{2!}$$
 (:: I is repeated)

Taking two I_s together, number of ways to arrange letters of UNIVERSITY = 9!

... Probability of two I_s coming together

$$=\frac{9!}{\frac{10!}{2!}}=\frac{9 \ge 2!}{10!}=\frac{2}{10}=\frac{1}{5}$$

 \therefore Probability of two I_s not coming together

$$=1-\frac{1}{5}=\frac{4}{5}$$

M S 40 (30 25)

Required probability

70.

(a)

$$=\frac{40}{125} + \frac{25}{125} = \frac{65}{125} = \frac{13}{25}$$

71. (d) Total no. of case = $6^3 = 216$ Favourable cases = {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), (5, 5, 5), (6, 6, 6)}.

$$Probability = \frac{6}{216} = \frac{1}{36}$$

72. (b) No. of days in leap year = 366No. of complete week = 52

$$(:: 366 \div 7 \text{ gives } 2 \text{ as remainder})$$

$$\therefore$$
 No. of days left = 2

Required probability =
$$\frac{2}{7}$$

73. (a) Maximum sum of numbers appearing on four dice together = 24
 ∴ Required probability = 0

(b) Prob. (certain event) =
$$1$$

$$\Rightarrow P(E) = 1$$

74.

75. (b) Total no. of days in leap year = 366 Favourable cases = 2

Required prob =
$$\frac{2}{7}$$

76. (b) Given
$$P(A \cup B) = \frac{3}{4}$$
, $P(A \cap B) = \frac{1}{4}$,

$$P(\overline{A}) = \frac{2}{3} \Longrightarrow P(A) = \frac{1}{3}$$

As we know

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\therefore \quad \frac{3}{4} = \frac{1}{3} + P(B) - \frac{1}{4}$$

$$\Rightarrow \frac{3}{4} + \frac{1}{4} - \frac{1}{3} = P(B)$$

$$\Rightarrow P(B) = \frac{2}{3}$$

77. (d) Three coins tossed simultaneously \therefore Total outcomes = $2^3 = 8$ Now, S = {HHH, HHT, HTH, THH, TTT, TTH, THT, HTT}

Favourbale cases = two heads one tail = HHT, HTH, THH

$$\therefore \text{ Required prob} = \frac{3}{8}.$$

- 78. (b) An event having one sample point is called an elementary event.
- 79. (b) This is the question of Binomial Distribution. Number of r success in n trial is $P_r = {}^nC_r p^r q^{n-r}$. Where p= prob of success q = prob. of failure = 1 - p

Given :
$$n = 10, p = \frac{2}{3}, q = \frac{1}{3}$$

For
$$r = 10$$
, $P_{10} = {}^{10}C_{10}$ $\left(\frac{2}{3}\right)^{10} \left(\frac{1}{3}\right)^0 = \frac{2^{10}}{3^{10}}$
For $r = 7$, $P_7 = 120$. $\frac{2^7}{3^{10}}$
For $r = 5$, $P_5 = 252 \times \frac{2^5}{3^{10}}$
For $r = 4$, $P_4 = 210$. $\frac{2^4}{3^{10}}$
It is maximum for $r = 7$

Solutions for 80 and 81

Total number of balls in urn - I = 1 Black + 1 Green = 2 Balls Total number of balls in urn - II = 1 White + 1 Green = 2 Balls

80. (c) Required prob = $(1 \text{ G})_{I} \times (1 \text{ G})_{II} = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ 81. (d) Required prob = $(1 \text{ G})_{I} \times (1 \text{ G})_{II} + (1 \text{ G})_{II} \times (1 \text{ W})_{II} + (1 \text{ G})_{II} \times (1 \text{ W})_{II}$.

$$= \left(\frac{1}{2} \times \frac{1}{2}\right) + \left(\frac{1}{2} \times \frac{1}{2}\right) + \left(\frac{1}{2} \times \frac{1}{2}\right) = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}$$

82. (c) In A there are 18 events possible.

:.
$$P(A) = \frac{18}{36} = \frac{1}{2}$$

In B there are 12 events are possible

:.
$$P(B) = \frac{12}{36} = \frac{1}{3}$$

In $A \cap B$ there are 6 events are possible. Now,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= \frac{1}{2} + \frac{1}{3} - \frac{1}{6} = \frac{3+2-1}{6} = \frac{4}{6} = \frac{2}{3}$$

83. (d)
$$P(A \cap B) = \frac{6}{36} = \frac{1}{6}$$

- 84. (c) $6 \times 2 \times 2 = 24$ sample points (\because no. of points in sample space of a die = 6 and no. of points in sample space of a coin = 2)
- 85. (b) $A = \{2, 4, 6\}, B = \{1, 3, 5\}, C = \{4, 5, 6\}$ Hence, A and B are mutually exclusive.
- 86. (a) Total case = $6 \times 6 = 36$ Favourable = (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) Probability = $\frac{6}{36} = \frac{1}{6}$
- 87. (d) From Binomial Distribution, we have $P(X = r) = {}^{n}C_{r}(p)^{r}(q)^{n-r}, r \le n.$ In the given quesiton

n = 4, r = 2, p = prob. of head =
$$\frac{1}{2}$$
, q = prob. of tail = $\frac{1}{2}$

$$P(X=2) = {}^{4}C_{2} \times \left(\frac{1}{2}\right) \times \left(\frac{1}{2}\right) = \frac{1}{16} =$$

Total number of balls = 5 + 3 = 8.

88. (c) Total number of balls =
$$5 + 3 = 8$$

Prob (both ball are white)

$$= \frac{3}{8} \times \frac{2}{7} (\because \text{ No. of white ball} = 3)$$
$$= \frac{3}{28}$$

89. (c) We have
$$P(\overline{A} \cup \overline{B}) = P(\overline{A}) + P(\overline{B}) - P(\overline{A} \cap \overline{B})$$

= $P(\overline{A}) + P(\overline{B}) - P(\overline{A \cup B})$

By (De-Morgan's law)

8

$$= P(\overline{A}) + P(\overline{B}) - (1 - P(A \cup B)) = .4 + .3 - (1 - .9) = .6$$

90. (d) P(HHHHT or TTTTH) = P(HHHHT) + P(TTTTH)

$$=\left(\frac{1}{2}\right)^5 + \left(\frac{1}{2}\right)^5 = \frac{1}{16}$$

- 91. (c) P(X=r) will be maximum when r is mode. There are 2 cases.
 - (i) If (n + 1)P is an integer, binomial distribution is bimodal and two modal values are (n + 1)P and (n+1)P-1.
 - (ii) If (n + 1)P is not an integer, then modal value is integral part of (n + 1)P.

Here,
$$(n+1)P = (100+1)\frac{1}{3} = 101 \times \frac{1}{3} = 33.69$$
, which is

not integer.

 \therefore P(X = r) is maximum at integral part of 33.69 i.e., 33.

- 92. (b) Required no. of elementary events = ${}^{8}C_{2} \times 2! = 56$
- 93. (b) Binomial distribution has two parameters n and p, where n is number of trials and p is probability of success.

Probability and Probability Distribution

94. (c) Minimum 4 balls have to be drawn so that among
these there are two of the same colour
95. (c) A, B and C are mutually exclusive
A \cap B \cap C = 0
P(A \cap B \cap C) = 0
96. (c) As A and B are independent event
So, P(A \cap B) =
$$\frac{1}{5}P(B)$$

Now, P(A \cap B) = P(A) + P(B) - P(A \cap B)
 $P(B)\left(1-\frac{1}{5}\right) = \frac{7}{10}-\frac{1}{5}$
 $\frac{4}{5}P(B) = \frac{1}{2} \Rightarrow P(B) = \frac{5}{8}$
107. (c)
 $\frac{1}{70} = \frac{1}{5}+P(B)-\frac{1}{5}P(B)$
P(B) $\left(1-\frac{1}{5}\right) = \frac{7}{10}-\frac{1}{5}$
 $\frac{4}{5}P(B) = \frac{1}{2} \Rightarrow P(B) = \frac{5}{8}$
97. (b) $P = q = \frac{1}{2}$, nP = 6
 $\frac{n}{2} = 6 \Rightarrow n = 12$
98. (c) Number of possible outcomes = 36
When sum is 10, samples are (5, 5), (4, 6) and (6, 4)
Required probability = $\frac{3}{36} = \frac{1}{12}$
99. (c) Number of possible outcomes = 216
triplets = (1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), (5, 5, 5), (6, 6, 6)
Required probability = $\frac{6}{216} = \frac{1}{36}$
100. (a)
101. (d) For binomial distribution
 $p < 1, q < 1$ and $p + q = 1$
102. (b) Possible outcomes are (Head, 1), (Head, 2), (Head, 3), (Head, 4), (Head, 5), (Head, 6), Tail
103. (c) P(A \cap B) - P(A \cap B) = $\frac{2}{5}$
We know that, P(A \cap B) = P(A) + P(B) - P(A \cap B)
 $\therefore P(A) + P(B) - P(A \cap B) = P(A) + P(B) - P(A \cap B)$
 $\therefore P(A) + P(B) - P(A \cap B) = P(A) + P(B) - P(A \cap B)$
 $\therefore P(A) + P(B) - P(A \cap B) = \frac{2}{5}$
We know that, P(A \cap B) = $\frac{2}{5}$
114. (6)
 $-2P(A \cap B) = \frac{2}{5} - \frac{2}{3} - \frac{2}{5}$
115. (a)
 $\frac{2}{3} + \frac{2}{5} - 2P(A \cap B) = \frac{2}{5}$
114. (b) February 2016 has 29 days.
 $= 4$ weeks + 1 odd day.
Now, probability that 1 odd day is monday = $\frac{1}{7}$.

D5. (d) Probability of
$$A = \frac{1}{6}$$

Probability of $B = \frac{1}{5}$
Probability of $C = \frac{1}{4}$
Hence, required probability $= \frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} = \frac{1}{120}$
D6. (b) Total number of balls = 5
Number of black balls = 2
Required probability
 $= \frac{n(E)}{n(S)} = \frac{{}^{2}C_{1} \times {}^{1}C_{1}}{{}^{5}C_{2}} = \frac{2}{5} \times \frac{1}{2} = \frac{1}{5}$
D7. (b) $P(A) = \frac{6}{12} = \frac{1}{2}$, $P(B) = \frac{4}{12} = \frac{1}{3}$
Req. probability $= \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{12} + \frac{1}{18} = \frac{5}{36}$
ol. (108–111)
Set $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $z = x + y$
 $x = set of odd numbers$
 $y = set of even numbers$
D8. (d) $n(S) = 12$
 $n(E_{1}) = 2$
 $P(Z = 5) = \frac{n(E_{1})}{n(S)} = \frac{2}{12} = \frac{1}{6}$

09. (a)
$$P(Z=10) = \frac{n(E_2)}{n(S)} = \frac{0}{12} = 0$$

110. (d) Z > 11 is only possible when x = 7 and y = 6

$$P(>11) = \frac{n(E_3)}{n(S)} = \frac{1}{12}$$

11. (c) Z = product of two prime numbers Z = x + y = 7 + 6 = 13 n (E₄) = 3 P (Z = 9) = $\frac{n(E_4)}{n(S)} = \frac{3}{12} = \frac{1}{4}$

112. (b)
$$P(A|B') = \frac{P(A \cap B')}{P(B')} = \frac{P(A) - P(AB)}{1 - P(B)}$$

- 113. (b) A, B and D are exhaustive events but not mutually exclusive events.
- 114. (c) A, B and C are exhaustive events and mutually exclusive events.
- 115. (a) B and C are mutually exclusive events but not exhaustive events.
- 116. (d) C and E are mutually exclusive and elementary events. 117 (a) Clearly $A \cap B \subset A$

$$\begin{array}{l} \text{(i)} \quad \text{Clearly, } A \cap B \subseteq A \\ \Rightarrow P(A \cap B) \leq P(A) \qquad \dots(i) \\ A \subseteq A \cup B \\ \Rightarrow P(A) \leq P(A \cup B) \qquad \dots(ii) \\ \text{We know that, } P(A \cup B) = P(A) + P(B) - P(A \cap B) \\ \Rightarrow P(A \cup B) \leq P(A) + P(B) \qquad \dots(iii) \\ \text{From eqs. (i), (ii) and (iii), we get} \\ P(A \cap B) \leq P(A) \leq P(A \cup B) \leq P(A) + P(B) \end{array}$$

м-484

124. (d) $\mathsf{P}={}^{5}\mathsf{C}_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{3}+{}^{5}\mathsf{C}_{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{2}$

·· 1U, 1N, 2I, 1V, 1E, 1R, 1S, 1T, 1Y 118. (a) $\frac{10!}{2!}$: Total number of possible arrangements = and favourable arrangements = $\frac{10!}{2!} - 9!$ $\therefore \text{ Required probability} = \frac{\frac{10!}{2!} - 9!}{10!}$ $=\frac{9!(5-1)}{9!\times 10} \times 2 = \frac{4}{5}$ 119. (d) Box I \rightarrow 4 W; 3 B Box II \rightarrow 3 W; 4 B Probability for choosing first box = $\frac{3}{6} = \frac{1}{2}$ Probability for choosing second box = $\frac{1}{2}$ $\therefore \text{ Required probability} = \frac{\frac{1}{2} \times \frac{3}{7}}{\frac{1}{2} \times \frac{3}{7} + \frac{1}{2} \times \frac{4}{7}}$ $=\frac{\frac{3}{14}}{\frac{3}{2}+\frac{4}{2}}=\frac{\frac{3}{14}}{\frac{7}{2}}=\frac{3}{7}$ 120. (d) Let A and B be the events $= P(A \cap \overline{B}) + P(B \cap \overline{A})$ $= P(A) - P(A \cap B) + P(B) - P(A \cap B)$ $= P(A) + P(B) - 2P(A \cap B)$ = 0.05 + 0.1 - 2(0.02)= 0.15 - 0.04 = 0.11Hence the pobability that only one of them will qualify the examination is 0.11. $n(S) = 2^4 = 16$ and $n(E) = {}^4C_0 + {}^4C_1 + {}^4C_2 + {}^4C_3$ 121. (b) $=1+4+\frac{4\times 3}{2\times 1}+4=1+4+6+4=15$ $\therefore P(E) = \frac{n(E)}{n(S)} = \frac{15}{16}$ 122. (a) $P = P(E_1) P(\overline{E}_2) + P(\overline{E}_1) P(E_2)$ $=\frac{1}{2}\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{2}\right)\frac{1}{3}$ $=\frac{1}{2}\times\frac{2}{3}+\frac{1}{2}\times\frac{1}{3}$ $=\frac{1}{3}+\frac{1}{6}=\frac{1}{2}$

 $+{}^{5}C_{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{1}+{}^{5}C_{5}\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{0}$ $= \left(\frac{1}{2}\right)^{5} \left[{}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4} + {}^{5}C_{5} \right]$ $=\frac{1}{2^2}[10+10+5+1]$ $=\frac{1}{3^2} \times 26 = \frac{13}{16}$ 126. (d) nP=2n Pq = 1 $q = \frac{1}{2}$ P + q = 1 $P = 1 - \frac{1}{2} = \frac{1}{2}$ $n\left(\frac{1}{2}\right) = 2$ ∴ n=4 ${}^{4}C_{0} = \left(\frac{1}{2}\right)^{4-0} = \frac{1}{16}.$ 127. (b) $P(A \cup B) = \frac{3}{4}$ $P(A \cap B) = \frac{1}{4}$ $P(\overline{A}) = \frac{2}{3}, P(A) = \frac{1}{3}$ $\therefore P(B) = \frac{3}{4} - \frac{1}{3} + \frac{1}{4} = \frac{9 - 4 + 3}{12} = \frac{\cancel{8}}{\cancel{12}} = \frac{2}{3}$ Option (b) is correct. *.*.. 128. (c) $n(S) = 6 \times 6 = 36$ 1,1 1,2 1,3 1,4 1,6 1, 5 2,1 2,2 2,3 2,4 2, 5 2, 63,1 3,2 3,3 3,4 3,5 3,6 4.1 4,2 4,3 4,4 4, 5 4,6 5,1 5,2 5,3 5, 4 5, 5 5,6 6,1 6.2 6, 3 6, 4 6, 5 6,6 Required number of exhausistance events $=(6-1)\times(6-1)=5\times5=25$

 \therefore Option (c) is correct.

 \therefore Option (a) is correct.

129. (b) P(A) =
$$\frac{{}^{4}C_{1}}{{}^{52}C_{1}} = \frac{4}{52} = \frac{1}{13}$$

P(B/A) = $\frac{{}^{3}C_{1}}{{}^{51}C_{1}} = \frac{3}{51} = \frac{1}{17}$
∴ Required probability = $\frac{1}{13} \times \frac{1}{17} = \frac{1}{221}$
∴ Option (b) is correct.
130. (c) Total no. of 3-digit numbers = 9 × 8 × 7 = 504
For product to be odd, we have to choose only from
odd numbers.
∴ Total no. of 3-digit no. whose product are odd
= 5 × 4 × 3 = 60
∴ Required probability = $\frac{60}{504} = \frac{5}{42}$
131. (c) ∵ P(B) = 0.8 ⇒ P(B) = 0.2
P(A ∪ B) = 0.5 & P(A | B) = 0.4
∵ P(A ∩ B) = P(B) × P(A | B) = 0.2 × 0.4 = 0.08
& P(A) = P(A ∪ B) - P(B) + P(A ∩ B)
P(A) = 0.5 - 0.2 + 0.08 = 0.38
132. (d) We have; np = 2 = mean
npq = 1 = variance
⇒ p = $\frac{1}{2}$; q = $\frac{1}{2}$ & n = 4
Required probability = P(x > 1)
= 1 - [P(x = 0) + P(x = 1)]
= 1 - [{}^{4}C_{0}q^{4} + {}^{4}C_{1}q^{3}p^{1}]
= $1 - \frac{5}{16} = \frac{11}{16}$
133. (a) Let X denote the no. of coins showing 3 or more heads
in a set of 7 coins.
X follows binomial distribution with n = 7
p = probability of getting a head in a single toss of a
coin
⇒ p = $\frac{1}{2}$; thus q = 1 - p = $\frac{1}{2}$.

∴ Probability of getting at least 3 heads
=P (x≥3)
=1-P(x<3)
=1-[P(x=0)+P(x=1)+P(x=2)]
=1-[⁷C₀+⁷C₁+⁷C₂]
$$\frac{1}{2^{7}}$$

= $\frac{128}{128} - \frac{29}{128} = \frac{99}{128}$
∴ No. of throws = $\frac{99}{128} \times 128 = 99$

134. (a) Let P denote the probability of getting head in a single toss of a coin.

$$\therefore p = \frac{1}{2} \Longrightarrow q = \frac{1}{2}$$

Let X denote the no. of heads in 5 tosses of a coin. then, X is a binomial variate with parameters; n = 5 &

$$p = \frac{1}{2}.$$

∴ Req. probability = P (x > 3)
= 1 - P (x ≤ 3)
= 1 - [P (x = 0) + P (x = 1) + P (x = 2) + P (x = 3)]
= 1 - [⁵C₀+⁵C₁+⁵C₂ + ⁵C₃] $\frac{1}{2^5}$
= 1 - [1 + 5 + 10 + 10] $\frac{1}{32}$
= $\frac{32}{32} - \frac{26}{32} = \frac{6}{32} = \frac{3}{16}$
135. (c) S = {H, TH, TTH, TTTH, TTTT}
P (T) = P (H) = $\frac{1}{2}$

[Probability of getting head or tail in a single toss] \therefore Probability that no head is observed = P(TTTT) = P(T) P(T) P(T) P(T)

$$= \frac{1}{2^4} = \frac{1}{16}$$
And the probability that the experiment ends with 3 tosses

$$= P (TTH)$$

$$= P(T) P(T) P(H)$$

$$= \frac{1}{8}$$
Hence, both statements are correct.
136. (a) Let $x^2 - 3x + 2 = 0$
 $\Rightarrow x = 1, 2$
 $\therefore x^2 - 3x + 2 \ge 0$ for $x \in [0, 1] \cup [2, 3] \cup [3, 4] \cup [4, 5]$.
It is given that :
 $x \in [0, 1] \cup [1, 2] \cup [2, 3] \cup [3, 4] \cup [4, 5]$
 \therefore Required probability $= \frac{4}{5}$
 $\begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \\ 0 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ - \\ \end{pmatrix}$
 $(4, 6)$
 $f(x) = x^2 - 3x + 2$

(3, 2)

2

3

4

 $\xrightarrow{6} X$

5

3

2 1

0

¥ Υ

X′ **<**

(0, 2)

м-486

NDA Topicwise Solved Papers - MATHEMATICS

- 137. (b) P (one white ball & one black ball) = P {[black from 1st bag & white from 2nd] or [white from 1st & black from 2nd]} = P ([B₁ \cap W₂) \cup (W₁ \cap B₂)] = P (B₁ \cap W₂) + P(W₁ \cap B₂) (By addition theorem for mutually exclusive events) = P (B₁) P(W₂) + P(W₁) P(B₂) (\therefore B₂ & W₂; B₂ & W₁ are pairs of independent events) = $\left[\frac{2}{6} \times \frac{3}{8}\right] + \left[\frac{4}{6} \times \frac{5}{8}\right]$ = $\frac{13}{24}$ 138. (d) Let P(A) = $\frac{1}{2}$, P(B) = $\frac{1}{3}$ & P(C) = $\frac{1}{4}$ P(A \cup B \cup C) = 1 - P(Ā) P(B) P(C) = $1 - \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 - \frac{1}{4}\right)$ = $1 - \left[\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4}\right] = 1 - \frac{1}{4} = \frac{3}{4}$
- 139. (a) Let $E_1, E_2, E_3 \& A$ be events defined as follows. $E_1 = person chosen is a scooter driver$ $E_2 = person chosen is a car driver.$ $E_3 = person chosen is a truck driver \&$ A = person meets with an accident

$$P(E_1) = \frac{2000}{12000} = \frac{1}{6}; P(E_2) = \frac{1}{3} \& P(E_3) =$$

 \therefore Probability that a person meets with an accident

 $\frac{1}{2}$

given that he is a scooter driver = $P(A_{E_1}) = 0.01$

$$P(A_{E_2}) = 0.03 \& P(A_{E_3}) = 0.15$$

 \therefore the person meets with an accident.

: the probability that he was a scooter driver

$$= P\left(\frac{E_{1}}{A}\right) = \frac{P(E_{1})P\left(\frac{A}{E_{1}}\right)}{P(E_{1})P\left(\frac{A}{E_{1}}\right) + P(E_{2})P\left(\frac{A}{E_{2}}\right) + P(E_{3})P\left(\frac{A}{E_{3}}\right)}$$
$$= P\left(\frac{E_{1}}{A}\right) = \frac{\frac{1}{6} \times 0.01}{\left(\frac{1}{6} \times 0.01\right) + \left(\frac{1}{3} \times 0.03\right) + \left(\frac{1}{2} \times 0.15\right)} = \frac{1}{52}$$

140. (a) Let p denote the probability of getting tail in a single of a coin.

 $\therefore p = \frac{1}{2} \implies q = \frac{1}{2} \& n = 5$

Let X denot no. of tails in 5 tosses of coin.

: Required probability =
$$P(x=1) + P(x=3) + P(x=5)$$

$$= \frac{1}{2^5} \left[{}^5C_1 + {}^5C_3 + {}^5C_5 \right]$$
$$= \frac{1}{2^5} \left[5 + 10 + 1 \right] = \frac{16}{32} = \frac{1}{2}$$

141. (b) Total no. of two different single digit natural number = ${}^{9}C_{2} = 36$ The number of prime number which is sum of two different single digit number. (3, 5, 7, 11, 13 & 17) = 14

$$\therefore$$
 Required probability = $\frac{14}{36} = \frac{7}{18}$

142. (b) As we know that 3 dice are thrown. We want prob. of sum on three faces at least 5 i.e. some may be 5 or more. We will find prob. of sum on three faces not 5 or less. i.e. sum on faces is 3 and 4 (1, 2 is not possible because of 3 dice).

No. of ways for sum on faces not 5 or more = 4 [(1, 1, 1), (1, 2, 1), (1, 1, 2), (2, 1, 1)] Total out comes = 216

Prob. of not 5 or more =
$$\frac{4}{216}$$

Prob. of sum on three faces at least 5

$$=1-\frac{4}{216}=\frac{212}{216}=\frac{53}{54}$$

143. (d) A and B are independent.

12

$$P(A) = \frac{1}{3} \qquad \qquad P(B) = \frac{3}{4}$$

We want to find probability that exactly one of the two events A or B occurs i.e. when A occurs B does not and vice-versa.

Lets take desired prob. is *P*.

:
$$P = P(A) (1 - P(B)) + P(B) (1 - P(A))$$

$$= \frac{1}{3} \left(1 - \frac{3}{4} \right) + \frac{3}{4} \left(1 - \frac{1}{3} \right)$$
$$= \frac{1}{3} \times \frac{1}{4} + \frac{3 \times 2}{12}$$
$$\overline{P = \frac{7}{3}}$$

144. (b) Coin is tossed three times i.e. total outcomes $= 2^3 = 8$ [(H, H, H), (H, H, T), (H, T, H), (H, T, T), (T, H, H), (T, H, T), (T, T, H), (T, T, T)] Alternate head and tail are coming two times only.

Thus prob. of getting head and tail alternately = $\frac{2}{8} = \frac{1}{4}$

Prob. of getting queen of spade =
$$\frac{{}^{1}C_{1}}{{}^{52}C_{1}} = \frac{1}{52}$$

146. (c) Since two dice are thrown so number of outcomes are 36. No. of ways when sum on two faces less than 4 = 3. [(1, 1), (1, 2), (2, 1)]Hence prob of getting sum on two faces less than 4

$$=\frac{3}{36}=\frac{1}{12}$$

145. (a)

Thus required prob. that sum on the two faces is greater

than or equal to
$$4 = 1 - \frac{1}{12} = \frac{11}{12}$$

Probability and Probability Distribution

147. (a) Probability of hitting the target = 0.3 If 'n' is the no. of times that the Missile is fired. \therefore Probability of hitting at least once = $1-[1-0.3]^n = 0.8$ $0.7^n = 0.2$ $n \log 0.7 = \log 0.2$ $\Rightarrow n = 4.512$ for n = 4; p < 0.8take n = 5 $\boxed{n = 5}$

n = 5

Hence 5 missiles should be fired so that there is at least 80% prob. that the target is hit.

148. (b) Events A and B are mutually exclusive.

Hence
$$P(A \cap B) = \phi = 0$$

 $\therefore P(A \cup B) = P(A) + P(B)$...(1)
 $P(A) = 0.2$ [given]
 $P(B) = P(\overline{A} \cap B) + P(A \cap B)$
 $P(B) = P(\overline{A} \cap B)$ [$\because P(A \cap B) = 0$]
 $= 0.3$
 $P(A \cup B) = 0.2 + 0.3 = 0.5$
 $P(A | (A \cup B)) = \frac{P(A)}{P(A \cup B)} = \frac{0.2}{0.5} = \frac{2}{5}$
 $P(A | (A \cup B)) = \frac{2}{5}$

149. (c) In month of December 31 days i.e. (28 + 3) days. In 28 days will get 4 Sundays. If we get any Sunday in first 3 days of December than only we can get 5 Sundays in month. n (5th Sunday) = 3 [4 weeks + 3 days] n(5) = 7

Hence prob. of 5 Sundays in month of December = $\frac{3}{7}$.

Probability that the randomly selected point is at least one inch from the edge of the rectangle

5

$$=\frac{4\times3}{6\times5}=\frac{12}{30}=\frac{2}{5}$$

151. (a) Let x denote number of tails. Then, X is a binomial variate with parameters:

x = 100 & p =
$$\frac{1}{2}$$

∴ p(x=r) = ${}^{100}C_r \left(\frac{1}{2}\right)^{100}$; (r = 0, 1, 2, 100)

Req. probability = P (x = 1) + P (x = 3) ++ P(x = 99) = $\left[\frac{1}{2}\right]^{100} \left[{}^{100}C_1 + {}^{100}C_3 + + {}^{100}C_{99} \right]$

$$=\frac{1}{2^{100}}2^{99}=\frac{1}{2}$$

152. (d) Total no. of elementary events = 6^3 . Favourable no. of elementary events

$$= \operatorname{coefficient} \operatorname{of} x^{0} \operatorname{in} \left[x + x^{-1} + x^{0} + x^{-2} + x^{2} + x^{3} \right]^{3}$$

$$= \operatorname{coeff.} \operatorname{of} x^{0} \operatorname{in} \left[\frac{1 + x + x^{2} + x^{3} + x^{4} + x^{5}}{x^{2}} \right]^{3}$$

$$= \operatorname{coeff.} \operatorname{of} x^{6} \operatorname{in} \left[1 + x + x^{2} + x^{3} + x^{4} + x^{5} \right]^{3}$$

$$= \operatorname{coeff.} \operatorname{of} x^{6} \operatorname{in} \left[1 - x^{6} \right]^{3} [1 - x]$$

$$= \operatorname{coeff.} \operatorname{of} x^{6} \operatorname{in} \left[1 - x^{6} \right]^{3} [1 - x]$$

$$= \operatorname{coeff.} \operatorname{of} x^{6} \operatorname{in} \left[1 - x^{6} \right]^{3} [1 - x]$$

$$= \operatorname{coeff.} \operatorname{of} x^{6} \operatorname{in} \left[1 - x^{3} - x^{3} - x^{3} - x^{3} \right]^{3}$$

$$= \operatorname{coeff.} \operatorname{of} x^{6} \operatorname{in} \left[1 - x^{3} - x^$$

Required probability $=\frac{25}{216}$

153. (d) The probability of rain in one day

$$=\frac{25}{100}=\frac{1}{4}$$

Probability of getting at least one rainy day within a period of 7 days

$$=1-\left[1-\frac{1}{4}\right]^{7}=1-\left[\frac{3}{4}\right]^{7}$$

154. (b) $P(A) = \frac{70}{100} = \frac{7}{10} = P(B)$ *A* and *B* are independent. $\Rightarrow P(A \cap B) = P(A)P(B)$ $\Rightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= \frac{7}{10} + \frac{7}{10} - \frac{7}{10} \times \frac{7}{10} = 0.91$

$$\Rightarrow P(A \cup B) = \frac{3}{5} + \frac{3}{10} - \frac{1}{5} = \frac{7}{10}$$
$$\Rightarrow P(\overline{A \cup B}) = 1 - \frac{7}{10} = \frac{3}{10}$$
$$\Rightarrow P(\overline{A \cap B}) = P(\overline{A \cup B}) = \frac{3}{10}$$
$$\Rightarrow P\left(\frac{\overline{A}}{\overline{B}}\right) = \frac{P(\overline{A \cap B})}{P(\overline{B})} = \frac{\frac{3}{10}}{\frac{7}{10}} = \frac{3}{10} \times \frac{10}{7}$$
$$\Rightarrow P\left(\frac{\overline{A}}{\overline{B}}\right) = \frac{3}{7}.$$
159. (c) Probability that machine stops working
$$= P(A \cup B \cup C)$$
$$\Rightarrow P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(A \cap B) = P(A \cap C)$$

$$-P(A \cap B) - P(A \cap C) - P(B \cap C)$$
$$+P(A \cap B \cap C)$$
$$\Rightarrow P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(A)P(B) - P(A)P(C)$$
$$(\because A, B & C \text{ are independent events})$$
$$\Rightarrow P(A \cup B \cup C) = 0.02 + 0.1 + 0.05 - (0.02 \times 0.1)$$
$$-(0.02 \times 0.05) - (0.1 \times 0.05)$$
$$+(0.02 \times 0.05 \times 0.1)$$
$$\Rightarrow P(A \cup B \cup C) = 0.16$$

$$\Rightarrow P(A \cup B \cup C) = 0.16$$

$$\therefore \text{ Probability that the machine will not stop working}$$

$$= 1 - P(A \cup B \cup C) = 1 - 0.16 = 0.84$$

160. (c)
$$P(A_1) = \frac{1}{1+1} = \frac{1}{2}$$

 $P(A_2) = \frac{1}{3}$
 $P(A_3) = \frac{1}{4}$

... Probability that at least one of these events occur is $P(A_1 \cup A_2 \cup A_3)$. Also $A_1, A_2 \& A_3$ are independent events.

$$\begin{split} P(A_1 \cup A_2 \cup A_3) &= P(A_1) + P(A_2) + P(A_3) \\ &\quad -P(A_1 \cap A_2) - P(A_1 \cap A_3) \\ &\quad -P(A_2 \cap A_3) + P(A_1 \cap A_2 \cap A_3) \\ &= \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \left(\frac{1}{2} \times \frac{1}{3}\right) - \left(\frac{1}{2} \times \frac{1}{4}\right) \\ &\quad -\left(\frac{1}{3} \times \frac{1}{4}\right) + \left(\frac{1}{2} \times \frac{1}{3} \times \frac{1}{4}\right) \\ &= \frac{3}{4} \,. \end{split}$$

155. (a)
$$\frac{1}{2} = m \times n \times \frac{1}{2} + m \times \frac{1}{2} \times (1 - n) + m \times n \times 1 - \frac{1}{2}$$

 $\Rightarrow 1 = m(n + 1)$
156. (a) Odd in fav. for student $(A) = \frac{5}{2} = \frac{P(A)}{P(A')}$
Odd in fav. for student $(B) = \frac{4}{3} = \frac{P(B)}{P(B')}$
Odd in fav. for student $(C) = \frac{3}{4} = \frac{P(C)}{P(C')}$
 $\Rightarrow P(A') = \frac{2}{5}P(A), P(B') = \frac{3}{4}P(B), P(C') = \frac{4}{3}P(C)$
Now $P(A) + P(A') = 1 \Rightarrow P(A) + \frac{2}{5}P(A) = 1 \Rightarrow P(A) = \frac{5}{7}$
Also $P(B) + P(B') = 1 \Rightarrow P(B) + \frac{3}{4}P(B) = 1 \Rightarrow P(B) = \frac{4}{7}$
And $P(C) + P(C') = 1 \Rightarrow P(C) + \frac{4}{3}P(C) = 1 \Rightarrow P(C) = \frac{3}{7}$
 $\therefore P(A') = \frac{2}{5} \times \frac{5}{7} = \frac{2}{7}, P(B') = \frac{3}{4} \times \frac{4}{7} = \frac{3}{7},$
 $P(C') = \frac{4}{3} \times \frac{3}{7} = \frac{4}{7}$
Req. Prob. = $P(A) \times P(B) \times P(C') + P(A) \times P(B') \times P(C) + P(A') \times P(B) \times P(C) + P(A) \times P(B) \times P(C) + P(A') \times P(B) \times P(C) + P(A) \times P(B) \times P(C) = \frac{5}{7} \times \frac{4}{7} \times \frac{4}{7} + \frac{5}{7} \times \frac{3}{7} \times \frac{3}{7} + \frac{2}{7} \times \frac{4}{7} \times \frac{3}{7} + \frac{5}{7} \times \frac{4}{7} \times \frac{3}{7} = \frac{209}{343}$

157. (c) Probability of medicine to cure a patient = $\frac{75}{100} = \frac{3}{4}$ Probability of curing at least one patient

$$= 1 - \left[1 - \frac{3}{4}\right]^5 = 1 - \left(\frac{1}{4}\right)^5 = 1 - \frac{1}{1024} = \frac{1023}{1024}$$

158. (a) $P(A) = \frac{3}{5}; P(B) = \frac{3}{10}$
 $\Rightarrow P(\overline{B}) = 1 - P(B) = \frac{7}{10}$
 $P\left(\frac{A}{B}\right) = \frac{2}{3}$
 $\Rightarrow P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)} = \frac{2}{3}$
 $\Rightarrow P(A \cap B) = \frac{2}{3} \times \frac{3}{10} = \frac{1}{5}$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Probability and Probability Distribution

So, probability
$$=$$
 $\frac{4}{52} = \frac{1}{13}$

169. (c) Total **no** of outcomes when two dice are thrown = 6 × 6 = 36 outcomes when sum is 8 = (2, 6) (6, 2) (3, 5) (5, 3) (4, 4) = 5 Outcomes when sum is 9 = (3, 6) (6, 3) (4, 5) (5, 4) = 4 Possible number of outcomes = 36 - (5 + 4) = 36 - 9 = 27 ∴ Required probability = $\frac{27}{36} = \frac{3}{4}$

170. (d) A & B are mutually exclusive events. i.e., $P(A \cap B) = 0$ We know $P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B})$

we know,
$$f(A \cap B) = f(A \cap B)$$

= 1 - P(A \circ B)
= 1 - [P(A) + P(B) - P(A \circ B)]
= 1 - $\left[\frac{1}{3} + \frac{1}{4} - 0\right]$
= 1 - $\left[\frac{7}{12}\right] = \frac{5}{12}$.

171. (c) Mean,
$$\overline{x} = np = 12$$
 ...(i)
Standard deviation
 $\Rightarrow \sqrt{npq} = 2$
 $\Rightarrow npq = 4$...(ii)
 $\frac{(ii)}{(i)} \Rightarrow \frac{n' p q}{n' p'} = \frac{4}{12} \Rightarrow q = \frac{1}{3}$
 $p = 1 - \frac{1}{3} = \frac{2}{3}$
Now, (i) $\Rightarrow np = 12$
 $\Rightarrow n\left(\frac{2}{3}\right) = 12 \Rightarrow 2n = 36 \Rightarrow n = 18$
 $P(T)$ No. of favourable outcomes

172. (b) We know, $P(E) = \frac{No. \text{ of favourable outcomes}}{Total no. of outcomes}$

Number of possible outcomes $= {}^{4}C_{2} = \frac{4 \times 3}{2 \times 1} = 6$ (selecting 2 people from 4 people) Number of favourable outcomes

$$= {}^{2}C_{1} \times {}^{2}C_{1} = 2 \times 2 = 4$$

(selecting 1 from 2 men, 1 from 2 women)

$$P(E) = \frac{4}{6} = \frac{2}{3}.$$

173. (c) Possible prime numbers on the dice are 2, 3 and 5.

Probability of getting prime number
$$=\frac{2}{3}\times\frac{1}{3}+\frac{1}{3}\times\frac{2}{3}$$
.

$$=\frac{2}{9}+\frac{2}{9}$$
$$=\frac{4}{9}.$$

174. (d) Given S = 51 (includes 0)
x denotes the multiples of 3 upto 51.
n(x) = 16
y denotes the odd numbers upto 51.
n(y) = 25

$$\therefore P(x) = \frac{16}{51}, P(y) = \frac{25}{51}$$

175. (a) $P(A) = \frac{1}{2}, P(A \cup B) = \frac{2}{3}$ and $P(A \cap B) = \frac{1}{6}$.
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $\frac{2}{3} = \frac{1}{2} + P(B) - \frac{1}{6}$
 $\Rightarrow P(B) = \frac{2}{3} - \frac{1}{2} + \frac{1}{6} = \frac{1}{3}$.
 $P(\overline{A} \cap B) = \frac{1}{3} - \frac{1}{6} = \frac{1}{6}$.
176. (c) $P(A) = \frac{1}{3}, P(B) = \frac{1}{6}, P(A \cap B) = \frac{1}{12}$
 $P(B | \overline{A}) = \frac{P(B \cap \overline{A})}{P(\overline{A})}$
Now, $P(B \cap \overline{A}) = P(B) - P(A \cap B) = \frac{1}{6} - \frac{1}{12} = \frac{1}{12}$
 $P(\overline{A}) = 1 - \frac{1}{3} = \frac{2}{3}$
 $\therefore P(B | \overline{A}) = \frac{\frac{1}{12}}{\frac{2}{3}} = \frac{1}{12} \times \frac{3}{2} = \frac{1}{8}$.
177. (c) Mean $= \frac{2}{3}$, variance $= \frac{5}{9}$
 $np = \frac{2}{3}, npq = \frac{5}{9}$
 $\Rightarrow \frac{2}{3}q = \frac{5}{9} \Rightarrow q = \frac{5}{9} \times \frac{3}{2} = \frac{5}{6}$
So, $p = 1 - \frac{5}{6} = \frac{1}{6}$.
Now, $np = \frac{2}{3} \Rightarrow n(\frac{1}{6}) = \frac{2}{3} \Rightarrow n = \frac{2}{3} \times 6 = 4$.
 $\therefore p(x = 2) = {}^{n}c_{r} \cdot p^{r} \cdot q^{n-r} = {}^{4}c_{2} \cdot (\frac{1}{6})^{2} \cdot (\frac{5}{6})^{4-2}$
 $= 6 \times \frac{1}{36} \times \frac{25}{36}$

178. (c) Probability that a ship reaches port
$$=\frac{1}{3}$$
.
Probability that a ship not reaching port $=1-\frac{1}{3}=\frac{2}{3}$
Number of ships (n) = 5.
r=4,5
 $p(4)+p(5)={}^{5}c_{4}\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{5-4}+{}^{5}c_{5}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)^{5-5}$
 $=5\left(\frac{2}{3^{5}}\right)+\frac{1}{3^{5}}$
 $=\frac{10}{243}+\frac{1}{243}=\frac{11}{243}$
179. (b) Probability that no one born in the same month
 $=\frac{12\times11\times10}{12\times12\times12}$
Probability that atleast two are born in same month
 $=1-\frac{12\times11\times10}{12\times12\times12}$
 $=\frac{144-110}{144}=\frac{17}{72}$
180. (a) $P(B)=\frac{3}{4}, P(A\cap B\cap \overline{C})=\frac{1}{3}, P(\overline{A}\cap B\cap \overline{C})=\frac{1}{3}$.
We know,
 $P(B\cap \overline{C})=P(A\cap B\cap \overline{C})+P(\overline{A}\cap B\cap \overline{C})$
 $=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$
 $P(B)=P(B\cap C)+P(B\cap \overline{C})$
 $\therefore P(B\cap C)=P(B)-P(B\cap \overline{C})$
 $=\frac{3}{4}-\frac{2}{3}=\frac{9-8}{12}=\frac{1}{12}$.
181. (b) Probability of knowing correct answer = p
Probability to guess correct naswer = (1-p)($\frac{1}{m}$)
Probability to answer correctly $=p+\frac{1-p}{m}$
So, required probability $=\frac{p}{p+\frac{1-p}{m}}=\frac{mp}{mp+1-p}$.
 $=\frac{mp}{1+p(m-1)}$.
182. (c) 3 sticks can be selected from 5 sticks in ${}^{5}c_{3}$ ways

 ${}^{5}c_{3} = 10$. Probability that selected sticks from a triangle is

n(E) =
$${}^{4}c_{3} - 1 = \frac{4 \times 3 \times 2 \times 1}{3 \times 2 \times 1} - 1 = 4 - 1 = 3.$$

∴ p(E) = $\frac{3}{10} = 0.3$

Probability and Probability Distribution

183. (b) The statements (1) and (3) are true. 184. (b) Probability of solving Question A, P(A) = 0.4Probability of solving Question B, P(B) = 0.5 $\therefore P(A') = 1 - P(A) = 1 - 0.4 = 0.6$ P(B') = 1 - P(B) = 1 - 0.5 = 0.5Probability to solve at least one question = $P(A \cup B)$ $P(A \cup B) = 1 - P(A' \cap B')$ $= 1 - (0.6 \times 0.5)$ =1-0.3=0.7

185. (b) When two dice are rolled, the events where we get sum of 7 is $E = \{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)\}$ \therefore n(E)=6 Total number of events, n(S) = 36.

$$\therefore \text{ Probability} = \frac{n(E)}{n(S)} = \frac{6}{36} = \frac{1}{6}$$

186. (b) Given, 2.P(A) = 3.P(B)

=

=

$$\Rightarrow \frac{2P(A)}{P(A \cap B)} = \frac{3P(B)}{P(A \cap B)}$$
$$\Rightarrow \frac{P(A \cap B)}{2.P(A)} = \frac{P(A \cap B)}{3P(B)}$$
$$\Rightarrow \frac{1}{2}.P\left(\frac{B}{A}\right) = \frac{1}{3}.P\left(\frac{A}{B}\right)$$
$$\Rightarrow P\left(\frac{B}{A}\right) < P\left(\frac{A}{B}\right).$$

187. (c) First chit can be drawn in 10 ways. Second chit can be drawn in 9 ways. Total number of events, $n(S) = 10 \times 9 = 90$. Number of events of drawing chit numbered 9 = n(E) = 1

Probability
$$=\frac{n(E)}{n(S)}=\frac{1}{90}$$

188. (b) Probability of choosing one bag from two bags $=\frac{1}{2}$ Probability of choosing white ball from first bag = $\frac{3}{5}$

Probability of choosing white ball from second bag = $\frac{5}{8}$

 \therefore Required probability $= \frac{1}{2} \left(\frac{3}{5} + \frac{5}{8} \right)$ $=\frac{1}{2}\left(\frac{24+25}{40}\right)=\frac{1}{2}\times\frac{49}{40}=\frac{49}{80}$ 189. (b) Statement 1 : If $B \subset A$, then $P(A-B) = P(A) - P(A \cap B)$ = P(A) - P(B): It is correct.

Statement 2 : P(A alone or B alone) $= P(A) - P(A \cap B) + P(B) - P(A \cap B)$ $= P(A) + P(B) - 2P(-A \cap B)$ \therefore It is false. Statement 3 : If A, B are mutually exclusive events, then $P(A \cap B) = 0$ \Rightarrow P(A \cup B) = P(A) + P(B) It is correct.

190. (a)
$$n(E) = {}^{4}C_{2} \times {}^{5}C_{1} = 6 \times 5 = 30$$
.

 $n(S) = {}^{9}C_{2} = 84$

$$\therefore \text{ Probability, } P(E) = \frac{n(E)}{n(S)} = \frac{30}{84} = \frac{5}{14}$$

- 191. (c) A = Event of showing 5 and at least one dice=(1,5), (2,5), (3,5), (4,5), (5,5), (6,5), (5,1),(5, 2), (5, 3), (5, 4), (5, 6)n(A) = 11and $n(s) = 6 \times 6 = 36$ B = Event of showing sum 10 or more when at least onedice shows 5 =(5,5),(5,6),(6,5)n(B) = 3 \Rightarrow $n(A \cap B) = 3$ Now, $P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)}$ $n(A \cap B)$ $\frac{n(S)}{n(A)} = \frac{\overline{36}}{11} = \frac{3}{11}$ *n*(S) 36
- 192. (b) As A, B and C are mutually exclusive and exhaustive event P(A) + P(B) + P(C) = 1

$$\Rightarrow P(A) + \frac{3}{2}P(A) + \frac{1}{2} \times \frac{3}{2}P(A) = 1$$

$$\Rightarrow \frac{13}{4}P(A) = 1$$

$$\Rightarrow P(A) = \frac{4}{13}$$

(a) Required probability

$$\frac{25 \times 2}{25 \times 2 + 35 \times 4 + 40 \times 5} = \frac{5}{39}$$

194. (c) In tossing of coin getting r head out of n tossing

$$= {}^{n}C_{r} \cdot \left(\frac{1}{2}\right)^{n}$$

=

193.

... Required probability

$$=({}^{8}C_{6} + {}^{8}C_{7} + {}^{8}C_{8})\left(\frac{1}{2}\right)^{8}$$
$$= (28 + 8 + 1) \times \frac{1}{256} = \frac{37}{256}$$

198. (d) A deck of cards has 52 cards. Probability of taking fourteenth card as Ace

$$= \frac{{}^{4}C_{1}}{{}^{52}C_{1}} = \frac{4}{52} = \frac{1}{13}$$

199. (d) P(A)=0.5, P(B)=0.6, P(A \cap B)=0.4

$$P(A \cup B) = 1 - P(A \cup B)$$

= 1 - [P(A) + P(B) - P(A \cap B)]
= 1 - [0.5 + 0.6 - 0.4]
= 1 - 0.7 = 0.3

200. (a) Given,
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{3}{4}$, $P(C) = \frac{1}{4}$
 $P(\overline{A}) = 1 - \frac{1}{2} = \frac{1}{2}$
 $P(\overline{B}) = 1 - \frac{3}{4} = \frac{1}{4}$
 $P(\overline{C}) = 1 - \frac{1}{4} = \frac{3}{4}$

 \therefore Probability that problem will be solved if they solve independently is

$$1 - (P(\bar{A}) \cdot P(\bar{B}) \cdot P(\bar{C}))$$

=
$$1 - \left(\frac{1}{2}\right) \left(\frac{1}{4}\right) \left(\frac{3}{4}\right) = 1 - \frac{3}{32} = \frac{29}{32}$$

NDA Topicwise Solved Papers - MATHEMATICS

201. (c) Possibilities of having higher number on second dice. First dice Second dice 1 2, 3, 4, 5, 6 \rightarrow 5 possibilities 2 3, 4, 5, 6 \rightarrow 4 possibilities 3 4, 5, 6 \rightarrow 3 possibilities 4 5, 6 \rightarrow 2 possibilities 5 6 \rightarrow 1 possibility Tetchered by formula to the formul

Total number of possibilities = 15Total number of events = 36

$$\therefore \text{ Probability} = \frac{15}{36} = \frac{5}{12}$$

202. (c) Total number of events with dice and $coin = 6 \times 2 = 12$ Number of possibilities = (2, H), (4, H) and (6, H) i.e., 3

$$\therefore \text{ Probability} = \frac{3}{12} = \frac{1}{4}$$

203. (c) $P(A \cap B) + P(B \cap C) + P(A \cap C) - 2P(A \cap B \cap C)$

204. (c) The correlation coefficient of two independent events is zero.

205. (b)
$$P(A \cup B) = \frac{2}{3}$$

 $P(A \cap B) = \frac{1}{6}$

Since, A and B are independent events,

$$P(A \cap B) = P(A) \cdot P(B) = \frac{1}{6}$$
 ...(1)

$$P(A \cup B) = \frac{2}{3} \Longrightarrow P(A) + P(B) - P(A \cap B) = \frac{2}{3}$$

$$\Rightarrow P(A) + P(B) - \frac{1}{6} = \frac{2}{3}$$

$$\Rightarrow P(A) + P(B) = \frac{2}{3} + \frac{1}{6} = \frac{5}{6} \qquad ...(2)$$

from (1), (2), P(B) =
$$\frac{1}{3}$$
 or $\frac{1}{2}$
 $\therefore P(B) < P(A), P(B) = \frac{1}{3}$

Probability and Probability Distribution

- 206. (c) Total number of cases that sum is 8 are (2, 6), (3, 5), (4, 4), (5, 3), (6, 2) favourable case = (6, 2) \therefore Probability = $\frac{1}{5}$
- 207. (c) Sides of dice = R, R, B, B, Y, W Total events with dice = $6 \times 6 = 36$ Favourable events = ${}^{2}C_{1}$. ${}^{2}C_{1} + {}^{2}C_{1}$. ${}^{2}C_{1} + {}^{1}C_{1}$. ${}^{1}C_{1} + {}^{1}C_{1} \cdot {}^{1}C_{1}$ = 4 + 4 + 2 + 2 = 1010 5

$$\therefore \text{ Probability} = \frac{10}{36} = \frac{3}{18}$$

208. (b) Number of socks = n Number of red socks = 3

Given,
$$\frac{{}^{3}C_{2}}{{}^{n}C_{2}} = \frac{1}{2}$$

 $\Rightarrow {}^{n}C_{2} = 3 \times 2 = 6$
 $\Rightarrow n = 4$

209. (a) Number of ways of selecting 2 cards from deck of cards = ${}^{52}C_2$ favourable cases = ${}^{13}C_2$

Probability
$$=\frac{{}^{13}C_2}{{}^{52}C_2} = \frac{\frac{13 \times 12}{2}}{\frac{52 \times 51}{2}} = \frac{13 \times 12}{52 \times 51} = \frac{1}{17}$$

210. (b) 5 or 6 is success

$$\therefore p = \frac{2}{6} = \frac{1}{3}$$
$$\therefore q = 1 - \frac{1}{3} = \frac{2}{3}$$
$$n = 8$$

$$\therefore \text{ Mean} = \text{np} = 8\left(\frac{1}{3}\right) = \frac{8}{3}$$

Standard deviation
$$=\sqrt{npq} = \sqrt{8\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)}$$

$$=\sqrt{\frac{16}{9}}=\frac{4}{3}$$

211. (b)
$$\overline{A}$$
 and \overline{B} are mutually exclusive
 $\therefore P(\overline{A} \cap \overline{B}) = 0$
Given, $P(A) = 0.5 \Rightarrow P(\overline{A}) = 1 - 0.5 = 0.5$
 $P(B) = 0.6 \Rightarrow P(\overline{B}) = 1 - 0.6 = 0.4$
 $P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{1 - P(\overline{A} \cup \overline{B})}{P(B)}$
 $= \frac{1 - (P(\overline{A}) + P(\overline{B}))}{P(B)} = \frac{1 - (0.5 + 0.4)}{0.6}$
 $= \frac{1 - 0.9}{0.6} = \frac{0.1}{0.6} = \frac{1}{6}$

212. (a) If r is the radius of circle, $A = \pi r^2$

Probability =
$$\frac{\pi \left(\frac{r}{2}\right)^2}{\pi r^2} = \frac{\pi r^2}{4} \times \frac{1}{\pi r^2} = \frac{1}{4}$$

213. (b) Probability of occurence of either event A or event $B = P(A \cup B)$.

Let $\vec{a}, \vec{b}, \vec{c}$ be non-coplanar vectors and $\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a}\vec{b}c]}$, 1.

$$\vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}\vec{b}\vec{c}]}, \ \vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}\vec{b}\vec{c}]}$$

What is the value of

$$(\vec{a} - \vec{b} - \vec{c}).\vec{p} + (\vec{b} - \vec{c} - \vec{a}).\vec{q} + (\vec{c} - \vec{a} - \vec{b}).\vec{r}$$
?
(a) 0 (b) -3

- If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of corners A, B, C of a 2. parallelogram ABCD, then what is the position vector of the corner D?
 - (a) $\vec{a} + \vec{b} + \vec{c}$ (b) $\vec{a} + \vec{b} - \vec{c}$ (d) $-\vec{a}+\vec{b}+\vec{c}$ (c) $\vec{a} - \vec{b} + \vec{c}$ [2006-I]
- 3. In a $\triangle ABC$, angle B is obtuse and D, E, F are the middle points of sides BC, CA, AB respectively. Which one of the following vectors has the greatest magnitude?
 - (a) \overrightarrow{BC} (b) \overrightarrow{CA}
 - (d) \overrightarrow{AD} [2006-I] (c) \overrightarrow{AB}
- If $\vec{p} \neq \vec{0}$ and the conditions $\vec{p} \cdot \vec{q} = \vec{p} \cdot \vec{r}$ and $\vec{p} \times \vec{q} = \vec{p} \times \vec{r}$ hold 4. simultaneously, then which one of the following is correct?

(a)
$$\vec{q} \neq \vec{r}$$
 (b) $\vec{q} = -\vec{r}$

(c)
$$\vec{q} \cdot \vec{r} = 0$$
 (d) $\vec{q} = \vec{r}$ [2006-1]

If two unit vectors \vec{p} and \vec{q} make an angle $\frac{\pi}{3}$ with each 5.

other, what is the magnitude of
$$\vec{p} - \frac{1}{2}\vec{q}$$
?

(b) $\frac{\sqrt{3}}{2}$ (a) 0

(c) 1 (d)
$$\frac{1}{\sqrt{2}}$$
 [2006-1]

What are the values of x for which the two vectors $(x^2-1)\hat{i} + (x+2)\hat{j} + x^2\hat{k}$ and $2\hat{i} - x\hat{j} + 3\hat{k}$ are orthogonal? [2006-I]

(b) $x = \frac{1}{2}$ and x = -1(a) No real value of x

(c)
$$x = -\frac{1}{2}$$
 and $x = 1$ (d) $x = -1$ and $x = 2$

What is the moment about the point $\hat{i} + 2\hat{j} + 3\hat{k}$, of a 7. force represented by $\hat{i} + \hat{j} + \hat{k}$, acting through the point $-2\hat{i}+3\hat{j}+\hat{k}$? [2006-I] (a) $2\hat{i} + \hat{j} + 2\hat{k}$ (b) $\hat{i} - \hat{j} + 3\hat{k}$ • • • •

(c)
$$3i+2j-k$$
 (d) $3i+j-4k$

(i) $2\hat{i}+3\hat{j}+5\hat{k}$, (ii) $-5\hat{i}+4\hat{j}-3\hat{k}$ and (iii) $3\hat{i}-7\hat{k}$

- In which plane does it move? [2006-I]
- (a) x-y plane

8.

- (b) y-z plane
- (c) z-x plane
- (d) any arbitrary plane

9. What is the vector whose magnitude is 3, and is perpendicular to $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$? [2006-I]

(b)
$$\sqrt{3}(\vec{i}-\vec{j}+\vec{k})$$

(a) $3(\vec{i}+\vec{j}-\vec{k})$

(c)
$$\sqrt{3}(\vec{i}+\vec{j}+\vec{k})$$

(d) $3(\vec{i} - \vec{j} + \vec{k})$

10. If α , β , γ be angles which the vector $\vec{r} = \lambda \vec{i} + 2\vec{j} - \vec{k}$ makes with the coordinate axes, then what is the value of

$$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$$
? [2006-I]
(a) 2 (b) 1

(c)
$$\lambda^2 + 1$$
 (d) $1 - \lambda^2$

6.

Vectors

11. The following question consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer.

Assertion (A): If
$$\vec{a} = 2\vec{i} + \vec{j} - 2\vec{k}$$
, $\vec{b} = \vec{i} + \vec{j} - \vec{k}$,

then $|\vec{a}| \neq |b|$

Reason (R) : Two unequal vectors can never have same magnitude.

- (a) Both A and R are individually true, and R is the correct explanation of A.
- (b) Both A and R are individually true but R is not the correct explanation of A.
- (c) **A** is true but **R** is false.
- (d) A is false but **R** is true. [2006-I]
- 12. OAB is a given triangle such that $\overrightarrow{OA} = \overrightarrow{a}, \overrightarrow{OB} = \overrightarrow{b}$. Also C

is a point on \overrightarrow{AB} such that $\overrightarrow{AB} = 2 \overrightarrow{BC}$. What is \overrightarrow{AC} equal to ?

(a)
$$\frac{1}{2}(\vec{b}-\vec{a})$$
 (b) $\frac{1}{2}(\vec{b}+\vec{a})$
(c) $\frac{3}{2}(\vec{a}-\vec{b})$ (d) $\frac{3}{2}(\vec{b}-\vec{a})$ [2006-I]

13. Let ABCD be a parallelogram whose diagonals intersect at P and let O be the origin, then what is

 $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}$ equal to ?

- (a) \overrightarrow{OP} (b) $2\overrightarrow{OP}$
- (c) $3\overrightarrow{OP}$ (d) $4\overrightarrow{OP}$ [2006-II]
- 14. If $\vec{r_1}, \vec{r_2}, \vec{r_3}$ are the position vectors of three collinear points

and scalars m and n exist such that $\vec{r_3} = \vec{n r_1} + \vec{n r_2}$, then what is the value of (m + n)?

(a) 0 (b) 1
(c)
$$-1$$
 (d) 2 [2006-II]

15. Let α be the angle which the vector $\vec{V} = 2\hat{i} - \hat{j} + 2\hat{k}$ makes with the z-axis, Then, what is the value of sin α ?

(a)
$$\frac{2}{3}$$
 (b) $\frac{1}{3}$
(c) $\frac{\sqrt{5}}{3}$ (d) $\frac{\sqrt{5}}{9}$ [2006-II]

16. If $\vec{m}, \vec{n}, \vec{r}$ are three vectors, θ is the angle between the vectors \vec{m} and \vec{n} , what is mnr cos θ equal to ?[2006-II]

(a)
$$(\vec{m}.\vec{n})(\vec{r}.(\vec{r}/r))$$
 (b) $(\vec{m}.\vec{n})(\vec{r}.\vec{r})$
(c) $(\vec{m}.\vec{r})(\vec{n}.(\vec{n}/n))$ (d) $(\vec{m}.\vec{n})\vec{r}$

- 17. If the vectors $\hat{i} 2x\hat{j} 3y\hat{k}$ and $\hat{i} + 3x\hat{j} + 2y\hat{k}$ are orthogonal to each other, then what is the locus of the point (x, y)?
 - (a) A circle (b) An ellipse
 - (c) A parabola (d) A hyperbola [2006-II]
- 18. If the components of \vec{b} along and perpendicular to \vec{a} are

 $\lambda \vec{a}$ and $\vec{b} - \lambda \vec{a}$ respectively, what is λ equal to ?

(a)
$$\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|}$$
 (b) $\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}$
(c) $\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|^2}$ (d) $\frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2}$ [2006-II]

- 19. A force $\hat{mi} 3\hat{j} + \hat{k}$ acts on a point and so the point moves from (20, 3m, 0) to (0, 0, 7). If the work done by the force is -48 unit, what is the value of m?
 - (a) 5 (b) 3 (c) 2 (d) 1 [2006-II]
- 20. For any two vectors \vec{a} and \vec{b} consider the following statement:
 - 1. $|\vec{a} + \vec{b}| = |\vec{a} \vec{b}| \Leftrightarrow \vec{a}, \vec{b}$ are orthogonal.
 - 2. $|\vec{\mathbf{a}} + \vec{\mathbf{b}}| = |\vec{\mathbf{a}}| + |\vec{\mathbf{b}}| \Leftrightarrow \vec{\mathbf{a}}, \vec{\mathbf{b}}$ are orthogonal.

3.
$$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 \Leftrightarrow \vec{a}, \vec{b}$$
 are orthogonal.

Which of the above statements is/are correct?

- (a) 1 and 2 only (b) 1 and 3 only
- (c) 2 and 3 only (d) 1, 2 and 3 [2007-I]

21. Two vector $2\hat{\mathbf{i}} + m\hat{\mathbf{j}} - 3n\hat{\mathbf{k}}$ and $5\hat{\mathbf{i}} + 3m\hat{\mathbf{j}} + n\hat{\mathbf{k}}$ are such that their magnitudes are respectively $\sqrt{14}$ and $\sqrt{35}$, where m, n are integers. Which one of the following is correct?

- (a) m takes 1 value, n takes 1 value
- (b) m takes 1 value, n takes 2 values
- (c) m takes 2 value, n takes 1 value
- (d) m takes 2 value, n takes 2 values [2007-I]
- 22. Two vectors \vec{a} and \vec{b} are non-zero and non-collinear. What is the value of x for which the vectors $\vec{p} = (x-2)\vec{a} + \vec{b}$ and $\vec{q} = (x+1)\vec{a} - \vec{b}$ are collinear?
 - (a) 1 (b) $\frac{1}{2}$
 - (c) $\frac{2}{3}$ (d) 2 [2007-I]

м-496

(d) normal to both $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$

NDA Topicwise Solved Papers - MATHEMATICS

30. Which one of the following statements is not correct? 23. If \vec{a} and \vec{b} are position vectors of the points A and B (a) Vector product is commutative respectively, then what is the position vector of a point (b) Vector product is not associative C on AB produced such that $\overrightarrow{AC} = \overrightarrow{2AB}$? (c) Vector product is distributive over addition (b) $2\vec{b} - \vec{a}$ (a) $2\vec{a} - \vec{b}$ (d) Scalar product is commutative [2007-II] (d) $\vec{a} - \vec{h}$ If $a\hat{i}+\hat{j}+\hat{k},\hat{i}+\hat{b}\hat{j}+\hat{k}$, and $\hat{i}+\hat{j}+\hat{k}$ are coplanar vectors, (c) $\vec{a} - 2\vec{b}$ [2007-1] 31. then what is the value of a + b + c - abc? If $|\vec{\mathbf{a}}| = 3$, $|\vec{\mathbf{b}}| = 4$, then for what value of 1 is $(\vec{\mathbf{a}} + \lambda \vec{\mathbf{b}})$ 24. (a) 0 (b) 1 perpendicular to $(\vec{a} - \lambda \vec{b})$? (d) -2(c) 2 [2007-II] If \vec{a} , \vec{b} , \vec{c} are non-zero vectors and $|(\vec{a} \times \vec{b}) . \vec{c}| = |\vec{a}| |\vec{b}|$ 32. (b) $\frac{4}{3}$ (a) $|\vec{c}|$, then which one of the following is correct? (a) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} \neq 0$ (c) $\frac{9}{16}$ (d) $\frac{3}{5}$ [2007-1] (b) \vec{a} . $\vec{b} = 0$ only What is the magnitude of the moment of the couple 25. (c) \vec{b} . $\vec{c} = 0$ only consisting of the force $\vec{F} = 3\hat{i} + 2\hat{j} - \hat{k}$ acting through the (d) $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$ [2007-II] point $\hat{i} - \hat{j} + \hat{k}$ and and $-\vec{F}$ acting through the 33. If $\vec{a} = \vec{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 3\vec{i} - \hat{j} + \lambda\hat{k}$, and $(\vec{a} + \vec{b})$ is point $2\hat{\mathbf{i}} - 3\hat{\mathbf{i}} - \hat{\mathbf{k}}$? perpendicular to $\vec{a} - \vec{b}$, then what is the value of λ ? (a) $2\sqrt{5}$ (b) $3\sqrt{5}$ (a) -2 only (b) ±2 (c) $5\sqrt{5}$ (d) $7\sqrt{5}$ [2007-I] (c) 3 only (d) ±3 [2007-II] Let $\vec{\mathbf{a}} = 2\vec{\mathbf{j}} - 3\vec{\mathbf{k}}, \vec{\mathbf{b}} = \hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = -3\vec{\mathbf{i}} + 3\hat{\mathbf{j}} + \hat{\mathbf{k}}$. Let $\hat{\mathbf{n}}$ be 26. 34 The vectors $\overrightarrow{AB} = \overrightarrow{c}, \overrightarrow{BC} = \overrightarrow{a}, \overrightarrow{CA} = \overrightarrow{b}$, are the sides of a triangle ABC. Which of the following vectors represent (s) a unit vector such that $\vec{a} \cdot \hat{n} = \vec{b} \cdot \hat{n} = 0$. What is the value of the median \overline{AD} ? **c**.n ? (b) $\sqrt{19}$ (a) 1 1. $\frac{1}{2}\vec{a} + \vec{c}$ (d) -3 [2007-1] (c) 3 2. $-\frac{1}{2}\vec{b} + \frac{1}{2}\vec{c}$ 27. Let $\vec{\mathbf{u}} = \hat{\mathbf{i}} - \hat{\mathbf{j}}$, $\vec{\mathbf{v}} = 2\hat{\mathbf{i}} + 5\hat{\mathbf{j}}$, $\vec{\mathbf{w}} = 4\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$ and $\vec{\mathbf{p}} = \vec{\mathbf{u}} + \vec{\mathbf{v}} + \vec{\mathbf{w}}$. Which one of the following is correct? 3. $\frac{1}{2}\vec{a}+\vec{b}$ (a) $-3\vec{\mathbf{u}}+2\vec{\mathbf{v}}=\vec{\mathbf{p}}$ (b) $3\vec{u} - 2\vec{v} = \vec{p}$ (d) $-3\vec{u} - 2\vec{v} = \vec{p}$ [2007-1] (c) $3\vec{\mathbf{u}} + 2\vec{\mathbf{v}} = \vec{\mathbf{p}}$ Select the correct answer using the code given below 28. If \vec{a} and \vec{b} are unit vectors inclined at an angle of 30° to (a) 1 and 2(b) 1 and 3 each other, then which one of the following is correct? (c) 1 only (d) 2 only [2007-II] If \vec{a} is a position vector of a point (1, -3) and A is another 35. (a) $|\vec{a} + \vec{b}| > 1$ (b) $1 < |\vec{a} + \vec{b}| < 2$ point (-1, 5), then what are the coordinates of the point B (c) $|\vec{a} + \vec{b}| = 2$ (d) $|\vec{\mathbf{a}} + \vec{\mathbf{b}}| > 2$ [2007-I] such that $\overrightarrow{AB} = \overrightarrow{a}$? (a) (2,0)(b) (0,2) Which one of the following is correct ? If the vector \vec{c} is 29. (c) (-2, 0)(d) (0, -2)[2008-I] normal to the vectors \vec{a} and \vec{b} , then \vec{c} , is: If $\vec{a} = 2\hat{i} - 3\hat{j} - \hat{k}$, $\vec{b} = \hat{i} + 4\hat{j} - 2\hat{k}$; then 36. what is (a) parallel to both $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ $(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})$ equal to ? (b) normal to $\vec{a} - \vec{b}$ and parallel to $\vec{a} + \vec{b}$ (a) $2(\vec{a} \times \vec{b})$ (b) $-2(\vec{a} \times \vec{b})$ (c) normal to $\vec{a} + \vec{b}$ and parallel to $\vec{a} - \vec{b}$

[2007-II]

(c) $(\vec{a} \times \vec{b})$ (d) $-(\vec{a} \times \vec{b})$ [2008-1]

37.	If \vec{a} is a non-zero vector of modulus a and λ is a non-zero					What is the value
	scalar and $\lambda \vec{a}$ is a unit	t vector th	en			\hat{i}, \hat{j} and $\hat{i} + \hat{j} + \lambda$
	(a) $\lambda = \pm 1$	(b)	$a= \lambda $			(a) 2
	1		1.			(c) -1
	(c) $a = \frac{1}{ \lambda }$	(d)	$a = -\frac{\lambda}{\lambda}$ only	[2008-I]	46.	The scalar tripl
38.	Let \vec{a} and \vec{b} be the pos	ition vecto	ors of A and B r	espectively.		$\vec{A}, \vec{B}, \vec{C}$ determin
	If C is the point $3\vec{a} - 2\vec{l}$	b, then wl	hich one of the	following is		(a) Volume of a
	correct?	I D				(b) Volume of a
	(a) C is in between A is	and B				(c) Volume of an
	(c) B is in between A	and C				(d) None of the
	(d) A, B, C are not col	linear		[2008-1]	47.	If \vec{a} and \vec{b} are
39.	Consider the following			. ,		$\left \vec{\tau} \cdot \vec{t} \right ^2 \cdot \left(\vec{\tau} \cdot \vec{t} \right)^2 $
	If \vec{a} and \vec{b} are the vec	tors form	ing consecutiv	e sides of a		$ a \times b + (a \cdot b)$
	regular hexagon ABCD	EF, then				(a) 0
	1 $\overrightarrow{CE} = \overrightarrow{\mathbf{h}} - 2 \overrightarrow{\mathbf{a}}$	2	$\overrightarrow{AE} = 2\overrightarrow{h} - \overrightarrow{a}$	i		(c) 1
	$\overrightarrow{\mathbf{E}} = \overrightarrow{\mathbf{E}} = \overrightarrow{\mathbf{E}} = \overrightarrow{\mathbf{E}}$	<u>_</u> .	112 20 (48.	Two forces are e
	S. $PA = a = b$ Which of the above are	e correct?				being $\lambda \overrightarrow{OG}$, where $\partial \overrightarrow{OG}$
	(a) 1 and 2 only	(b)	2 and 3 only			$\frac{BG}{BG} = -\frac{2}{2}$ When
	(c) 1 and 3 only	(d)	1, 2 and 3	[2008-I]		$AG = 3^{\circ}$ what
40.	If \vec{a} , \vec{b} , \vec{c} are unit vec	tors such	that a is perpe	ndicular to		(a) 1
			. →	.π		(c) 2
	the plane of b, \bar{c} ; and	the angle	e between b a	nd \vec{c} is $\frac{1}{3}$.	49.	If \vec{a} and \vec{b} are two
	Then, what is $ \vec{a} + \vec{b} +$	c ?				each other, then v
	(a) 1	(b)	2			
	(c) 3	(d)	4	[2008-I]		(a) $\left \vec{a} + \vec{b} \right < 1$
41.	What is the locus of th	e point (x	, y) for which	the vectors		
	$(\hat{i} - x\hat{j} - 2\hat{k})$ and $(2\hat{i} + \hat{j})$	$+y\hat{k})$ ar	e orthogonal?			(c) $ a-b < 1$
	(a) A circle	(b)	An ellipse		50.	Let $\vec{a} = (1, -2, 3)$
	(c) A parabola	(d)	A straight line	e [2008-I]		
42.	What is the number of v	ectors of l	ength 5 unit pe	rpendicular		vector of length l
	to the vectors $\vec{a} = (1, 1, 1)$, 0) and \vec{b}	=(0, 1, 1)?			to?
	(a) 1	(b)	2			(a) $\frac{1}{-2}(-2, -3)$
	(c) 3	(d)	4	[2008-1]		(a) $\sqrt{4}$ (-, -, -,
43.	What is the area of the	rectangle	of which $\vec{r} = a$	$i\vec{i}+b\vec{j}$ is a		1 (-
	semidiagonal?					(c) $\frac{1}{\sqrt{42}}(-5, -4)$
	(a) $a^2 + b^2$	(b)	$2(a^2+b^2)$	53 000 1 1	51	$1\mathbf{C} \rightarrow 1^{2} 1 2^{2} 1$
	(c) $4(a^2+b^2)$	(d)	4ab	[2008-1]	51.	$\prod r_1 = \lambda l + 2J + $
44.	If $(3\vec{a}-\vec{b})\times(\vec{a}+3\vec{b}) =$	$k \vec{a} \times \vec{b}$ th	en what is the	value of <i>k</i> ?		$\left \vec{r}_1 \right > \left \vec{r}_2 \right $, then λ s
				[2008-II]		
	(a) 10	(b) 5				(a) $\lambda = 0$ only (c) $\lambda < 1$
	(c) 8	(d) -8				(C) ~~ I

e of λ if the triangle whose vertices are $\lambda \hat{k}$ will be right angled? [2008-II] (b) 0 (d) 1

le product $(\vec{A} \times \vec{B}) \cdot \vec{C}$ of three vectors

$$\vec{A}, \vec{B}, \vec{C}$$
 determines [2008-II]

- parallelopiped
- tetrahedron
- n ellipsoid
- above

unit vectors, then what is the value of

$\left \vec{a}\times\vec{b}\right ^2 + \left(\vec{a}\cdot\vec{b}\right)^2?$		[2008-11]
(a) 0	(b) 2	
(c) 1	(d) 1/2	
Two forces are equal	to $2\overrightarrow{OA}$ and $3\overrightarrow{BO}$,	their resultant

beir	ıg	$\lambda \overrightarrow{OG}$, where G is the point	int on AB such that
$\frac{BG}{AG}$	$\frac{1}{r} =$	$-\frac{2}{3}$. What is the value of λ ?	? [2008-11]
(a)	1	(b) –1	
(c)	2	(d) None of	of the above

wo unit vectors inclined at an angle 60° to which one of the following is correct?

[2008-II]

- (b) $\left| \vec{a} + \vec{b} \right| > 1$
- (d) $\left| \vec{a} \vec{b} \right| > 1$
- and $\vec{b} = (3,1,2)$ be two vectors and \vec{c} be a and parallel to $\left(\vec{a} + \vec{b}\right)$. What is \vec{c} equal [2008-II]

(a)
$$\frac{1}{\sqrt{4}}(-2, -3, 1)$$
 (b) $\frac{1}{\sqrt{2}}(1, 0, 1)$

(c)
$$\frac{1}{\sqrt{42}}(-5, -4, -1)$$
 (d) None of these

 $\hat{k}, \ \vec{r}_2 = \hat{i} + (2 - \lambda)\hat{j} + 2\hat{k}$ are such that satisfies which one of the following? [2008-II]

(b) $\lambda = 1$ (d) $\lambda > 1$

- 52. If *P*, *Q*, *R* are the mid points of the sides *AB*, *BC*, *CA*, respectively of a triangle *ABC* and if \vec{a} , \vec{p} , \vec{q} are the position vector of *A*, *P*, *Q* respectively, then what is the position vector of *R*? [2008-II]
 - (a) $2\vec{a} (\vec{p} \vec{q})$ (b) $(\vec{p} \vec{q}) 2\vec{a}$

(c)
$$\vec{a} - (\vec{p} - \vec{q})$$
 (d) $\vec{a}/2 - (\vec{p} - \vec{q})/2$

 53. What is the length of the vector (1, 1)?
 [2008-II]

 (a) 0
 (b) 1

(c) $\sqrt{2}$ (d) $\frac{1}{2}$

54. Which one of the following vectors of magnitude $\sqrt{51}$ makes equal angles with three vectors

$$\vec{a} = \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}, \ \vec{b} = \frac{-4\hat{i} - 3\hat{k}}{5} \text{ and } \vec{c} = \hat{j} ? [2009-I]$$
(a) $5\hat{i} - \hat{j} - 5\hat{k}$ (b) $5\hat{i} + \hat{j} + 5\hat{k}$
(c) $-5\hat{i} - \hat{j} + 5\hat{k}$ (d) $5\hat{i} + 5\hat{j} - \hat{k}$

55. If $|\vec{a}| = 2$, $|\vec{b}| = 5$ and $|\vec{a} \times \vec{b}| = 8$, then what is the value of $\vec{a} \cdot \vec{b}$? [2009-1]

56. If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$, then which one of the following is correct? [2009-I]

- (a) \vec{a} is parallel to \vec{b}
- (b) \vec{a} is perpendicular to \vec{b}
- (c) $\vec{a} = \vec{b}$
- (d) Both \vec{a} and \vec{b} are unit vectors

57. If
$$\vec{a} = \hat{i} - 2\hat{j} + 5\hat{k}$$
, $\vec{b} = 2\hat{i} + \hat{j} - 3\hat{k}$, then what is

$$(\vec{b} - \vec{a}) \cdot (3\vec{a} + \vec{b})$$
 equal to? [2009-I]

(a)
$$106$$
 (b) -106
(c) 53 (d) -53

- 58. Let $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of points *A*, *B*, *C* respectively. Under which one of the following conditions are the points *A*, *B*, *C* collinear? [2009-I]
 - (a) $\vec{a} \times \vec{b} = \vec{0}$
 - (b) $\vec{b} \times \vec{c}$ is parallel to $\vec{a} \times \vec{b}$
 - (c) $\vec{a} \times \vec{b}$ is perpendicular to $\vec{b} \times \vec{c}$
 - (d) $(\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) = \vec{0}$

- 59. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} \hat{k}$, then what is $\vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b})$ equal to? [2009-I] (a) $2\hat{i} + 3\hat{j} - \hat{k}$ (b) $2\hat{i} - 3\hat{j} - \hat{k}$
 - (c) $3\hat{i} + \hat{j} + \hat{k}$ (d) $\vec{0}$
- 60. The following item consists of two statements, one labelled the Assertion (A) and the other labelled the Reason (R). You are to examine these two statements carefully and decide if the Assertion (A) and Reason (R) are individually true and if so, whether the reason is a correct explanation of the Assertion. Select your answer using the codes given below. **Assertion (A) :** The work done when the force and displacement are perpendicular to each other is zero.

Reason (R) : the dot product $\vec{A} \cdot \vec{B}$ vanishes, if the vector

- \vec{A} and \vec{B} are perpendicular. [2009-1]
- (a) Both A and R are true and R is the correct explanation of A
- (b) Both A and R are true but R is not the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true

61. If \hat{a} and \hat{b} are the unit vectors along \vec{a} and \vec{b} respectively, then what is the projection of \vec{b} on \vec{a} ? [2009-II]

(a)
$$\vec{a} \cdot \vec{b}$$
 (b) $\hat{a} \cdot \hat{b}$

- (c) $\hat{a} \cdot \vec{b}$ (d) $\left| \vec{a} \times \vec{b} \right|$
- 62. What are the unit vectors parallel to xy-plane and perpendicular to the vector $4\hat{i} 3\hat{j} + \hat{k}$? [2009-II]
 - (a) $\pm (3\hat{i} + 4\hat{j})/5$ (b) $\pm (4\hat{i} + 3\hat{j})/5$
 - (c) $\pm (3\hat{i} 4\hat{j})/5$
 - (d) $\pm (4\hat{i} 3\hat{j})/5$
- 63. What is the vector in the *xy*-plane through origin and perpendicular to the vector $\vec{r} = a\hat{i} + b\hat{j}$ and of the same length? [2009-II]
 - (a) $-a\hat{i} b\bar{j}$ (b) $a\hat{i} b\hat{j}$ (c) $-a\hat{i} + b\hat{j}$ (d) $b\hat{i} - a\hat{j}$
- 64. Given $\vec{a} = 2\hat{i} 3\hat{j} + 4\hat{k}$ and \hat{b} is a unit vector codirectional with \hat{a} . If *m* is a scalar such that $\hat{b} = m\vec{a}$, then what is the value of *m*? [2009-II]
 - (a) 1/5 (b) $1/\sqrt{5}$
 - (c) 1/29 (d) $1/\sqrt{29}$

65.	The magnitude of the vec	tors \vec{a} and \vec{b} are equa	l and the
	angle between them is 60° . are perpendicular to each λ ?	If the vectors $\lambda \vec{a} + \vec{b}$ and other, then what is the	d $\vec{a} - \lambda \vec{b}$ value of 2009-II]
	(a) 1	(b) 2	
	(c) 3	(d) 4	
66.	If $ \vec{a} = 3$, $ \vec{b} = 4$ and $ \vec{a} - \vec{b} $	= 7, then what is the	value of
	$\left \vec{a} + \vec{b} \right $?	l	2009-11]
	(a) 3	(b) 2	
	(c) 1	(d) 0	
67.	Consider the diagonals of	of a quadrilateral forme	d by the
	vectors $3\hat{i} + 6\hat{j} - 2\hat{k}$ and 4	$\hat{i} - \hat{i} + 3\hat{k}$. The quadrilat	eral must
	be a	/	2009-11]
	(a) Square	(b) Rhombus	j
	(c) Rectangle	(d) None of these	
68.	What is the area of the tria	angle with vertices	
	(0, 2, 2), (2, 0, -1) and $(3, -1)$	4,0)? [2010-1]
	15		
	(a) $\frac{15}{2}$ sq unit	(b) 15 sq unit	
	7		
	(c) $\frac{7}{2}$ sq unit	(d) 7 sq unit	
	2		
69.	If the angle between the v	ectors \vec{a} and \vec{b} is $\frac{\pi}{3}$, where \vec{a} is $\frac{\pi}{3}$, where \vec{b} is $\frac{\pi}{3}$ is $\frac{\pi}{3}$.	hat is the
	angle between $-5\vec{a}$ and (5 b ?	[2010-1]
	(a) $\frac{\pi}{6}$	(b) $\frac{2\pi}{3}$	
	(c) $\frac{2\pi}{5}$	(d) $\frac{3\pi}{7}$	
70.	Consider the following sta	atements [2010-1]
	1 For any three vectors	sā ķī č.	-
		a, u, C >	
	$\vec{\mathbf{a}}$. {(\mathbf{b} + $\vec{\mathbf{c}}$)×($\vec{\mathbf{a}}$ + \mathbf{b} + $\vec{\mathbf{c}}$)	$) \} = 0$	
	2. For any three coplan	ar unit vectors	

$$\vec{\mathbf{d}}, \vec{\mathbf{e}}, \vec{\mathbf{f}}; (\vec{\mathbf{d}} \times \vec{\mathbf{e}}).\vec{\mathbf{f}} = 1$$

Which of the statements given above is/are correct?

(a)) I on	ly ((b)	2	on	ly	

- (c) Both 1 and 2 (d) Neither 1 nor 2
- 71. Let \vec{a} and \vec{b} be two unit vectors and α be the angle between them. If $(\vec{a} + \vec{b})$ is also the unit vectors, then what is the value of α ? [2010-1]
 - (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{3}$
 - (c) $\frac{2\pi}{3}$ (d) $\frac{\pi}{2}$

72. What is the value of λ for which the vectors

$$\hat{i} - \hat{j} + \hat{k}, 2\hat{i} + \hat{j} - \hat{k}$$
 and $\lambda \hat{i} - \hat{j} + \lambda \hat{k}$ are co-planar?
(a) 1 (b) 2 [2010-1]
(c) 3 (d) 4

73. What is the geometric interpretation of the identity

$$\left(\vec{a} - \vec{b}\right) \times \left(\vec{a} + \vec{b}\right) = 2\left(\vec{a} \times \vec{b}\right)?$$
[2010-I]

- 1. If the diagonals of a given parallelogram are used as sides of a second parallelogram, then the area of the second parallelogram is twice that of the given parallelogram.
- 2. If the semi-diagonals of a given parallelogram are used as sides of a second parallelogram, then the area of the second parallelogram is half that of the given parallelogram.

Select the correct answer using the code given below

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 74. A vector \vec{b} is collinear with the vector $\vec{a} = (2, 1, -1)$ and satisfies the condition $\vec{a} \cdot \vec{b} = 3$. What is \vec{b} equal to?

[2010-I]

- (a) (1, 1/2, -1/2)
 (b) (2/3, 1/3, -1/3)
 (c) (1/2, 1/4, -1/4)
- (d) (1,1,0)
- 75. The vectors $\vec{a} = x\vec{i} + y\vec{j} + z\vec{k}$, $\vec{b} = \hat{k}$, \vec{c} are such that they form a right handed system. What is \vec{c} equal to? [2010-1]
 - (a) \hat{j} (b) $y\hat{j} x\hat{k}$ (c) $y\hat{i} - x\hat{j}$ (d) $x\hat{i} - y\hat{j}$

 $\hat{\mathbf{i}} + 3 \ \hat{\mathbf{j}} - 2 \ \hat{\mathbf{k}}$ and that of a point Q is $3 \ \hat{\mathbf{i}} + \ \hat{\mathbf{j}} - 2 \ \hat{\mathbf{k}}$, then what is the position vector of a point on the bisector of the angle *POQ*? [2010-II]

- (a) $\hat{\mathbf{i}} \hat{\mathbf{j}} \hat{\mathbf{k}}$ (b) $\hat{\mathbf{i}} + \hat{\mathbf{j}} \hat{\mathbf{k}}$
- (c) $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ (d) None of these

77. Let *a*, *b* and *c* be the distinct non-negative numbers. If the vectors $\mathbf{a}\hat{\mathbf{i}} + \mathbf{a}\hat{\mathbf{j}} + \mathbf{c}\hat{\mathbf{k}}, \hat{\mathbf{i}} + \hat{\mathbf{k}}, \mathbf{c}\hat{\mathbf{i}} + \mathbf{c}\hat{\mathbf{j}} + \mathbf{b}\hat{\mathbf{k}}$ lie on a plane, then which one of the following is correct? [2010-II]

- (a) c is the arithmetic mean of a and b
- (b) c is the geometric mean of a and b
- (c) c is the harmonic mean of a and b
- (d) c is equal to zero

^{76.} If the position vector of a point P with respect to origin O is

86. If $\hat{\mathbf{a}} = \hat{\mathbf{i}} - \hat{\mathbf{k}}$, $\hat{\mathbf{b}} = x\hat{\mathbf{i}} + \hat{\mathbf{j}} + (1-x)\hat{\mathbf{k}}$ 78. [2010-II] $\overrightarrow{\mathbf{c}} = v\,\widehat{\mathbf{i}} + x\,\widehat{\mathbf{j}} + (1 + x - y)\,\widehat{\mathbf{k}}\,\cdot$ (8 then $\overrightarrow{\mathbf{a}}$. $\left(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}\right)$ depends on (a) x only (b) v only (c) Both x and y(d) Neither x nor y87. 79. PQRS is a parallelogram, where $\overrightarrow{PQ} = 3\hat{i} + 2\hat{j} - m\hat{k}$, $\overrightarrow{\mathbf{PS}} = \hat{\mathbf{i}} + 3\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and the area of the parallelogram is $\sqrt{90}$. What is the value of *m*? [2010-II] (a) 1 (b) −1 (c) 2 (d) -280. What is the vector equally inclined to the vectors $\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$ and $3\hat{i} + \hat{j}$? [2010-II] (a) $\hat{\mathbf{i}} + \hat{\mathbf{j}}$ (b) $2\hat{i} - \hat{j}$ (c) $2\hat{i} + \hat{i}$ (d) None of these 81. ABCD is a quadrilateral. Forces AB, CB, CD and DA act along its sides. What is their resultant? [2010-II] 88. (a) $2 \overrightarrow{CD}$ (b) $2 \overrightarrow{\mathbf{DA}}$ (c) $2 \overrightarrow{\mathbf{BC}}$ (d) $2 \overrightarrow{\mathbf{CB}}$ 82. What is the area of a triangle whose vertices are at (3, -1, 2), (1, -1, -3) and (4, -3, 1)? [2010-II] (a) $\frac{\sqrt{165}}{2}$ (b) $\frac{\sqrt{135}}{2}$ 89. (c) 4 (d) 2 What is the value of b such that the scalar product of the 83. vector $\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ with the unit vector parallel to the sum of the vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{b}\hat{i} + 2\hat{j} + 3\hat{k}$ is unity? (b) −1 (a) −2 [2010-II] (c) 0(d) 1 84. Let p, q, r and s be respectively the magnitudes of the vectors $3\hat{i} - 2\hat{j}$, $2\hat{i} + 2\hat{j} + \hat{k}$, $4\hat{i} - \hat{j} + \hat{k}$, $2\hat{i} + 2\hat{j} + 3\hat{k}$. Which 90. one of the following is correct? [2011-I] (a) r > s > q > p(b) s > r > p > q(c) r > s > p > q(d) s > r > q > p

- 85. If $x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$ is a unit vector and $x : y : z = \sqrt{3} : 2 : 3$, then what is the value of *z* ? [2011-1]
 - (a) $\frac{3}{16}$ (b) 3
 - (c) (d) 2

- NDA Topicwise Solved Papers MATHEMATICS Which one of the following is the unit vector
- perpendicular to the vectors $4\hat{i} + 2\hat{j}$ and $-3\hat{i} + 2\hat{j}$?

a)
$$\frac{\hat{i} + \hat{j}}{\sqrt{2}}$$
 (b) $\frac{\hat{i} - \hat{j}}{\sqrt{2}}$ [2011-I]

- (d) $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{2}}$ (c) $\hat{\mathbf{k}}$
- Consider the following statements in respect of the vectors

$$\overrightarrow{\mathbf{u}_1} = (1, 2, 3), \ \overrightarrow{\mathbf{u}_2} = (2, 3, 1), \ \overrightarrow{\mathbf{u}_3} = (1, 3, 2) \text{ and } \ \overrightarrow{\mathbf{u}_4} = (4, 6, 2)$$
[2011-1]

- I. \mathbf{u}_1 is parallel to \mathbf{u}_4 . II. \mathbf{u}_2 is parallel to \mathbf{u}_4 . III. \mathbf{u}_2 is parallel to \mathbf{u}_3 . Which of the statements given above is/are correct? (a) Only I (b) Only II (c) Only III (d) Both I and III
- The points with position vectors [2011-I]

 $10\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$, $12\hat{\mathbf{i}} - 5\hat{\mathbf{j}}$, $a\hat{\mathbf{i}} + 11\hat{\mathbf{j}}$ are collinear, if the value of *a* is

(a)	-8	(b)	4
(c)	8	(d)	12

What is the sine of angle between the vectors $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and $-\hat{\mathbf{i}}+2\hat{\mathbf{j}}+3\hat{\mathbf{k}}$? [2011-I]

(a)
$$\sqrt{\frac{13}{7}}$$
 (b) $\frac{\sqrt{13}}{7}$

(c)
$$\frac{13}{\sqrt{7}}$$
 (d) None of these

The vector \mathbf{a} lies in the plane of vectors \mathbf{b} and \mathbf{c} . Which one of the following is correct? [2011-I]

(a)
$$\overrightarrow{\mathbf{a}} \cdot \left(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}\right) = 0$$
 (b) $\overrightarrow{\mathbf{a}} \cdot \left(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}\right) = 1$
(c) $\overrightarrow{\mathbf{a}} \cdot \left(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}\right) = -1$ (d) $\overrightarrow{\mathbf{a}} \cdot \left(\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}\right) = 3$

91. What is the projection of the vector $\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$ on the vector $4\hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 7\hat{\mathbf{k}}$? [2011-1]

(a)
$$\frac{\sqrt{5}}{2}$$
 (b) $\frac{19}{9}$
(c) $\frac{\sqrt{5}}{4}$ (d) $\frac{11}{3}$

- 92. If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ and $\overrightarrow{a} \times \overrightarrow{b} = 0$, then which one of the following is correct?
 - (a) \overrightarrow{a} is parallel to \overrightarrow{b} [2011-II]
 - (b) \overrightarrow{a} is perpendicular to \overrightarrow{b}
 - (c) Either \overrightarrow{a} or \overrightarrow{b} is a null vector
 - (d) None of the above
- 93. If the vectors $-\hat{i} 2x\hat{j} 3y\hat{k}$ and $\hat{i} 3x\hat{j} 2y\hat{k}$ are orthogonal to each other, then what is the locus of the point (x, y)?
 - (a) a straight line (b) an ellipse [2011-II]
 - (c) a parabola (d) a circle
- 94. If \overrightarrow{c} is the unit vector perpendicular to both the vectors \overrightarrow{a} and \overrightarrow{b} , then what is another unit vector perpendicular
 - to both the vectors \overrightarrow{a} and \overrightarrow{b} ? [2011-II]

(c)
$$-\frac{\begin{pmatrix} \rightarrow & \rightarrow \\ a \times b \end{pmatrix}}{\begin{vmatrix} \rightarrow & \rightarrow \\ a \times b \end{vmatrix}}$$
 (d) $\frac{\begin{pmatrix} \rightarrow & \rightarrow \\ a \times b \end{pmatrix}}{\begin{vmatrix} \rightarrow & \rightarrow \\ a \times b \end{vmatrix}}$

- 95. For what value of m are the points with position vectors $10\hat{i} + 3\hat{j}$, $12\hat{i} 5\hat{j}$ and $m\hat{i} + 11\hat{j}$ collinear?
 - (a) -8 (b) 4 [2011-II] (c) 8 (d) 12

96. For what value of m are the vectors $2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$, $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$

and $m\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ coplanar? [2011-II]

- (a) 0 (b) 5/3
- (c) 1 (d) 8/5

97. What is the area of the triangle with vertices (1,2,3),(2,5,-1) and (-1,1,2)? [2011-II]

(a)
$$\frac{\sqrt{155}}{2}$$
 square units (b) $\frac{\sqrt{175}}{2}$ square units

- (c) $\frac{\sqrt{155}}{4}$ square units (d) $\frac{\sqrt{175}}{4}$ square units
- 98. What is the area of the rectangle having vertices A, B, C and D with positive vectors $-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$, $\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}$,

$$\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$$
 and $-\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$? [2012-1]

- (a) 1/2 square unit (b) 1 square unit
- (c) 2 square unit (d) 4 square unit
- 99. If $\vec{a} = (2,1,-1)$, $\vec{b} = (1,-1,0)$, $\vec{c} = (5,-1,1)$, then what is the unit vector parallel to $\vec{a} + \vec{b} - \vec{c}$ in the opposite direction? [2012-1]

(a)
$$\frac{\hat{i} + \hat{j} - 2\hat{k}}{3}$$
 (b) $\frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}$

(c)
$$\frac{2i-j+2k}{3}$$
 (d) None of the above

- 100. If the magnitudes of two vectors a and b are equal then which one of the following is correct? [2012-I]
 - (a) $(\vec{a} + \vec{b})$ is parallel to $(\vec{a} \vec{b})$

(b)
$$(\vec{a} + \vec{b}) \bullet (\vec{a} - \vec{b}) = 1$$

- (c) $(\vec{a} + \vec{b})$ is perpendicular to $(\vec{a} \vec{b})$
- (d) None of the above
- 101. Let O be the origin and P, Q, R be the points such that $\overrightarrow{PO} + \overrightarrow{OQ} = \overrightarrow{QO} + \overrightarrow{OR}$. Then which one of the following is correct? [2012-1]
 - (a) P, Q, R are the vertices of an equilateral triangle
 - (b) P, Q, R are the vertices of an isosceles triangle
 - (c) P, Q, R are collinear
 - (d) None of the above
- 102. What is the value of m if the vectors

 $2\hat{i} - \hat{j} + \hat{k}, \hat{i} + 2\hat{j} - 3\hat{k}$ and $3\hat{i} + m\hat{j} + 5\hat{k}$ are coplanar?

[2012-I]

[2012-II]

[2013-II]

112. ABCD is a parallelogram. If $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{BC} = \overrightarrow{b}$, then what is 103. If $|\vec{a}| = 10$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 12$, then what is the value of \overrightarrow{BD} equal to ? $\mathbf{a} \times \mathbf{b}$? [2012-I] (a) $\vec{a} + \vec{b}$ (b) $\vec{a} - \vec{b}$ 12 (b) 16 (a) (c) $-\vec{a} - \vec{b}$ (d) $-\vec{a} + \vec{b}$ (c) 20 (d) 24 104. If the vectors $\hat{i} - x\hat{j} - y\hat{k}$ and $\hat{i} + x\hat{j} + y\hat{k}$ are orthogonal to each other, then what is the locus of the point (x, y)? $\vec{\gamma} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, then what is $\vec{\beta}$ equal to? (b) an ellipse (a) a parabola [2012-I] (a) $3\hat{i} + 2\hat{j}$ (b) $-3\hat{i}+2\hat{i}$ (c) a circle (d) a straight line (c) $2\hat{i} - 3\hat{j}$ (d) $-2\hat{i} + 3\hat{j}$ magnitude of vectors \overline{FH} and $\{m EG\}$ are equal where m is a scalar. What is the value of m? [2012-II] to? (a) 3 (b) 1.5 (a) (b) $\vec{3\alpha}$ $\vec{\alpha}$ (c) $\sqrt{2}$ (d) $\sqrt{3}$ (c) $-\overline{\alpha}$ (d) $\vec{0}$ correct? [2012-II] the following is correct? (a) \vec{a} is parallel to \vec{b} (b) \vec{a} is perpendicular to \vec{b} $\vec{a} = \vec{b}$ (a) (c) $\vec{a} = \vec{0} \text{ or } \vec{b} = \vec{0}$ (d) None of the above The angle between \vec{a} and \vec{b} is 45° (b) 107. The vector $\vec{a} \times (\vec{b} \times \vec{a})$ is coplanar with : [2012-II] (c) \vec{a} is parallel to \vec{b} (b) \vec{b} only a only (a) \vec{a} is perpendicular to \vec{b} (d) (c) Both \vec{a} and \vec{b} (d) Neither \vec{a} nor \vec{b} equal to? 2. $\frac{4i}{2i} = \frac{4}{3}$ (b) 2 (a) 1 $4\hat{i} \times 3\hat{i} = \vec{0}$ 1. (d) 4 (c) 3 Which of the above is/are correct ? [2012-II] (b) 2 only (a) 1 only $\hat{i} + \hat{j} + \hat{k}$? (c) Both 1 and 2 (d) Neither 1 nor 2 (a) $\hat{i} + \hat{j} - \hat{k}$ (b) $\hat{i} - \hat{j} + \hat{k}$ 109. What is the value of λ for which (c) $\hat{i} - \hat{i} - \hat{k}$ $(\lambda \hat{i} + \hat{j} - \hat{k}) \times (3\hat{i} - 2\hat{j} + 4\hat{k}) = (2\hat{i} - 11\hat{j} - 7\hat{k})$? [2012-II] (a) 2 (b) -2 (d) 7 (c) 1 then what is $(\sin \theta + \cos \theta)$ equal to ? (b) $\frac{1}{2}$ (a) 0 $p(-3\hat{i}-2\hat{j}+13\hat{k})$ is of unit length is : [2012-II] (c) 1 (d) 2 (a) 1/8 (b) 1/64 119. If the angle between the vectors $\hat{i} - m\hat{j}$ and $\hat{j} + \hat{k}$ is $\frac{\pi}{3}$, then (d) $\frac{1}{\sqrt{182}}$ $\sqrt{182}$ (c) what is the value of *m*? 111. The vector $2\hat{j} - \hat{k}$ lies : 0 (b) 2 [2012-II] (a)

(c) -2 (d) None of these

- (b) in the plane of YZ
- in the plane of XZ (c)

- 105. EFGH is a rhombus such that the angle EFG is 60°. The
- 106. If $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = \vec{0}$ then which one of the following is
- 108. Consider the following :

110. The magnitude of the scalar p for which the vector

- in the plane of XY (a)
 - (d) along the X-axis

- NDA Topicwise Solved Papers MATHEMATICS
- 113. If $\vec{\beta}$ is perpendicular to both $\vec{\alpha}$ and $\vec{\gamma}$ where $\vec{\alpha} = \vec{k}$ and [2013-1] 114. For any vector $\vec{\alpha}$, what is $(\vec{\alpha} \cdot \hat{i})\hat{i} + (\vec{\alpha} \cdot \hat{j})\hat{j} + (\vec{\alpha} \cdot \hat{k})\hat{k}$ equal [2013-I] 115. If the magnitude of $\vec{a} \times \vec{b}$ equals to $\vec{a} \cdot \vec{b}$, then which one of [2013-I] 116. If $|\vec{a}| = \sqrt{2}$, $|\vec{b}| = \sqrt{3}$ and $|\vec{a} + \vec{b}| = \sqrt{6}$, then what is $|\vec{a} - \vec{b}|$ [2013-I] 117. Which one of the following vectors is normal to the vector [2013-I] (d) None of the above 118. If θ is the angle between the vectors is $4(\hat{i} - \hat{k})$ and $\hat{i} + \hat{j} + \hat{k}$, [2013-I]

120.	Wha	t is the vector perpend	dicul	ar to both the vectors
	$\hat{i} - \hat{j}$	and i?		[2013-II]
	(a)	î	(b)	$-\hat{j}$
	(c)	ĵ	(d)	ĥ
121.	The	position vectors of the po	oints	A and B are respectively
	3 <i>î</i> –	$5\hat{j} + 2\hat{k}$ and $\hat{i} + \hat{j} - \hat{k}$. What	t is t	he length of AB?
				[2013-II]
	(a)	11	(b)	9
	(c)	7	(d)	6
122.	The	vectors $\hat{i} - 2x\hat{j} - 3y\hat{k}$ and	<i>î</i> +3	$x\hat{j} + 2y\hat{k}$ are orthogonal
	to ea	ch other. Then the locus	ofth	e point (x, y) is
				[2013-II]
	(a)	hyperbola	(b)	ellipse
	(c)	parabola	(d)	circle
123.	Wha	t is the value of P for wh	ich tl	he vector $p(2\hat{i} - \hat{j} + 2\hat{k})$
	is of	3 units length ?		[2013-II]
	(a)	1	(b)	2
	(c)	3	(d)	6
124.	If \vec{a}	$=2\hat{i}+2\hat{j}+3\hat{k}, \vec{b}=-\hat{i}+2\hat{j}$	$+\hat{k}$	and $\vec{c} = 3\hat{i} + \hat{j}$ are three
		$1 + 1 + \frac{1}{2} + \frac{1}{4}$		$1 1 i \rightarrow i 1 i i i i i i i i$

vectors such that $\vec{a} + tb$ is perpendicular to \vec{c} , then what is *t* equal to? [2013-II] (a) 8 (b) 6 (c) 4 (d) 2

DIRECTIONS (Qs. 125 - 127): (For the next three (03) items that follow) :

The vertices of a triangle ABC are A (2, 3, 1), B (-2, 2, 0), and C (0, 1, -1). [2014-I]

125. What is the cosine of angle *ABC*?

(a)
$$\frac{1}{\sqrt{3}}$$
 (b) $\frac{1}{\sqrt{2}}$
(c) $\frac{2}{\sqrt{6}}$ (d) None of these

126. What is the area of the triangle?

(a) $6\sqrt{2}$ square unit (b) $3\sqrt{2}$ square unit

- (c) $10\sqrt{3}$ square unit (d) None of these
- 127. What is the magnitude of the line joining mid points of the sides *AC* and *BC*?

(a)
$$\frac{1}{\sqrt{2}}$$
 unit (b) 1 unit
(c) $\frac{3}{\sqrt{2}}$ unit (d) 2 unit

DIRECTIONS (Qs. 128-129) : For the next two (02) items that follow.

Consider the vectors $\overline{a} = \hat{i} - 2\hat{j} + \hat{k}$ and $\overline{b} = 4\hat{i} - 4\hat{j} + 7\hat{k}$. [2014-1] 128. What is the scalar projection of \overline{a} on \overline{b} ?

(a)	1	(b)	19/9
(c)	17/9	(d)	23/9

129. What is the vector perpendicular to both the vectors ?

- (a) $-10\hat{i} 3\hat{j} + 4\hat{k}$ (b) $-10\hat{i} + 3\hat{j} + 4\hat{k}$
- (c) $10\hat{i} 3\hat{j} + 4\hat{k}$ (d) None of these

DIRECTIONS (Qs. 130-131): For the next two (02) items that follow.

Let a vector \overline{r} make angle 60°, 30° with x and y-axes respectively. [2014-1]

130. What angle does \overline{r} make with *z*-axis?

(a)
$$30^{\circ}$$
 (b) 60°
(c) 90° (d) 120°

131. What are the direction cosines of \overline{r} ?

(a)
$$\left\langle \frac{1}{2}, \frac{\sqrt{3}}{2}, 0 \right\rangle$$
 (b) $\left\langle \frac{1}{2}, \frac{\sqrt{3}}{2}, 0 \right\rangle$
(c) $\left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right\rangle$ (d) $\left\langle -\frac{1}{2}, \frac{\sqrt{3}}{2}, 0 \right\rangle$

DIRECTIONS (Qs. 132-133) : For the next two (02) items that follow.

Let
$$|\overline{a}| = 7$$
, $|\overline{b}| = 11$, $|\overline{a} + \overline{b}| = 10\sqrt{3}$ [2014-I]

132. What is $\left|\overline{a} - \overline{b}\right|$ equal to ?

(a)
$$2\sqrt{2}$$
 (b) $2\sqrt{10}$
(c) 5 (d) 10

133. What is the angle between $(\overline{a} + \overline{b})$ and $(\overline{a} - \overline{b})$?

(a)
$$\frac{\pi}{2}$$
 (b) $\frac{\pi}{3}$

(c)
$$\frac{\pi}{6}$$
 (d) None of these

134. If $|\vec{a}| = 2$, $|\vec{b}| = 5$ and $|\vec{a} \times \vec{b}|$, then what is $\vec{a}.\vec{b}$ equal to ? [2014-II]

135. If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$, then which one of the following is correct? [2014-II]

- (a) $|\vec{a}| = |\vec{b}|$.
- (b) \vec{a} is parallel to \vec{b} .
- (c) \vec{a} is perpendicular to \vec{b} .
- (d) \vec{a} is a unit vector.

- 136. What is the area of the triangle OAB where O is the origin, $\overrightarrow{OA} = 3\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{OB} = 2\hat{i} - \hat{j} + 3\hat{k}$? [2014-II] (a) $5\sqrt{6}$ square unit (b) $\frac{5\sqrt{6}}{2}$ square unit (c) $\sqrt{6}$ square unit (d) $\sqrt{30}$ square unit 137. Which one of the following is the unit vector perpendicular to both $\vec{a} = -\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$? [2014-II] (a) $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$ (b) \hat{k} (c) $\frac{\hat{j} + \hat{k}}{\sqrt{2}}$ (d) $\frac{\hat{i}-\hat{j}}{\sqrt{2}}$ 138. What is the interior acute angle of the parallelogram whose sides are represented by the vectors $\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j} + \hat{k}$ and $\frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{j} + \hat{k}?$ [2014-II] 60°
 - (b) 45° (a) (c) 30° (d) 15°
- 139. For what value of λ are the vectors

$$\begin{array}{ll} \lambda \hat{i} + (1+\lambda) \hat{j} + (1+2\lambda) \hat{k} \text{ and } (1-\lambda) \hat{i} + \lambda \hat{j} + 2 \hat{k} \\ \text{perpendicular ?} & [2014-II] \\ (a) & -1/3 & (b) & 1/3 \\ (c) & 2/3 & (d) & 1 \end{array}$$

DIRECTIONS (Qs. 140-143) : For the next four (04) items that follow.

$\vec{a} + \vec{l}$	$\vec{b} + \vec{c}$	$= \vec{0}$ such that $ \vec{a} = 3$, $ \vec{b} =$	5 ar	$ \vec{c} = 7.$	
					[2014-II]
140.	Wha	It is the angle between $ \vec{a} $	and	$ \vec{\mathbf{b}} $?	
	(a)	π/6	(b)	π/4	
	(c)	π/3	(d)	π/2	
141.	Wha	it is $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$ equal t	0?		
	(a)	-83	(b)	-83/2	
	(c)	75	(d)	-75/2	
142.	Wha	it is cosine of the angle be	etwee	en \vec{b} and \vec{c} ?	
	(a)	11/12	(b)	13/14	
	(c)	-11/12	(d)	-13/14	
143.	Wha	it is $ \vec{a} + \vec{b} $ equal to ?			
	(a)	7	(b)	8	
	(c)	10	(d)	11	
144.	The	adjacent sides AB and	AC	of a triangle	ABC are
	represented by the vectors $-2\hat{i}+3\hat{j}+2\hat{k}$ and $-4\hat{i}+5\hat{j}+2\hat{k}$				
	resp	ectively. The area of the t	riang	le ABC is	[2015-I]
	(a)	6 square units	(b)	5 square unit	ts

(b) 5 square units (d) 3 square units (c) 4 square units

- 145. A force $\vec{F} = 3\hat{i} + 4\hat{j} 3\hat{k}$ is applied at the point P, whose position vector is $\vec{r} = \hat{2i} - 2\hat{i} - 3\hat{k}$. What is the magnitude of the moment of the force about the origin? [2015-1] (a) 23 units (b) 19 units (c) 18 units (d) 21 units
- 146. Given that the vectors $\vec{\alpha}$ and $\vec{\beta}$ are non-collinear. The values
- of x and y for which $\vec{u} \vec{v} = \vec{w}$ holds true if $\vec{u} = 2x\vec{\alpha} + y\vec{\beta}, \vec{v} = 2y\vec{\alpha} + 3x\vec{\beta}$ and $\vec{w} = 2\vec{\alpha} - 5\vec{\beta}$, are [2015-1] (a) x = 2, y = 1(b) x = 1, y = 2(c) x = -2, y = 1(d) x = -2, y = -1147. If $|\vec{a}| = 7$, $|\vec{b}| = 11$ and $|\vec{a} + \vec{b}| = 10\sqrt{3}$, then $|\vec{a} - \vec{b}|$ is equal [2015-I] to (a) 40 (b) 10
 - (c) $4\sqrt{10}$ (d) $2\sqrt{10}$
- 148. Let α, β, γ be distinct real numbers. The points with position vectors $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$, $\beta \hat{i} + \gamma \hat{j} + \alpha \hat{k}$ and $\gamma \hat{i} + \alpha \hat{j} + \beta \hat{k}$

[2015-I]

- are collinear (a)
- (b) form an equilateral triangle
- form a scalene triangle (c)
- (d) form a right-angled triangle
- 149. If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then which of the following is/are correct? [2015-1]
 - $\vec{a}, \vec{b}, \vec{c}$ are coplanar. 1.

2.
$$\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$$

Select the correct answer using the code given below.

(a) 1 only (b) 2 only (d) Neither 1 nor 2 (c) Both 1 and 2

150. If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$, then which one of the following is correct? [2015-I]

- (a) $\vec{a} = \lambda \vec{b}$ for some scalar λ
- (b) \vec{a} is parallel to \vec{b}
- (c) \vec{a} is perpendicular to \vec{b}
- (d) $\vec{a} = \vec{b} = \vec{0}$

151. The area of the square, one of whose diagonals is $3\hat{i} + 4\hat{j}$ is [2015-II]

- 12 square unit (a)
- (b) 12.5 square unit
- (c) 25 square unit
- 156.25 square unit (d)

152.	ABCD is a parallelogram and P is the point of intersection of				
	the d equa	liagonals. If O is the origin Il to	, then	$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}$ is [2015-II]	
	(a)	$4\overrightarrow{OP}$	(b)	$2\overrightarrow{OP}$	
	(c)	\overrightarrow{OP}	(d)	Null vector	
153.	If b resp	and \vec{c} are the position ectively, then the positio	vecto n vec	rs of the points B and C ctor of the point D such	
	that	$\overrightarrow{BD} = 4\overrightarrow{BC}$ is		[2015-II]	
	(a)	$4(\vec{c}-\vec{b})$	(b)	$-4(\vec{c}-\vec{b})$	
	(c)	$4\vec{c}-3\vec{b}$	(d)	$4\vec{c}+3\vec{b}$	
154.	If the then	e position vector \vec{a} of the p the value/values of n an	ooint (be	$(5, n)$ is such that $ \vec{a} = 13$, [2015-II]	
	(a)	± 8	(b)	±12	
	(c)	8 only	(d)	12 only	
155.	If ā	$\vec{b} = 2$ and $ \vec{b} = 3$, then	ā × Ē	$ \vec{b} ^2 + \vec{a}.\vec{b} ^2$ is equal to	
				[2015-11]	
	(a)	72	(b)	64	
	(c)	48	(d)	36	
156.	Con	sider the following ineq	ualiti	es in respect of vectors	
	ā an	ıd b:		[2015-II]	
	1.	$\left \vec{a} + \vec{b} \right $ £ $\left \vec{a} \right + \left \vec{b} \right $			
	2	$ \vec{a} - \vec{b} ^3 \vec{a} - \vec{b} $			
	 Whi	ch of the above is/are co	rrect	?	
	(a)	1 only	(b)	2 only	
	(c)	Both 1 and 2	(d)	Neither 1 nor 2	
157	(-) If th	e magnitude of differen	(-)	two unit vectors is 5	
137.	then	the magnitude of sum of	f the	two vectors is $[2015-II]$	
	(a)	$\frac{1}{2}$ unit	(b)	1 unit	
	(c)	2 unit	(d)	3 unit	
158.	If th	e vectors $\alpha \hat{i} + \alpha \hat{j} + \gamma \hat{k} \hat{i}$	⊦ĥa	nd $\gamma \hat{i} + \gamma \hat{j} + \beta \hat{k}$ lie on a	
	plan	e, where α , β and γ are di	stinc	t non-negative numbers.	
	then	γis		[2015-11]	

- Arithmetic mean of α and β (a)
- (b) Geometric mean of α and β
- Harmonic mean of α and β (c)
- (d) None of the above

159. The vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are such that $\vec{a} \times \vec{b} = \vec{c} \times d$ and

 $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$. Which of the following is/ are correct? [2015-II]

- $\left(\vec{a}-\vec{d}\right)\times\left(\vec{b}-\vec{c}\right)=\vec{0}$ 1.
- $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$ 2.

Select the correct answer using the code given below :				
(a)	1 only	(b) 2 o	nly	
(c)	Both 1 and 2	(d) Nei	ither 1 nor 2	

DIRECTIONS (Qs. 160-161) : For the next two (2) items that follow:

Let \hat{a}, \hat{b} be two unit vectors and θ be the angle between them. [2016-I]

160. What is
$$\cos\left(\frac{\theta}{2}\right)$$
 equal to?

(a)
$$\frac{|\hat{a}-\hat{b}|}{2}$$
 (b) $\frac{|\hat{a}+\hat{b}|}{2}$
(c) $|\hat{a}-\hat{b}|$ (d) $|\hat{a}+\hat{b}|$

(c)
$$\frac{|\mathbf{a}-\mathbf{b}|}{4}$$
 (d) $\frac{|\mathbf{a}-\mathbf{b}|}{4}$

161. What is
$$\sin\left(\frac{\theta}{2}\right)$$
 equal to?

(a)
$$\frac{|\hat{a}-\hat{b}|}{2}$$
 (b) $\frac{|\hat{a}+\hat{b}|}{2}$
(c) $\frac{|\hat{a}-\hat{b}|}{4}$ (d) $\frac{|\hat{a}+\hat{b}|}{4}$

162. What is a vector of unit length orthogonal to both the vectors $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} + 3\hat{j} - \hat{k}$? [2016-I]

4

(a)
$$\frac{-4\hat{i}+3\hat{j}-\hat{k}}{\sqrt{26}}$$
 (b) $\frac{-4\hat{i}+3\hat{j}+\hat{k}}{\sqrt{26}}$
(c) $\frac{-3\hat{i}+2\hat{j}-\hat{k}}{\sqrt{14}}$ (d) $\frac{-3\hat{i}+2\hat{j}+\hat{k}}{\sqrt{14}}$

- 163. If \vec{a} , \vec{b} and \vec{c} are the position vectors of the vertices of an equilateral triangle whose orthocentre is at the origin, then which one of the following is correct? [2016-I]
- (b) $\vec{a} + \vec{b} + \vec{c} = unit vector$ (a) $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ (d) $\vec{a} = \vec{b} + \vec{c}$ (c) $\vec{a} + \vec{b} = \vec{c}$ 164. What is the area of the parallelogram having diagonals

$$3\hat{i} + \hat{j} - 2\hat{k}$$
 and $\hat{i} - 3\hat{j} + 4\hat{k}$? [2016-1]

- (a) $5\sqrt{5}$ square units (b) $4\sqrt{5}$ square units
- (c) $5\sqrt{3}$ square units (d) $15\sqrt{2}$ square units

DIRECTIONS (Qs. 165-166) : Consider the following for the next two (02) items that follow:

Let $\vec{a} = \hat{i} + \hat{j}$, $\vec{b} = 3\hat{i} + 4\hat{k}$ and $\vec{b} = \vec{c} + \vec{d}$, where \vec{c} is parallel to \vec{a} and \vec{d} is perpendicular to \vec{a} . [2016-II]

165. What is \vec{c} equal to?

(a)
$$\frac{3(\hat{i} + \hat{j})}{2}$$
 (b) $\frac{2(\hat{i} + \hat{j})}{3}$
(c) $\frac{(\hat{i} + \hat{j})}{2}$ (d) $\frac{(\hat{i} + \hat{j})}{3}$

- 166. If d = x î + y ĵ + z k, then which of the following equations is/are correct?
 1. y-x=4
 2. 2z-3=0
 Select the correct answer using the code given below:
 - (a) 1 only (b) 2 only
 - (c) Both 1 and 2 (d) Neither 1 nor 2

DIRECTIONS (Qs. 167-168) : Consider the following for the next two (02) items that follow.

Let \vec{a} , \vec{b} and \vec{c} be three vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 10$, $|\vec{b}| = 6$ and $|\vec{c}| = 14$. [2016-II]

167. What is \vec{a} . $\vec{b} + \vec{b}$. \vec{c} . $+ \vec{c}$. \vec{a} . equal to?

(a)	-332	(b)	-166
(c)	0	(d)	166

168. What is the angle between \vec{a} and \vec{b} ?

(a)	30°	(b)	45°
(c)	60°	(d)	75°

- 169. In a right-angled triangle ABC, if the hypotenuse AB = p, then what is \overrightarrow{AB} . $\overrightarrow{AC} + \overrightarrow{BC}$. $\overrightarrow{BA} + \overrightarrow{CA}$. \overrightarrow{CB} equal to? [2016-II]
 - (a) p (b) p^2 (c) $2p^2$ (d) $\frac{p^2}{2}$
- 170. A force $\vec{F} = 3\hat{i} + 2\hat{j} 4\hat{k}$ is applied at the point (1, -1, 2). What is the moment of the force about the point (2, -1, 3)? [2016-II]
 - (a) $\hat{i} + 4\hat{j} + 4\hat{k}$ (b) $2\hat{i} + \hat{j} + 2\hat{k}$ (c) $2\hat{i} - 7\hat{j} - 2\hat{k}$ (d) $2\hat{i} + 4\hat{j} - \hat{k}$
- 171. If $\vec{a} = \hat{i} \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ and $\vec{c} = \hat{i} m\hat{j} + n\hat{k}$ are three coplanar vectors and $|\vec{c}| = \sqrt{6}$, then which one of the following is correct? [2017-I] (a) m = 2 and $n = \pm 1$ (b) $m = \pm 2$ and n = -1(c) m = 2 and n = -1 (d) $m = \pm 2$ and n = 1
- 172. Let ABCD be a parallelogram whose diagonals intersect at P and let O be the origin. What is $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD}$ equal to? [2017-1]

(a)	$2\overrightarrow{OP}$	(b)	4OP
-----	------------------------	-----	-----

(c)	6OP	(d)	8OP
-----	-----	-----	-----

- 173. ABCD is a quadrilateral whose diagonals are AC and BD. Which one of the following is correct? [2017-I]
 - (a) $\overrightarrow{BA} + \overrightarrow{CD} = \overrightarrow{AC} + \overrightarrow{DB}$ (b) $\overrightarrow{BA} + \overrightarrow{CD} = \overrightarrow{BD} + \overrightarrow{CA}$ (c) $\overrightarrow{BA} + \overrightarrow{CD} = \overrightarrow{AC} + \overrightarrow{BD}$ (d) $\overrightarrow{BA} + \overrightarrow{CD} = \overrightarrow{BC} + \overrightarrow{AD}$
- 174. If $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{b} \times \vec{c} = \vec{a}$, then which one of the following is correct? [2017-1]

(a) $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs and $|\vec{a}| = |\vec{c}|$ and

 $|\vec{b}| = 1$

- (b) $\vec{a}, \vec{b}, \vec{c}$ are non-orthogonal to each other
- (c) $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs but $|\vec{a}| \neq |\vec{c}|$
- (d) $\vec{a}, \vec{b}, \vec{c}$ are orthogonal is pairs but $|\vec{b}| \neq 1$
- 175. If $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{b} = 3\hat{i} + 2\hat{j} \lambda\hat{k}$ are perpendicular, then what is the value of λ ? [2017-I] (a) 2 (b) 3

(d) 5

- (d) 2 (c) 4
- 176. If α , β and γ are the angles which the vector \overrightarrow{OP} (O being the origin) makes with positive direction of the coordinate axes, then which of the following are correct? [2017-II]
 - 1. $\cos^2 \alpha + \cos^2 \beta = \sin^2 \gamma$
 - 2. $\sin^2 \alpha + \sin^2 \beta = \cos^2 \gamma$
 - 3. $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$

Select the correct answer using the code given below.

- (a) 1 and 2 only (b) 2 and 3 only
- (c) 1 and 3 only (d) 1, 2 and 3
- 177. Let $\vec{\alpha} = \hat{i} + 2\hat{j} \hat{k}$, $\vec{\beta} = 2\hat{i} \hat{j} + 3\hat{k}$ and $\vec{\gamma} = 2\hat{i} + \hat{j} + 6\hat{k}$ be three vectors. If $\vec{\alpha}$ and $\vec{\beta}$ are both perpendicular to the vector $\vec{\delta}$ and $\vec{\delta} \cdot \vec{\gamma} = 10$, then what is the magnitude of $\vec{\delta}$? [2017-II]
 - (a) $\sqrt{3}$ units (b) $2\sqrt{3}$ units (c) $\frac{\sqrt{3}}{2}$ unit (d) $\frac{1}{\sqrt{3}}$ unit
- 178. If \hat{a} and \hat{b} are two unit vectors, then the vector $(\hat{a} + \hat{b}) \times (\hat{a} \times \hat{b})$ is parallel to [2017-II]
 - (a) $(\hat{a} \hat{b})$ (b) $(\hat{a} + \hat{b})$ (c) $(2\hat{a} - \hat{b})$ (d) $(2\hat{a} + \hat{b})$

179. A force $\vec{F} = \hat{i} + 3\hat{j} + 2\hat{k}$ acts on a particle to displace it from the point A $(\hat{i} + 2\hat{j} - 3\hat{k})$ to the point B $(3\hat{i} - \hat{j} + 5\hat{k})$. The work done by the force will be [2017-II] (a) 5 units (b) 7 units (c) 9 units (d) 10 units

180. For any vector $\vec{a} | \vec{a} \times \hat{i} |^2 + | \vec{a} \times \hat{j} |^2 + | \vec{a} \times \hat{k} |^2$ is equal to [2017-II]

- (a) $|\vec{a}|^2$ (b) $2|\vec{a}|^2$
- (c) $3 |\vec{a}|^2$ (d) $4 |\vec{a}|^2$

181. If the vectors $\hat{ai} + \hat{j} + \hat{k}$, $\hat{i} + \hat{bj} + \hat{k}$ and $\hat{i} = \hat{j} = c\hat{k}(a, b, c \neq 1)$ are coplanar, then the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$ is equal [2017-II] to (a) 0 (b) 1 (c) a + b + c(d) abc 182. If \vec{a} and \vec{b} are vectors such that $|\vec{a}| = 2$, $|\vec{b}| = 7$ and $\vec{a} \times \vec{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}$, then what is the acute angle between \vec{a} and \vec{b} ? [2018-I] (a) 30° (b) 45° 60° (d) 90° (c) 183. Let \vec{p} and \vec{q} be the position vectors of the points P and Q

- respectively with respect to origin O. The points F and Q respectively with respect to origin O. The points R and S divide PQ internally and externally respectively in the ratio 2 : 3. If \overrightarrow{OR} and \overrightarrow{OS} are perpendicular, then which one of the following is correct? [2018-1] (a) $9p^2 = 4q^2$ (b) $4p^2 = 9p^2$ (c) 9p = 4q (d) 4p = 9q
- 184. What is the moment about the point $\hat{i} + 2\hat{j} \hat{k}$ of a force represented by $3\hat{i} + \hat{k}$ acting through the point $2\hat{i} - \hat{j} + 3\hat{k}$?
 - (a) $-3\hat{i}+11\hat{j}+9\hat{k}$ (b) $3\hat{i}+2\hat{j}+9\hat{k}$ [2018-1] (c) $3\hat{i}+4\hat{j}+9\hat{k}$ (d) $\hat{i}+\hat{j}+\hat{k}$
- 185. If $\vec{a} + 2\vec{b} + 3\vec{c} = \vec{0}$ and $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \lambda(\vec{b} \times \vec{c})$, then what is the value of λ ? [2018-I] (a) 2 (b) 3

()	-	(*) -
(c)	4	(d) 6

186. If the vectors \vec{k} and \vec{A} are parallel to each other, then what is $k\vec{k} \times \vec{A}$ equal to? [2018-1]

(a)	$k^2 \vec{A}$	(b)	$\vec{0}$
(c)	$-k^2 \vec{A}$	(d)	Ā

- 187. Let $|\vec{a}| \neq 0, |\vec{b}| \neq 0$ [2018-II]
 - $(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$ holds if and only if
 - (a) \vec{a} and \vec{b} are perpendicular
 - (b) \vec{a} and \vec{b} are parallel
 - (c) \vec{a} and \vec{b} are inclined at an angle of 45°
 - (d) \vec{a} and \vec{b} are anti-parallel

188. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, then what is $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k})$ equal to?

[2018-II]

(a) x (b)
$$x+y$$

(c) $-(x+y+z)$ (d) $(x+y+z)$

- 189. A unit vector perpendicular to each of the vectors
- $2\hat{i} \hat{j} + \hat{k} \text{ and } 3\hat{i} 4\hat{j} \hat{k} \text{ is} \qquad [2018-11]$ (a) $\frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} \frac{1}{\sqrt{3}}\hat{k}$ (b) $\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{2}\hat{j} + \frac{1}{2}\hat{k}$ (c) $\frac{1}{\sqrt{3}}\hat{i} \frac{1}{\sqrt{3}}\hat{j} \frac{1}{\sqrt{3}}\hat{k}$ (d) $\frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$ 190. If $|\vec{a}| = 3, |\vec{b}| = 4$ and $|\vec{a} \vec{b}| = 5$, then what is the value of
 - $|\vec{a} + \vec{b}| = ?$ [2018-11] (a) 8 (b) 6 (c) $5\sqrt{2}$ (d) 5
- 191. Let \vec{a}, \vec{b} and \vec{c} be three mutually perpendicular vectors each of unit magnitud. If $\vec{A} = \vec{a} + \vec{b} + \vec{c}$, $\vec{B} = \vec{a} - \vec{b} + \vec{c}$ and $\vec{C} = \vec{a} - \vec{b} - \vec{c}$, then which one of the following is correct?

[2018-II]

- (a) $|\vec{A}| > |\vec{B}| > |\vec{C}|$ (b) $|\vec{A}| = |\vec{B}| \neq |\vec{C}|$ (c) $|\vec{A}| = |\vec{B}| = |\vec{C}|$ (d) $|\vec{A}| \neq |\vec{B}| \neq |\vec{C}|$
- 192. What is $(\vec{a} \vec{b}) \times (\vec{a} + \vec{b})$ equal to? [2018-II]
 - (a) $\vec{0}$ (b) $\vec{a} \times \vec{b}$
 - (c) $2\left(\vec{a}\times\vec{b}\right)$ (d) $\left|\vec{a}\right|^2 \left|\vec{b}\right|^2$
- 193. A spacecraft at $\hat{i} + 2\hat{j} + 3\hat{k}$ is subjected to a force $\lambda \hat{k}$ by firing a rocket. The spacecraft is subjected to a moment of magnitude [2018-II]
 - (a) λ (b) $\sqrt{3}\lambda$
 - (c) $\sqrt{5\lambda}$ (d) None of these
- 194. In a triangle ABC, if taken in order, consider the following statements: [2018-II]
 - 1. $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$
 - 2. $\overrightarrow{AB} + \overrightarrow{BC} \overrightarrow{CA} = \overrightarrow{0}$
 - 3. $\overrightarrow{AB} \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$
 - 4. $\overrightarrow{BA} \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$

How many of the above statements are correct?

(a) One (b) Two (c) Three (d) Four 195. If $\vec{a} = \hat{i} - 2\hat{j} + 5\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} - 3\hat{k}$ then what is $(\vec{b} - \vec{a}).(3\vec{a} + \vec{b})$ equal to? [2019-1] (a) 106 (b) -106 (c) 53 (d) -53

196. If the position vectors of points A and B are $3\hat{i} - 2\hat{j} + \hat{k}$ and $2\hat{i} + 4\hat{j} - 3\hat{k}$ respectively, then what is the length of \overrightarrow{AB} ? [2019-I]

- (a) $\sqrt{14}$ (b) $\sqrt{29}$ (c) $\sqrt{43}$ (d) $\sqrt{53}$
- 197. If in a right-angled triangle ABC, hypotenuse AC = p, then what is $\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB}$ equal to ? [2019-I]

(a)
$$p^2$$
 (b) $2p^2$ (c) $\frac{p^2}{2}$ (d) p

198. The sine of the angle between vectors [2019-I]

$$\vec{a} = 2\hat{i} - 6\hat{j} - 3\hat{k}$$
 and $\vec{b} = 4\hat{i} + 3\hat{j} - \hat{k}$

(a)
$$\frac{1}{\sqrt{26}}$$
 (b) $\frac{5}{\sqrt{26}}$

(c)
$$\frac{5}{26}$$
 (d) $\frac{1}{26}$

199. What is the value of λ for which the vectors $3\hat{i} + 4\hat{j} - \hat{k}$ and $-2\hat{i} + \lambda\hat{j} + 10\hat{k}$ are perpendicular?

Vectors

ANSWER KEY																			
1	(c)	21	(d)	41	(d)	61	(a)	81	(d)	101	(c)	121	(c)	141	(b)	161	(a)	181	(b)
2	(c)	22	(b)	42	(b)	62	(a)	82	(a)	102	(c)	122	(d)	142	(d)	162	(b)	182	(a)
3	(b)	23	(b)	43	(d)	63	(d)	83	(d)	103	(b)	123	(a)	143	(a)	163	(a)	183	(a)
4	(d)	24	(a)	44	(a)	64	(d)	84	(c)	104	(c)	124	(a)	144	(d)	164	(c)	184	(a)
5	(b)	25	(c)	45	(b)	65	(a)	85	(c)	105	(d)	125	(a)	145	(a)	165	(a)	185	(d)
6	(c)	26	(d)	46	(a)	66	(c)	86	(c)	106	(c)	126	(b)	146	(a)	166	(d)	186	(b)
7	(d)	27	(c)	47	(c)	67	(b)	87	(b)	107	(d)	127	(c)	147	(d)	167	(b)	187	(a)
8	(b)	28	(b)	48	(b)	68	(a)	88	(c)	108	(a)	128	(b)	148	(b)	168	(c)	188	(d)
9	(b)	29	(d)	49	(b)	69	(b)	89	(b)	109	(a)	129	(a)	149	(c)	169	(b)	189	(a)
10	(a)	30	(a)	50	(d)	70	(a)	90	(a)	110	(d)	130	(c)	150	(c)	170	(c)	190	(d)
11	(c)	31	(c)	51	(d)	71	(c)	91	(b)	111	(b)	131	(a)	151	(b)	171	(d)	191	(c)
12	(a)	32	(d)	52	(c)	72	(a)	92	(c)	112	(d)	132	(b)	152	(a)	172	(b)	192	(c)
13	(d)	33	(b)	53	(c)	73	(c)	93	(d)	113	(b)	133	(d)	153	(c)	173	(b)	193	(c)
14	(b)	34	(c)	54	(a)	74	(a)	94	(d)	114	(a)	134	(a)	154	(b)	174	(a)	194	(a)
15	(c)	35	(b)	55	(b)	75	(c)	95	(c)	115	(b)	135	(c)	155	(d)	175	(b)	195	(b)
16	(d)	36	(b)	56	(b)	76	(b)	96	(d)	116	(b)	136	(b)	156	(c)	176	(c)	196	(d)
17	(a)	37	(c)	57	(b)	77	(b)	97	(a)	117	(d)	137	(a)	157	(b)	177	(b)	197	(a)
18	(c)	38	(b)	58	(d)	78	(d)	98	(c)	118	(c)	138	(a)	158	(b)	178	(a)	198	(b)
19	(a)	39	(d)	59	(d)	79	(a)	99	(c)	119	(d)	139	(a)	159	(c)	179	(c)	199	(d)
20	(b)	40	(b)	60	(b)	80	(a)	100	(c)	120	(d)	140	(c)	160	(b)	180	(b)		

HINTS & SOLUTIONS

3.

1. (c) As given
$$\vec{p} = \frac{\vec{b} \times \vec{c}}{[\vec{a}\vec{b}\vec{c}]}$$
, $\vec{q} = \frac{\vec{c} \times \vec{a}}{[\vec{a}\vec{b}\vec{c}]}$, and $\vec{r} = \frac{\vec{a} \times \vec{b}}{[\vec{a}\vec{b}\vec{c}]}$
 \therefore $(\vec{a} - \vec{b} - \vec{c}).\vec{p} + (\vec{b} - \vec{c} - \vec{a}).\vec{q} + (\vec{c} - \vec{a} - \vec{b}).\vec{r}$
 $= \frac{\vec{a}.(\vec{b} \times \vec{c})}{[\vec{a}\vec{b}\vec{c}]} + \frac{\vec{b}.(\vec{c} \times \vec{a})}{[\vec{a}\vec{b}\vec{c}]} + \frac{\vec{c}.(\vec{a} \times \vec{b})}{[\vec{a}\vec{b}\vec{c}]}$
[Since $\vec{b}.(\vec{b} \times \vec{c}) = 0$, $\vec{c}.(\vec{b} \times \vec{c}) = 0$, $\vec{c}.(\vec{c} \times \vec{a}) = 0$,
 $\vec{a}.(\vec{c} \times \vec{a}) = 0$, $\vec{a}.(\vec{a} \times \vec{b}) = 0$ and $\vec{b}.(\vec{a} \times \vec{b}) = 0$]
 $= \frac{[\vec{a}\vec{b}\vec{c}]}{[\vec{a}\vec{b}\vec{c}]} + \frac{[\vec{a}\vec{b}\vec{c}]}{[\vec{a}\vec{b}\vec{c}]} + \frac{[\vec{a}\vec{b}\vec{c}]}{[\vec{a}\vec{b}\vec{c}]} = 3$
2. (c) Let O be the origin and ABCD be the parallelogram.
In Δ ODC,
 $\vec{OD} = \vec{OC} + \vec{CD}$
 $\vec{CD} = -\vec{AB}$
and, In Δ AOB, $\vec{AB} = \vec{OB} - \vec{OA} = \vec{b} - \vec{a}$
Thus, $\vec{CD} = -\vec{AB} = \vec{a} - \vec{b}$
 \vec{A}
 \vec{A}
 \vec{B}
So, $\vec{OD} = \vec{c} + \vec{a} - \vec{b}$ [since, $\vec{OC} = \vec{C}$ and $\vec{CD} = \vec{a} - \vec{b}$]

(b) Since, side opposite to greatest angle is longest and $\angle B$ is greatest angle in $\triangle ABC$. Thus, \overrightarrow{CA} has greatest magnitude.

4. (d) Given that $\vec{p}.\vec{q} = \vec{p}.\vec{r}$

$$\Rightarrow \vec{p} \cdot (\vec{q} - \vec{r}) = 0$$

 $\Rightarrow \vec{p} \text{ is perpendicular to } \vec{q} - \vec{r}$ Also, $\vec{p} \times \vec{q} = \vec{p} \times \vec{r}$ (given).

$$\Rightarrow \vec{p} \times (\vec{q} - \vec{r}) = 0$$

 $\Rightarrow \vec{p}$ is parallel to $\vec{q} - \vec{r}$

Which is not possible simultaneously unless either \vec{p}

or $\vec{q} - \vec{r}$ is zero, since $\vec{p} \neq 0$, $\Rightarrow \vec{q} - \vec{r} = 0$ Thus, the given conditions hold simultaneously if $\vec{q} = \vec{r}$.

м-509

5. (b) If \vec{p} and \vec{q} are unit vectors which make an angle $\frac{\pi}{3}$ with each other.

Then,
$$\vec{p} \cdot \vec{q} = |\vec{p}| |\vec{q}| \cos \frac{\pi}{3} = \frac{1}{2}$$

Now, $\left|\vec{p} - \frac{1}{2}\vec{q}\right|^2 = |\vec{p}|^2 + \frac{1}{4}|\vec{q}|^2 - \frac{2}{2}\vec{p} \cdot \vec{q}$
 $= 1 + \frac{1}{4} - \frac{1}{2}$ [since $|\vec{p}| = |\vec{q}| = 1$]
 $= \frac{5}{4} - \frac{1}{2} = \frac{5-2}{4} = \frac{3}{4}$
So, $\left|\vec{p} - \frac{1}{2}\vec{q}\right| = \frac{\sqrt{3}}{2}$

6. (c) If vectors $(x^2-1)\hat{i} + (x+2)\hat{j} + x^2\hat{k}$ and $2\hat{i} - x\hat{j} + 3\hat{k}$ are orthogonal, then $2(x^2-1) - x(x+2) + 3x^2 = 0$ $\Rightarrow 2x^2 - 2 - x^2 - 2x + 3x^2 = 0$ $\Rightarrow 4x^2 - 2x - 2 = 0$ $\Rightarrow (2x^2 - x - 1) = 0$ $\Rightarrow (2x+1)(x-1) = 0$ $\Rightarrow x = -\frac{1}{2}$ and x = 1

7. (d) Force, \vec{F} is given by $\vec{F} = \hat{i} + \hat{j} + \hat{k}$

$$\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$$
 and $\overrightarrow{OB} = -2\hat{i} + 3\hat{j} + \hat{k}$

$$\therefore \quad \vec{r} = \vec{AB} = -2\hat{i} + 3\hat{j} + \hat{k} - \hat{i} - 2\hat{j} - 3\hat{k}$$
$$= -3\hat{i} + \hat{j} - 2\hat{k}$$

Moment \vec{M} about the point $\hat{i} + 2\hat{j} + 3\hat{k}$

$$\vec{\mathbf{M}} = \vec{\mathbf{r}} \times \vec{\mathbf{F}} = (-3\hat{\mathbf{i}} + \hat{\mathbf{j}} - 2\hat{\mathbf{k}}) \times (\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$$
$$= \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -3 & \hat{\mathbf{i}} & -2 \\ 1 & 1 & 1 \end{vmatrix} = \hat{\mathbf{i}} (1+2) - \hat{\mathbf{j}} (-3+2) + \hat{\mathbf{k}} (-3-1)$$

 $=3\hat{i}+\hat{j}-4\hat{k}$

8. (b) Three forces are given by, say, F_1 , F_2 and F_3 $\vec{F}_1 = 2\hat{i} + 3\hat{j} + 5\hat{k}$, $\vec{F}_2 = -5\hat{i} + 4\hat{j} - 3\hat{k}$ and $\vec{F}_3 = 3\hat{i} - 7\hat{k}$ Total resultant force, \vec{F} is given by $\vec{F} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3$

$$= 2i + 3j + 5k - 5i + 4j - 3k + 3i - 7k = 7j - 5k$$

This show that the resultant force is in the y - z plane. Thus, it moves in the y - z plane. (b) Let the vector be $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$. Since, \vec{r} and $\hat{i} + \hat{j}$ are perpendicular to each other.

Hence, $\vec{r}.(\hat{i}+\hat{j})=0 \Rightarrow x+y=0$...(i)

also \vec{r} and $\hat{j} + \hat{k}$ are perpendicular to each other. so,

r.
$$(j+k) = 0$$

So, $y + z = 0$...(ii)
and $x^2 + y^2 + z^2 = 9$...(iii)
 $\Rightarrow (-y^2) + y^2 + (-y)^2 = 9$
 $\Rightarrow 3y^2 = 9$
 $\Rightarrow y = \pm\sqrt{3}$
 $\therefore x = \pm\sqrt{3}$ [from (i)
and $z = \pm\sqrt{3}$ [from (ii)]
So, vector is $\sqrt{3}(\hat{i} - \hat{j} + \hat{k})$
(a) We know that for any line that makes α , β and γ angle

10. (a) We know that for any line that makes α , β and γ angle with axis $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ $\Rightarrow 1 - \sin^2 \alpha + 1 - \sin^2 \beta + 1 - \sin^2 \gamma = 1$

$$\Rightarrow \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$$

- 11. (d) A is true, but R is false.
- 12. (a) In \triangle OAB,

9.

- $\therefore \quad \overrightarrow{AC} = \frac{1}{2} \overrightarrow{AB} = \frac{1}{2} (\overrightarrow{b} \overrightarrow{a})$
- 13. (d) Diagonals of a parallelogram bisect each other. Therefore, P is the mid point of AC and BD both.

So, in $\triangle OAC$, $\overrightarrow{OA} + \overrightarrow{OC} = 2\overrightarrow{OP}$

and in $\triangle ODB$, $\overrightarrow{OB} + \overrightarrow{OD} = 2\overrightarrow{OP}$

$$\Rightarrow$$
 OA + OC = 2OP and OB + OD = 2OP

$$\Rightarrow \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4\overrightarrow{OP}$$

(b) Since \vec{r}_1, \vec{r}_2 and \vec{r}_3 are the position vector of three 14. collinear points. Thus \vec{r}_3 is the position vector of the point which divides the joining of points whose position vectors are \vec{r}_1 and \vec{r}_2 in the ratio m : n.

So,
$$\vec{r}_3 = \frac{mr_1 + nr_2}{m + n}$$

But as given, $\vec{r}_3 = m\vec{r}_1 + n\vec{r}_2$
So, $\frac{m\vec{r}_1 + n\vec{r}_2}{m + n} = mr_1 + nr_2$

$$\Rightarrow$$
 m+n=1

15. (c) The given vector is $\vec{V} = 2\hat{i} - \hat{j} + 2\hat{k}$ and for z-axis x = 0 and y = 0, so the vector equation is

$$A = 0i + 0j + k$$

$$\cos \alpha = \frac{\vec{V} \cdot \vec{A}}{|\vec{V}| \cdot |\vec{A}|}$$

$$\cos \alpha = \frac{2.0 + (-1) \cdot (0) + 2 \cdot (1)}{\sqrt{4 + 1 + 4} \sqrt{0 + 0 + 1}} = 4$$
Hence,
$$\sin \alpha = \sqrt{1 - \cos^2 \alpha}$$

$$= \sqrt{1 - \frac{4}{9}} = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3}$$

(d) Given that \vec{m}, \vec{n} and \vec{r} are three vectors and θ is the 16. angle between \vec{m} and \vec{n} ,

 $\frac{2}{3}$

We get,
$$\cos \theta = \frac{\vec{m} \cdot \vec{n}}{|\vec{m}||\vec{n}|}$$

 $\Rightarrow mn \cos \theta = \vec{m} \cdot \vec{n}$
[where, $|\vec{m}| = m$ and $|\vec{n}| = n$]
 $\Rightarrow mn \cos \theta = (\vec{m} \cdot \vec{n}) \frac{\vec{r}}{|\vec{r}|}$
 $\Rightarrow mn \cos \theta = (\vec{m} \cdot \vec{n}) \frac{\vec{r}}{r}$
[where $|\vec{r}| = r$]
 $\Rightarrow mn r \cos \theta = (\vec{m} \cdot \vec{n}) \vec{r}$
(a) Let the given vectors
 $\hat{i} - 2x \hat{j} - 3y \hat{k}$ and $\hat{i} + 3x \hat{j} + 2y \hat{k}$. be \vec{A} and \vec{B}
respectively, and θ be the angle between

them, so,
$$\cos \theta = \frac{A.B}{|\vec{A}||\vec{B}|}$$

17.

These are orthogonal to each other,
$$\theta = \pi/2$$

so, $\vec{A}.\vec{B} = 0$
 $\Rightarrow 1 - (2x)(3x) - (3y)(2y) = 0$
 $\Rightarrow 1 - 6x^2 - 6y^2 = 0$
 $\Rightarrow x^2 + y^2 = \frac{1}{6}$
This equation represents an equation of a circle which
is the locus of the point (x, y).
18. (c) We know that the components of \vec{b} along \vec{a} is
 $\left\{\frac{\vec{a}.\vec{b}}{|\vec{a}|^2}\right\}\vec{a}$ and perpendicular to \vec{a} is $\vec{b} - \left\{\frac{\vec{a}.\vec{b}}{|\vec{a}|^2}\right\}\vec{a}$
As given : $\left\{\frac{\vec{a}.\vec{b}}{|\vec{a}|^2}\right\}\vec{a} = \lambda\vec{a}$
and $\vec{b} - \left\{\frac{\vec{a}.\vec{b}}{|\vec{a}|^2}\right\}\vec{a} = \vec{b} - \lambda\vec{a}$
 $\left\{\vec{a}.\vec{b}\right\}$

 $\Rightarrow \lambda = \left\{ \frac{a \cdot b}{|\vec{a}|^2} \right\}$ (a) Force, $\vec{F} = m\hat{i} - 3\hat{j} + \hat{k}$ 19. Due to this force, point moves from A (20, 3m, 0) to B (0, 0, 7). So, the displacement vector \overrightarrow{AB} is given by $\overrightarrow{AB} = -20 \hat{i} - 3m\hat{j} + 7\hat{k}$ Work done = $\vec{F} \cdot \vec{AB}$ $=(m\hat{i}-3\hat{j}+\hat{k}).(-20\hat{i}-3m\hat{j}+7\hat{k})$

$$= (-20m + 9m + 7) \text{ unit}$$

But work done = -48 unit, as given
$$\Rightarrow -11m + 7 = -48$$

$$\Rightarrow -11m = -55$$

$$\Rightarrow m = 5$$

20. (b) (i)
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$

Squaring both the sides
 $|\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2$
or, $|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a}.\vec{b} = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a}.\vec{b}$
or, $4\vec{a}.\vec{b} = 0$

 \Rightarrow \vec{a} and \vec{b} are orthogonal.

(ii)
$$|\vec{a} + \vec{b}|^2 = |\vec{a}| + |\vec{b}|$$

Squaring both the sides
 $|\vec{a} + \vec{b}| = (|\vec{a}| + |\vec{b}|)^2$
or, $|\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a}.\vec{b} = |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}||\vec{b}|$
or, $\vec{a}.\vec{b} = |\vec{a}|.|\vec{b}|$
or, $|\vec{a}|.|\vec{b}|.\cos\theta = |\vec{a}||\vec{b}|$

NDA Topicwise Solved Papers - MATHEMATICS

B С a 0 $\Rightarrow 2\vec{b}-2\vec{a}=\vec{c}-\vec{a}$ $\Rightarrow \vec{c} = 2\vec{b} - 2\vec{a} + \vec{a} = 2\vec{b} - \vec{a}$ (a) $:: (\vec{a} + \lambda \vec{b})$ is perpendicular to $(\vec{a} - \lambda \vec{b})$, their dot product is zero, so, $(\vec{a} + \lambda \vec{b}) \cdot (\vec{a} - \lambda \vec{b}) = 0$ $\Rightarrow |\vec{a}|^2 - \lambda^2 |\vec{b}|^2 - \lambda \vec{a} \cdot \vec{b} + \lambda \vec{b} \cdot \vec{a} = 0$ $\Rightarrow |\vec{a}|^2 - \lambda^2 |\vec{b}|^2 = 0$ $(:: \vec{a}.\vec{b} = \vec{b}.\vec{a})$ $\Rightarrow 9 - 16\lambda^2 = 0$ $\Rightarrow \lambda = \pm \frac{3}{4}$ $\lambda = \frac{3}{4}$ matches with the given option. 25. (c) Here, $\vec{F} = 3\hat{i} + 2\hat{j} - \hat{k}$ and $\vec{r_1} - \vec{r_2} = \hat{i} - \hat{j} + \hat{k} - 2\hat{i} + 3\hat{j} + \hat{k}$ $= -\hat{i} + 2\hat{i} + 2\hat{k}$ Moment of couple = $(\vec{r_1} - \vec{r_2}) \times \vec{F}$ $=(-\hat{i}+2\hat{j}+2\hat{k})\times(3\hat{i}+2\hat{j}-\hat{k})$ $= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 2 & 2 \\ 3 & 2 & -1 \end{vmatrix} = \hat{i}(-2-4) - \hat{j}(1-6) + \hat{k}(-2-6)$ $= -6\hat{i} + 5\hat{j} - 8\hat{k}$ Magnitude of the moment = $|-\hat{6i} + \hat{5j} - \hat{8k}|$ $=\sqrt{36+25+64}=5\sqrt{5}$ 26. (d) As given $\vec{a} = 2\hat{i} - 3\hat{k}$ and $\vec{b} = \hat{i} + 3\hat{k}$ and $\vec{c} = -3\hat{i} + 3\hat{j} + \hat{k}$ Let $\vec{n} = x\hat{i} + y\hat{j} + z\hat{k}$ Since \vec{a} and \hat{n} are perpendicular to each other. $\vec{a}.\hat{n} = 0 \implies (2\hat{j}-3\hat{k}).(x\hat{i}+y\hat{j}+z\hat{k}) = 0$ $\Rightarrow 2y - 3z = 0$...(1) and $\vec{b}.\hat{n} = 0$ $\Rightarrow (\hat{j}+3\hat{k}).(x\hat{i}+y\hat{j}+z\hat{k})=0$ \Rightarrow y+3z=0 ...(2) On solving Eqs. (1) and (2) y = z = 0Since \hat{n} is a unit vector, $\sqrt{x^2 + y^2 + z^2} = 1 \Rightarrow x = 1$ [since, y = z = 0] hence, $\hat{n} = \hat{i}$ This gives, $\vec{c} \cdot \hat{n} = (-3\hat{i} + 3\hat{j} + \hat{k}) \cdot (\hat{i}) = -3$

(c) Since, $\vec{p} = \vec{u} + \vec{v} + \vec{w}$ 27. $\Rightarrow \vec{p} = (\hat{i} - \hat{j}) + (2\hat{i} + 5\hat{j}) + (4\hat{i} + 3\hat{j}) = 7\hat{i} + 7\hat{j}$ Now, $3\vec{u} + 2\vec{v} = 3(\hat{i} - \hat{j}) + 2(2\hat{i} + 5\hat{j}) =$ $3\hat{i} - 3\hat{j} + 4\hat{i} + 10\hat{j} = 7\hat{i} + 7\hat{j}$ $\Rightarrow 3\vec{u} + 2\vec{v} = \vec{p}$ (b) $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a}\cdot\vec{b}\cos\theta$ 28. $\Rightarrow |\vec{a} + \vec{b}|^2 = 1 + 1 + 2 |\vec{a}| |\vec{b}| \cos 30^\circ$ $=1+1+2 \times \frac{\sqrt{3}}{2}$ $\Rightarrow |\vec{a} + \vec{b}|^2 = 2 + \sqrt{3}$ $\Rightarrow |\vec{a} + \vec{b}| = \sqrt{2 + \sqrt{3}}$ $1 < \sqrt{2 + \sqrt{3}} < 2$ $\Rightarrow 1 < |\vec{a} + \vec{b}| < 2$ 29. (d) As given \vec{c} , is normal to the vectors \vec{a} and \vec{b} $\Rightarrow \vec{c} \cdot \vec{a} = 0 \text{ and } \vec{c} \cdot \vec{b} = 0$ $\Rightarrow \vec{c}.(\vec{a}+\vec{b}) = \vec{c}.\vec{a}+\vec{c}.\vec{b} = 0$ \Rightarrow Also $\vec{c} \cdot (\vec{a} - \vec{b}) = \vec{c} \cdot \vec{a} - \vec{c} \cdot \vec{b} = 0$ \vec{c} is normal to $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$. 30. (a) Since vector product is not commutative. So, option (a) is correct. 31. (c) Vectors $\vec{a}\hat{i}+\hat{j}+\hat{k}$, $\hat{i}+b\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+c\hat{k}$ are coplanar vectors. a 1 1 $1 \quad b \quad 1 = 0$ \Rightarrow 1 1 c \Rightarrow a (bc - 1) -1 (c - 1) + 1 (1 - b) = 0 $\Rightarrow abc-a-c+1+1-b=0$ \Rightarrow a + b + c - abc = 2 32. (d) Refer to the figure. $|(\vec{a} \times \vec{b}).\vec{c}|$ is triple dot product and is volume (V) of the parallelepiped whose adjacent edges are a, b, and c.

i.e.,
$$V = |(\vec{a} \times \vec{b})| .\vec{OC}$$

$$\Rightarrow$$
 V = $|\vec{a}||\vec{b}|(\sin\theta)(\cos\phi)|\vec{c}|$

where $0 \le \theta \le \pi$ is the angle between \vec{a} and \vec{b} . As given

$$|(\vec{a} \times \vec{b}).\vec{c}| = |\vec{a}||\vec{b}||\vec{c}|$$

- $\Rightarrow |\sin\theta\cos\phi| = 1$
- $\Rightarrow \sin \theta = 1, \cos \phi = 1$

$$\Rightarrow \quad \theta = \frac{\pi}{2}, \phi = 0$$

$$\Rightarrow \vec{a}.\vec{b}.=0=\vec{b}.\vec{c}=\vec{c}.\vec{a}$$
F
$$\vec{a}.\vec{b}.=0=\vec{b}.\vec{c}=\vec{c}.\vec{a}$$
33. (b) As given :
$$\vec{a}=\hat{i}+2\hat{j}-3\hat{k} \text{ and } \vec{b}=3\hat{i}-\hat{j}+\lambda\hat{k}$$

$$\vec{a}+\vec{b}=\hat{i}+2\hat{j}-3\hat{k}+3\hat{i}-\hat{j}+\lambda\hat{k}$$

$$=4\hat{i}+\hat{j}+(\lambda-3)\hat{k}$$
and $\vec{a}-\vec{b}=\hat{i}+2\hat{j}-3\hat{k}-3\hat{i}+\hat{j}-\lambda\hat{k}$

$$=-2\hat{i}+3\hat{j}-(3+\lambda)\hat{k}$$

$$(\vec{a}+\vec{b}) \text{ is perpendicular to } (\vec{a}-\vec{b})$$

$$\Rightarrow (\vec{a}+\vec{b}).(\vec{a}-\vec{b})=0$$

$$\Rightarrow \{4\hat{i}+\hat{j}+(\lambda-3)\hat{k}\}\{-2\hat{i}+3\hat{j}-(3-\lambda)\hat{k}\}=0$$

$$\Rightarrow -8+3+(3^2-\lambda^2)=0$$

$$\Rightarrow \lambda=\pm 2$$
34. (c) Refer to the figure which is self explanatory

35. (b) Let the coordinates of B be (x, y).

$$\vec{a} = \hat{1} - 3\hat{j}$$

P.V. of A is (-1, 5) so, $\overrightarrow{OA} = \hat{i} + 5\hat{j}$, $\overrightarrow{OB} = x\hat{i} + y\hat{j}$
 $\therefore \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \vec{a}$
 $\Rightarrow (x + 1)\hat{i} + (y - 5)\hat{j} = \hat{i} - 3\hat{j}$
 $\Rightarrow x + 1 = 1$ and $y - 5 = -3$
 $\Rightarrow x = 0$ and $y = 2$
 \therefore Coordinates of B are (0, 2).
36. (b) Given vectors are :
 $\vec{a} = 2\hat{i} - 3\hat{j} - \hat{k}$ and $\vec{b} = \hat{i} + 4\hat{j} - 2\hat{k}$
 $\Rightarrow \vec{a} + \vec{b} = (2\hat{i} - 3\hat{j} - \hat{k}) + (\hat{i} + 4\hat{j} - 2\hat{k})$
 $= 3\hat{i} + \hat{j} - 3\hat{k}$
and $\vec{a} - \vec{b} = (2\hat{i} - 3\hat{j} - \hat{k}) - (\hat{i} + 4\hat{j} - 2\hat{k})$
 $= \hat{i} - 7\hat{j} + \hat{k}$
 $\therefore (\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -3 \\ 1 & -7 & 1 \end{vmatrix}$
 $= \hat{i} \begin{vmatrix} 1 & -3 \\ -7 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & -3 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 1 \\ 1 & -7 \end{vmatrix}$
 $= \hat{i}(1-21) - \hat{j}(3+3) + \hat{k}(-21-1)$
 $= -20\hat{i} - 6\hat{j} - 22\hat{k}$
 $= -2(10\hat{i} + 3\hat{j} + 11\hat{k})$
Now, $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & -1 \\ 1 & 4 & -2 \end{vmatrix}$
 $= \hat{i} \begin{vmatrix} -3 & -1 \\ 4 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -1 \\ 1 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix}$
 $= \hat{i}(6+4) - \hat{j}(-4+1) + \hat{k}(8+3)$
 $= 10\hat{i} + 3\hat{j} + 11\hat{k}$
Hence, $(\hat{a} + \hat{b}) \times (\hat{a} - \hat{b}) = -2(\hat{a} \times \hat{b})$
37. (c) As given, $\lambda \vec{a}$ is a unit vector.
 $\Rightarrow |\lambda \vec{a}| = 1$

$$\Rightarrow |\lambda| \left| \vec{a} \right| = 1$$
$$\Rightarrow a = \frac{1}{|\lambda|} \qquad \left[\because \left| \vec{a} \right| = a \right]$$

(b) As given :
$$\vec{a}$$
 and \vec{b} are position vectors of A and B
respectively and position vector of C is $3\vec{a} - 2\vec{b}$
 $\overrightarrow{OA} = \vec{a}$ and $\overrightarrow{OB} = \vec{b}$, where O is the origin and
 $\overrightarrow{OC} = 3\vec{a} - 2\vec{b}$, $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \vec{b} - \vec{a}$
 $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = 3\vec{a} - 2\vec{b} - \vec{a} = 2\vec{a} - 2\vec{b}$
 $\Rightarrow \overrightarrow{AC} = 2(\vec{a} - \vec{b}) = -2(\vec{b} - \vec{a}) = -2\overrightarrow{AB}$

So, \overrightarrow{AC} is opposite to \overrightarrow{AB} so

38.

A is between C and B and position vector of C shows an external division by C.

39. (d) Let ABCDEF be the regular hexagen as shown in the figure.

Let $\overrightarrow{AB} = \overrightarrow{a}$ and $\overrightarrow{BC} = \overrightarrow{b}$ Join AD, FC and EB. They meet at a common point O, which is the centre of hexagon.

AO || BC so, $\overrightarrow{AO} = \overrightarrow{BC} = \overrightarrow{b}$ $OC \parallel AB \text{ so, } \overrightarrow{OC} = \overrightarrow{AB} = \overrightarrow{a}$ OAB forms a triangle, $\overrightarrow{AB} + \overrightarrow{BO} = \overrightarrow{AO}$ $\Rightarrow \overrightarrow{BO} = \overrightarrow{AO} - \overrightarrow{AB} = \overrightarrow{b} - \overrightarrow{a}$ BO = OE and they are on the same line, So, $\overrightarrow{BO} = \overrightarrow{OE} = \overrightarrow{b} - \overrightarrow{a}$ In $\triangle OCE$, $\overrightarrow{CO} + \overrightarrow{OE} = \overrightarrow{CE}$ $\Rightarrow \overrightarrow{\text{CE}} = -\overrightarrow{\text{OC}} + \overrightarrow{\text{OE}} = -\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{a} = \overrightarrow{b} - \overrightarrow{2a}$ So, (1) is correct. $\overrightarrow{\text{BE}} = 2\overrightarrow{\text{OB}}$ In $\triangle \text{AEB}$, $\overrightarrow{\text{AB}} + \overrightarrow{\text{BE}} = \overrightarrow{\text{AE}}$ $\Rightarrow \overrightarrow{AE} = \overrightarrow{AB} + 2\overrightarrow{BO} = \overrightarrow{A} + 2\left(\overrightarrow{b} - \overrightarrow{a}\right)$ $\Rightarrow \overrightarrow{AE} = \overrightarrow{a} + 2\overrightarrow{b} - 2\overrightarrow{a} = 2\overrightarrow{b} - \overrightarrow{a}$ So, (2) is also correct. $FA ||OB \Rightarrow \overrightarrow{FA} = -\overrightarrow{BO} = -(\overrightarrow{b} - \overrightarrow{a}) = \overrightarrow{a} - \overrightarrow{b}$ So, (3) is also correct. So, (1), (2) & (3) are correct.
40. (b) As given : a is perpendicular to b and c

$$\Rightarrow \vec{a}.\vec{b} = 0 \& \vec{a}.\vec{c} = 0$$
and angle between \vec{b} and $\vec{c} = \frac{\pi}{3}$

$$\therefore \vec{b}.\vec{c} = |\vec{b}||\vec{c}|\cos\frac{\pi}{3} = 1.1.\frac{1}{2}$$

$$= \frac{1}{2} \quad (\because \vec{b} \text{ and } \vec{c} \text{ are unit vectors})$$
Now, $|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2$

$$+2(\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a})$$

$$= 1 + 1 + 1 + 2 \cdot (0 + \frac{1}{2} + 0)$$

$$= 1 + 1 + 1 + 1 = 4$$

$$\Rightarrow |\vec{a} + \vec{b} + \vec{c}| = 2$$

→

→

41. (d) As given: (i - xj - 2k) and (2i + j + yk) are orthogonal. So, there dot product = 0 $\Rightarrow (i - xj - 2k).(2i + j + yk) = 0$ $\Rightarrow 2 - x - 2y = 0$ $\Rightarrow x + 2y = 2$ Which is an equation of straight line. Thus, the locus of the point (x, y) is a straight line.

42. (b) As given, vectors are :
$$\vec{a} = \hat{i} + \hat{j}$$
 and $\hat{b} = \hat{j} + \hat{k}$

So, $\vec{a} \times \vec{b}$ is perpendicular to \vec{a} and \vec{b}

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$
$$= \hat{i} - \hat{j} + \hat{k}$$

and $\left|\vec{a} \times \vec{b}\right| = \sqrt{1+1+1} = \sqrt{3}$

Unit vector perpendicular to \vec{a} and \vec{b}

$$=\pm\frac{\left(\vec{a}\times\vec{b}\right)}{\left|\vec{a}\times\vec{b}\right|} =\pm\frac{\widehat{i}-\widehat{j}+\widehat{k}}{\sqrt{3}}$$

Thus, the number of vectors perpendicular to the vectors \vec{a} and \vec{b} is 2. This is true for vectors of any length. So, it is true for vector of length 5 unit.

43. (d) As given Semidiagonal is $\vec{r} = a\vec{i} + b\vec{j}$

So diagonal is $2\vec{r} = 2a\vec{i} + 2b\vec{j}$

 $\Rightarrow Sides of rectangle are 2a and 2b$ $Hence, area of rectangle = <math>2a \times 2b = 4ab$. 44. (a) $(3\vec{a}-\vec{b})\times(\vec{a}+3\vec{b})$

$$= (3\vec{a} - \mathbf{b}) \times \vec{a} + (3\vec{a} - \mathbf{b}) \times 3\mathbf{b}$$

$$= 3\vec{a} \times \vec{a} - \vec{b} \times \vec{a} + 3\vec{a} \times 3\vec{b} - \vec{b} \times 3\vec{b}$$

$$= 0 - (-\vec{a} \times \vec{b}) + 9\vec{a} \times \vec{b} - 0$$

$$= 10\vec{a} \times \vec{b}$$

$$\therefore k = 10$$

45. (b) Let us consider triangle ABC. Suppose \hat{i} , \hat{j} and $\hat{i} + \hat{j} + \lambda \hat{k}$ are the position vector of A, B and C. Then $\overrightarrow{AB} = \hat{j} - \hat{i}$, $\overrightarrow{AC} = \hat{j} + \lambda \hat{k}$, $\overrightarrow{BC} = \hat{i} + \lambda \hat{k}$ $|\overrightarrow{AB}| = \sqrt{(-1)^2 + (1)^2} = \sqrt{2}$ $|\overrightarrow{BC}| = \sqrt{(1)^2 + (\lambda)^2} = \sqrt{1 + \lambda^2}$ $|\overrightarrow{AC}| = \sqrt{(1)^2 + (\lambda)^2} = \sqrt{1 + \lambda^2}$ To be Δ ABC is a right angled triangle, $\angle C$ should be right angle,

i.e.,
$$\overrightarrow{BC} \cdot \overrightarrow{AC} = 0$$

 $\Rightarrow (\hat{i} + \lambda \hat{k}) \cdot (\hat{j} + \lambda \hat{k}) = 0$
 $\Rightarrow 0 + 0 + \lambda^2 = 0$
 $\therefore \lambda = 0$

46. (a) The scalar triple product $(\vec{A} \times \vec{B}).\vec{C}$ of three vectors $\vec{A}, \vec{B}, \vec{C}$ determines volume of a parallelopiped.

47. (c)
$$|\vec{a} \times \vec{b}|^2 + (\vec{a}.\vec{b})^2$$

$$= (|\vec{\mathbf{a}}|.|\vec{\mathbf{b}}|.\sin\theta)^{2} + (|\vec{\mathbf{a}}|.|\vec{\mathbf{b}}|.\cos\theta)^{2}$$

$$= (1.1.\sin\theta)^{2} + (1.1.\cos\theta)^{2}$$

$$= \sin^{2}\theta + \cos^{2}\theta = 1$$
48. (b) $\overrightarrow{OG} = \frac{2\overrightarrow{OA} - 3\overrightarrow{OB}}{2 - 3}$
 $\overrightarrow{OG} = \frac{2\overrightarrow{OA} - 3\overrightarrow{OB}}{-1}$
 $-\overrightarrow{OG} = 2\overrightarrow{OA} - 3\overrightarrow{OB}$... (1)
 $\lambda\overrightarrow{OG} = 2\overrightarrow{OA} + 3\overrightarrow{OB}$... (2)
Adding (1) and (2)
 $(\lambda - 1)\overrightarrow{OG} = 4\overrightarrow{OA}$

$$\Rightarrow \overrightarrow{OA} = \left(\frac{\lambda - 1}{4}\right)\overrightarrow{OG} \qquad \dots (3)$$

Subtracting (2) from (1)

$$(-1-\lambda)\overrightarrow{OG} = -6\overrightarrow{OB}$$

- $\overrightarrow{OB} = \frac{(1+\lambda)}{6}\overrightarrow{OG}$...(4) From equ (2), (3) and (4) $\lambda \overrightarrow{OG} = 2\left(\frac{\lambda-1}{4}\right)\overrightarrow{OG} + 3\left(\frac{\lambda+1}{6}\right)\overrightarrow{OG}$ $\Rightarrow \lambda = \frac{\lambda - 1}{2} = \frac{\lambda + 1}{3}$ $\therefore \lambda = \frac{\lambda - 1}{2} \text{ or } \lambda = \frac{\lambda + 1}{3}$ $\Rightarrow 2\lambda - \lambda = -1$ or $3\lambda - \lambda = 1$ $\Rightarrow \lambda = -1 \text{ or } \lambda = \frac{1}{2}$ 49. (b) $|\vec{a} + \vec{b}| = \sqrt{|\vec{a} + \vec{b}|^2}$ $= \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}| \cdot |\vec{b}| \cos 60^\circ}$ $=\sqrt{1^2 + 1^2 + 2.1.1.\frac{1}{2}} = \sqrt{3}$ $\therefore |\vec{\mathbf{a}} + \vec{\mathbf{b}}| > 1$ 50. (d) Given $\vec{a} = \vec{i} - 2\hat{j} + 3\hat{k}$ and $\vec{\mathbf{b}} = 3\hat{\mathbf{i}} + \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ $\therefore \vec{\mathbf{a}} + \vec{\mathbf{b}} = 4\hat{\mathbf{i}} - \mathbf{i} + 5\hat{\mathbf{k}}$ Then, $\vec{c} = \lambda(\vec{a} + \vec{b})$ $=\lambda(4\hat{i}-\hat{i}+5\hat{k})$ $\Rightarrow l = \sqrt{16\lambda^2 + \lambda^2 + 25\lambda^2}$ $\Rightarrow l = \sqrt{42} \lambda$ $\lambda = \frac{l}{\sqrt{42}}$ $\vec{\mathbf{c}} = \frac{l}{\sqrt{42}} (4\hat{\mathbf{i}} - \hat{\mathbf{j}} + 5\hat{\mathbf{k}}) = \frac{1}{\sqrt{42}} (4, -1, 5)$ 51. (d) Given, $\vec{\mathbf{r}}_{\mathbf{j}} = \lambda \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\vec{\mathbf{r}}_1 = \hat{\mathbf{i}} + (2 - \lambda)\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$ $\therefore |\vec{\mathbf{r}}_1| > |\vec{\mathbf{r}}_2|$ $\Rightarrow \sqrt{\lambda^2 + (2)^2 + (1)^2} > \sqrt{(1)^2 + (2-\lambda)^2 + (2)^2}$ $\Rightarrow \lambda^2 + 4 + 1 > 1 + 4 + \lambda^2 - 4\lambda + 4$ $\Rightarrow 5 > 9 - 4\lambda$
 - $\Rightarrow 3^{2} 9^{-4}$ $\Rightarrow 4\lambda > 4$
 - $\Rightarrow \lambda > 1$

52. (c) Let the position vectors of *B*, *C* and *R* are $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ and $\vec{\mathbf{r}}$ respectively.

$$\frac{2\vec{q} - 2\vec{p} + \vec{a} + \vec{a}}{2} = \vec{q} - \vec{p} + \vec{a} = \vec{a} - (\vec{p} - \vec{q})$$

- 53. (c) Given, vector is (1, 1).
 - \therefore Length of vector = $\sqrt{1^2 + 1^2 + 0^2} = \sqrt{2}$.
- 54. (a) Let $\vec{p} = x\hat{i} + y\hat{j} + z\hat{k}$ is a vector of magnitude $\sqrt{51}$

$$\therefore \sqrt{x^2 + y^2 + z^2} = \sqrt{51}$$

$$\Rightarrow x^2 + y^2 + z^2 = 51 \qquad \dots(i)$$

Let \vec{p} makes equal angle θ with and \vec{a}, \vec{b} and \vec{c} .

$$\therefore \quad \vec{p} \cdot \vec{a} = |\vec{p}| \cdot |\vec{a}| \cos\theta$$

$$\therefore \quad \cos\theta = \frac{\vec{p} \cdot \vec{a}}{|\vec{p}||\vec{a}|}$$
Similarly, $\cos\theta = \frac{\vec{p} \cdot \vec{b}}{|\vec{p}||\vec{b}|}$
and $\cos\theta = \frac{\vec{p} \cdot \vec{c}}{|\vec{p}||\vec{c}|}$

$$\therefore \quad \frac{\vec{p} \cdot \vec{a}}{|\vec{p}||\vec{a}|} = \frac{\vec{p} \cdot \vec{b}}{|\vec{p}||\vec{b}|} = \frac{\vec{p} \cdot \vec{c}}{|\vec{p}||\vec{c}|}$$

$$\Rightarrow \frac{\frac{1}{3}(x-2y+2z)}{\sqrt{x^2+y^2+z^2}\frac{1}{3}\sqrt{1+4+4}} = \frac{\frac{1}{5}(-4x-3z)}{\sqrt{x^2+y^2+z^2}\frac{1}{5}\sqrt{16+9}}$$

$$= \frac{y}{\sqrt{x^2+y^2+z^2}\sqrt{1}}$$

$$\Rightarrow \frac{x-2y+2z}{3\sqrt{x^2+y^2+z^2}} = \frac{-4x-3z}{5\sqrt{x^2+y^2+z^2}} = \frac{y}{\sqrt{x^2+y^2+z^2}}$$

$$\Rightarrow \frac{x-2y+2z}{3} = \frac{-4x-3z}{5} = y$$

$$\therefore 5(x-2y+2z) = -3(4x+3z) = 15y$$

$$\therefore 5x-10y+10z = 15y \text{ and } -12x-9z = 15y$$

$$\Rightarrow 5x-25y+10z = 0 \text{ and } -12x-9z = 15y$$

$$\Rightarrow 5x-25y+10z = 0 \text{ and } 4x+5y+3z = 0$$

$$x-5y+2z=0$$

$$4x+5y+3z = 0$$

$$\frac{x}{1} -5 - \frac{y}{2} = \frac{z}{25}$$

$$\frac{x}{-25} = \frac{y}{5} = \frac{z}{25}$$

$$\frac{x}{-25} = \frac{y}{5} = \frac{z}{25}$$

$$\frac{x}{-5} = \frac{y}{1} = \frac{z}{5} = k \text{ (let)}$$

$$\therefore x=-5k, y=k, z=5k$$
Now, $x^2+y^2+z^2=51$

$$\Rightarrow 25k^2+k^2+(5k)^2=51$$

$$\Rightarrow 25k^2+k^2+(5k)^2=51$$

$$\Rightarrow 25k^2+k^2+25k^2=51$$

$$\Rightarrow 25k^2+k^2+25k^2=51$$

$$\Rightarrow 51k^2=51$$

$$\therefore k=\pm1$$
When $k = 1$, then $x = -5, y = -1, z = -5$
and $\vec{p} = 5\hat{i} - \hat{j} - 5\hat{k}$
We know that
$$|\vec{a} \times \vec{b}|^2 + |\vec{a} \cdot \vec{b}|^2 = |\vec{a}|^2 \times |\vec{b}|^2$$

$$\therefore 64+|\vec{a} \cdot \vec{b}|^2 = (4 \times 25)$$

$$\Rightarrow |\vec{a} \cdot \vec{b}|^2 = 36$$

$$\Rightarrow \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 6$$

55. (b)

56. (b) Given,
$$|\vec{\mathbf{a}} + \vec{\mathbf{b}}| = |\vec{\mathbf{a}} - \vec{\mathbf{b}}|$$

$$\Rightarrow |\vec{\mathbf{a}} + \vec{\mathbf{b}}|^2 = |\vec{\mathbf{a}} - \vec{\mathbf{b}}|^2$$

$$\Rightarrow |\vec{a}|^{2} + |\vec{b}|^{2} + 2|\vec{a}| |\vec{b}| = |\vec{a}|^{2} + |\vec{b}|^{2} - 2|\vec{a}| |\vec{b}|$$

$$\Rightarrow 4|\vec{a}| |\vec{b}| = 0$$

$$\Rightarrow \vec{a} \text{ is perpendicular to } \vec{b}.$$
57. (b) Given, $\vec{a} = \hat{i} - 2\hat{j} + 5\hat{k}$
and $\vec{b} = 2\hat{i} + \hat{j} - 3\hat{k}$

$$\therefore \vec{b} - \vec{a} = 2\hat{i} + \hat{j} - 3\hat{k} - \hat{i} + 2\hat{j} - 5\hat{k} = \hat{i} + 3\hat{j} - 8\hat{k}$$

and $(3\vec{a} + \vec{b}) = (3\hat{i} - 6\hat{j} + 15\hat{k}) + (2\hat{i} + \hat{j} - 3\hat{k})$

$$= 5\hat{i} - 5\hat{j} + 12\hat{k}$$

Hence, $(\vec{b} - \vec{a}).(3\vec{a} + \vec{b}) = (\hat{i} + 3\hat{j} - 8\hat{k}).(5\hat{i} - 5\hat{j} + 12\hat{k})$

$$= 5 - 15 - 96$$

$$= -106$$

58. (d) Points A, B and C are collinear, if

$$(\vec{a} \times \vec{b}) + (\vec{b} \times \vec{c}) + (\vec{c} \times \vec{a}) = \vec{0}$$

59. (d) Since, $\vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = \hat{i} - \hat{j} + \hat{k} \text{ and } \vec{c} = \hat{i} + \hat{j} - \hat{k}$

$$\Rightarrow \vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b})$$

$$= (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}) + (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{a}) + (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{b})$$

 \Rightarrow

 \Rightarrow

 \Rightarrow

...

and

 \Rightarrow

58.

59.

60.

(b) (A) We know that
Work done
$$= \vec{F} \cdot \vec{d} = |\vec{F}| \cdot |\vec{d}| \cos \theta$$

Since, $\theta = 90^{\circ}$
 \Rightarrow work done $= |\vec{F}| \cdot |\vec{d}| \cos 90^{\circ} = 0$
(R) $\vec{A} \cdot \vec{B} = 0$
 $\Rightarrow \vec{A}$ and \vec{B} are perpendicular.
Both A and R are true but R is not correct explanation of
A.

 $= (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) - (\vec{\mathbf{c}} \times \vec{\mathbf{a}}) + (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) - (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) + (\vec{\mathbf{c}} \times \vec{\mathbf{a}}) - (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = 0$

61. (a) The projection of
$$\vec{b}$$
 on $\vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$

Since, \vec{a} is the unit vector $\therefore |\vec{a}| = 1$

Hence, projection of
$$\vec{b}$$
 on $\vec{a} = \frac{\vec{a}.\vec{b}}{1} = \vec{a}.\vec{b}$

62. (a) A vector whose dot product with the vector $4\hat{i} - 3\hat{j} + \hat{k}$ is zero and magnitude is 1, will be the required vectors. By taking option (a)

$$\pm \frac{(3\hat{i}+4\hat{j})}{5}.(4\hat{i}-3\hat{j}+\hat{k}) = \frac{1}{5}(12-12) = 0$$

Hence, the vector given in option 'a' is the required vector.

→

63. (d) Let
$$\vec{r_1} = b\hat{i} - a\hat{j}$$
 be the required vector
Given, $\vec{r} = a\vec{i} + b\vec{j}$
Now, $\vec{r_1} \cdot \vec{r} = (b\hat{i} - a\hat{j}).(a\hat{i} + b\hat{j})$
 $= ab - ab = 0$
Hence, option (d) is the correct answer
64. (d) Given, $\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$
Also, $\hat{b} = m\vec{a} = m(2\hat{i} - 3\hat{j} + 4\hat{k})$
As \hat{b} is a unit vector therefore $|\vec{b}| = 1$
Now, $|2\hat{i} - 3\hat{j} + 4\hat{k}| = \sqrt{4 + 9 + 16} = \sqrt{29}$

Therefore, *m* should be
$$\frac{1}{\sqrt{29}}$$
.

65. (a) Since, vectors $\lambda \vec{a} + \vec{b}$ and $a - \lambda \vec{b}$ are perpendicular to each other therefore $(\lambda \vec{a} + \vec{b}) (\vec{a} - \lambda \vec{b}) = 0$

$$\Rightarrow \lambda \vec{a}.\vec{a} - \lambda^{2}\vec{a}.\vec{b} + \vec{b}.\vec{a} - \lambda \vec{b}.\vec{b} = 0$$

$$\Rightarrow \lambda |\vec{a}|^{2} + (1 - \lambda^{2})\vec{a}.\vec{b} - \lambda |\vec{b}|^{2} = 0$$

$$\Rightarrow \lambda |\vec{a}|^{2} + (1 - \lambda^{2})\vec{a}.\vec{b} - \lambda |\vec{a}|^{2} = 0 \quad (\because |\vec{a}| = |\vec{b}|)$$

$$\Rightarrow (1 - \lambda^{2})\vec{a}.\vec{b}$$

Since, $\cos 60^{\circ} = \frac{\vec{a}.\vec{b}}{|\vec{a}||\vec{a}|} = \frac{\vec{a}.\vec{b}}{|\vec{a}|^{2}} = \vec{a}.\vec{b}$

$$\therefore (1 - \lambda^2)\vec{a}\cdot\vec{b} = (1 - \lambda^2)\cos 60^\circ$$
$$\therefore (1 - \lambda^2)\frac{1}{2} = 0 \Longrightarrow \lambda = \pm 1$$

66. (c) Given, $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{a} - \vec{b}| = 7$ Since, $|\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = 2[|\vec{a}|^2 + |\vec{b}|^2]$ \therefore By putting the values of $|\vec{a}|, |\vec{b}|$ and $|\vec{a} - \vec{b}|$ we get $|\vec{a} + \vec{b}|^2 + 7^2 = 2[3^2 + 4^2]$ $|\vec{a} + \vec{b}|^2 = 50 - 49 \implies |\vec{a} + \vec{b}|^2 = 1 \implies |\vec{a} + \vec{b}| = 1$

67. (b) Let \vec{d}_1 and \vec{d}_2 be the two diagonals of a quadrilateral 70. (a) such that

$$\vec{d}_1 = 3\hat{i} + 6\hat{j} - 2\hat{k}$$

and $\vec{d}_2 = 4\hat{i} - \hat{j} + 3\hat{k}$
Now, Dot product of \vec{d}_1 and \vec{d}_2 is
 $\vec{d}_1 \cdot \vec{d}_2 = 3(4) + 6(-1) - 2(3) = 0$
Now, $|\vec{d}_1| = \sqrt{3^2 + 6^2 + 2^2} = 7$
 $|\vec{d}_2| = \sqrt{4^2 + 1^2 + 3^2} = \sqrt{26}$
Since, $|\vec{d}_1| \neq |\vec{d}_2|$

Hence, given quadrilateral is a rhombus,

68. (a) Let
$$A = (0, 2, 2)$$
, $B = (2, 0, -1)$ and $C = (3, 4, 0)$
 $\overrightarrow{AB} = (2-0, 0-2, -1-2)$ and $\overrightarrow{AC} = (3-0, 4-2, 0-2)$
 $\Rightarrow \overrightarrow{AB} = (2, -2, -3)$ and $\overrightarrow{AC} = (3, 2, -2)$
 \therefore Area of triangle $= \frac{1}{2} \times$ magnitude of $\overrightarrow{AB} \times \overrightarrow{AC}$
 $= \frac{1}{2} \| \overrightarrow{AB} \times \overrightarrow{AC} \|$
 $= \frac{1}{2} \| \overrightarrow{AB} \times \overrightarrow{AC} \|$
 $= \frac{1}{2} \| [\hat{\mathbf{i}} (\hat{\mathbf{j}} + \hat{\mathbf{k}}) - \hat{\mathbf{j}} (-4+9) + \hat{\mathbf{k}} (4+6)] \|$
 $= \frac{1}{2} | 10\hat{\mathbf{i}} - 5\hat{\mathbf{j}} + 10\hat{\mathbf{k}} |$
 $= \frac{1}{2} \sqrt{(10)^2 + (5)^2 + (10)^2} = \frac{1}{2} \sqrt{225} = \frac{15}{2}$

69. (b) From the figure it is clear that the angle between

$$6\vec{\mathbf{b}}$$
 and $-5\vec{\mathbf{a}}$ is 120° or $\frac{2\pi}{3}$.
 $6\vec{\mathbf{b}}$

$$\underbrace{120^{\circ}}_{-5\vec{a}} 60^{\circ} a$$

ALTERNATE SOLUTION:

$$\theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3}.$$

() Consider statement 1

$$\vec{a} \cdot \left\{ \left(\vec{b} + \vec{c} \right) \times \left(\vec{a} + \vec{b} + \vec{c} \right) \right\} = 0$$

$$= \vec{a} \cdot \left\{ \vec{b} \times \vec{a} + \vec{b} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{c} \times \vec{b} + \vec{c} \times \vec{c} \right\}$$

$$= 0 + 0 + \vec{a} \cdot \left(\vec{b} \times \vec{c} \right) + 0 + \vec{a} \cdot \left(\vec{c} \times \vec{b} \right) + 0 \qquad (\because \vec{a} \times \vec{a} = 0)$$

$$= \vec{a} \cdot \left(\vec{b} \times \vec{c} \right) - \vec{a} \cdot \left(\vec{b} \times \vec{c} \right) = 0$$

and for any three coplanar vectors \vec{d} , \vec{e} , \vec{f} ,

$$(\vec{d} \times \vec{e})$$
. $\vec{f} = 0$
Hence, statement (1) is correct and statement-2 is incorrect

71. (c) Let \vec{a} and \vec{b} be two unit vectors. \therefore |a|=1 and |b|=1Since, α is the angle between \vec{a} and \vec{b} $\therefore \quad \cos \alpha = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|a||b|}$ $\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{1}$ $\cos \alpha = \vec{a} \cdot \vec{b}$ Now, $\left| \vec{a} + \vec{b} \right| = 1$ $\left(\because \vec{a} + \vec{b} \text{ is unit vector} \right)$ Squaring both sides $\Rightarrow \left| \vec{a} \right|^2 + \left| \vec{b} \right|^2 + 2 \vec{a} \cdot \vec{b} = 1$ \Rightarrow 1+1+2 cos $\alpha = 1$ $\Rightarrow 2 \cos \alpha = -1$ $\Rightarrow \cos \alpha = -\frac{1}{2} = \cos \frac{2\pi}{2}$ $\Rightarrow \alpha = \frac{2\pi}{3}$ 72. (a) Given vectors are $\hat{i} - \hat{j} + \hat{k}$, $2\hat{i} + \hat{j} - \hat{k}$ and $\lambda \hat{i} - \hat{j} + \lambda \hat{k}$ We know given vectors are coplanar, if 1 -1 1 $\begin{vmatrix} 2 & 1 & -1 \end{vmatrix} = 0$ $\lambda - 1 \lambda$ $\Rightarrow 1(\lambda-1)+1(2\lambda+\lambda)+1(-2-\lambda)=0$ $\Rightarrow \lambda - 1 + 3\lambda - 2 - \lambda = 0$ $\Rightarrow 3\lambda = 3 \Rightarrow \lambda = 1$ 73. (c) Both statements (1) and (2) are correct. 74. (a) Let $\vec{b} = x \vec{i} + y \vec{j} + z \vec{k}$ Since, \vec{b} is collinear with vetor \vec{a} therefore $\vec{a} = k \vec{b}$ where k is a scalar. Given $\vec{a} = (2, 1, -1)$ \therefore (2, 1, -1) = k(x, y, z) $\Rightarrow x = \frac{2}{k}, y = \frac{1}{k}, z = \frac{-1}{k}$ Also, $\vec{a} \cdot \vec{b} = 3$ $\Rightarrow 2x + y - z = 3$ $\Rightarrow 2\left(\frac{2}{k}\right) + \frac{1}{k} + \frac{1}{k} = 3$

$$\Rightarrow \frac{4}{k} + \frac{1}{k} + \frac{1}{k} = 3$$
$$\Rightarrow \frac{6}{k} = 3 \Rightarrow k = 2$$
$$\therefore \quad x = 1, \ y = \frac{1}{2} \text{ and } z = \frac{-1}{2}$$
Hence $\vec{b} = \left(1, \frac{1}{2}, -\frac{1}{2}\right)$

75. (c) We know, scalar triple product $(\vec{a} \times \vec{b})$. \vec{c} is positive or

negative according as $\vec{a}, \vec{b}, \vec{c}$ form a right handed or left handed system respectively. consider option (a)

Let
$$\vec{c} = \vec{j}$$

$$\therefore \quad \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} x & y & z \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix} = x(-1) - y(0) + z(0)$$
$$= -x$$

option (b)

Let
$$\vec{c} = y \ \hat{j} - x \ \hat{k}$$

$$\therefore \quad \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} x & y & z \\ 0 & 0 & 1 \\ 0 & y - x \end{vmatrix} = x(-y) - y(0) + z(0)$$

$$= -xy$$

option (c)

·

Let
$$c = y \ i - x \ j$$

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} x & y & z \\ 0 & 0 & 1 \\ y - x & 0 \end{vmatrix}$$

$$= x(x) - y(-y) + z(0) = x^2 + y^2$$

Since, scalar triple product is positive when $\vec{c} = y \hat{i} - x \hat{j}$

 \therefore option (c) is correct.

76. (b) Let $\overrightarrow{OP} = \hat{i} + 3\hat{j} - 2\hat{k}$ and $\overrightarrow{OQ} = 3\hat{i} + \hat{j} - 2\hat{k}$

Let $\hat{i} + \hat{j} - \hat{k}$ be required position vector of the bisector of the angle *POQ* since, it is the bisector of $\angle POQ$ therefore. It will make equal angles with \overrightarrow{OP} and \overrightarrow{OQ} .

Let Angle between $\hat{i} + 3\hat{j} - 2\hat{k}$ and $\hat{i} + \hat{j} - \hat{k}$ is

$$\theta = \cos^{-1} \left(\frac{1+3+2}{\sqrt{1+9+4}\sqrt{1+1+1}} \right)$$
$$= \cos^{-1} \left(\frac{6}{\sqrt{14}\sqrt{3}} \right)$$

and angle between $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} + \hat{j} - \hat{k}$, is

$$\phi = \cos^{-1}\left(\frac{1+3+2}{\sqrt{9+1+4}\sqrt{1+1+1}}\right) = \cos^{-1}\left(\frac{6}{\sqrt{14}\sqrt{3}}\right)$$

Hence, $\theta = \phi$

77. (b) Given $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ lie on a plane.

> \Rightarrow vectors $a\hat{i} + a\hat{j} + c\hat{k}, \hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ are coplanar.

$$\therefore \begin{vmatrix} a & a & c \\ 1 & 0 & 1 \\ c & c & b \end{vmatrix} = 0$$

$$\Rightarrow a(-c) - a(b-c) + c(c) = 0$$

$$\Rightarrow -ac - ab + ac + c^2 = 0$$

$$\Rightarrow c^2 = ab$$

$$\Rightarrow c \text{ is the geometric mean of } a \text{ and } b.$$

78. (d) Let
$$\vec{a} = \hat{i} - \hat{k}, \vec{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k}$$

and $\vec{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k}$
Now, $(\vec{b} \times \vec{c}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & 1 & (1 - x) \\ y & x & (1 + x - y) \end{vmatrix}$
 $= \hat{i}(1 + x - y - x + x^2) - \hat{j}(x + x^2 - xy - y) + \hat{k}(x^2 - y)$
 $= \hat{i}(1 - y + x^2) - \hat{j}(x + x^2 - xy - y) + \hat{k}(x^2 - y)$
Now, $\vec{a}.(\vec{b} \times \vec{c}) = 1(1 - y + x^2) + 0(x + x^2 - xy - y) - 1(x^2 - y)$
 $= 1 - y + x^2 - x^2 + y$

= 1 which shows that $\vec{a} \cdot (\vec{b} \times \vec{c})$ does not depend 81. (d) on x and y.

79. (a) Let
$$\overrightarrow{PQ} = 3\hat{i} + 2\hat{j} - m\hat{k}$$
 and $\overrightarrow{PS} = \hat{i} + 3\hat{j} + \hat{k}$
where PQRS is a parallelogram.

$$\therefore \quad \text{Area of parallelogram} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & -m \\ 1 & 3 & 1 \end{vmatrix}$$

$$= |\hat{i}(2+3m) - \hat{j}(3+m) + \hat{k}(9-2)|$$

$$= \sqrt{(2+3m)^{2} + (3+m)^{2} + 7^{2}}$$

$$\Rightarrow 90 = 4 + 9m^{2} + 12m + 9 + m^{2} + 6m + 49$$

$$\Rightarrow 10m^{2} + 18m - 28 = 0$$

$$\Rightarrow 5m^{2} + 9m - 14 = 0$$

$$\Rightarrow 5m^{2} + 9m - 14 = 0$$

$$\Rightarrow m(5m + 14) - 1(5m + 14) = 0$$

$$\Rightarrow (5m + 14)(m - 1) = 0$$

$$\Rightarrow m = 1 \text{ or } \frac{-14}{5}$$

80. (a) Let the required vector be $\hat{i} + \hat{j}$

Since the vector $\hat{i} + \hat{j}$ is equally inclined to the vectors $\hat{i} + 3\hat{j}$ and $3\hat{i} + \hat{j}$ therefore Angle b/w $\hat{i} + \hat{j}$ and $\hat{i} + 3\hat{j} = \theta_1$ is equal to angle

between $\hat{i} + \hat{j}$ and $3\hat{i} + \hat{j} = \theta_2$

 \therefore Angle between $\hat{i} + \hat{j}$ and $\hat{i} + 3\hat{j}$

$$= \cos^{-1} \left[\frac{(1)(1) + (1)(3)}{\sqrt{(1)^2 + (1)^2} \sqrt{(1)^2 + (3)^2}} \right]$$
$$= \cos^{-1} \left[\frac{1+3}{\sqrt{2} \sqrt{10}} \right] = \cos^{-1} \left[\frac{4}{\sqrt{2} \sqrt{10}} \right]$$
$$= \cos^{-1} \left[\frac{2}{\sqrt{5}} \right] \text{ and }$$

angle between $\hat{i} + \hat{j}$ and $(3\hat{i} + \hat{j})$

$$= \cos^{-1} \left| \frac{1+3}{\sqrt{10}\sqrt{2}} \right|$$

$$=\cos^{-1}\left(\frac{4}{\sqrt{2}\sqrt{10}}\right)=\cos^{-1}\left(\frac{2}{\sqrt{5}}\right)$$

Hence required vector is $\hat{i} + \hat{j}$

Let ABCD be a quadrilateral

$$AB + CB + CD + DA$$

$$= \overline{AB} + \overline{CB} + \overline{CA} (\because \overline{CD} + \overline{DA} = \overline{CA})$$

$$= \overline{AB} + \overline{CA} + \overline{CB}$$

$$= \overline{CB} + \overline{CB} (\because \overline{AB} + \overline{CA} = \overline{CB})$$

$$= 2\overline{CB}$$
82. (a) Let the vertices of the \triangle ABC are A (3,-1,2), B(1,-1,-3) and C(4,-3,1).
Let $\overline{OA} = 3\hat{i} - \hat{j} + 2\hat{k}$,
 $\overline{OB} = \hat{i} - \hat{j} - 3\hat{k}$ and
 $\overline{OC} = 4\hat{i} - 3\hat{j} + k$
Area of $\triangle ABC = \frac{1}{2} |\overline{AB} \times \overline{AC}|$
Now, $\overline{AB} = \overline{OA} - \overline{OB} = 2\hat{i} + 5\hat{k}$
 $\overline{AC} = \overline{OA} - \overline{OC} = -\hat{i} + 2\hat{j} + \hat{k}$
 \therefore Required Area $= \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 5 \\ -1 & 2 & 1 \end{vmatrix}$
 $= \frac{1}{2} |\hat{i}(-10) - \hat{j}(2 + 5) + \hat{k}(4)|$
 $= \frac{1}{2} |-10\hat{i} - 7\hat{j} + 4\hat{k}|$
 $= \frac{1}{2} \sqrt{100 + 49 + 16} = \frac{1}{2} \sqrt{165}$ sq unit
83. (d) Let $\overline{A} = \hat{i} + \hat{j} + \hat{k}, \overline{B} = 2\hat{i} + 4\hat{j} - 5\hat{k}$
and $\overline{C} = b\hat{i} + 2\hat{j} + 3\hat{k}$
Now, $\overline{B} + \overline{C} = 2\hat{i} + 4\hat{j} - 5\hat{k} + b\hat{i} + 2\hat{j} + 3\hat{k}$
 $= (2 + b) \hat{i} + 6\hat{j} - 2\hat{k}$
The unit vector parallel to $\overline{B} + \overline{C}$ is
 $\hat{n} = \frac{(2 + b)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{(2 + b)^2 + 6^2 + (-2)^2}} = \frac{(2 + b)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{b^2 + 4b + 44}}$

Now,
$$(\hat{i} + \hat{j} + \hat{k}) \cdot \hat{n} = 1 \Longrightarrow \frac{2 + b + 6 - 2}{\sqrt{b^2 + 4b + 44}} = 1$$

$$\Rightarrow 8b = 8$$

$$\Rightarrow b = 1$$
84. (c) Let $p = \text{Magnitude of } 3\hat{i} - 2\hat{j} = \sqrt{9+4} = \sqrt{13}$
 $q = \text{Magnitude of } 2\hat{i} + 2\hat{j} + \hat{k} = \sqrt{4+4+1} = 3$
 $r = \text{Magnitude of } 4\hat{i} - \hat{j} + \hat{k} = \sqrt{16+1+1} = \sqrt{18} = 3\sqrt{2}$
 $s = \text{Magnitude of } 2\hat{i} + 2\hat{j} + 3\hat{k} = \sqrt{4+4+9} = \sqrt{17}$
 $\therefore r > s > p > q$
85. (c) Let $x\hat{i} + y\hat{j} + z\hat{k}$ is a unit vector.
 $\therefore x^2 + y^2 + z^2 = 1$
Given $x : y : z = \sqrt{3} : 2 : 3$
 $\Rightarrow x = \sqrt{3} k, y = 2k \text{ and } z = 3k$
 $\therefore (\sqrt{3} k)^2 + (2k)^2 + (3k)^2 = 1$
 $\Rightarrow 3k^2 + 4k^2 + 9k^2 = 1$
 $\Rightarrow k^2 = \frac{1}{16} \Rightarrow k = \frac{1}{4}$
Hence, $z = 3k = 3 \times \frac{1}{4} = \frac{3}{4}$

 $\Rightarrow 2+b+6-2 = \sqrt{b^2+4b+44}$

86. (c) Let vector $x\hat{i} + y\hat{j} + z\hat{k}$ be perpendicular to vectors

$$4\hat{i} + 2\hat{j}$$
 and $-3\hat{i} + 2\hat{j}$.
Their dot product is zero.
 $\therefore 4x + 2y = 0$... (i)
and $-3x + 2y = 0$... (ii)
From eqs. (i) and (ii),
 $x = 0, y = 0$

Hence, required vector is \hat{k} .

87. (b) Since, $\vec{u}_4 = 2\vec{u}_2$

 \therefore \vec{u}_2 is parallel to \vec{u}_4 . Hence, only statement II is correct.

88. (c) Since, the points with position vectors $10\hat{i}+3\hat{j}$,

 $12\hat{i}-5\hat{j}$, $a\hat{i}+11\hat{j}$ are collinear.

$$\therefore \begin{vmatrix} 10 & 3 & 1 \\ 12 & -5 & 1 \\ a & 11 & 1 \end{vmatrix} = 0$$

$$\Rightarrow 10 (-5 - 11) - 3 (12 - a) + 1 (132 + 5a) = 0$$

$$\Rightarrow -160 - 36 + 3a + 132 + 5a = 0$$

$$\Rightarrow -196 + 132 + 8a = 0$$

$$\Rightarrow 8a = 64$$

$$\Rightarrow a = 8$$

(b) We know that, the angle between the vectors 89. $a_1\hat{i} + b_1\hat{j} + c_1\hat{k}$ and $a_2\hat{i} + b_2\hat{j} + c_2\hat{k}$ is given by

$$\cos \theta = \left[\frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \right]$$

 \therefore Angle between the vectors $\hat{i} + 2\hat{j} + 3\hat{k}$ and

$$-\hat{i} + 2\hat{j} + 3\hat{k} \text{ is given by}$$

$$\cos \theta = \left[\frac{1 \times (-1) + 2 \times 2 + 3 \times 3}{\sqrt{1 + 4} + 9\sqrt{1 + 4} + 9}\right]$$

$$= \frac{-1 + 4 + 9}{14} = \frac{12}{14} = \frac{6}{7}$$
Now, $\sin \theta = \sqrt{1 - \cos^2 \theta}$

$$= \sqrt{1 - \frac{36}{49}} = \sqrt{\frac{49 - 36}{49}} = \sqrt{\frac{13}{49}} = \frac{\sqrt{13}}{7}$$

90. (a) Let the vector \vec{a} lies in the plane of vectors \vec{b} and \vec{c} . $\Rightarrow \vec{a}, \vec{b}$ and \vec{c} are coplanar. $\therefore \quad \vec{a} \cdot (\vec{b} \times \vec{c}) = 0$

91. (b) Let
$$\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$$
 and $\vec{b} = 4\hat{i} - 4\hat{j} + 7\hat{k}$

 $\therefore \quad \text{Projection of } \vec{a} \text{ on } \vec{b} = \frac{\vec{a}.\vec{b}}{|\vec{b}|}$ Now, \vec{a} . $\vec{b} = 4(1) + 4(2) + 1(7) = 19$

and
$$|\vec{b}| = \sqrt{(4)^2 + (4)^2 + (7)^2} = \sqrt{81} = 9$$

 \therefore Projection of \vec{a} on $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{19}{9}$

92. (c) Let
$$\overrightarrow{a}$$
 and \overrightarrow{b} are two vectors such that $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 0$

 $\vec{a} \times \vec{b} = 0$ then either \vec{a} or \vec{b} is a null vector.

9

93. (d) Given vectors $-\hat{i} - 2x\hat{j} - 3y\hat{k}$ and $\hat{i} - 3x\hat{j} - 2y\hat{k}$ are orthogonal to each other.

$$\therefore \left(-\hat{i} - 2x \,\hat{j} - 3y \,\hat{k}\right) \cdot \left(\hat{i} - 3x \,\hat{j} - 2y \,\hat{k}\right) = 0$$

$$\Rightarrow (-1) (1) + (-2x) (-3x) + (-3y) (-2y) = 0$$

$$\Rightarrow -1 + 6x^2 + 6y^2 = 0$$

$$\Rightarrow 6x^2 + 6y^2 = 1$$

$$\Rightarrow x^2 + y^2 = \left(\frac{1}{\sqrt{6}}\right)^2$$

Hence, locus of (x, y) is a circle.

94. (d) Let \overrightarrow{c} is the unit vector perpendicular to both the

vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} is $\frac{\left(\overrightarrow{a} \times \overrightarrow{b}\right)}{\left|\overrightarrow{a} \times \overrightarrow{b}\right|}$

5. (c) Let
$$\overrightarrow{A} = 10\hat{i} + 3\hat{j}$$
, $\overrightarrow{B} = 12\hat{i} - 5\hat{j}$
and $\overrightarrow{C} = m\hat{i} + 11\hat{j}$
Now, $\overrightarrow{AB} = 2\hat{i} - 8\hat{j}$ and $\overrightarrow{BC} = (m - 12)\hat{i} + 16\hat{j}$
 $\overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -8 & 0 \\ m - 12 & 16 & 0 \end{vmatrix} = 0$

9

9

$$= \hat{i}(0) - \hat{j}(0) + \hat{k}(32 + 8m - 96)$$
$$= k(-64 + 8m) = 0 \Longrightarrow 8m = 64$$
$$\Longrightarrow m = 8$$

96. (d) Since the three vectors are coplanar, so one of them is expressible as a linear combination of the other two. $\therefore (m, -1, 2) = x(2, -3, 4) + y(1, 2, -1)$

$$\Rightarrow 2x + y = m \qquad ...(i)$$

-3x + 2y = -1 ...(ii)
and 4x - y = 2 ...(iii)
on solving equation (ii) and (iii) we get

x =
$$\frac{3}{5}$$
 and y = $\frac{2}{5}$
∴ from (i), $2\left(\frac{3}{5}\right) + \frac{2}{5} = m$

$$\Rightarrow \frac{6}{5} + \frac{2}{5} = m \Rightarrow \frac{8}{5} = m$$

7. (a) Let
$$\overrightarrow{OA} = \hat{i} + 2\hat{j} + 3\hat{k}$$
, $\overrightarrow{OB} = 2\hat{i} + 5\hat{j} - \hat{k}$ and
 $\overrightarrow{OC} = -\hat{i} + \hat{j} + 2\hat{k}$ be three position vectors.
Now, $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \hat{i} + 3\hat{j} - 4\hat{k}$
and $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = -2\hat{i} - \hat{j} - \hat{k}$

98. (c)

$$\therefore \text{ Area of } \Delta \text{ ABC} = \frac{1}{2} \begin{vmatrix} \overrightarrow{AB} \times \overrightarrow{AC} \end{vmatrix}$$
Now, $\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & -4 \\ -2 & -1 & -1 \end{vmatrix}$

$$= \hat{i}(-3-4) - \hat{j}(-1-8) + \hat{k}(-1+6)$$

$$= -7\hat{i} + 9\hat{j} + 5\hat{k}$$
Now, $\left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = \sqrt{155}$

$$\therefore \text{ Required Area} = \frac{\sqrt{155}}{2}$$
From the given vectors we can conclude that
$$\begin{pmatrix} -1 & -2 & -1 \\ -2 & -1 & -1 \end{vmatrix}$$

$$A\left(-1,\frac{1}{2},4\right), B\left(1,\frac{1}{2},4\right), C\left(1,\frac{-1}{2},4\right), D\left(-1,-\frac{1}{2},4\right)$$

Length = AB = 2, BC = 1
Area = AB × BC = 2

99. (c) Let
$$\vec{a} = (2,1,-1)$$
, $\vec{b} = (1,-1,0)$, $\vec{c} = (5,-1,1)$
 $\therefore \vec{a} + \vec{b} - \vec{c} = (-2,1,-2)$

Let $\vec{n} = x\hat{i} + y\hat{j} + z\hat{k}$ be the unit vector which is || to (-2,

1, -2) in the opposite direction.

$$\therefore x^{2} + y^{2} + z^{2} = 1 \text{ and } \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ -2 & 1 & -2 \end{vmatrix} = 0$$

$$\Rightarrow x = -2y, y = y, z = -2y$$

$$x^{2} + y^{2} + z^{2} = 1 \Rightarrow 4y^{2} + y^{2} + 4y^{2} = 1 \Rightarrow y = \pm \frac{1}{3}$$

Hence, the Required vector

$$\hat{n} = \frac{2}{3}\hat{i} - \frac{\hat{j}}{3} + \frac{2}{3}\hat{k}$$

100. (c) Given $\left| \vec{a} \right| = \left| \vec{b} \right|$

Consider
$$(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b})$$

= $\vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} - \vec{b} \cdot \vec{b}$
= $|\vec{a}|^2 - |\vec{b}|^2 = |\vec{a}|^2 - |\vec{a}|^2 = 0$
Hence $(\vec{a} + \vec{b})$ is perpendicular to (

Hence $(\vec{a} + \vec{b})$ is perpendicular to $(\vec{a} - \vec{b})$.

101. (c) Consider $\overrightarrow{PO} + \overrightarrow{OQ} = \overrightarrow{QO} + \overrightarrow{OR}$ _____

$$\Rightarrow OQ - QO = -PO + OR$$
$$\Rightarrow \overrightarrow{OQ} + \overrightarrow{OQ} = \overrightarrow{OR} + \overrightarrow{OP}$$
$$\Rightarrow \overrightarrow{OQ} = \frac{1}{2} (\overrightarrow{OP} + \overrightarrow{OR})$$

Hence Q is the mid-point of P and R. \therefore P, Q, R are collinear.

102. (c) Three vectors $x_1\vec{a} + y_1\vec{b} + z_1\vec{c}$, $x_2\vec{a} + y_2\vec{b} + z_2\vec{c}$ and

 $x_3\vec{a} + y_3\vec{b} + z_3\vec{c}$ will be coplanar iff

$$\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = 0$$

Here, $x_1 = 2, y_1 = -1, z_1 = 1$
 $x_2 = 1, y_2 = 2, z_2 = -3$
 $x_3 = 3, y_3 = m, z_3 = 5$
$$\therefore \begin{vmatrix} 2 & -1 & 1 \\ 1 & 2 & -3 \\ 3 & m & 5 \end{vmatrix} = 0$$

$$\Rightarrow 2(10 + 3m) + 1(5 + 9) + 1(m - 6) = 0$$

$$\Rightarrow 7m + 28 = 0 \Rightarrow m = -4$$

103. (b) We have

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$
 and $\sin \theta = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}| |\vec{b}|}$

Given:
$$|\vec{a}| = 10, |\vec{b}| = 2, \vec{a} \cdot \vec{b} = 12$$

$$\therefore \cos\theta = \frac{12}{20} \text{ and } \sin\theta = \frac{\left|\vec{a} \times \vec{b}\right|}{20}$$

Now, By squaring and adding, we get $\sin^2\theta + \cos^2\theta = 1$

$$\Rightarrow \frac{\left|\vec{a} \times \vec{b}\right|^2}{400} + \frac{144}{400} = 1 \Rightarrow \left|\vec{a} \times \vec{b}\right|^2 = 256$$
$$\Rightarrow \left|\vec{a} \times \vec{b}\right| = 16$$

104. (c) Since both vectors are orthogonal \therefore their dot product is zero.

$$\therefore 1(1) + (-x) (x) + (-y) (y) = 0$$

$$\Rightarrow 1 - x^2 - y^2 = 0$$

$$\Rightarrow x^2 + y^2 = 1$$

Which is a circle.

110. (d) Let
$$\vec{a} = p(-3\hat{i} - 2\hat{j} + 13\hat{k})$$

 $= (-3p)\hat{i} + (-2p)\hat{j} + (13p)\hat{k}$
It is given that \vec{a} is of unit length
 $\therefore |\vec{a}| = 1 \Rightarrow |\vec{a}|^2 = 1$
 $\Rightarrow (-3p)(-3p) + (-2p)(-2p) + (13p)(13p) = 1$
 $9p^2 + 4p^2 + 169p^2 = 1$
 $\Rightarrow p^2 = \frac{1}{182} \Rightarrow p = \frac{1}{\sqrt{182}}$

111. (b) The vector $2\hat{j} - \hat{k}$ lies in the plane of YZ.

By putting the values of $|\vec{a}|, |\vec{b}|$ and $|\vec{a} + \vec{b}|$, we get

$$6 + \left| \vec{a} - \vec{b} \right|^2 = 2(2+3)$$
$$\Rightarrow \quad \left| \vec{a} - \vec{b} \right| = 2$$

117. (d) One vector will be normal to the other vector if their dot product will be zero.Since none option satisfies the condition of normality. Therefore option (d) is correct.

118. (c) Angle b/w the vectors is
$$\cos \theta = \frac{4(1) - 4(1)}{\sqrt{32}\sqrt{3}} = 0$$

$$\Rightarrow \theta = \frac{\pi}{2}$$

Hence, $\cos \theta + \sin \theta = \cos \frac{\pi}{2} + \sin \frac{\pi}{2} = 0 + 1 = 1.$

119. (d)
$$\cos \frac{\pi}{3} = \frac{(\hat{i} - m\hat{j}) \cdot (\hat{j} + \hat{k})}{\left|\sqrt{1 + m^2}\right| \left|\sqrt{1^2 + l^2}\right|}$$

 $\frac{1}{2} = \frac{-m}{\sqrt{1 + m^2} \cdot \sqrt{2}}$
 $\frac{1}{2} = \frac{m^2}{1 + m^2}$
 $m = \pm 1$
120. (d) $(\hat{i} - \hat{j}) \times (\hat{j})$
 $= \hat{i} \times \hat{i} - \hat{j} \times \hat{j} = \hat{k}$
121. (c) $\overline{AB} = -2\hat{i} + 6\hat{j} - 3\hat{k}$
 $|\overline{AB}| = \sqrt{(-2)^2 + 6^2 + (-3)^2} = \sqrt{49} = 7$
122. (d) $(\hat{i} - 2x\hat{j} - 3y\hat{k}) \cdot (\hat{i} + 3x\hat{j} + 2y\hat{k}) = 0$
 $1 - 6x^2 - 6y^2 = 0$
 $- 6x^2 - 6y^2 = -1$
 $x^2 + y^2 = \frac{1}{6}$
 $x^2 + y^2 = \left(\sqrt{\frac{1}{6}}\right)^2$
Hence, locus of the point i.e. a circle.
123. (a) $|P(2\hat{i} - \hat{j} + 2\hat{k})| = 3$

$$P\left|\sqrt{2^2 + (-1)^2 + 2^2}\right| = 3$$
$$3P = 3 \Longrightarrow P = 1$$

124. (a)
$$\vec{a} + t\vec{b} = (2-t)\hat{i} + (2+2t)\hat{j} + (3+t)\hat{k}$$

 $(\vec{a} + t\vec{b})$ and \vec{c} is perpendicular. Therefore,

$$(\vec{a} + \vec{b}), \vec{c} = 0$$

$$3(2 - t) + 2 + 2t = 0$$

$$6 - 3t + 2t + 2 = 0$$

$$t = 8$$
125. (a) $\overrightarrow{BA} = 4\hat{i} + \hat{j} + \hat{k}$

$$\overrightarrow{BC} = 2\hat{i} - \hat{j} - \hat{k}$$

$$(\vec{a} + \vec{j}), \vec{c} = 0$$

$$cos B = \frac{\overrightarrow{BA}, \overrightarrow{BC}}{|\overrightarrow{BA}||\overrightarrow{BC}|}$$

$$= \frac{(4\hat{i} + \hat{j} + \hat{k})(2\hat{i} - \hat{j} - \hat{k})}{|\sqrt{4^2 + 1^2 + 1^2}} ||\sqrt{2^2 + (-1)^2 + (-1)^2}|$$

$$= \frac{6}{\sqrt{18}\sqrt{6}} = \frac{1}{\sqrt{3}}$$
126. (b) Area of triangle ABC = $\frac{1}{2}|\overrightarrow{BA} \times \overrightarrow{BC}|$

$$\overrightarrow{BA} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 1 & 1 \\ 2 & -1 & -1 \end{vmatrix}$$

$$= \hat{i}(0) - \hat{j}(-6) + \hat{k}(-6)$$

$$|\overrightarrow{BA} \times \overrightarrow{BC}| = |\hat{6}\hat{j} - 6\hat{k}| = \sqrt{6^2 + (-6)^2}$$

$$= 6\sqrt{2}$$
Area of triangle = $\frac{1}{2} \times 6\sqrt{2} = 3\sqrt{2}$
127. (c) Mid-point of A and C, $(\frac{2+0}{2}, \frac{3+1}{2}, \frac{1-1}{2}) = (1, 2, 0)$
Mid-point of B and C, $(\frac{-2+0}{2}, \frac{2+1}{2}, \frac{0-1}{2})$

$$= (-1, \frac{3}{2}, \frac{-1}{2})$$
Magnitude = $\sqrt{(1+1)^2 + (2-\frac{3}{2})^2 + (\frac{1}{2})^2}$

$$= \sqrt{4 + \frac{1}{4} + \frac{1}{4}} = \frac{3}{\sqrt{2}}$$
 units

м-526

NDA Topicwise Solved Papers - MATHEMATICS

128. (b) Projection of
$$\vec{a}$$
 on $\vec{b} = \frac{\vec{a}.\vec{b}}{|\vec{b}|} = \frac{(\hat{i}-2\hat{j}+\hat{k}).(4\hat{i}-4\hat{j}+7\hat{k})}{|\sqrt{4^2+(-4)^2+7^2}|}$

$$= \frac{19}{9}$$
129. (a) Vector perpendicular to \vec{a} and $\vec{b} = \vec{a} \times \vec{b}$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 1 \\ 4 & -4 & 7 \end{vmatrix} = \hat{i}(-14+4) - j(7-4) + \hat{k}(-4+8)$$

$$= -10\hat{i}-3\hat{j}+4\hat{k}$$
130. (c) $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$
 $\cos^2 60^\circ + \cos^2 30^\circ + \cos^2 \gamma = 1$
 $\cos^2 60^\circ + \cos^2 30^\circ + \cos^2 \gamma = 1$
 $\cos^2 \gamma = 0 \Rightarrow \gamma = 90^\circ$
131. (a) $r = <1, m, n > ; r = <\cos 60^\circ, \cos 30^\circ, \cos 90^\circ >$
Direction cosines of $\vec{r} = <\frac{1}{2}, \frac{\sqrt{3}}{2}, 0 >$
132. (b) Let angle between \vec{a} and \vec{b} be θ .
 $|\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}|\vec{b}|\cos \theta|}$
 $\frac{10\sqrt{3}}{300} = \sqrt{49+121+2\times7\times11\cos \theta}$
 $300 = 170 + 154\cos \theta$
 $|\vec{a} - \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos \theta}$
 $|\vec{a} - \vec{b}| = \sqrt{170-154\cos \theta}$

133. (d) Let angle between $(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$ be α

 $|\vec{a} - \vec{b}| = \sqrt{170 - 130} = \sqrt{40}$ or $2\sqrt{10}$

$$\cos \alpha = \frac{(\vec{a} + \vec{b}) (\vec{a} - \vec{b})}{|\vec{a} + \vec{b}| |\vec{a} - \vec{b}|}$$
$$= \frac{(7)^2 - (11)^2}{10\sqrt{3} \times 2\sqrt{10}} = \frac{(7 + 11)(7 - 11)}{20\sqrt{3} \times \sqrt{10}} = \frac{-18}{5\sqrt{30}}$$
$$= \frac{-6 \times 3}{5\sqrt{30}} \times \frac{\sqrt{30}}{\sqrt{30}} = -\frac{3\sqrt{30}}{25}$$
$$\alpha = \cos^{-1} \left(\frac{-3}{5}\sqrt{\frac{6}{5}}\right)$$

134. (a) Given |a| = 2, |b| = 5 and $|a \times b| = 8$ Also $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| \cdot |\mathbf{b}| \cdot |\sin \theta|$

$$\Rightarrow |\sin \theta| = \frac{8}{2 \times 5} = \frac{4}{5}$$
$$\Rightarrow |\cos \theta| = \frac{3}{5} \Rightarrow \cos \theta = \pm \frac{3}{5}$$
$$\therefore a.b = |a| . |b| \cos \theta = 2 \times 5 \times \frac{3}{5} = 6$$

135. (c) Since,
$$|a+b| = |a-b|$$

 $\Rightarrow [|a+b|]^2 = [a-b]^2$
 $\Rightarrow a.a+b.b+a.b+b.a = a.a+b.b-a.b-b.a$
 $\Rightarrow 4a.b=0$ ($\because a.b=b.a$)
 $\Rightarrow a.b=0$
Hence, a is perpendicular to b.
136. (b) Area of $\triangle OAB = \frac{1}{2} | \overrightarrow{OA} \times \overrightarrow{OB} |$
 $\therefore \overrightarrow{OA} \times \overrightarrow{OB} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 1 \\ 2 & 1 & -3 \end{vmatrix}$
 $= \hat{i}[3-1] - \hat{j}[-9-2] + \hat{k}[3+2]$
 $= 2\hat{i} + 11\hat{j} + 5\hat{k}$
 $\therefore |\overrightarrow{OA} \times \overrightarrow{OB}| = \sqrt{2^2 + 11^2 + 5^2} = \sqrt{150} = 5\sqrt{6}$
 \therefore Required area $= \frac{1}{2} \times 5\sqrt{6} = \frac{5\sqrt{6}}{2}$ sq. units

136.

137. (a) According to question
$$\vec{a} = -\hat{i} + \hat{j} + \hat{k}$$
 and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$

Then,
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix}$$

$$= \hat{i} [1+1] - \hat{j} [-1-1] + \hat{k} [1-1]$$

$$= 2\hat{i} + 2\hat{j} + 0 = 2(\hat{i} + \hat{j})$$
and $|\vec{a} \times \vec{b}| = \sqrt{4+4} = 2\sqrt{2}$
 \therefore Required unit vector $= \pm \frac{2(\hat{i} + \hat{j})}{2\sqrt{2}} = \pm \frac{\hat{i} + \hat{j}}{\sqrt{2}}$

138. (a) Let
$$\vec{a} = \frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j} + \hat{k}$$

and $\vec{b} = \frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{j} + \hat{k}$
 $\therefore \cos \theta = \frac{\vec{a}\cdot\vec{b}}{|\vec{a}||\vec{b}|}$

$$= \frac{\left(\frac{1}{\sqrt{2}}\hat{i} + \frac{1}{\sqrt{2}}\hat{j} + \hat{k}\right) \cdot \left(\frac{1}{\sqrt{2}}\hat{i} - \frac{1}{\sqrt{2}}\hat{j} + \hat{k}\right)}{\sqrt{\frac{1}{2} + \frac{1}{2} + 1}} \sqrt{\frac{1}{2} + \frac{1}{2} + 1}$$

$$= \frac{1}{2} \left[\frac{1}{2} - \frac{1}{2} + 1\right] = \frac{1}{2} = \cos 60^{\circ}$$
 $\therefore \theta = 60^{\circ}$

139. (a) Let $\vec{a} = \lambda \hat{i} + (1 + \lambda) \vec{j} + (1 + 2\lambda) \hat{k}$ and $\vec{b} = (1-\lambda)\hat{i} + \lambda\hat{j} + 2\hat{k}$ For a and b to be perpendicular, we should have $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \frac{\pi}{2} = 0$ $\Rightarrow [\lambda \hat{i} + (1+\lambda)\hat{j} + (1+2\lambda)\hat{k}] [(1-\lambda)\hat{i} + \lambda\hat{j} + 2\hat{k}] = 0$ $\Rightarrow \lambda - \lambda^2 + \lambda + \lambda^2 + 2 + 4\lambda = 0$ $\Rightarrow 6\lambda = -2$ $\therefore \lambda = -\frac{2}{6} = -\frac{1}{3}$ Sol. (Qs. 140-143) We have, $\vec{a} + \vec{b} + \vec{c} = 0$...(i) On squaring both sides request. $\vec{a}^2 + \vec{b}^2 + \vec{c}^2 + 2\vec{a}\vec{b} + 2\vec{b}\vec{c} + 2\vec{c}\vec{a} = 0$ $(:: \vec{a}.\vec{b} = \vec{b}.\vec{a}, \vec{b}.\vec{c} = \vec{c}.\vec{b} \text{ and } \vec{c}.\vec{a} = \vec{a}.\vec{c})$ $\Rightarrow |a|^{2} + |b|^{2} + |c|^{2} = -2 [a.b + b.c + c.a]$ $\Rightarrow (3)^{2} + (5)^{2} + (7)^{2} = -2 [a.b + b.c + c.a]$ \Rightarrow a.b+b.c+c.a = $\frac{9+25+49}{-2} = -\frac{83}{2}$ Now a + b + c = 0[using eq. (i)] \Rightarrow a + b = - c On squaring both sides, we get $\Rightarrow a^2 + b^2 + 2a.b = c^2$ $\Rightarrow (3)^2 + (5)^2 + 2ab = (7)^2$ $\Rightarrow \vec{a} \cdot \vec{b} = \frac{15}{2}$ $\Rightarrow |\vec{a}| |\vec{b}| \cos \theta = \frac{15}{2} \Rightarrow 3.5 \cos \theta = \frac{15}{2}$ $\Rightarrow \cos \theta = \frac{1}{2} = \cos \frac{\pi}{2}$ $\therefore \theta = \frac{\pi}{3}$ From eq. (i), $\vec{b} + \vec{c} = -\vec{a}$ $\Rightarrow b^2 + c^2 + 2b.c = a^2$ $\Rightarrow 2b.c = a^2 - b^2 - c^2 = 9 - 25 - 49 = -65$ \Rightarrow b.c = $-\frac{65}{2}$ \Rightarrow |b| |c| cos $\theta = -\frac{65}{2}$ $\Rightarrow \cos \theta = \frac{65}{2} \times \frac{1}{5} \times \frac{1}{7} = -\frac{13}{14}$ Also, $|\vec{a} + \vec{b}| = |-\vec{c}| = |\vec{c}| = 7$ 140. (c) 141. (b) 142. (d) 143. (a)

144. (d) Area of ΔABC =
$$\frac{1}{2} (\overline{AB} \times \overline{AC})$$

= $\frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 3 & 2 \\ -4 & 5 & 2 \end{vmatrix}$
= $\frac{1}{2} [\hat{i} (6-10) - \hat{j} (-4+8) + \hat{k} (-10+12)]$
= $\frac{1}{2} [-4\hat{i} - 4\hat{j} + 2\hat{k}]$
= $\frac{1}{2} \sqrt{16+16+4} = \frac{1}{2} \sqrt{36} = \frac{1}{2} \times 6$
= 3 square units
 \therefore Option (d) is correct.
145. (a) Moment of force, m = $\vec{r} \times \vec{F}$
m = $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -2 & -3 \\ 3 & 4 & -3 \end{vmatrix}$
= $\hat{i} (6+12) - \hat{j} (-6+9) + \hat{k} (8+6)$
= $18\hat{i} - 3\hat{j} + 14\hat{k}$
= $\sqrt{(18)^2 + (-3)^2 + (14)^2}$
= $\sqrt{529} = 23$ units.
146. (a) $\vec{u} - \vec{v} = \vec{w}$
 $(2x \vec{a} + y\vec{\beta}) - (2y\vec{a} + 3x\vec{\beta}) = 2\vec{a} - 5\vec{\beta}$
 $\therefore 2x - 2y = 2$ (i)
And $3x - y = 5$ (ii)
Solving equations (i) and (ii), we get
 $x = 2$ and $y = 1$
 \therefore Option (a) is correct.
147. (d) $|\vec{a}| = 7, |\vec{b}| = 11$ and $|\vec{a} + \vec{b}| = 10\sqrt{3}$
Now $|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2|\vec{a}| |\vec{b}| \cos \theta$
 $\therefore (10\sqrt{3})^2 = 49 + 121 + 2 \times 7 \times 7 \cos \theta$
 $\therefore 300 = 170 + 154 \cos \theta$
 $\frac{300 - 170}{154} = \cos \theta$
 $\therefore \frac{65}{77} = \cos \theta$
Now, $|\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}| |\vec{b}| \cos \theta$
 $= (7)^2 + (11)^2 - 2 \times 7 \times 11 \times \frac{65}{77}$
 $= 49 + 121 - 2 \times 65$
 $= 170 - 130 = 40$
 $\therefore |\vec{a} - \vec{b}| = \sqrt{40} = 2\sqrt{10}$

 α , β and γ be distinct real numbers 148. (b) $\vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ $\vec{b} = \beta \hat{i} + \gamma \hat{j} + \alpha \hat{k}$ $\vec{c} = \gamma \hat{i} + \alpha \hat{j} + \beta \hat{k}$ Let $\alpha = 1, \beta = 2$ and $\gamma = 3$ then, $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$ $\vec{c} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ Now, $|\overrightarrow{ab}| = \sqrt{(2-1)^2} + (3-2)^2 + (1-3)^2 = \sqrt{6}$ Similarly $|\vec{bc}| = |\vec{ac}| = \sqrt{6}$ Hence, point for equilateral triangle. According to statements (1) and (2), 149. (c) when $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then both statements are correct. If $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} = 0$, then \vec{a} , \vec{b} and \vec{c} are collinear. Therefore, option (c) is correct. 150. (c) If $|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$ We know that when $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 0$, then \vec{a} is perpendicular to \vec{b} . $= \vec{a}.\vec{a} - \vec{a}.\vec{b} + \vec{b}.\vec{a} - \vec{b}.\vec{b} = 0$ \vec{a} is perpendicular to \vec{b} Option (c) is correct. 151. (b) Length of diagonal $\stackrel{=}{\Longrightarrow} \stackrel{}{D} = \sqrt{3^2 + 4^2} \\ \stackrel{}{\Longrightarrow} \stackrel{}{D} = 5$: Area = $\frac{1}{2}(D)^2 = \frac{25}{2}$ = 12.5 units 152. (a) D В 0 $\therefore \overrightarrow{OA} = \overrightarrow{OP} - \overrightarrow{AP}; \overrightarrow{OB} = \overrightarrow{OP} + \overrightarrow{PB};$ $\overrightarrow{OC} = \overrightarrow{OP} + \overrightarrow{PC} \& \overrightarrow{OD} = \overrightarrow{OP} - \overrightarrow{DP};$ Also, $\overrightarrow{AP} = \overrightarrow{PC} \& \overrightarrow{DP} = \overrightarrow{PB}$ $\therefore \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4\overrightarrow{OP}$

153. (c) $\overrightarrow{OB} = \overrightarrow{b}$ $\overrightarrow{OC} = \overrightarrow{c}$ $\overrightarrow{BD} = 4\overrightarrow{BC}$ $\overrightarrow{BO} + \overrightarrow{OD} = 4(\overrightarrow{BO} + \overrightarrow{OC})$ $\overrightarrow{OD} = 3\overrightarrow{BO} + 4\overrightarrow{OC}$ $\overrightarrow{OD} = 4\overrightarrow{OC} - 3\overrightarrow{OB}$ $\overrightarrow{OD} = 4\overrightarrow{c} - 3\overrightarrow{b}$ $\sqrt{(5-0)^2 + (n-0)^2} = 13$ 154. (b) $25 + n^2 = 169$ $n^2 = 144$ $n = \pm 12$ 155. (d) $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$ $\therefore |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta = 6 \sin \theta$ & $|\vec{a}.\vec{b}| = |\vec{a}| |\vec{b}| \cos\theta = 6 \cos\theta$ $\left|\vec{a}\times\vec{b}\right|^{2}+\left|\vec{a}.\vec{b}\right|^{2}=(6\sin\theta)^{2}+(6\cos\theta)^{2}$ $= 36 \left(\sin^2 \theta + \cos^2 \theta \right)$ = 36 156. (c) $|\vec{a} + \vec{b}| \le |\vec{a}| + |\vec{b}|$ $\left|\vec{a} - \vec{b}\right| \ge \left|\vec{a}\right| - \left|\vec{b}\right|$ both are correct. 157. (b) $|\hat{a} - \hat{b}| = \sqrt{3}$ $\Rightarrow \left|\hat{a} - \hat{b}\right|^2 = \left(\sqrt{3}\right)^2$ $\Rightarrow \hat{a}.\hat{a} + \hat{b}.\hat{b} - 2\hat{a}.\hat{b} = 3$ $\Rightarrow 2\hat{a}\hat{b} = -1$ Now; $|\hat{a} + \hat{b}|^2 = \hat{a}.\hat{a} + \hat{b}.\hat{b} + 2\hat{a}.\hat{b} = 1 + 1 - 1$ $\Rightarrow \left| \hat{a} + \hat{b} \right|^2 = 1$ $\Rightarrow |\hat{a} + \hat{b}| = 1$ 158. (b) If three vectors are co-planar. $\Rightarrow \begin{vmatrix} \alpha & \alpha & \gamma \\ 1 & 0 & 1 \\ \gamma & \gamma & \beta \end{vmatrix} = 0$ $\Rightarrow \alpha [0-\gamma] - \alpha [\beta - \gamma] + \gamma [\gamma - 0] = 0$ $\Rightarrow -\alpha\gamma - \alpha\beta + \alpha\gamma + \gamma^2 = 0$ $\Rightarrow \gamma^2 = \alpha \beta$ \Rightarrow So α , γ , β are in G.P.

 $(\vec{a} - \vec{d}) \times (\vec{b} - \vec{c})$ 159. (c) = $\vec{a} \times \vec{b} - \vec{d} \times \vec{b} - \vec{a} \times \vec{c} + \vec{d} \times \vec{c}$ $\vec{c} \times \vec{d} - \vec{d} \times \vec{b} - \vec{b} \times \vec{d} - \vec{c} \times \vec{d}$ = = $-\vec{\mathbf{d}}\times\vec{\mathbf{b}}+\vec{\mathbf{d}}\times\vec{\mathbf{b}}$ again $(\vec{a} \times \vec{b}) = (\vec{c} \times \vec{d})$ given $\Rightarrow (\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = (\vec{c} \times \vec{d}) \times (\vec{c} \times \vec{d}) = 0$ $(as \vec{a} \times \vec{a} = 0)$ So both (1) and (2) are correct. 160. (b) \vec{a} and \vec{b} are two unit vectors. : Hence, $|\vec{a} + \vec{b}|^2 = (\hat{a} + \hat{b}).(\hat{a} + \hat{b})$ $= \hat{a}_{.}\hat{a}_{.}+\hat{a}_{.}\hat{b}_{.}+\hat{b}_{.}\hat{a}_{.}+\hat{b}_{.}\hat{b}_{.}$ $= \hat{a} \cdot \hat{a} + \hat{b} \cdot \hat{b} + 2\hat{a} \cdot \hat{b}$ $=|\hat{a}|^{2}+2|\hat{a}||\hat{b}|\cos\theta+|\hat{b}||\hat{b}|$ =1+2 $\cos\theta$ +1 [:: \hat{b} , \hat{a} are unit vector] $=2(1+\cos\theta)$ $|\hat{a} + \hat{b}|^2 = 2.2\cos^2\frac{\theta}{2}$ $\cos\frac{\theta}{2} = \frac{|\hat{a} + \hat{b}|}{2}$ 161. (a) $|\hat{a} - \hat{b}|^2 = (\hat{a} - \hat{b}).(\hat{a} - \hat{b})$ $= \hat{a}.\hat{a} - \hat{b}.\hat{a} - \hat{a}.\hat{b} + \hat{b}.\hat{b}$ $=\mid \hat{a}\mid^{2} - 2\mid \hat{a}\mid\mid \hat{b}\mid \cos\theta + \mid \hat{b}\mid^{2}$ $= 2 - 2 \cos\theta$ $= 2 (1 - \cos\theta)$ $|\hat{a} - \hat{b}|^2 = 2.2 \sin^2 \frac{\theta}{2}$ $\sin\frac{\theta}{2} = \frac{|\hat{a} - \hat{b}|}{2}$ 162. (b) $\vec{A} = \hat{i} + \hat{j} + \hat{k}$ $\vec{B} = 2\hat{i} + 3\hat{i} - \hat{k}$ $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 3 & -1 \end{vmatrix}$ $=\hat{i}(-1-3)-\hat{j}(-1-2)+\hat{k}(3-2)$ $=-4\hat{i}+3\hat{j}+\hat{k}$ Vector of unit length orthogonal to both the vectors \vec{A} and \vec{B}

$$= \frac{\overrightarrow{A} \times \overrightarrow{B}}{|\overrightarrow{A} \times \overrightarrow{B}|}$$
$$= \frac{-4i + 3j + k}{\sqrt{16 + 9 + 1}} = \frac{-4\hat{i} + 3\hat{j} + \hat{k}}{\sqrt{26}}$$

163. (a) Position vectors of vertices A, B and C are \vec{a} , \vec{b} and \vec{c} .

∴ triangle is equilateral.
 ∴ Centroid and orthocenter will coincide.
 Centroid = orthocenter position vector

$$=\frac{1}{3}(\vec{a}+\vec{b}+\vec{c})$$

 \therefore given in question orthocenter is at origin.

Hence
$$\frac{1}{3}(\vec{a}+\vec{b}+\vec{c})=0$$

 $\vec{a} + \vec{b} + \vec{c} = 0$

164. (c) Diagonal d_1 , $\overrightarrow{AC} = 3i + j - 2k$

Diagonal d_2 , $\overrightarrow{BD} = i - 3j + 4k$

Area of parallelogram is $\frac{1}{2} | \vec{d_1} \times \vec{d_2} |$

Hence area
$$= \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -2 \\ 1 & -3 & 4 \end{vmatrix}$$
$$= \frac{1}{2} |[\hat{i}(4-6) - \hat{j}(12+2) + \hat{k}(-9-1)]|$$
$$= \frac{1}{2} |-2\hat{i} - 14\hat{j} - 10\hat{k}|$$

$$= \frac{1}{2}\sqrt{4+196+100}$$
$$= \frac{10\sqrt{3}}{2} = 5\sqrt{3}$$
 square units

165. (a) Since \vec{c} is parallel to \vec{a} $\vec{c} = \lambda \vec{a}$ Now $\vec{b} = \vec{c} + \vec{d} = \lambda \vec{a} + \vec{d}$ $=\lambda(\hat{i}+\hat{j})+x\hat{i}+v\hat{j}+z\hat{k}$ $3\hat{i} + 4\hat{k} = (\lambda + x)\hat{i} + (\lambda + y)\hat{j} + z\hat{k}$ Comparing we get $z=4, \lambda+y=0, \lambda+x=3 \Longrightarrow -y+x=3$ (From(1)) $\Rightarrow \lambda = -y$...(1) $\Rightarrow x - y = 3$...(2) Now \vec{d} is $\perp \mathbf{r}$ to \vec{a} So, $\cos \theta = 0$ $\Rightarrow x + y = 0$...(3) Solving (2) and (3) we get 2x = 3 $\Rightarrow x = \frac{3}{2}, y = -\frac{3}{2}$ $\Rightarrow \vec{c} = \lambda(\vec{a}) = \frac{3}{2}(\hat{i} + \hat{j})$ 166. (d) Since z = 4 and $x = \frac{3}{2}$, $y = -\frac{3}{2}$. So, neither 1 nor 2 is correct. 167. (b) We have $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ So $|\vec{a} + \vec{b} + \vec{c}| = 0$ $\Rightarrow |\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$ $\Rightarrow 0 = (10)^2 + (6)^2 + (14)^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$ $\Rightarrow 0 = 100 + 36 + 196 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a})$ $\Rightarrow -\frac{332}{2} = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ $\Rightarrow -166 = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ 168. (c) Since $\vec{a} + \vec{b} + \vec{c} = 0$ $\Rightarrow \vec{a} + \vec{b} = -\vec{c}$ $\Rightarrow |\vec{a} + \vec{b}| = |\vec{-c}| = |\vec{c}|$ $\Rightarrow |\vec{a} + \vec{b}|^2 = |\vec{c}|^2$ $\Rightarrow |\vec{a}|^2 + |\vec{b}|^2 + 2(\vec{a} \cdot \vec{b}) = |\vec{c}|^2$ $\Rightarrow (10)^2 + (6)^2 + 2(\vec{a} \cdot \vec{b}) = (14)^2$ $\Rightarrow 2(\vec{a} \cdot \vec{b}) = 60$ $\Rightarrow \vec{a} \cdot \vec{b} = 30$ $\Rightarrow \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{30}{10 \times 6} = \frac{1}{2}$

 $\Rightarrow \theta = \cos^{-1}\left(\frac{1}{2}\right) \Rightarrow \theta = 60^{\circ}$ 169. (b) $\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB}$ $= (AB \cdot AC \cdot \cos \theta) + (BC \cdot BA \cdot \cos(90 - \theta))$ $+(CA \cdot CB \cdot \cos 90)$ $= (p \cdot x \cdot \cos \theta) + (y \cdot p \cdot \sin \theta) + 0$ $= p[x\cos\theta + y\sin\theta]$ By projection formula: $p = x\cos\theta + y\cos(90 - \theta)$ $= x\cos\theta + v\sin\theta$ $\therefore p[x\cos\theta + y\sin\theta] = p \times p = p^2.$ 170. (c) Let point P is (1, -1, 2)and point Q is (2, -1, 3) \Rightarrow Position vector of *P* w.r.t. *Q* is $\vec{r} = (1-2)\hat{i} + (-1+1)\hat{j} + (2-3)\hat{k}$ $\Rightarrow \vec{r} = -\hat{i} + 0\hat{j} - \hat{k}$ and $\vec{F} = 3\hat{i} + 2\hat{j} - 4\hat{k}$ $\Rightarrow \text{Moment} = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 0 & -1 \\ 3 & 2 & -4 \end{vmatrix}$ $=\hat{i}(0+2)-\hat{i}(4+3)+\hat{k}(-2+0)=2\hat{i}-7\hat{i}-2\hat{k}$ 171. (d) $\vec{a} = \hat{i} - \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} + 2\hat{k}$ and $\vec{c} = \hat{i} + m\hat{j} + n\hat{k}$; $|\vec{c}| = \sqrt{6}$ Given, $\vec{a}, \vec{b}, \vec{c}$ are coplanar. $\begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 1 & m & n \end{vmatrix} = 0$ $c_1 \rightarrow c_1 + c_2$ $\begin{vmatrix} 0 & 1 & 0 \\ 5 & 3 & 5 \\ 1+m & m & m+n \end{vmatrix} = 0$ \Rightarrow 0+1(5m+5n)-(5+5m)=0 \Rightarrow 5m + 5n - 5 - 5m = 0 \Rightarrow 5n = 5 \Rightarrow n = 1 $\left|\vec{c}\right| = 6 \Longrightarrow \sqrt{1 + m^2 + n^2} = \sqrt{6}$ \Rightarrow 1 + m² + n² = 6 \Rightarrow 2 + m² = 6 \Rightarrow m² = 4 \Rightarrow m = ±2 172. (b) From the figure, observe that $\overrightarrow{OA} + \overrightarrow{AP} = \overrightarrow{OP}$

$$\Rightarrow \vec{a} \perp \vec{b} \perp \vec{c}$$
Also, $|\vec{b} \times \vec{c}| = |\vec{a}|$

$$\Rightarrow |\vec{b}| |\vec{c}| \sin 90^{\circ} = |\vec{a}|$$

$$\Rightarrow |\vec{b}| |\vec{c}| = |\vec{a}|$$
(from (i))
(b) $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{b} = 3\hat{i} + 2\hat{j} - \lambda\hat{k}$
Given, \vec{a} , \vec{b} are \perp^{Γ} .
 $\therefore \vec{a} \cdot \vec{b} = 0$

$$\Rightarrow a_{1}a_{2} + b_{1}b_{2} + c_{1}c_{2} = 0$$

$$\Rightarrow 6 + 6 - 4\lambda = 0$$

$$\Rightarrow 4\lambda = 12 \Rightarrow \lambda = 3.$$
(c) We know, $\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma = 1$

$$\Rightarrow \cos^{2}\alpha + \cos^{2}\beta = 1 - \cos^{2}\gamma = \sin^{2}\gamma$$
 \therefore Statement 1 is correct.
Now, $\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma = 1$

$$\Rightarrow 1 - \sin^{2}\alpha + 1 - \sin^{2}\beta + 1 - \sin^{2}\gamma = 1$$

$$\Rightarrow 3 - (\sin^{2}\alpha + \sin^{2}\beta + \sin^{2}\gamma) = 1 \Rightarrow \sin^{2}\alpha + \sin^{2}\beta + \sin^{2}\gamma$$

$$= 2.$$
 \therefore Statement 3 is correct.
(b) $\vec{a} = \hat{i} + 2\hat{j} - \hat{k}$

$$\vec{\beta} = 2\hat{i} - \hat{j} + 3\hat{k}$$

$$\vec{\gamma} = 2\hat{i} + \hat{j} + 6\hat{k}$$
Let $\vec{\delta} = a\hat{i} + b\hat{j} + c\hat{k}$
Since \vec{a} and $\vec{\delta}$ are perpendicular, $\vec{a} \cdot \vec{\delta} = 0$

$$\Rightarrow 2a - b + 3c = 0$$
...(1)
$$\vec{\beta}$$
 and $\vec{\delta}$ are perpendicular, $\vec{\beta} \cdot \vec{\delta} = 0$

$$\Rightarrow 2a - b + 3c = 0$$
...(2)
from (1), (2), $\frac{a}{5} = \frac{b}{-5} = \frac{c}{-5} \Rightarrow \frac{a}{1} = \frac{b}{-1} = \frac{c}{-1} = x(say)$
So, $a = x, b = -x, c = -x$
Also, it is given $\vec{\gamma} \cdot \vec{\delta} = 10$.
 $\Rightarrow 2a - b + 6c = 10$
 $\Rightarrow 2x - x - 6x = 10$
 $\Rightarrow x = -2$.
 $\therefore \vec{\delta} = -2\hat{i} + 2\hat{j} + 2\hat{k}$.

м-532

$$\therefore \left|\vec{\delta}\right| = \sqrt{4 + 4 + 4} = \sqrt{12} = 2\sqrt{3}.$$
178. (a) $(\hat{a} + \hat{b}) \times (\hat{a} \times \hat{b})$
 $= \hat{a} \times (\hat{a} \times \hat{b}) + \hat{b} \times (\hat{a} \times \hat{b})$
 $= (\hat{a} \cdot \hat{b})\hat{a} - (\hat{a} \cdot \hat{a})\hat{b} + (\hat{b} \cdot \hat{b})\hat{a} - (\hat{b} \cdot \hat{a})\hat{b}$
 $= \lambda \hat{a} - \hat{b} + \hat{a} - \lambda \hat{b}$
 $= \lambda (\hat{a} - \hat{b}) + 1(\hat{a} - \hat{b}).$
 $= (\lambda + 1)(\hat{a} - \hat{b})$

So, it is parallel to $\hat{a} - \hat{b}$.

179. (c)
$$\vec{F} = \hat{i} + 3\hat{j} + 2\hat{k}$$

$$\overline{AB} = (3-1)\hat{i} + (-1-2)\hat{j} + (5-(-3))\hat{k}$$
$$= 2\hat{i} - 3\hat{j} + 8\hat{k}$$
Work done = $\vec{F} \cdot \overline{AB} = (\hat{i} + 3\hat{j} + 2\hat{k}) \cdot (2\hat{i} - 3\hat{j} + 8\hat{k})$

 $= (1 \times 2) + (3 \times (-3)) + (2 \times 8)$ = 2 - 9 + 16 = 9 units.

180. (b) Let
$$\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$$

$$\begin{aligned} \left| \vec{a} \times \hat{i} \right|^2 &= y^2 + z^2 \\ \left| \vec{a} \times \hat{j} \right|^2 &= x^2 + z^2 \\ \left| \vec{a} \times \hat{k} \right|^2 &= x^2 + y^2 \\ \therefore \left| \vec{a} \times \hat{i} \right|^2 + \left| \vec{a} \times \hat{j} \right|^2 + \left| \vec{a} \times \hat{k} \right|^2 \\ &= y^2 + z^2 + x^2 + z^2 + x^2 + y^2 \\ &= 2x^2 + 2y^2 + 2z^2 \\ &= 2(x^2 + y^2 + z^2) \\ &= 2 \left| \vec{a} \right|^2 \end{aligned}$$

181. (b) $\hat{ai} + \hat{j} + \hat{k}$, $\hat{i} + b\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + c\hat{k}$ are coplanar.

i.e.,
$$\begin{vmatrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{vmatrix} = 0$$

 $c_2 \rightarrow c_2 - c_3; c_3 \rightarrow c_3 - c_1$
 $\begin{vmatrix} a & 1 - a & 1 - a \\ 1 & b - 1 & 0 \\ 1 & 0 & c - 1 \end{vmatrix} = 0$

NDA Topicwise Solved Papers - MATHEMATICS

$$\Rightarrow a(b-1)(c-1) - (1-a)(c-1) - (1-a)(b-1) = 0$$

Divide both sides by $(1-a)(1-b)(1-c)$
$$\Rightarrow \frac{a(b-1)(c-1)}{(1-a)(1-b)(1-c)} - \frac{(1-a)(c-1)}{(1-a)(1-b)(1-c)}$$
$$- \frac{(1-a)(b-1)}{(1-a)(1-b)(1-c)} = \frac{0}{(1-a)(1-b)(1-c)}$$
$$\Rightarrow \frac{a}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = 0$$
$$\Rightarrow \frac{1}{1-b} + \frac{1}{1-c} = -\frac{a}{1-a}.$$

Add $\frac{1}{1-a}$ on both sides.
$$\Rightarrow \frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} = \frac{1}{1-a} - \frac{a}{1-a} = \frac{1-a}{1-a} = 1.$$

182. (a) $|\vec{a}| = 2, |\vec{b}| = 7.$
$$\vec{a} \times \vec{b} = 3\hat{i} + 2\hat{j} + 6\hat{k}$$

We know, $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \cdot \hat{n}$ where \hat{n} is unit vector.

$$\Rightarrow |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$$
$$\Rightarrow |3\hat{i} + 2\hat{j} + 6\hat{k}| = (2)(7) \sin \theta$$
$$\Rightarrow \sqrt{9 + 4 + 36} = (2)(7) \sin \theta.$$
$$\Rightarrow \pm 7 = (2)(7) \sin \theta.$$
$$\therefore \sin \theta = \pm \frac{1}{2}.$$

 $\sin \theta$ is acute angle, $\theta = 30^{\circ}$

183. (a) R divides PQ internally in ratio 2:3

$$\therefore \overrightarrow{OR} = \frac{2\overrightarrow{q} + 3\overrightarrow{p}}{5} \qquad \dots (1)$$

S divides PQ externally in ratio 2:3

$$\overrightarrow{OS} = \frac{2\overrightarrow{q} - 3\overrightarrow{p}}{2 - 3} = 3\overrightarrow{p} - 2\overrightarrow{q} \qquad \dots (2)$$

Given, \overrightarrow{OR} and \overrightarrow{OS} are perpendicular. $\therefore \left(\frac{3\vec{p}+2\vec{q}}{5}\right) (3\vec{p}-2\vec{q}) = 0$ $\Rightarrow 9p^2 - 4q^2 = 0 \Rightarrow 9p^2 = 4q^2$ 184. (a) $\vec{r} = (2\hat{i} - \hat{j} + 3\hat{k}) - (\hat{i} + 2\hat{j} - \hat{k})$ $=(\hat{i}-3\hat{j}+4\hat{k})$ Moment $(\tau) = \vec{r} \times \vec{f}$ $=(\hat{i}-3\hat{j}+4\hat{k})\times(3\hat{i}+\hat{k})$ $=-3\hat{i}+11\hat{i}+9\hat{k}$ 185. (d) $\vec{a} + 2\vec{b} + 3\vec{c} = \vec{0}$(1) $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \lambda (\vec{b} \times \vec{c})$(2) (1) $\times \vec{b} \Rightarrow \vec{b} \times \vec{a} + 2\vec{b} \times \vec{b} + 3\vec{b} \times \vec{c} = 0$ $\Rightarrow -\vec{a} \times \vec{b} + 0 + 3\vec{b} \times \vec{c} = 0$ $\Rightarrow \vec{a} \times \vec{b} = 3\vec{b} \times \vec{c}$(3) $(1) \times \vec{c} \Longrightarrow \vec{c} \times \vec{a} + 2\vec{c} \times \vec{b} + 3\vec{c} \times \vec{c} = 0$ $\Rightarrow \vec{c} \times \vec{a} - 2\vec{b} \times \vec{c} + 0 = 0$ $\Rightarrow \vec{c} \times \vec{a} = 2\vec{b} \times \vec{c}$(4) $\therefore (2) \Longrightarrow \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = \lambda (\vec{b} \times \vec{c})$ $\Rightarrow 3\vec{b} \times \vec{c} + \vec{b} \times \vec{c} + 2(\vec{b} \times \vec{c}) = \lambda(\vec{b} \times \vec{c})$ (from (3), (4)) $\Rightarrow 6(\vec{b} \times \vec{c}) = \lambda(\vec{b} \times \vec{c})$ $\therefore \lambda = 6$ 186. (b) Given, \vec{k} and \vec{A} are parallel vectors. we know, cross product of parallel vectors is \vec{O} . 187. (a) $(\vec{a} + \vec{b}).(\vec{a} + \vec{b}) = a^2 + 2\vec{a}.\vec{b} + b^2 = a^2 + b^2$ $\Rightarrow \vec{a}.\vec{b} = 0 \Rightarrow \vec{a} \perp \vec{b}$ 188. (d) $(x\hat{i} + y\hat{j} + z\hat{k}).(\hat{i} + \hat{j} + \hat{k}) = x + y + z$ 189. (a) $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & -4 & -1 \end{vmatrix}$ $=\hat{i}(1+4)-\hat{j}(-2-3)+\hat{k}(-8+3)$ $=5\hat{i}+5\hat{j}-5\hat{k}$ Unit vector = $\frac{5}{5\sqrt{3}}\hat{i} + \frac{5}{5\sqrt{3}}\hat{j} - \frac{5}{5\sqrt{3}}\hat{k}$

 $=\frac{1}{\sqrt{3}}\hat{i}+\frac{1}{\sqrt{3}}\hat{j}-\frac{1}{\sqrt{3}}\hat{k}$ 190. (d) $|\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = 2\{|\vec{a}|^2 + |\vec{b}|^2\} = 2 \times 25 = 50$ $\Rightarrow |\vec{a} + \vec{b}|^2 + 25 = 50$ $\Rightarrow |\vec{a} + \vec{b}|^2 = 25$ $\Rightarrow |\vec{a} + \vec{b}| = 5$ 191. (c) For simplicity let us take $\vec{a}, \vec{b}, \vec{c}$ as $\hat{i}, \hat{j}, \hat{k}$ Now magnitude of \vec{A} , \vec{B} and \vec{C} will be $\sqrt{3}$. 192. (c) $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})$ $-\vec{a}\times\vec{a}+\vec{a}\times\vec{b}-\vec{b}\times\vec{a}-\vec{b}\times\vec{b}$ $= 0 + \vec{a} \times \vec{b} + \vec{a} \times \vec{b} - 0$ $= 2(\vec{a} \times \vec{b})$ 193. (c) $\vec{\tau} = \vec{r} \times \vec{F} = (\hat{i} + 2\hat{j} + 3\hat{k}) \times \lambda \hat{k}$ $= 2\lambda \hat{i} - \lambda \hat{i}$ $\Rightarrow |\vec{\tau}| = \sqrt{5\lambda}$ 194. (a) From triangle law of vector addition $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$ Only statement (1) is correct. 195. (b) $\vec{a} = \hat{i} - 2\hat{j} + 5\hat{k}$ $\vec{b} = 2\hat{i} + \hat{i} - 3\hat{k}$ $\vec{b} - \vec{a} = 2\hat{i} + \hat{j} - 3\hat{k} - (\hat{i} - 2\hat{j} + 5\hat{k})$ $=\hat{i}(2-1)+\hat{j}(1+2)+\hat{k}(-3-5)=\hat{i}+3\hat{j}-8\hat{k}$ $3\vec{a} + \vec{b} = 3(\hat{i} - 2\hat{j} + 5\hat{k}) + (2\hat{i} + \hat{j} - 3\hat{k})$ $=3\hat{i}-6\hat{j}+15\hat{k}+2\hat{i}+\hat{j}-3\hat{k}$ $=\hat{i}(3+2)+\hat{j}(-6+1)+\hat{k}(15-3)$ $=5\hat{i}-5\hat{i}+12\hat{k}$ $(\vec{b} - \vec{a}).(3\vec{a} + \vec{b}) = (\hat{i} + 3\hat{j} - 8\hat{k}).(5\hat{i} - 5\hat{j} + 12\hat{k})$ =(1)(5)+(3)(-5)+(-8)(12)=5-15-96=-106196. (d) Given, $\overrightarrow{OA} = 3\hat{i} - 2\hat{j} + \hat{k}$ $\overrightarrow{OB} = 2\hat{i} + 4\hat{j} - 3\hat{k}$ $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ $=(2\hat{i}+4\hat{j}-3\hat{k})-(3\hat{i}-2\hat{j}+\hat{k})$ $=\hat{i}(2-3)+\hat{i}(4+2)+\hat{k}(-3-1)$ $=-\hat{i}+6\hat{j}-4\hat{k}$ Length of AB = $\sqrt{(-1)^2 + (6)^2 + (-4)^2}$ $=\sqrt{1+36+16} = \sqrt{53}$

м-534

NDA Topicwise Solved Papers - MATHEMATICS

$$= (2)(4) + (-6)(3) + (-3)(-1)$$

= 8 - 18 + 3 = -7
$$\Rightarrow |\vec{a}| |\vec{b}| \cos \theta = -7 \Rightarrow \cos \theta = \frac{-7}{|\vec{a}||\vec{b}|}$$

= $\frac{-7}{\sqrt{49}\sqrt{26}} = \frac{-1}{\sqrt{26}}$
sin $\theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \left(\frac{-1}{\sqrt{26}}\right)^2} = \sqrt{1 - \frac{1}{26}}$
= $\sqrt{\frac{25}{26}} = \frac{5}{\sqrt{26}}$

199. (d) Given vectors are $3\hat{i} + 4\hat{j} - \hat{k}$ and $-2\hat{i} + \lambda\hat{j} + 10\hat{k}$. If these are perpendicular, dot product is 0.

$$(3\hat{i} + 4\hat{j} - \hat{k}) \cdot (-2\hat{i} + \lambda\hat{j} + 10\hat{k}) = 0$$

$$\Rightarrow (3) (-2) + (4) (\lambda) + (-10) = 0$$

$$\Rightarrow -6 + 4\lambda - 10 = 0$$

$$\Rightarrow 4\lambda = 16$$

$$\Rightarrow \lambda = 4$$

3-D Geometry

- 1. Consider the points (a 1, a, a + 1), (a, a + 1, a 1) and (a + 1, a 1, a).
 - 1. These points always form the vertices of an equilateral triangle for any real value of a.
 - 2. The area of the triangle formed by these points is independent of a.

Which of the statement(s) given above is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2 [2006-I]
- 2. What are coordinates of the point equidistant from the points (a, 0, 0), (0, a, 0), (0, 0, a) and (0, 0, 0)?
 - (a) $\left(\frac{a}{3}, \frac{a}{3}, \frac{a}{3}\right)$ (b) $\left(\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right)$

(c) (a, a, a) (d) (2a, 2a, 2a) [2006-I]

- 3. A line makes 45° with positive x-axis and makes equal angles with positive y, z axes, respectively. What is the sum of the three angles which the line makes with positive x, y and z axes ?
 - (a) 180° (b) 165°
- (c) 150° (d) 135° [2006-I] 4. What is the angle between the two lines whose direction numbers are $(\sqrt{3}-1, -\sqrt{3}-1, 4)$ and $(-\sqrt{3}-1, \sqrt{3}-1, 4)$?

(a)
$$\frac{\pi}{6}$$
 (b) $\frac{\pi}{4}$

(c)
$$\frac{\pi}{3}$$
 (d) $\frac{\pi}{2}$ [2006-1]

5. Consider the following statements:

1. Equations ax + by + cz + d = 0, a'x + b'y + c'z + d' = 0represent a straight line.

2. Equation of the form

$$\frac{x-\alpha}{\ell} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$$

represent a straight line passing through the point (α, β, γ) and having direction ratio proportional to *l*, m, n.

- Which of the statements given above is/are correct ? (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2

[2006-II]

If the centre of the sphere ax² + by² + cz² - 2x + 4y + 2z - 3 = 0 is (1/2, -1, -1/2), what is the value of b?

(a) 1 (b) -1(c) 2 (d) -2 [2006-II]

What is the length of the perpendicular from the origin to

the plane $ax + by + \sqrt{2ab} z = 1$?

6.

7.

- (a) 1/(ab) (b) 1/(a+b)
- (c) a+b (d) ab [2006-II]
- 8. If the direction ratios of the normal to a plane are < *l*, m, n > and the length of the normal is p, then what is the sum of intercepts cut-off by the plane from the coordinate axes ?

(a)
$$p\left(\frac{1}{\ell}+\frac{1}{m}+\frac{1}{n}\right)$$

(b)
$$p\sqrt{(\ell^2 + m^2 + n^2)}$$

(c)
$$p\sqrt{(\ell^2 + m^2 + n^2)} \left(\frac{1}{\ell} + \frac{1}{m} + \frac{1}{n}\right)$$

(d)
$$\frac{p}{\sqrt{(\ell^2 + m^2 + n^2)}} \left(\frac{1}{\ell} + \frac{1}{m} + \frac{1}{n}\right)$$
 [2006-II]

- 9. How many arbitrary constants are there in the equation of a plane ?
 - (a) 2 (b) 3
 - (c) 4 (d) Any finite number

- 10. If P, Q are (2, 5, -7), (-3, 2, 1) respectively, then what are the direction ratios of the line PQ?
 - (a) <10, 6, -16> (b) <5, 3, 8>(c) <-5, -3, -8> (d) None of these

[2006-II]

- 11. If O, P are the points (0, 0, 0), (2, 3, -1) respectively, then what is the equation to the plane through P at right angles to OP ?
 - (a) 2x+3y+z=16(b) 2x+3y-z=14(c) 2x+3y+z=14(d) 2x+3y-z=0

- 12. The four points (0, 4, 1), (2, 3, -1), (4, 5, 0), (2, 6, 2) are the vertices of which one of the following figures?
 - (a) Rhombus (b) Rectangle

(c) Square (d) Parallelogram [2006-II]

If the sum of the squares of the distance of the point (x, y, z)13. from the points (a, 0, 0) and (-a, 0, 0) is $2c^2$, then which one of the following is correct?

(a)
$$x^2 + a^2 = 2c^2 - y^2 - z^2$$
 (b) $x^2 + a^2 = c^2 - y^2 - z^2$
(c) $x^2 - a^2 = c^2 - y^2 - z^2$ (d) $x^2 + a^2 = c^2 + y^2 + z^2$
[2007-1]

- 14. Which one of following is correct? The three planes 2x + 3y - z - 2 = 0, 3x + 3y + z - 4 = 0, x-y+2z-5=0 intersect
 - (a) at a point (b) at two points
 - (c) at three points (d) in a line [2007-I]
- 15. The following question consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer.

Assertion(A): If < 1, m, n > are direction cosines of a line, there can be a line whose direction cosines are

$$\left\langle \sqrt{\frac{l^2+m^2}{2}}, \sqrt{\frac{m^2+n^2}{2}}, \sqrt{\frac{n^2+l^2}{2}}, \right\rangle$$

Reason(R): The sum of direction cosines of a line is unity.

- (a) Both A and R individually true, and R is the correct explanation of A.
- (b) Both A and R are individually true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true. [2007-I]
- 16. Which one of the following is the plane containing the line

$$\frac{x-2}{2} = \frac{y-3}{3} = \frac{z-4}{5}$$
 and parallel to z-axis?

- (b) 5x 2z = 0(a) 2x - 3y = 0
- (c) 5y 3z = 0(d) 3x - 2y = 0[2007-I] 17. What is the centre of the sphere $ax^2 + by^2 + cz^2 - 6x = 0$ if the
 - radius is 1 unit?
 - (a) (0, 0, 0)
 - (b) (1,0,0)
 - (c) (3,0,0)
 - (d) cannot be determined as values of a,b, c are unknown [2007-I]

1

Under what condition do $\left\langle \frac{1}{\sqrt{2}}, \frac{1}{2}, K \right\rangle$ represent direction 18. cosines of a line?

(a)
$$k = \frac{1}{2}$$
 (b) $k = -\frac{1}{2}$

(c) $k = \pm \frac{1}{2}$ (d) k can take any value

[2007-I]

19. If $x = a \sec \theta \cos \phi$, $y = b \sec \theta \sin \phi$, $z = c \tan \theta$, then what

is
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2}$$
 equal to?
(a) 1 (b) 0
(c) -1 (d) $a^2 + b^2$ [2007-II]

- 20. A line makes angles θ, ϕ and Ψ with x, y, z axes respectively. Consider the following
 - 1. $\sin^2 \theta + \sin^2 \phi = \cos^2 \psi$
 - 2. $\cos^2 \theta + \cos^2 \phi = \sin^2 \psi$

3. $\sin^2 \theta + \cos^2 \phi = \cos^2 \psi$

Which of the above is/are correct?

- (a) 1 only (b) 2 only
- (c) 3 only (d) 2 and 3 [2007-II]
- 21. What is the equation of the plane passing through (x_1, y_1, z_1) and normal to the line with $\langle a, b, c \rangle$ as direction ratios?
 - (a) $ax + by + cz = ax_1 + by_1 + cz_1$
 - (b) $a(x+x_1)+b(y+y_1)+c(z+z_1)=0$
 - (c) ax + by + cz = 0
 - (d) $ax + by + cz = x_1 + y_1 + z_1 = 0$ [2007-II]

22. What are the direction cosines of the line represented by 3x + y + 2z = 7, x + 2y + 3z = 5?

(a)
$$(-1, -7, 5)$$
 (b) $(-1, 7, 5)$

(c)
$$\left(-\frac{1}{\sqrt{75}}, -\frac{7}{\sqrt{75}}, \frac{5}{\sqrt{75}}\right)$$
 (d) $\left(-\frac{1}{\sqrt{75}}, \frac{7}{\sqrt{75}}, \frac{5}{\sqrt{75}}\right)$

[2007-II]

- The equation of a sphere is $x^2 + y^2 + z^2 10z = 0$. If one end 23. point of a diameter of the sphere is (-3, -4, 5), what is the other end point?
- (a) (-3, -4, -5)(b) (3,4,5) (c) (3, 4, -5)(d) (-3, 4, -5) [2007-II] O(0, 0), A(0, 3), B(4, 0) are the vertices of triangle OAB. 24.

A force $10\hat{i}$ acts at B. What is the magnitude of moment of force about the vertex A?

(a) 0 (b) 30 unit

25. What is the ratio in which the line joining the points (2,4,5)and (3, 5, -4) is internally divided by the xy-plane? (a) 5.1

(a)
$$5:4$$
(b) $3:4$ (c) $1:2$ (d) $7:5$ [2007-II]

26. Under which one of the following conditions will the two planes x + y + z = 7 and $\alpha x + \beta y + \gamma z = 3$, be parallel (but not coincident)?

(a)
$$\alpha = \beta = \gamma = 1$$
 only (b) $\alpha = \beta = \gamma = \frac{3}{7}$ only
(c) $\alpha = \beta = \gamma$ (d) None of the above

(d) None of the above

[2008-1]

27.	The straight line $\frac{x-3}{2} = \frac{y-4}{3} = \frac{z-5}{4}$ is parallel to which
	one of the following ?
	(a) $4x + 3y - 5z = 0$ (b) $4x + 5y - 4z = 0$
	(c) $4x + 4y - 5z = 0$ (d) $5x + 4y - 5z = 0$ [2008-I]
28.	If θ is the acute angle between the diagonals of a cube,
	(a) $\theta < 30^{\circ}$ (b) $\theta = 60^{\circ}$
•	(c) $30^{\circ} < \theta < 60^{\circ}$ (d) $\theta > 60^{\circ}$ [2008-I]
29.	Which one of the following planes contains the z-axis?
	(a) $x-z=0$ (b) $z+y=0$ (c) $2x+2y=0$ (d) $2x+2z=0$ (2008 II
20	(c) $3x+2y=0$ (d) $3x+2z=0$ [2008-1] Under what condition are the two lines
50.	Under what condition are the two lines
	$y = \frac{m}{\ell}x + \alpha, z = \frac{n}{\ell}x + \beta; \text{ and } y = \frac{m'}{\ell'}x + \alpha', z = \frac{n'}{\ell'}x + \beta'$
	orthogonal ?
	(a) $\alpha \alpha' + \beta \beta' + 1 = 0$
	(b) $(\alpha + \alpha') + (\beta + \beta') = 0$
	(c) $\ell \ell' + mm' + nn' = 1$
	(d) $\ell \ell' + mm' + nn' = 0$ [2008-I]
31.	What are the coordinates of the point equidistant from the four points (0, 0, 0), (2, 0, 0), (0, 4, 0), (0, 0, 6)? <i>[2008-II]</i>
	(a) $(1,2,3)$ (b) $(2,3,1)$
	(c) $(3,1,2)$ (d) $(1,3,2)$
32.	The angle between the lines with direction ratios $(1, 0, \pm \cos \alpha)$ is 60°. What is the value of α ? [2008-II]
	(a) $\cos^{-1}(1/\sqrt{2})$ (b) $\cos^{-1}(1/\sqrt{3})$
	(c) $\cos^{-1}(1/3)$ (d) $\cos^{-1}(1/2)$
33.	The line passing through $(1, 2, 3)$ and having direction ratios
	given by $< 1, 2, 3 >$ cuts the <i>x</i> -axis at a distance <i>k</i> from origin. What is the value of <i>k</i> ? [2008-II]
	(a) 0 (b) 1
	(c) 2 (d) 3
34.	The equation $by + cz + d = 0$ represents a plane parallel to which one of the following? [2008-II]
	(a) <i>x</i> -axis (b) <i>y</i> -axis
	(c) <i>z</i> -axis (d) None of these
35.	Which one of the following planes is normal to the plane

- Бŀ [2008-II] 3x + y + z = 5?
 - (a) x + 2y + z = 6(b) x - 2y + z = 6

(c) x + 2y - z = 6(d) x-2y-z=6

36. If the radius of the sphere $x^2 + y^2 + z^2 - 6x - 8y + 10z + \lambda = 0$ is unity, what is the value of λ ? [2008-II]

- (b) 7 (a) 49 (d) -7
- (c) -49

37.	Curve of intersection o	of two	spł	neres is	[2008-11]
	(a) an ellipse	(b)	a c	rcle	
	(c) a parabola	(d)	No	one of these	
38.	The points (1, 3, 4), (-1,	6,10), (-	-7, 4, 7) and (-5, 1, 1) are the
	vertices of a				[2009-1]
	(a) rhombus	(b)	ree	ctangle	2 2
	(c) parallelogram	(d)	sa	uare	
39.	What is the number of pla	nespa	assir	ng through thr	ee non-collinear
	points?			0	[2009-1]
	(a) 3	(b)	2		Ľ
	(c) 1	(d)	0		
40.	What is the angle between $-15y = 12z^2$	een th	ne li	$\operatorname{nes} x + z = 0$	y = 0 and 20x
	-13y - 122!	(b)	20	$r^{-1}(1/7)$	[2009-1]
	(a) $\cos^{-1}(1/3)$	(0)	co	$S^{-}(1/7)$	
	(c) $\cos^{-1}\frac{45}{7\sqrt{61}}$	(d)	sir	n ⁻¹ (1 / 7)	
41.	Under what condition	does	the	equation	
	$x^2 + y^2 + z^2 + 2ux + 2uy$	$+2w_{2}$	z+a	l = 0 represent	t a real sphere? $(2000-1)$
	(a) $u^2 + v^2 + v^2 - d^2$	(b)	2	+2 +2 ~	[2009-1]
	(a) $u^2 + v^2 + w^2 = d^2$	(0)	u- 2	$+ v^{-} + w^{-} >$	a . 12
12	(c) $u^2 + v^2 + w^2 < u$ What is the angle bet	(u)	<i>u</i> -	$+ v^- + w^- \leq$	u^-
42.	x + y + 2z = 3?	ween	the	pranes $2x -$	-y + z = 0 and [2009-1]
	(a) $\pi/2$	(b)	$\pi/2$	3	
	(c) π/4	(d)	π/6	5	
43.	What is the equation	of a	plai	through the throug	the <i>x</i> -axis and
	passing through the po	int (1	, 2,	3)?	[2009-1]
	(a) $x + y + z = 6$	(b)	<i>x</i> =	=]	
	(c) $y + z = 5$	(d)	<i>z</i> +	y = 1	
44.	What is the value of <i>n</i>	so th	at t	he angle bet	ween the lines
	naving direction ratios	(1, 1,	1)a	$\ln (1, -1, n)$	15 60°?
	_			_	[2009-11]
	(a) $\sqrt{3}$		(b)	$\sqrt{6}$	
	(c) 3		(d)	None of th	ese
45.	The direction cosines of and the line intersects a $(1, -2, 4)$. What is the di $(2, 3)$?	of a l a plai stanc	ine ne p æ of	are proporti erpendicula the plane fro	onal to $(2,1,2)$ rly at the point om the point $(3, 2009-II]$
	(a) <u>5</u>		(h)	2	
	(a) $\sqrt{3}$		(0)	2	
	(c) $2\sqrt{2}$		(d)	4	
46.	The foot of the perpen plane is the point $(1, -3)$	dicul , 1). '	ar c Wha	lrawn from at is the inter	the origin to a ccept cut on the
	x-axis by the plane?		(L.)	2	[2009-11]
	(a) 1		(D)	5	
	(c) $\sqrt{11}$	((d)	11	
47.	A line makes the same a lf the angle θ , which it	angle mak	αw	vith each of the vith the z-ax	he x and y axes. is is such that

such that which it makes with the z-axis, e angle b $\sin^2\theta = 2\sin^2\alpha$, then what is the value of α ? [2009-11]

(a)	π/4	(b)	π/6
(c)	π/3	(d)	π/2

м-538

NDA Topicwise Solved Papers - MATHEMATICS

48.	What is the equation of the sphere which has its centre at $(6, -1, 2)$ and touches the plane $2x - y + 2z - 2 = 0^2$								
	(0, -1, 2) and touches	the plane $2x - y + 2z - z - 0$?	117						
	(a) $r^2 + v^2 + z^2 + 12r$	-2v+4z+16=0	-11j						
	(a) $x + y + 2 + 12x$ (b) $x^2 + y^2 + z^2 + 12x$	x - 2y + 4z - 16 = 0							
	(c) $x^2 + y^2 + z^2 - 12x$	-2y + 4z - 16 = 0	59.						
	(d) $x^2 + y^2 + z^2 - 12x$	+2y - 4z + 25 = 0							
49.	What are the direction	ratios of the line determined by	the						
	planes $x - y + 2z = 1$ and	$\operatorname{nd} x + y - z = 3?$ /2009	-11]						
	(a) $(-1, 3, 2)$	(b) $(-1, -3, 2)$	g 60.						
	(c) $(2, 1, 3)$	(d) $(2,3,2)$							
50.	Under what condition	do the planes [2010	-1]						
	bx - av = n, $cv - bz = l$	az - cx = m intersect in a line?	2						
	(a) $a+b+c=0$	(b) $a = b = c$							
	(c) $al + bm + cn = 0$	(d) $l+m+n=0$							
51	The planes $px + 2v + 2z$	x-3=0 and $2x-y+z+2=0$ inter	sect						
U 1.									
	at an angle $\frac{\pi}{4}$. What	is the value of p^2 ?	61.						
	(a) 24	(b) 12 <i>[2010</i>	-I]						
	(c) 6	(d) 3							
DIR	RECTIONS (Qs. 52-54)	: The vertices of a cube are $(0, 0, 0)$, (2)	2,0,						
0),(0, 2, 0), (0, 0, 2), (2, 2, 0), (2, 0, 2), (0, 2, 2), (2, 2, 2) respective	ely.						
52.	What is the angle betw	ween any two diagonals of the cu	ıbe?						
	(a) $\cos^{-1}(1/2)$	(b) $\cos^{-1}(1/3)$ /2010	-11 62.						
	(c) $\cos^{-1}(1/\sqrt{3})$	(d) $\cos^{-1}(2/\sqrt{3})$	2						
5 2			1						
53.	what is the angle betw	veen one of the edges of the cube	and						
	the diagonal of the cu	be intersecting the edge of the cu	63.						
	(a) $\cos^{-1}(1/2)$	(b) $\cos^{-1}(1/3) = [2010]$	-1]						
	(c) $\cos^{-1}(1/\sqrt{3})$	(d) $\cos^{-1} (2/\sqrt{3})$							

- 54. What is the angle between the diagonal of one of the faces of the cube and the diagonal of the cube intersecting the diagonal of the face of the cube? [2010-I]
 - (a) $\cos^{-1} (1/\sqrt{3})$ (b) $\cos^{-1} (2/\sqrt{3})$ (c) $\cos^{-1} (\sqrt{2/3})$ (d) $\cos^{-1} (\sqrt{2}/3)$
- 55. What is the equation of the plane through *z*-axis and parallel

to th	e line $\frac{x-1}{\cos\theta} = \frac{y+2}{\sin\theta} =$	$\frac{z-3}{0}?$	[2010-I]
(a)	$x \cot \theta + y = 0$	(b) $x \tan \theta - y = 0$	0
(c)	$x + y \cot \theta = 0$	(d) $x - y \tan \theta = 0$	0
Ifth	e line through the poir	nts $A(k, 1, -1)$ and B	(2k, 0, 2) is
perp	endicular to the line the	hrough the points B	and
<i>C</i> (2	+2k, k , 1), then what	t is the value of k?	[2010-I]
()	1	(1) 1	

[2010-II]

- (c) -3 (d) 3 The two planes ax + by + cz + d = 0 and $ax + by + cz + d_1$
- = 0, where $d \neq d_1$, have

56.

57.

- (a) one point only in common
- (b) three points in common
- (c) infinite points in common
- (d) no points in common

58.	What is the distance of $2x+6y-3z+7=0$?	of th	e origi	n from	the plane [2010-II]
	(a) 1		(b) 2		
	(c) 3		(d) 6		
59.	What is the acute angle be and $-2x + y - z = 11$?	etwee	$\pi/4$	lanes x +	y + 2z = 3 [2011-I]
	(c) $\pi/6$	(d)	$\pi/3$		
~ ~		()			
60.	What is the radius of the $x^2 + y^2 + z^2 - x - y - z = 0$	spher ?	re		[2011-I]
	(a) $\sqrt{\frac{3}{4}}$	(b)	$\sqrt{\frac{1}{2}}$		
	(c) $\sqrt{\frac{3}{2}}$	(d)	$\frac{1}{3}$		
61.	Consider the following rel	ation	s among	g the angl	les α , β and
	γ made by a vector with th	ie coo	ordinate	axes	
	I. $\cos 2\alpha + \cos 2\beta + \cos 2\beta$	$2\gamma = -$	- 1		[2011-I]
	II. $\sin^2\alpha + \sin^2\beta + \sin^2\gamma$	r = 1			
	Which of the above is/are	corr	ect?		
	(a) Only I	(b)	Onlyl	Ι	
	(c) Both I and II	(d)	Neith	er I nor II	
62.	Which one of the follow	wing	points	lies on	the plane
	2x + 3y - 6z = 21?				[2011-I]
	(a) $(3, 2, 2)$	(b)	(3, 7, 1)	
	(c) $(1,2,3)$	(d)	(2, 1, -	-1)	
63.	What is the angle between	the li	nes who	ose direct	ion cosines
	are proportional to (2, 3, 4) and	(1, -2,	1) respec	tively?
					[2011-I]
	(a) 90°	(b)	60°		
	(c) 45°	(d)	30°		
64.	What is the locus of point	ts of i	ntersec	tion of a	sphere and
	a plane?				[2011-II]
	(a) Circle	(b)	Ellips	e 1 1	
65	(c) Parabola What is the angle between	(D) n tur	Hyper	bola	1 and
03.	x+y+2z=6?	ii two	o pranes	$2x - y \neg$	z = 4 and [2011-II]
	(a) $\frac{\pi}{2}$	(b)	$\frac{\pi}{3}$		
	(c) $\frac{\pi}{4}$	(d)	$\frac{\pi}{6}$		
66.	What is the equation of	the	plane p	assing th	nrough the

66. What is the equation of the plane passing through the point (1, -1, -1) and perpendicular to each of the planes x-2y-8z=0 and 2x+5y-z=0? [2011-II]
(a) 7x-3y+2z=14 (b) 2x+5y-3z=12
(c) x-7y+3z=4 (d) 14x-5y+3z=16
67. The equation to sphere passing through origin and the points (-1, 0, 0), (0, -2, 0) and (0, 0, -3) is x²+y²+z²+f(x, x)

points (-1, 0, 0), (0, -2, 0) and (0, 0, -3) is $x^2 + y^2 + z^2 + f(x, y, z) = 0$. What is f(x, y, z) equal to? [2011-II] (a) -x - 2y - 3z (b) x + 2y + 3z(c) x + 2y + 3z - 1 (d) x + 2y + 3z + 1 68. If a line makes the angles α , β , γ with the axes, then what is 78. the value of $1 + \cos 2\alpha + \cos 2\beta + \cos 2\gamma$ equal to 3x + 4y - 5z = 0? (a) -1 (b) 0 [2012-I] (c) 1 (d) 2 What are the direction ratios of normal to the plane 69. 79. 2x - y + 2z + 1 = 0[2012-I] (a) $\langle 1, 2, 3 \rangle$ (b) $\left< 1, -\frac{1}{2}, 1 \right>$ (a) $\langle 2, 1, 2 \rangle$ (c) (3, 2, 1)(c) (1, -2, 1)(d) None of the above 80. 70. What is the cosine of angle between the planes x+y+z+1=0 and 2x-2y+2z+1=0? [2012-I] (a) 1/2 (b) 1/3 (c) 2/3 (d) None of the above 71. What is the sum of the squares of direction cosines of the line joining the points (1, 2, -3) and (-2, 3, 1)? (a) 0 (b) 1 [2012-I] 81. (a) 0 (d) $\frac{2}{\sqrt{26}}$ (c) 3 (c) 1 82. 72. What is the diameter of the sphere $x^{2} + y^{2} + z^{2} - 4x + 6y - 8z - 7 = 0$? [2012-I] (a) 4 units (b) 5 units (c) 6 units (d) 12 units. (c) 6 square unit If the distance between the points (7, 1, -3) and $(4, 5, \lambda)$ is 13 73. 83. units, then what is one of the values of λ ? [2012-II] (a) 20 (b) 10 (a) 3 unit (c) 9 (d) 8 (c) 0 If a line OP of length r (where 'O' is the origin) makes an 74 84. angle α with x-axis and lies in the xz-plane, then what are the [2012-II] coordinates of P? (a) $(r \cos \alpha, 0, r \sin \alpha)$ (b) $(0, 0, r \sin \alpha)$ equal to? (c) $(r \cos \alpha, 0, 0)$ (d) $(0, 0, r \cos \alpha)$ (a) 1/4 75. What is the distance of the point (1, 2, 0) from yz-plane is: (c) 3/4 (a) 1 unit (b) 2 units [2012-II] 85 (c) 3 units (d) 4 units What are the direction cosines of a line which is equally 76. (a) 3 inclined to the positive directions of the axes? [2012-II] (c) 1 (a) $\left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle$ (b) $\left\langle -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle$ 86. (c) $\left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ (d) $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ (a) $\frac{\pi}{6}$ What is the angle between the lines $\frac{x-2}{1} = \frac{y+1}{-2} = \frac{z+2}{1}$ 77.

and $\frac{x-1}{1} = \frac{2y+3}{3} = \frac{z+5}{2}$? [2012-II]

- (b) $\frac{\pi}{2}$ (a)
- (c) (d) None of the above

- What is the equation to the plane through (1, 2, 3) parallel to [2012-II] (b) 3x+4y-5z+14=0(a) 3x + 4y + 5z + 4 = 0(c) 3x + 4y - 5z + 4 = 0(d) 3x + 4y - 5z - 4 = 0What are the direction ratios of the line of intersection of the planes x = 3z + 4 and y = 2z - 3? [2012-II] (b) (2, 1, 3)(d) (1, 3, 2)
- What is the equation to the straight line passing through (a, b, c) and parallel to z-axis?
- (a) $\frac{x-a}{1} = \frac{y-b}{0} = \frac{z-c}{0}$ (b) $\frac{x-a}{0} = \frac{y-b}{0} = \frac{z-c}{1}$ (c) $\frac{x-a}{0} = \frac{y-b}{1} = \frac{z-c}{0}$ (d) $\frac{x-a}{0} = \frac{y-b}{1} = \frac{z-c}{1}$ The sum of the direction cosines of z-axis is [2013-I] (b) 1/3 (d) 3 What is the area of the triangle whose vertices are (0, 0, 0), (1, 2, 3) and (-3, -2, 1)? [2013-I] (a) $3\sqrt{5}$ square unit (b) $6\sqrt{5}$ square unit (d) 12 square unit What is the distance between the planes x - 2y + z - 1 = 0and -3x + 6y - 3z + 2 = 0? [2013-I] (b) 1 unit (d) None of the above If a line makes 30° with the positive direction of x-axis, angle β with the positive direction of y-axis and angle γ with the positive direction of z-axis, then what is $\cos^2\beta + \cos^2\gamma$ [2013-I] (b) 1/2 (d) 1 What should be the value of k for which the equation $3x^{2} + 3y^{2} + (k+1)z^{2} + x - y + z = 0$ represents the sphere? (b) 2 [2013-1] (d) -1 What is the angle between the planes 2x - y - 2z + 1 = 0 and 3x - 4y + 5z - 3 = 0?[2013-1]
- (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$
- 87. If the straight line $\frac{x x_0}{\ell} = \frac{y y_0}{m} = \frac{z z_0}{n}$ is parallel to the plane ax + by + cz + d = 0 then which one of the following is correct? [2013-I] (a) $\ell + m + n = 0$ (b) a + b + c = 0
 - (c) $\frac{a}{\ell} + \frac{b}{m} + \frac{c}{n} = 0$ (d) $a\ell + bm + cn = 0$

м-540

NDA Topicwise Solved Papers - MATHEMATICS

88.	If θ is the acute angle between the diagonals of a cube, then which one of the following is correct? [2013-II]	98. A line passes through the points $(6, -7, -1)$ and $(2, -3, 1)$. What are the direction ratios of the line 2
	(a) $\theta = 30^{\circ}$ (b) $\theta = 45^{\circ}$	what are the direction ratios of the line $? [2014-1]$
	(c) $2\cos\theta = 1$ (d) $3\cos\theta = 1$	(a) $<4,-4,2>$ (b) $<4,4,2>$
89.	What is the equation of the sphere with unit radius having	(c) $<-4, 4, 2>$ (d) $<2, 1, 1>$
	centre at the origin ? [2013-II]	DIRECTIONS (Qs. 99-101): For the next three (03) items that
	(a) $x^2 + y^2 + z^2 = 0$ (b) $x^2 + y^2 + z^2 = 1$	follow
00	(c) $x^2 + y^2 + z^2 = 2$ (d) $x^2 + y^2 + z^2 = 3$	Consider a sphere passing through the origin and the points $(2, 1, 1)$ $(1, 5, 4)$ $(2, 2, 4, c)$
90.	what is the sum of the squares of direction cosines of x -axis? [2013-II]	(2, 1, -1), (1, 5, -4), (-2, 4, -6). 99. What is the radius of the sphere ? [2014-II]
	1	(a) $\sqrt{12}$ (b) $\sqrt{14}$
	(a) 0 (b) $\frac{1}{3}$	(a) $\sqrt{12}$ (b) $\sqrt{14}$ (c) 12 (d) 14
	(c) 1 (d) 3	100. What is the centre of the sphere ? [2014-II]
91.	What is the distance of the line $2x + y + 2z = 3$ from the	(a) $(-1, 2, -3)$ (b) $(1, -2, 3)$
	origin ? [2013-II]	(c) $(1, 2, -3)$ (d) $(-1, -2, -3)$
	(a) 1 units (b) 1.5 units	101. Consider the following statements :[2014-II]
	(c) 2 units (d) 2.5 units	1. The sphere passes through the point $(0, 4, 0)$.
92.	If the projections of a straight line segment on the coordinate	2. The point $(1, 1, 1)$ is at a distance of 5 unit from the
	axes are 2, 3, 6, then the length of the segment is	centre of the sphere.
	[2013-II]	(a) 1 only (b) 2 only
	(a) 5 units (b) 7 units	(a) For $y = (0) - 2$ only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2
	(c) 11 units (d) 49 units	DIRECTIONS (Os 102-103): For the next two (02) items that follow
DIR	ECTIONS (Qs. 93-95): For the next three (03) items that	The line is in the points $(2, 1, 2)$ and $(4, 2, 5)$ suite the plane
folle	W	The line joining the points (2, 1, 5) and (4, -2, 5) cuts the plane $2x+y-z=3$.
A sti	aight line passes through $(1, -2, 3)$ and perpendicular to the	102. Where does the line cut the plane? [2014-II]
plan	$e^{2x}+3y-z=7.$	(a) $(0 - 4 - 1)$ (b) $(0 - 4 - 1)$
93	What are the direction ratios of normal to plane? [2014-I]	$\begin{array}{c} (a) & (b, 1, 1) \\ (b) & (c) & (c, 1, 1) \\ (c) & (1 \ 4 \ 0) \\ (c) & (d) & (0 \ 4 \ 1) \\ (c) & (c) & (c) & (c) \\ (c) & ($
<i>)0</i> .	(a) $< 2 \cdot 3 \cdot 1 >$ (b) $< 2 \cdot 3 \cdot 1 >$	(0) $(1, 7, 0)$ (0) $(0, 7, 1)$
	(a) < 2, 5, -1 > (b) < 2, 5, 1 > (c)	(a) $1 \cdot 1$ (b) $2 \cdot 3$ [2014 II]
	(c) $<-1, 2, 3>$ (d) None of these	(a) $1.1(0)$ 2.5 [2014-11] (c) $2.4(d)$ None of these
94.	Where does the line meet the plane? [2014-I]	
	(a) $(2,3,-1)$ (b) $(1,2,3)$	DIRECTIONS (Qs. 104-105): For the next two (02) items that
	(c) $(2, 1, 3)$ (d) $(3, 1, 2)$	follow
95.	What is the image of the point $(1, -2, 3)$ in the plane?	Consider the plane passing through the points
	(a) $(2,-1,5)$ (b) $(-1,2,-3)$ [2014-1]	A (2, 2, 1), B (3, 4, 2) and C (7, 0, 6).
	(c) $(5, 4, 1)$ (d) None of these	104. Which one of the following points lines on the plane ?
UD	ECTIONS (Os 06 07): Ear the next two (02) items that follow	(a) $(1,0,0)$ (b) $(1,0,1)$ [2014-II]
		(c) $(0,0,1)$ (d) None of these
Con	sider the spheres $x^2 + y^2 + z^2 - 4y + 3 = 0$ and $x^2 + y^2 + z^2 + 2x$	105. What are the direction ratios of the normal to the plane?
+4Z	-4=0.	(a) $<1,0,1>$ (b) $<0,1,0>$ [2014-11]
96.	What is the distance between the centres of the two	(c) $<1, 0, -1>$ (d) None of these
	spheres ? [2014-1]	DIRECTIONS (Qs. 106-107): For the next two (02) items that follow
	(a) 5 units (b) 4 units	The projections of a directed line segment on the coordinate axes
	(c) 3 units (d) 2 units	are 12, 4, 3 respectively.
97.	Consider the following statements : [2014-1]	106. What is the length of the line segment? [2015-I]
	1. The two spheres intersect each other.	(a) 19 units (b) $1/$ units (c) 15 units
	2. The radius of first sphere is less than that of second sphere	107. What are the direction cosines of the line segment?
	Which of the above statements is/are correct?	
	(a) 1 only (b) 2 only	(a) $\langle \overline{13}, \overline{13}, \overline{13} \rangle$ (b) $\langle \overline{13}, -\overline{13}, \overline{13} \rangle$ [2015-1]
	(c) Both 1 and 2 (d) Neither 1 nor 2	
		(c) $\left\langle \frac{12}{13}, -\frac{4}{13}, -\frac{5}{13} \right\rangle$ (d) $\left\langle -\frac{12}{13}, -\frac{4}{13}, \frac{5}{13} \right\rangle$

DIRECT	TONS (Qs. 108-	- 109): For the n	ext two (02) item.	s that follow
From the	point $P(3, -1, -1)$	11), a perpend	icular i	s drawn	on the line
L given b	by the equation	$\frac{x}{2} = \frac{y-2}{3} =$	$\frac{z-3}{4}$ · L	let Q be	the foot of
the perpe	ndicular.				
108. Wha	at are the direc	tion ratios of the	ne line s	segmen	t <i>PQ</i> ?
(a)	$\langle 1, 6, 4 \rangle$	(b)) (-1,	5,-4>	[2015-I]
(c)	$\langle -1, -6, 4 \rangle$	(d) (2,-	6,4	
109. Wha	at is the length	of the line seg	ment P	Q?	[2015-I]
(a)	$\sqrt{47}$ units	(b)) 7 uni	ts	
(c)	$\sqrt{53}$ units	(d) 8uni	ts	
DIRECT	TONS (Qs. 110	-111): For the n	ext two (02) item:	s that follow

A triangular plane ABC with centroid (1, 2, 3) cuts the coordinate axes at A, B, C respectively.

110. What are the intercepts made by the plane ABC on the axes?(a) 3, 6, 9(b) 1, 2, 3[2015-I](c) 1, 4, 9(d) 2, 4, 6111. What is the equation of plane ABC?[2015-I](a) x + 2y + 3z = 1(b) 3x + 2y + z = 3(c) 2x + 3y + 6z = 18(d) 6x + 3y + 2z = 18

DIRECTIONS (Qs. 112-113): For the next two (02) items that follow

A point P(1, 2, 3) is one vertex of a cuboid formed by the coordinate planes and the planes passing through P and parallel to the coordinate planes.

112. What is the length of one of the diagonals of the cuboid?

(a)	$\sqrt{10}$ units	(b)	$\sqrt{14}$ units	[2015-I]
(c)	4 units	(d)	5 units	

- 113. What is the equation of the plane passing through P(1, 2, 3)and parallel to xy-plane? [2015-1]
 - (a) x+y=3(b) x-y=-1(c) z=3(d) x+2y+3z=14
- 114. The radius of the sphere [2015-II] $3x^2 + 3y^2 + 3z^2 - 8x + 4y + 8z - 15 = 0$ is (a) 2 (b) 3
 - (c) 4 (d) 5
- 115. The direction ratios of the line perpendicular to the lines with direction ratios <1, -2, -2 > and <0, 2, 1 > are

(a)
$$<2,-1,2>$$
 (b) $<-2,1,2>$ [2015-II]
(c) $<2,1,-2>$ (d) $<-2,-1,-2>$

- 116. What are the co-ordinates of the foot of the perpendicular drawn from the point (3, 5, 4) on the plane z = 0?
 - (a) (0,5,4) (b) (3,5,0) [2015-II]

(c)
$$(3,0,4)$$
 (d) $(0,0,4)$

- 117. The lengths of the intercepts on the co-ordinate axes made by the plane 5x + 2y + z - 13 = 0 are [2015-II]
 - (a) 5, 2, 1 unit (b) $\frac{13}{5}, \frac{13}{2}$, 13 unit

(c)
$$\frac{5}{13}, \frac{2}{13}, \frac{1}{13}$$
 unit (d) 1, 2, 5 unit

DIRECTIONS (Qs. 118-120): For the next three (03) items that follow

A plane P passes through the line of intersection of the planes 2x - y + 3z = 2, x + y - z = 1 and the point (1, 0, 1).

- 118. What are the direction ratios of the line of intersection of the given planes? [2016-I]
 - (a) $\langle 2, -5, -3 \rangle$ (b) $\langle 1, -5, -3 \rangle$
 - (c) $\langle 2, 5, 3 \rangle$ (d) $\langle 1, 3, 5 \rangle$
- 119. What is the equation of the plane P? [2016-I] (a) 2x+5y-2=0 (b) 5x+2y-5=0(c) x+z-2=0 (d) 2x-y-2z=0
- (c) x+z-2=0 (d) 2x-y-2z=0120. If the plane P touches the sphere $x^2 + y^2 + z^2 = r^2$, then what is r equal to? [2016-1]

(a)
$$\frac{2}{\sqrt{29}}$$
 (b) $\frac{4}{\sqrt{29}}$
(c) $\frac{5}{\sqrt{29}}$ (d) 1

DIRECTIONS (Qs. 121-122): For the next two (02) items that follow

Let Q be the image of the point P (-2, 1, -5) in the plane 3x-2y+2z+1=0.

- 121. Consider the following:
 - 1. The coordinates of Q are (4, -3, -1).
 - 2. PQ is of length more than 8 units.
 - 3. The point (1, -1, -3) is the mid-point of the line segment PQ and lies on the given plane.
 - Which of the above statements are correct?
 - (a) 1 and 2 only (b) 2 and 3 only
 - (c) 1 and 3 only (d) 1, 2 and 3
- 122. Consider the following: [2016-II]
 - 1. The direction ratios of the line segment PQ are <3, -2, 2>.
 - 2. The sum of the squares of direction cosines of the line segment PQ is unity.
 - Which of the above statements is/are correct?
 - (a) 1 only (b) 2 only
 - (c) Both1 and 2 (d) Neither 1 nor 2

DIRECTIONS (Qs. 123-124): For the next two (02) items that follow

A line L passes through the point P(5, -6, 7) and is parallel to the planes x + y + z = 1 and 2x - y - 2z = 3.

123. What are the direction ratios of the line of intersection of the given planes? [2016-II]

(a)
$$<1,4,3>$$

(b) $<-1,-4,3>$
(c) $<1,-4,3>$
(d) $<1,-4,-3>$

- 124. What is the equation of the line L? [2016-II]
 - (a) $\frac{x-5}{-1} = \frac{y+6}{4} = \frac{z-7}{-3}$ (b) $\frac{x+5}{-1} = \frac{y-6}{4} = \frac{z+7}{-3}$

(c)
$$\frac{x-5}{-1} = \frac{y+6}{-4} = \frac{z-7}{3}$$

(d)
$$\frac{x-5}{-1} = \frac{y+6}{-4} = \frac{z-7}{-3}$$

[2016-II]

- 125. A straight line with direction cosines (0, 1, 0) is [2017-I]
 - (a) parallel to x-axis
 - (b) parallel to y-axis
 - (c) parallel to z-axis
 - (d) equally inclined to all the axes
- 126. (0, 0, 0), (a, 0, 0), (0, b, 0) and (0, 0, c) are four distinct points. What are the coordinates of the point which is equidistant from the four points? [2017-I]

(a)
$$\left(\frac{a+b+c}{3}, \frac{a+b+c}{3}, \frac{a+b+c}{3}\right)$$

(b) (a, b, c)
(c) $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$

- (d) $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$
- 127. The points P(3, 2, 4), Q(4, 5, 2), R(5, 8, 0) and S(2, -1, 6) are
 - (a) vertices of a rhombus which is not a square[2017-I]
 - (b) non-coplanar
 - (c) collinear
 - (d) coplanar but not collinear
- 128. The line passing through the points (1, 2, -1) and (3, -1, 2) meets the yz-plane at which one of the following points? [2017-I]

(a)
$$\left(0, -\frac{7}{2}, \frac{5}{2}\right)$$
 (b) $\left(0, \frac{7}{2}, \frac{1}{2}\right)$
(c) $\left(0, -\frac{7}{2}, -\frac{5}{2}\right)$ (d) $\left(0, \frac{7}{2}, -\frac{5}{2}\right)$

- 129. Under which one of the following conditions are the lines x = ay + b; z = cy + d and x = ey + f; z = gy + h perpendicular? [2017-I]
 - (a) ae + cg 1 = 0(b) ae + bf - 1 = 0(c) ae + cg + 1 = 0(d) ag + ce + 1 = 0
- 130. The length of the normal from origin to the plane x+2y-2z=9 is equal to [2017-II]
 - (a) 2 units (b) 3 units
 - (c) 4 units (d) 5 units
- 131. The point of intersection of the line joining the points (-3, 4, -8) and (5, -6, 4) with the XY-plane is [2017-II]

(a)
$$\left(\frac{7}{3}, -\frac{8}{3}, 0\right)$$
 (b) $\left(-\frac{7}{3}, -\frac{8}{3}, 0\right)$
(c) $\left(-\frac{7}{3}, \frac{8}{3}, 0\right)$ (d) $\left(\frac{7}{3}, \frac{8}{3}, 0\right)$

132. If the angle between the lines whose direction ratios are

$$(2, -1, 2)$$
 and $(x, 3, 5)$ is $\frac{\pi}{4}$, then the smaller value of x is [2017-II]

- (a) 52 (b) 4
- (c) 2 (d) 1

133. A variable plane passes through a fixed point (a, b, c) and cuts the axes in A, B and C respectively. The locus of the centre of the sphere OABC, O being the origin, is

[2017-II]

(a)
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

(b) $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 1$
(c) $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$
(d) $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 2$

134. The equation of the plane passing through the line of intersection of the planes x + y + z = 1, 2x + 3y + 4z = 7, and perpendicular to the plane x - 5y + 3z = 5 is given by

- (a) x+2y+3z-6=0 (b) x+2y+3z+6=0(c) 3x+4y+5z-8=0 (d) 3x+4y+5z+8=0
- 135. Let the coordinates of the points A, B, C be (1, 8, 4), (0, -11, 4) and (2, -3, 1) respectively. What are the coordinates of the point D which is the foot of the perpendicular from A on BC? [2018-1]
 - perpendicular from A on BC? (a) (3, 4, -2) (b) (4, -2, 5)
 - (a) (3, 4, -2) (b) (4, -2, 5)(c) (4, 5, -2) (d) (2, 4, 5)
- 136. What is the equation of the plane passing through the points (-2, 6, -6), (-3, 10, -9) and (-5, 0, -6)? [2018-1]
 - (a) 2x-y-2z=2 (b) 2x+y+3z=3
 - (c) x+y+z=6 (d) x-y-z=3
- 137. A sphere of constant radius r through the origin intersects the coordinate axes in A, B and C. What is the locus of the centroid of the triangle ABC? [2018-I]
 - (a) $x^2 + y^2 + z^2 = r^2$
 - (b) $x^2 + y^2 + z^2 = 4r^2$
 - (c) $9(x^2 + y^2 + z^2) = 4r^2$
 - (d) $3(x^2+y^2+z^2)=2r^2$
- 138. The coordinates of the vertices P, Q and R of a triangle PQR are (1, -1, 1), (3, -2, 2) and (0, 2, 6) respectively. If $\angle RQP = \theta$, then what is $\angle PRQ$ equal to? [2018-1]
 - (a) $30^\circ + \theta$ (b) $45^\circ \theta$
 - (c) $60^\circ \theta$ (d) $90^\circ \theta$
- 139. What is the equation to the sphere whose centre is at (-2, 3, 4) and radius is 6 units? [2018-1]
 - (a) $x^2 + y^2 + z^2 + 4x 6y 8z = 7$
 - (b) $x^2 + y^2 + z^2 + 6x 4y 8z = 7$
 - (c) $x^2 + y^2 + z^2 + 4x 6y 8z = 4$
 - (d) $x^2 + y^2 + z^2 + 4x + 6y + 8z = 4$
- 140. What is the distance of the point (2, 3, 4) from the plane 3x 6y + 2z + 11 = ? [2018-II]
 - (a) 1 unit (b) 2 unit
 - (c) 3 unit (d) 4 units
- 141. Coordinates of the points O, P, Q and R are respectively (0, 0, 0), (4, 6, 2m), (2, 0, 2n) and (2, 4, 6). Let L, M, N and K be points on the sides OR, OP, PQ and QR respectively such that LMNK is a parallelogram whose two adjacent sides side LK are each of length $\sqrt{2}$. What are the values of m and n respectively? [2018-11]

3D-Geometry

	(a)	6,2 (b) 1,3		144.	What is the radius of the s	phere $x^2 + y^2 + z^2 - 6x$	+8y - 10z
	(c)	3,1 (d) None of the abo	ve		+1 = 0?		[2019-I]
		1 0 0			(a) 5	(b) 2	
142	The	e line $\frac{x-1}{2} - \frac{y-2}{2} = \frac{z-3}{2}$ is given by	[2018-11]		(c) 7	(d) 3	
		2 3 3 3 3 3 3	[=010 11]	145.	The equation of the plane	passing through the in	tersection
	(a)	x+y+z=6, x+2y-3z=-4			of the planes $2x + y + 2z =$	9, 4x - 5y - 4z = 1 and	d the point
	(b)	x + 2y - 2z = -1, $4x + 4y - 5z - 3 = 0$			(3, 2, 1) is		[2019-1]
	(c)	3x + 2y - 3z = 0 $3x - 6y + 3z = -2$			(a) $10x - 2y + 2z = 28$	(b) $10x + 2y + 2z = 28$	\$
	(d)	3x + 2y + 3z = -2 - 3x + 6y + 3z = 0		140	(c) $10x + 2y - 2z = 28$	(d) $10x - 2y - 2z = 24$	1
1 4 2	(u)	3X + 2y - 3Z - 2, 3X - 0y + 3Z - 0	[2010 11]	146.	The distance between the p	arallel planes $4x - 2y +$	4z + 9 = 0
143.	Col	nsider the following statements:	[2018-11]		and $8x - 4y + 8z + 21 = 01$	\$	[2019-1]
	1.	The angle between the planes			. 1	1	
		π			(a) $\frac{-}{4}$	(b) $\frac{1}{2}$	
		$2x - y + z = 1$ and $x + y + 2z = 3$ is $\frac{\pi}{2}$.			2	-	
		5			(c) $\frac{3}{-}$	(d) $\frac{7}{-}$	
	2.	The distance between the planes			2	4	
			10	147.	What are the direction co	sines of z-axis?	[2019-I]
		6x-3y+6z+2=0 and $2x-y+2z+4=0$ is	9		(a) $<1, 1, 1>$	(b) <1,0,0>	
	TT 71)		(c) <0, 1, 0>	(d) <0, 0, 1>	
	Wh	iich of the above statements is/are correct					
	(a)	1 only (b) 2 only					

(c) Both and 2 (d) Neither 1 nor 2

	ANSWER KEY																		
1	(c)	16	(d)	31	(a)	46	(d)	61	(a)	76	(a)	91	(a)	106	(d)	121	(d)	136	(a)
2	(b)	17	(d)	32	(b)	47	(a)	62	(b)	77	(a)	92	(b)	107	(a)	122	(c)	137	(c)
3	(b)	18	(c)	33	(a)	48	(c)	63	(a)	78	(c)	93	(a)	108	(b)	123	(c)	138	(d)
4	(c)	19	(a)	34	(a)	49	(a)	64	(a)	79	(c)	94	(d)	109	(c)	124	(a)	139	(a)
5	(c)	20	(b)	35	(d)	50	(c)	65	(b)	80	(b)	95	(c)	110	(a)	125	(b)	140	(a)
6	(c)	21	(a)	36	(a)	51	(a)	66	(d)	81	(c)	96	(c)	111	(d)	126	(c)	141	(c)
7	(b)	22	(c)	37	(b)	52	(b)	67	(b)	82	(a)	97	(c)	112	(b)	127	(c)	142	(d)
8	(a)	23	(b)	38	(a)	53	(d)	68	(b)	83	(d)	98	(c)	113	(c)	128	(d)	143	(c)
9	(c)	24	(b)	39	(c)	54	(c)	69	(b)	84	(a)	99	(b)	114	(b)	129	(c)	144	(c)
10	(d)	25	(a)	40	(a)	55	(b)	70	(b)	85	(b)	100	(a)	115	(a)	130	(b)	145	(a)
11	(b)	26	(c)	41	(b)	56	(d)	71	(b)	86	(d)	101	(a)	116	(b)	131	(a)	146	(a)
12	(c)	27	(c)	42	(b)	57	(d)	72	(d)	87	(d)	102	(d)	117	(b)	132	(b)	147	(d)
13	(b)	28	(d)	43	(b)	58	(a)	73	(c)	88	(d)	103	(d)	118	(a)	133	(c)		
14	(d)	29	(c)	44	(b)	59	(d)	74	(a)	89	(b)	104	(a)	119	(b)	134	(a)		
15	(c)	30	(d)	45	(b)	60	(a)	75	(a)	90	(c)	105	(c)	120	(c)	135	(c)		

HINTS & SOLUTIONS

1. (c) Let A(a-1, a, a+1), B(a, a+1, a-1) and C (a+1, a-1, a) be the vertices of a triangle ABC. Length of

$$AB = \sqrt{(a-a+1)^2 + (a+1-a)^2 + (a-1-a-1)^2}$$

= $\sqrt{1+1+4} = \sqrt{6}$
Length of
$$BC = \sqrt{(a+1-a)^2 + (a-1-a-1)^2 + (a-a+1)^2}$$

= $\sqrt{1+4+1} = \sqrt{6}$
and $CA = \sqrt{(a-1-a-1)^2 + (a-a+1)^2 + (a+1-a)^2}$
= $\sqrt{4+1+1} = \sqrt{6}$
 $AB = BC = CA$

∴ AB = BC = CA
 ∴ Triangle ABC is an equilateral triangle and these given points are vertices of an equilateral triangle for any real value of a.

Position vector of A, $\overrightarrow{OA} = (a-1)\hat{i} + \hat{a}\hat{j} + (a+1)\hat{k}$ Position vector of B, $\overrightarrow{OB} = a\hat{i} + (a+1)\hat{j} + (a-1)\hat{k}$ Position vector of C, $\overrightarrow{OC} = (a+1)\hat{i} + (a-1)\hat{j} + a\hat{k}$ $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \hat{i} + \hat{j} - 2\hat{k}$ $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = 2\hat{i} - \hat{j} - \hat{k}$ Now, area of a triangle $\triangle ABC$ $= \frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{AC} |$ $= \frac{1}{2} | \overrightarrow{AB} \times \overrightarrow{AC} |$ $= \frac{1}{2} | -3\hat{i} - 3\hat{j} - 3\hat{k} | = \frac{1}{2} \sqrt{9 + 9 + 9} = \frac{\sqrt{27}}{2}$ sq units.

Since, a does not appear so, area of triangle formed by these points is independent of a.

2. (b) Let the point A(x, y, z) is equidistant from the points B(a, 0, 0), C (0,a, 0), D (0, 0, a) and E (0, 0, 0). Hence, $(x - a)^2 + y^2 + z^2 = x^2 + (y - a)^2 + z^2$ $= x^2 + y^2 + (z - a)^2$ $= x^2 + y^2 + z^2$ $\Rightarrow (x - a)^2 + y^2 + z^2 = x^2 + (y - a)^2 + z^2$ $\Rightarrow x^2 + a^2 - 2ax + y^2 + z^2 = x^2 + y^2 + a^2 - 2ay + z^2$ $\Rightarrow -2ax = -2ay$ $\Rightarrow ax = ay \Rightarrow x = y$

$$\Rightarrow ax^{-}ay \Rightarrow x^{-}y$$

Similarly, $ay = az \Rightarrow y = z$
$$\Rightarrow x = y = z$$

$$\therefore (x - a)^{2} + x^{2} + x^{2} = x^{2} + x^{2} + x^{2}$$

$$\Rightarrow x^2 + a^2 - 2ax + x^2 + x^2 = 3x^2$$

$$\Rightarrow a^2 = 2ax \Rightarrow x = \frac{a}{2}$$

$$\therefore \text{ Point is } \left(\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right).$$

3. (b) We know that sum of square of direction cosines = 1 i.e. $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ $\Rightarrow \cos^2 45^\circ + \cos^2 \beta + \cos^2 \beta = 1$

$$\Rightarrow \cos^2 43 + \cos^2 \beta + \cos^2 \beta$$
(As given $\alpha = 45^\circ$ and $\beta =$

$$\Rightarrow \frac{1}{2} + 2\cos^2\beta = 1$$

$$\Rightarrow \cos^2 \beta = \frac{1}{4}$$

 $\Rightarrow \cos \beta = \pm \frac{1}{2}$, Negative value is discarded, since the line makes angle with positive axes.

Hence,
$$\cos \beta =$$

$$\Rightarrow \cos \beta = \cos 60^{\circ}$$
$$\Rightarrow \beta = 60^{\circ}$$

4.

5.

$$\therefore \quad \text{Required sum} = \alpha + \beta + \gamma = 45^\circ + 60^\circ + 60^\circ = 165^\circ$$

 $\frac{1}{2}$

$$\overline{OA} = (\sqrt{3} - 1)\hat{i} - (\sqrt{3} + 1)\hat{j} + 4\hat{k} \text{ and}$$

$$\overline{OB} = -(\sqrt{3} + 1)\hat{i} + (\sqrt{3} - 1)\hat{j} + 4\hat{k}$$

$$|\overline{OA}| = \sqrt{(\sqrt{3} - 1)^2 + (\sqrt{3} + 1)^2 + 4^2}$$

$$= \sqrt{3 + 1 - 2\sqrt{3} + 3 + 1 + 2\sqrt{3} + 16} = \sqrt{24}$$

Also, $|\overline{OB}| = \sqrt{(\sqrt{3} + 1)^2 + (\sqrt{3} - 1)^2 + 4^2} = \sqrt{24}$

 $\overrightarrow{OA}.\overrightarrow{OB} = |\overrightarrow{OA}|.|\overrightarrow{OB}|.\cos\theta$, where θ is the angle between $\overrightarrow{OA} & \overrightarrow{OB}$.

$$\overrightarrow{OA}.\overrightarrow{OB} = -(\sqrt{3}-1)(\sqrt{3}+1) - (\sqrt{3}+1)(\sqrt{3}-1) + 16$$
$$= -3 + 1 - 3 + 1 + 16 = 12$$
So, $\cos \theta = \frac{\overrightarrow{OA}.\overrightarrow{OB}}{|\overrightarrow{OA}||\overrightarrow{OB}|} = \frac{12}{24} = \frac{1}{2}$
$$\Rightarrow \theta = \frac{\pi}{3}$$
Eventions

(c) Equations ax + by + cz + d = 0, a'x + b'y + c'z + d' = 0represent a straight line and equation of the form

$$\frac{x-\alpha}{\ell} = \frac{y-\beta}{m} = \frac{z-y}{n}$$

represent a straight line passing through the point (α, β, γ) and having direction ratios proportional to *l*, m, n. Thus, both statements are correct.

6.

i.e., a = b = c
∴ Equation of sphere can be re-written as bx² + by² + bz² - 2x + 4y + 2z - 3 = 0

$$\Rightarrow x^{2} + y^{2} + z^{2} - \frac{2x}{b} + \frac{4y}{b} + \frac{2z}{b} - \frac{3}{b} = 0$$

The centre of this sphere is $\left(\frac{1}{b}, \frac{-2}{b}, \frac{-1}{b}\right)$

Given that the centre of sphere is $\left(\frac{1}{2}, -1, -\frac{1}{2}\right)$

$$\frac{1}{b} = \frac{1}{2} \Longrightarrow b = 2$$

7. (b) Length of perpendicular from the origin to the plane $ax + by + \sqrt{2ab} z - 1 = 0$ is

$$= \left| \frac{0+0+0-1}{\sqrt{a^2+b^2+2ab}} \right| = \frac{1}{\sqrt{(a+b)^2}} = \frac{1}{(a+b)^2}$$

8. (a) Since, the direction ratio's of normal to a plane are < *l*, m, n > and the length of normal is p, then intercept on x-axis is p/*l* and that on y-axis is p/m and on z-axis it is p/n, hence sum of intercepts cut off by the plane from the coordinate axes

$$= p \left(\frac{1}{\ell} + \frac{1}{m} + \frac{1}{n} \right)$$

- 9. (c) Since, the general equation of a plane is ax + by + cz + d = 0. Where a, b, c show direction ratio and d is a parameter. So, the number of arbitrary constants in equation of a plane = 4.
 10. (d) Since, coordinates of points P and Q are (2, 5, -7) and (-3, 2, 1) respectively.
- (-3, 2, 1) respectively. Direction ratios of PQ are <-3-2, 2-5, 1+7 > i.e., <-5, -3, 8 >.
- 11 (b) Since, coordinates of points O and P are (0,0,0) and (2, 3, -1) respectively. Direction ratios of OP are < 2, 3, -1 >. The plane is perpendicular to OP. So, its equation is 2x+3y-z+d=0(i) Since, this plane passes through $(2, 3, -1); 2 \times 2 + 3 \times 3 - 1 \times -1 + d = 0$ $\Rightarrow 4+9+1+d=0$

$$\Rightarrow d=-14$$

On putting the value of d in Eq. (i)
$$2x + 3y - z - 14 = 0$$

$$\Rightarrow 2x + 3y - z = 14$$

which is required equation of plane.

(c) Let the coordinates of A, B, C and D are (0, 4. 1), (2, 3, -1) (4, 5, 0) and (2, 6, 2) respectively. We find its sides and diagonals as below

AB =
$$\sqrt{(2-0)^2 + (3-4)^2 + (-1-1)^2}$$

= $\sqrt{4+1+4} = \sqrt{9} = 3$
BC = $\sqrt{(4-2)^2 + (5-3)^2 + (0+1)^2}$
= $\sqrt{4+4+1} = \sqrt{9} = 3$
CD = $\sqrt{(2-4)^2 + (6-5)^2 + (2-0)^2}$
= $\sqrt{4+1+4} = \sqrt{9} = 3$
DA = $\sqrt{(0-2)^2 + (4-6)^2 + (1-2)^2}$
= $\sqrt{4+4+1} = \sqrt{9} = 3$
AC = $\sqrt{(4-0)^2 + (5-4)^2 + (0-1)^2}$
= $\sqrt{16+1+1} = \sqrt{18}$
and BD = $\sqrt{(2-2)^2 + (6-3)^2 + (2+1)^2}$
= $\sqrt{9+9} = \sqrt{18}$
Since, AB = BC = CD = DA, sides are equal
and AC = BD, diagonals are also equal.
Hence, A, B, C and D are the vertices of a square.
(b) Let the point be P(x, y, z) and two points, (a, 0, 0) and

- (-a, 0, 0) be A and BAs given in the problem, $PA^{2} + PB^{2} = 2c^{2}$ so, $(x + a)^{2} + (y - 0)^{2} + (z - 0)^{2}$ $+ (x - a)^{2} + (y - 0)^{2} + (z - 0)^{2} = 2c^{2}$ or, $(x + a)^{2} + y^{2} + z^{2} + (x - a)^{2} + y^{2} + z^{2} = 2c^{2}$ $x^{2} + 2ax + a^{2} + y^{2} + z^{2} + x^{2} - 2ax + a^{2} + y^{2} + z^{2} = 2c^{2}$ $= 2(x^{2} + y^{2} + z^{2} + a^{2}) = 2c^{2}$ $= x^{2} + y^{2} + z^{2} + a^{2} = c^{2}$ $= x^{2} + a^{2} = c^{2} - y^{2} - z^{2}$
- 14. (d) Planes always intersect in a line.

13.

15. (c) Sum of directions cosines of a line i.e. $\ell + m + n \neq 1$. So, R is false.

Since sum of squares of direction cosines is unity

$$= \left(\sqrt{\frac{\ell^2 + m^2}{2}}\right)^2 + \left(\sqrt{\frac{m^2 + n^2}{2}}\right)^2 + \left(\sqrt{\frac{n^2 + \ell^2}{2}}\right)^2$$
$$= \frac{\ell^2 + m^2}{2} + \frac{m^2 + n^2}{2} + \frac{n^2 + \ell^2}{2}$$
$$\Rightarrow \frac{2(\ell^2 + m^2 + n^2)}{2} = \ell^2 + m^2 + n^2 = 1$$

Hence, assertion A is true. So, A is true but R is false.

16. (d) The equation of the line is

$$\frac{x-2}{2} = \frac{y-3}{3} = \frac{z-4}{5} = r$$

where r is a constant. Any point on this line, is given by x = 2r + 2, y = 3r + 2 and z = 5r + 4

Since, a plane that is parallel to z-axis will have no zco-ordinate, z = 0

$$z=0 \Longrightarrow 5r+4=0 \text{ or, } r=\frac{-4}{5}$$

Putting this value of r for x and y co-ordinates.

$$x = 2r + 2 = 2 \times \left(-\frac{4}{5}\right) + 2$$

or, $5x = -8 + 10 = 2$
$$x = \frac{2}{5}, \text{ or } \frac{2}{x} = 5$$
 ...(1)
Similarly, $y = 3r + 3 = 3 \times \left(-\frac{4}{5}\right) + 3$
or, $5y = -12 + 15 = 3$

$$y = \frac{3}{5} \implies \frac{3}{y} = 5 \qquad \dots (2)$$

From equations (1) and (2)

$$\frac{2}{x} = \frac{3}{y} \implies 3x - 2y = 0$$

- 17. (d) In the given equation, there are three unknown parameters and no equation has been given to evaluate those, hence centre of sphere cannot be determined.
- 18. (c) For $\left(\frac{1}{\sqrt{2}}, \frac{1}{2}, k\right)$ to represent direction cosines $\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{2}\right)^2 + k^2 = 1$ or, $\frac{1}{2} + \frac{1}{4} + k^2 = 1$ $\frac{3}{4} + k^2 = 1 \implies k = \pm \frac{1}{2}$

19. (a) As given :

 $x = a \sec \theta \cos \phi$, $y = b \sec \theta \sin \phi$, $z = c \tan \theta$

So,
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = \frac{a^2 \sec^2 \theta \cos^2 \phi}{a^2}$$
$$+ \frac{b^2 \sec^2 \theta \sin^2 \phi}{b^2} - \frac{c^2 \tan^2 \theta}{c^2}$$
$$= \sec^2 \theta (\cos^2 \phi + \sin^2 \phi) - \tan^2 \theta = \sec^2 \theta - \tan^2 \theta = 1$$

$$a(x-x_1) + b(y-y_1) + c(z-z_1) = 0$$

- $\Rightarrow ax ax_1 + by by_1 + cz cz_1 = 0$ $\Rightarrow ax + by + cz = ax_1 + by_1 + cz_1$ which is required equation of plane.
- 22. (c) Let the direction ratio of the line be, a, b,c, This line is contained by both plane, 3x+y+2z=7 and x+2y+3z=5.

$$\Rightarrow 3a+b+2c=0 \qquad \dots(1)$$

and $a+2b+3c=0 \qquad \dots(2)$

Solving these two equations :

$$\frac{a}{\begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix}} = \frac{-b}{\begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix}} = \frac{c}{\begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix}} = k$$

Let

20.

21.

$$\Rightarrow \frac{a}{-1} = \frac{-b}{7} = \frac{c}{5} = k$$

a = -k, b = -7k, c = 5k.
Direction cosines are :

$$\frac{a}{\sqrt{a^2 + b^2 + c^2}}, \frac{b}{\sqrt{a^2 + b^2 + c^2}}, \frac{c}{\sqrt{a^2 + c^2}}, \frac{c}{\sqrt{a^2 + b^2 + c^2}}, \frac{c}{\sqrt{a^2 + c$$

$$=\left(-\frac{1}{\sqrt{75}},-\frac{7}{\sqrt{75}},\frac{5}{\sqrt{75}}\right).$$

23. (b) The equation of the given sphere is

$$x^2 + y^2 + z^2 - 10z = 0.$$

∴ Its centre is (0, 0, 5).
 Coordinates of one end point of a diameter of the sphere is given as (-3, -4, 5).
 Let Coordinates of another end point of this diameter (x₁, y₁, z₁)

$$\therefore \quad \frac{-3+x_1}{2} = 0 \quad \Rightarrow x_1 = 3$$
$$\frac{-4+y_1}{2} = 0 \quad \Rightarrow y_1 = 4$$

and
$$\frac{5+z_1}{2} = 5 \implies z_1 = 5$$

- \therefore Required coordinates are (3, 4, 5).
- 24. (b) As given : O(0,0), A(0,3), B(4,0) are the vertices of triangle OAB.
 - $\therefore \quad \overrightarrow{OA} = \overrightarrow{r} = 3\widehat{j} \text{ and } \overrightarrow{F} = 10\widehat{i}$ Movement of force about the vertex

$$A = r \times F = 3j \times 10i = -30k$$

- \therefore Magnitude of moment = $|30\hat{k}| = 30$ unit
- 25. (a) Let the line joining the points (2, 4, 5) and (3, 5, -4) is internally divided by the xy plane in the ratio k : 1.
 - \therefore For xy plane, z = 0

$$\Rightarrow 0 = \frac{-k \times 4 + 5}{k + 1} \Rightarrow 4k = 5 \Rightarrow k = \frac{5}{4}.$$

$$k = \frac{5}{4} \text{ so, ratio is } 5:4$$

26. (c) Given equation of planes are :

x+y+z=7and $\alpha x + \beta y + \gamma z=3$ For these planes to be parallel, coefficients of x, y and

z should be same i.e.

- $\Rightarrow \alpha = \beta = \gamma$
- 27. (c) A plane ax + by + cz = 0 is parallel to, a straight line having direction ratios a', b', c'.

If aa' + bb' + cc' = 0

In the given problem, dr_s of line is 2, 3, 4.

We check the equations of plane in the given choices, one by one.

- (a) $4 \times 2 + 3 \times 3 + (-5) \times 4 = 8 + 9 20 \neq 0$
- (b) $4 \times 2 + 5 \times 3 + (-4) \times 4 = 8 + 15 16 \neq 0$
- (c) $4 \times 2 + 4 \times 3 + (-5) \times 4 = 8 + 12 20 = 0$
- Further checking is not needed.
- 28. (d)

Let there be cube of side 'a'. Co-ordinates of its vertices O, A, B, C, D, E, F have be marked in the figure. Diagonals are OE, FC, GB and AD. Direction ratios (dr_3) of these diagonals are : OE $\langle (a-0), (a-0), (a-0) \rangle = (a, a, a)$

FC $\langle (-a, a, -a) \rangle$; GB $\langle (-a, a, a) \rangle$ and AD $\langle (a, a, -a) \rangle$ Their des are :

OE,
$$\langle \frac{a}{\sqrt{a^2 + a^2 + a^2}}, \frac{a}{\sqrt{a^2 + a^2 + a^2}}, \frac{a}{\sqrt{a^2 + a^2 + a^2}} \rangle$$
$$= \langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \rangle$$

AD,
$$\langle \frac{a}{\sqrt{\Sigma a^2}}, \frac{a}{\sqrt{\Sigma a^2}}, \frac{-a}{\sqrt{\Sigma a^2}} \rangle = \langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}} \rangle$$

Angle, θ , between AD and OE is given by

$$\cos \theta = \pm \frac{\frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}}}{\sqrt{\left\{\left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{1}{\sqrt{3}}\right)^2 + \left(-\frac{1}{\sqrt{3}}\right)^2\right\}}}$$
$$= \frac{\frac{1}{3}}{1 \times 1} = \pm \frac{1}{3}$$

Since the cube is in positive octant, we take $+\frac{1}{3}$.

So,
$$\cos \theta = \frac{1}{3} \Longrightarrow \theta > 60'$$

29.

[Since value of $\cos \theta$ decreases as θ increases in 0 to 90°. $\cos \theta = 1$ when $\theta = 0^{\circ}$ and $\cos \theta = 0$ when $\theta = 90^{\circ}$]

(c) The equation of plane which contains z-axis is 3x+2y=0 as z is absent in this equation.

30. (d) Given two lines are : $y = \frac{mx}{\ell} + \alpha$, $z = \frac{n}{\ell}x + \beta$ and

$$y = \frac{m'}{\ell'}x + \alpha', z = \frac{n'}{\ell'}x + \beta'$$

These two lines can be represented as :

$$\frac{y-\alpha}{m/\ell} = \frac{x-0}{1} = \frac{z-\beta}{n/\ell} \text{ and } \frac{y-\alpha'}{m'/\ell'} = \frac{x-0}{1} = \frac{z-\beta'}{n'/\ell'}$$

They are orthogonal, if

$$\frac{\mathbf{m}}{\ell} \times \frac{\mathbf{m'}}{\ell'} + 1 \times 1 + \frac{\mathbf{n}}{\ell} \times \frac{\mathbf{n'}}{\ell'} = -1 \implies \ell\ell' + \mathbf{mm'} + \mathbf{nn'} = 0$$

31. (a) The equation of sphere passing through the given points is

$$x^{2} + y^{2} + z^{2} + 2ux + 2vy + 2wz + d = 0$$

$$\therefore (0)^{2} + (0)^{2} + (0)^{2} + 2u(0) + 2v(0) + 2w(0) + d = 0$$

$$\Rightarrow d = 0$$

$$(2)^{2} + (0)^{2} + (0)^{2} + 2u(2) + 2v(0) + 2w(0) + 0 = 0$$

$$\Rightarrow u = -1$$

$$(0)^{2} + (4)^{2} + (0)^{2} + 2u(0) + 2v(4) + 2w(0) + 0 = 0$$

$$\Rightarrow v = -2$$

Hence, normals to the two planes are perpendicular to each other. Therefore two planes are also perpendicular.

36. (a) Given sphere : $x^2 + y^2 + z^2 - 6x - 8y + 10z + \lambda = 0$ Its radius = 1

$$\Rightarrow \sqrt{(-3)^2 + (-4^2) + (5)^2 - \lambda} = 1$$

$$\Rightarrow 9 + 16 + 25 - \lambda = 1$$

$$\therefore \lambda = 49$$

- 37. (b) a circle (obviously)
- 38. (a) Let (1, 3, 4), (-1, 6, 10), (-7, 4, 7) and (-5, 1, 1) be the coordinates of points *A*, *B*, *C* and *D* respectively.

$$\therefore AB = \sqrt{(-1-1)^2 + (6-3)^2 + (10-4)^2}$$

$$= \sqrt{4+9+36} = 7$$

$$BC = \sqrt{(-7+1)^2 + (4-6)^2 + (7-10)^2}$$

$$= \sqrt{36+4+9} = 7$$

$$CD = \sqrt{(-5+7)^2 + (1-4)^2 + (1-7)^2}$$

$$= \sqrt{4+9+36} = 7$$

$$DA = \sqrt{(1+5)^2 + (3-1)^2 + (4-1)^2}$$

$$= \sqrt{36+4+9} = 7$$

$$AC = \sqrt{(-7-1)^2 + (4-3)^2 + (7-4)^2}$$

$$= \sqrt{64+1+9} = \sqrt{74}$$

and $BD = \sqrt{(-5+1)^2 + (1-6)^2 + (1-10)^2}$

$$= \sqrt{16+25+81} = \sqrt{122}$$

$$\therefore AB = BC = CD = DA$$

But $BD \neq AC$

$$\therefore Points A, B, C and D are the vertices of a rhombus.$$

(c) We know that the number of planes passing throu

- 39. (c) We know that the number of planes passing through the non-collinear points is 1.
- 40. (a) Given, x + z = 0, y = 0 and 20x = 15y = 12z

$$\Rightarrow \frac{x}{1} = \frac{y}{0} = \frac{z}{-1} \text{ and } \frac{x}{3} = \frac{y}{4} = \frac{z}{5}$$

Let θ be angle between two lines.

$$\therefore \quad \cos \theta = \left| \frac{(1)(3) + (0)(4) + (-1)(5)}{\sqrt{1 + 0 + 1}\sqrt{9 + 16 + 25}} \right| = \left| \frac{3 + 0 - 5}{\sqrt{2}\sqrt{50}} \right|$$
$$= \frac{2}{\sqrt{2} \cdot 5\sqrt{2}} = \frac{1}{5}$$
$$\therefore \quad \theta = \cos^{-1}\left(\frac{1}{5}\right)$$

41. (b) Equation $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ represent a real sphere if $u^2 + v^2 + w^2 > d$

and $(0)^2 + (0)^2 + (6)^2 + 2u(0) + 2v(0) + 2w(6) + 0 = 0$ $\Rightarrow w = -3$ \therefore The centre of sphere = (1, 2, 3) It will be the point equidistant from the four points

(0, 0, 0), (2, 0,0), (0, 4, 0) and (0, 0, 6).
32. (b) Let the angle between two lines whose direction ratios are a₁, b₁, c₁ and a₂, b₂, c₂ respectively is 0.

Then,
$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

$$\therefore \cos 60^{\circ} = \frac{1 \times 1 + 0 \times 0 + (\cos \alpha)(-\cos \alpha)}{\sqrt{1^2 + (0)^2 + \cos^2 \alpha} \sqrt{1^2 + (0)^2 + (-\cos \alpha)^2}}$$

$$\Rightarrow \frac{1}{2} = \frac{1 - \cos^2 \alpha}{\sqrt{1 + \cos^2 \alpha} \sqrt{1 + \cos^2 \alpha}}$$
$$\Rightarrow \frac{1}{2} = \frac{1 - \cos^2 \alpha}{1 + \cos^2 \alpha} \Rightarrow \frac{1 + 2}{1 - 2} = \frac{2}{-2\cos^2 \alpha}$$
$$\Rightarrow \frac{3}{-1} = \frac{1}{-\cos^2 \alpha}$$
$$\Rightarrow \cos \alpha = \frac{1}{\sqrt{3}} \Rightarrow \alpha = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

33. (a) Let the equation of line which is passing through (1, 2, 3) and having direction ratios (1, 2, 3) is

$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3} = a$$

$$\therefore x-1 = a$$

$$y-2 = 2a \text{ and } z-3 = 3a$$

$$\Rightarrow x = a+1, y = 2a+2 \text{ and } z = 3a+3$$

At x-axis, $y = 0$ and $z = 0$

$$\Rightarrow 2a+2 = 0 \text{ and } 3a+3 = 0$$

$$\Rightarrow a = -1 \text{ and } a = -1$$

$$\therefore x = (-1)+1 = 0$$

34. (a) Direction cosines of the normal to the given plane by + cz + d = 0 are 0, b, c Direction cosines of the x-axis are 1, 0, 0 Since, $0 \times 1 + b \times 0 + c \times 0 = 0$ Hence x-axis is perpendicular to normal to the given plane. Therefore x-axis is parallel to the given plane.

35. (d) Direction cosines of the normal to the plane 3x+y+z=5 are 3, 1, 1Direction cosines of the normal to the plane x-2y-z=6 are 1, -2, -1Sum of the product of direction cosines $= 3 \times 1 + 1 \times (-2) + 1 \times (-1) = 0$ 42.

(b) We know, if $a_1 x + b_1 y + c_1 z = d_1$ and $a_2 x + b_2 y + c_2 z = d_2$

are two planes then angle between them is

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

Let θ be the angle between given planes Here, $a_1 = 2, b_1 = -1, c_1 = 1$

$$a_{2} = 1, b_{2} = 1, c_{2} = 2$$

$$\therefore \quad \cos \theta = \frac{2 \times 1 + 1 \times (-1) + 1 \times 2}{\sqrt{4 + 1 + 1} \sqrt{1 + 1 + 4}}$$

$$= \frac{3}{6} = \frac{1}{2} = \cos\frac{\pi}{3}$$
$$\Rightarrow \quad \theta = \frac{\pi}{2}$$

43. (b) The equation of plane which is passing through x-axis is

x = a.

This plane also passes through (1, 2, 3)

- :. By putting x = 1 in eqn of plane, we get a = 1Hence x = 1 is required equation of plane.
- 44. (b) If (l_1, m_1, n_1) and (l_2, m_2, n_2) are the direction ratios then angle between the lines is

$$\cos \theta = \frac{l_1 l_2 + m_1 m_2 + n_1 n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}}$$

Here $l_1 = 1, m_1 = 1, n_1 = 1$ and
 $l_2 = 1, m_2 = -1, n_2 = n$
and $\theta = 60^\circ$
 $\therefore \cos 60^\circ = \frac{1 \times 1 + 1 \times (-1) + 1 \times n}{\sqrt{1^2 + 1^2 + 1^2} \times \sqrt{1^2 + 1^2} + n^2}}$
 $\Rightarrow \frac{1}{2} = \frac{n}{\sqrt{3}\sqrt{2 + n^2}} \Rightarrow 3(2 + n^2) = 4n^2$
 $\Rightarrow n^2 = 6 \Rightarrow n = \pm \sqrt{6}$

45. (b) Equation of plane passing through (1, -2, 4) and whose normal (2, 1, 2) is 2(x-1)+1(y+2)+2(z-4)=0 $\Rightarrow 2x-2+y+2+2z-8=0$ $\Rightarrow 2x+y+2z-8=0$

:. So, distance of the plane 2x + y + 2z - 8 = 0 from the point (3, 2, 3) is

$$\frac{2(3)+1(2)+(2)(3)-8}{\sqrt{4+1+4}} = \frac{6}{3} = 2$$

=

46. (d) Equation of plane passing through (1, -3, 1) and whose normal (1, -3, 1) is 1(x-1)-3(y+3)+1(z-1)=0 $\Rightarrow x-3y+z-11=0$

$$\Rightarrow \frac{x}{11} - \frac{y}{11/3} + \frac{z}{11} = 0$$

The above plane intercept the x-axis at 11.
47. (a) Since $l^2 + m^2 + n^2 = 1$
 $\therefore \cos^2 \alpha + \cos^2 \alpha + \cos^2 \theta = 1$ (i)
 $(\because A \text{ line makes the same angle } \alpha \text{ with } x \text{ and } y\text{-axes and}$
 $\theta \text{ with } z\text{-axis})$
Also, $\sin^2 \theta = 2 \sin^2 \alpha$
 $\Rightarrow 1 - \cos^2 \theta = 2(1 - \cos^2 \alpha) (\because \sin^2 A + \cos^2 A = 1)$
 $\Rightarrow \cos^2 \theta = 2\cos^2 \alpha - 1$ (ii)
 \therefore From Eq. (i) and (ii)
 $2\cos^2 \alpha + 2\cos^2 \alpha - 1 = 1$
 $\Rightarrow 4\cos^2 \alpha = 2 \Rightarrow \cos^2 \alpha = \frac{1}{2}$
 $\Rightarrow \cos \alpha = \pm \frac{1}{\sqrt{2}}$
 $\Rightarrow \alpha = \frac{\pi}{4}, \frac{3\pi}{4}$
48. (c) Given centre of sphere is (6, -1, 2) and eq^n of plane is

2x-y+2z-2=0Since, sphere touches the plane therefore \perp distance from centre to the plane is radius of the sphere.

$$\therefore \text{Radius} = \frac{2(6) - 1(-1) + 2(2) - 2}{\sqrt{4 + 1 + 4}} = \frac{15}{3} = 5$$

$$\therefore \text{ Required equation of sphere is}$$
$$(x - 6)^2 + (y + 1)^2 + (z - 2)^2 = 5^2$$
$$\Rightarrow x^2 + y^2 + z^2 - 12x + 2y - 4z + 16 = 0$$
(a) The intersection of given plane is

49.

 $x-y+2z-1+\lambda(x+y-z-3)=0$ $\Rightarrow x(1+\lambda)+y(\lambda-1)+z(2-\lambda)-3\lambda-1=0$ DR's of normal to the above plane is $(1+\lambda,\lambda-1,2-\lambda)$ By taking option (a) $-1(1+\lambda)+3(\lambda-1)+2(2-\lambda)=0$ $\Rightarrow -1-\lambda+3\lambda-3+4-2\lambda=0$ $\Rightarrow 0=0$ which is true. Hence, option (a) is correct.

- 50. (c) The planes bx ay = n, cy bz = l and az cx = mintersect in a line, if al + bm + cn = 0.
- 51. (a) We know that the angle between the planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$ is given by

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2 \sqrt{a_2^2 + b_2^2 + c_2^2}}}$$

Given equation of planes are px + 2y + 2z - 3 = 0 and 2x - y + z + 2 = 0

On comparing with standard equations, we get

$$a_{1} = p, a_{2} = 2, b_{1} = 2, b_{2} = -1, \quad c_{1} = 2, c_{2} = 1$$
Also, $\theta = \frac{\pi}{4}$ (given)
 $\therefore \quad \cos \frac{\pi}{4} = \left| \frac{p \times 2 + 2 \times (-1) + 2 \times 1}{\sqrt{p^{2} + 4 + 4}\sqrt{4 + 1 + 1}} \right|$

$$\Rightarrow \quad \frac{1}{\sqrt{2}} = \frac{2p}{\sqrt{p^{2} + 8}\sqrt{6}} \Rightarrow \frac{1}{2} = \frac{4p^{2}}{(p^{2} + 8)6}$$

$$\Rightarrow \quad \frac{3}{4} = \frac{p^{2}}{p^{2} + 8}$$

$$\Rightarrow \quad 3p^{2} + 24 = 4p^{2} \Rightarrow p^{2} = 24$$
52. (b) Required angle $= \cos^{-1}\left(\frac{1}{3}\right)$
53. (d) Required angle $= \cos^{-1}\left(\frac{2}{\sqrt{3}}\right)$

54. (c) Required angle =
$$\cos^{-1}\left(\sqrt{\frac{2}{3}}\right)$$

55. (b) Let equation of plane through z-axis is ax + by = 0It is given that this plane is parallel to the line

$$\frac{x-1}{\cos\theta} = \frac{y+2}{\sin\theta} = \frac{z-3}{0}$$

Since the plane parallel to the line

- $\therefore a \cos \theta + b \sin \theta = 0$
- $\Rightarrow a \cos \theta = -b \sin \theta \Rightarrow a = -b \tan \theta$
- $\therefore -b \tan \theta x + by = 0$
- $\Rightarrow x \tan \theta y = 0 (\because b \neq 0)$
- which is required equation of plane. (d) Given points are A(k, 1, -1), B(2k, 0, 2) and C(2+2k, k, 1)56. Let $r_1 =$ length of line

$$AB = \sqrt{(2k-k)^{2} + (0-1)^{2} + (2+1)^{2}} = \sqrt{k^{2} + 10}$$

and $r_2 = \text{length of line } BC = \sqrt{(2)^2 + k^2 + (-1)^2}$

 $=\sqrt{k^2+5}$

60.

Now, let ℓ_1, m_1, n_1 be direction-cosines of line AB and

 ℓ_2 , m_2 , n_2 be the direction cosines of *BC*.

Since AB is perpendicular to BC

$$\therefore \ \ell_1 \ \ell_2 + m_1 \ m_2 + n_1 \ n_2 = 0$$
Now, $\ell_1 = \frac{k}{\sqrt{k^2 + 10}}, \ m_1 = \frac{-1}{\sqrt{k^2 + 10}}, \ n_1 = \frac{3}{\sqrt{k^2 + 10}}$
and $\ell_2 = \frac{2}{\sqrt{k^2 + 5}}, \ m_2 = \frac{k}{\sqrt{k^2 + 5}}, \ n_2 = \frac{-1}{\sqrt{k^2 + 5}}$
So, $\ell_1 \ \ell_2 + m_1 \ m_2 + n_1 \ n_2 = 0$

$$\Rightarrow \frac{2k}{\sqrt{k^2 + 10}\sqrt{k^2 + 5}} - \frac{k}{\sqrt{k^2 + 10}\sqrt{k^2 + 5}} - \frac{3}{\sqrt{k^2 + 10}\sqrt{k^2 + 5}} = 0$$

$$\Rightarrow 2k - k - 3 = 0$$

$$\Rightarrow k = 3$$
For $k = 3$, AB is perpendicular to BC.
57. (d) Two planes $ax + by + cz + d = 0$ and $ax + by + cz + d_1$

$$= 0$$
 are parallel to each other.

:. They have no common point.

58. (a) Required distance =
$$\frac{|2(0) + 6(0) - 3(0) + 7|}{\sqrt{(2)^2 + (6)^2 + (-3)^2}}$$

$$= \frac{|7|}{\sqrt{4+36+9}} = \left|\frac{7}{7}\right| = 1$$

59. (d) The given equation of the planes are
$$x + y + 2z = 3$$
 and
 $-2x + y - z = 11$.
We know that, the angle between the planes
 $a_1x + b_1y + c_1z + d_1 = 0$
and $a_2x + b_2y + c_2z + d_2 = 0$ is given by
 $\cos \theta = \left| \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2}\sqrt{a_2^2 + b_2^2 + c_2^2}} \right|$

Here,
$$a_1 = 1, b_1 = 1, c_1 = 2, a_2 = -2, b_2 = 1, c_2 = -1$$

$$\therefore \qquad \cos \theta = \left| \frac{1 \times (-2) + 1 \times 1 + 2 \times (-1)}{\sqrt{1 + 1 + 4}\sqrt{4 + 1 + 1}} \right|$$

$$= \left| \frac{-2+1-2}{\sqrt{6}\sqrt{6}} \right| = \left| \frac{3}{6} \right| = \frac{1}{2} = \cos \frac{\pi}{3} \Longrightarrow \theta = \frac{\pi}{3}$$

1

(a) The given equation of sphere is

$$x^{2} + y^{2} + z^{2} - x - y - z = 0$$
On comparing with

$$x^{2} + y^{2} + z^{2} + 2ux + 2vy + 2wz + d = 0$$
we get, $u = -\frac{1}{2}$, $v = -\frac{1}{2}$, $w = -\frac{1}{2}$, $d = 0$
 \therefore Radius of sphere $= \sqrt{u^{2} + v^{2} + w^{2} - d}$
 $= \sqrt{\frac{1}{4} + \frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{3}{4}}$

53.
61. (a) We have, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$...(i) $\Rightarrow 2\cos^2 \alpha + 2\cos^2 \beta + 2\cos^2 \gamma = 2$ $\Rightarrow 2\cos^2 \alpha - 1 + 2\cos^2 \beta - 1 + 2\cos^2 \gamma - 1 = 2 - 3$ $\Rightarrow \cos 2\alpha + \cos 2\beta + \cos 2\gamma = -1$ Hence statement - I is correct. and now from (i), $1 - \sin^2 \alpha + 1 - \sin^2 \beta + 1 - \sin^2 \gamma = 1$ $\Rightarrow \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$ Hence, only statement I is correct. 62. (b) Only point (3, 7, 1) satisfy the equation of plane 2x + 3y - 6z = 21Hence, (3, 7, 1) lies on the plane. (a) Since, direction cosines are proportional to (2,3,4)63. and (1,-2,1) respectively $2 \times 1 + 3 \times (-2) + 4 \times 1 = 0$ *.*.. Angle between the lines is 90°. *.*.. (a) Locus of points of intersection of a sphere and a plane 64. is circle. (b) Given equations of two planes are 2x - y + z = 4 and 65. x + y + 2z = 6

So, angle between them is

$$\cos \theta = \frac{2(1) + (-1)(1) + (1)(2)}{\sqrt{4 + 1 + 1}\sqrt{4 + 1 + 1}}$$
$$= \frac{2 - 1 + 2}{\sqrt{6}\sqrt{6}} = \frac{3}{6} = \frac{1}{2}$$

66. (d) Since, the required plane passing through
$$(1, -1, -1)$$
 therefore only equation given in option 'd' satisfied by the point $(1, -1, -1)$.

Hence, Required equation of plane is

$$14x - 5y + 3z = 16$$

 $\Rightarrow \theta = \frac{\pi}{3}$

67. (b) As we know, general equation of sphere is given as

$$x^{2} + y^{2} + z^{2} + 2ux + 2vy + 2wz + d = 0 \qquad \dots (1)$$

Given equation of sphere is

$$x^{2} + y^{2} + z^{2} + f(x, y, z) = 0 \qquad \dots (2)$$

On comparing both the equations (1) and (2), we get f(x, y, z) = 2ux + 2vy + 2wz + dSince, sphere passing through (0, 0, 0), (-1, 0, 0), (0,-2,0), (0, 0, -3) \therefore we have from (1),

$$d = 0, 1 - 2u = 0 \implies u = \frac{1}{2},$$
$$4 - 4v = 0 \implies v = 1, 9 - 6w = 0 \implies w = \frac{3}{2}$$

Hence,

$$f(x, y, z) = 2x \left(\frac{1}{2}\right) + 2y(1) + 2z \left(\frac{3}{2}\right) + 0$$

= x + 2y + 3z

68. (b) We have

 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$

Consider $1 + \cos 2\alpha + \cos 2\beta + \cos 2\gamma$

$$= 1 + (2\cos^{2} \alpha - 1) + (2\cos^{2} \beta - 1) + (2\cos^{2} \gamma - 1)$$
$$= 2\cos^{2} \alpha + 2\cos^{2} \beta + 2\cos^{2} \gamma - 2$$
$$= 2\left[\cos^{2} \alpha + \cos^{2} \beta + \cos^{2} \gamma\right] - 2 = 2(1) - 2 = 0$$

69. (b) Given equation of plane is
$$2x - y + 2z + 1 = 0$$

 $\Rightarrow a = 2, b = -1, c = 2$

Hence d.R
$$\langle 2, -1, 2 \rangle$$
 i.e., $\langle 1, -\frac{1}{2}, 1 \rangle$

70. (b) If θ be the angle between the planes $a_1x + b_1y + c_1z + d_1 = 0$ and $a_2x + b_2y + c_2z + d_2 = 0$

then
$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

$$\cos \theta = \frac{1(2) + 1(-2) + 1(2)}{\sqrt{1^2 + 1^2 + 1^2}} \sqrt{2^2 + (-2)^2 + 2^2}$$

$$=\frac{2}{\sqrt{3}}\frac{1}{2\sqrt{3}}=\frac{1}{3}$$

71. (b) Let the direction cosines be
$$\ell$$
, m, n.
Let P (x₁, y₁, z₁) and Q(x₂, y₂, z₂) be two points which joins a line.
 \therefore x₁ = 1, y₁ = 2, z₁ = -3

$$x_2 = -2, y_2 = 3, z_2 = 1$$

Now, $\ell = \frac{x_2 - x_1}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}}$
$$= \frac{-3}{\sqrt{26}}$$

$$m = \frac{y_2 - y_1}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}} = \frac{1}{\sqrt{26}}$$

n =
$$\frac{4}{\sqrt{26}}$$

∴ $\ell^2 + m^2 + n^2 = \frac{9}{26} + \frac{1}{26} + \frac{16}{26} = \frac{26}{26} = 1$

Always equal to 1

72. (d) General equation of sphere is $x^{2} + y^{2} + z^{2} + 2ux + 2vy + 2wz + d = 0$ On comparing with the given equation we have u = -2, v = 3, w = -4, d = -7Radius = $\sqrt{u^{2} + v^{2} + w^{2} - d}$ $= \sqrt{4 + 9 + 16 + 7} = \sqrt{36} = 6$ Diameter = $2 \times 6 = 12$ 73. (c) We have,

$$13 = \sqrt{(4-7)^2 + (5-1)^2 + (\lambda+3)^2}$$

$$169 = 9 + 16 + \lambda^2 + 9 + 6\lambda$$

$$\Rightarrow \lambda^2 + 6\lambda - 135 = 0$$

$$\Rightarrow \lambda^2 + 15\lambda - 9\lambda - 135 = 0$$

$$\Rightarrow \lambda(\lambda+15) - 9 (\lambda+15) = 0$$

$$\Rightarrow (\lambda+15) (\lambda-9) = 0$$

$$\Rightarrow \lambda = -15 \text{ or } \lambda = 9$$

Since line OP of length 'r'which makes an angle ' α ' with x-axis lies in xz – plane. Therefore y-coordinate of P is zero. Now, from ΔOAP , we have $OA = r \cos \alpha$, $PA = r \sin \alpha$. $\therefore P = (r \cos \alpha, 0, r \sin \alpha)$

75. (a) Equation of plane is x = 0

 \therefore Required distance from (1, 2, 0) is

$$=\frac{1.1+2.0+0.0-0}{\sqrt{1^2+0^2+0^2}}=\frac{1}{\sqrt{1}}=1$$
 unit

76. (a) Let ℓ , m, n are the dc's of a line that is inclined equally at α to the +ve direction of axes.

Now, $\ell = \cos \alpha$ m = cos α

 $n = \cos \alpha$.

$$\frac{x-2}{1} = \frac{y-(-1)}{-2} = \frac{z-(-2)}{1}$$
 and

 \therefore dc's of the line are : $\left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle$

$$\frac{x-1}{1} = \frac{y - \left(-\frac{3}{2}\right)}{\frac{3}{2}} = \frac{z - (-5)}{2}$$

dr's of Ist line are:-

$$a_1 = 1, b_1 = -2, c_1 = 1$$

Also, $\ell^2 + m^2 + n^2 = 1$ 3 cos² $\alpha = 1$

 $\cos \alpha = \frac{1}{\sqrt{3}}$

dr's of IInd line are: $a_2 = 2, b_2 = 3, c_2 = 4$

Let ' θ ' be the angle b/w two lines, then,

$$\cos \theta = \frac{\left|a_{1} a_{2} + b_{1} b_{2} + c_{1} c_{2}\right|}{\sqrt{a_{1}^{2} + b_{1}^{2} + c_{1}^{2}} \cdot \sqrt{a_{2}^{2} + b_{2}^{2} + c_{2}^{2}}}$$
$$\cos \theta = 0$$

$$\Rightarrow \theta = \frac{\pi}{2}$$

78. (c) The equation of a plane parallel to the plane

$$3x + 4y - 5z = 0$$
 is given by,
 $3x + 4y - 5z = d$ (i)
Since plane (i) passes through (1,2, 3) then, $3+8-15=d$
 $\Rightarrow d=-4$
 \therefore from (i),
 $3x + 4y - 5z + 4 = 0$
79. (c) Let P₁: $x - 3z - 4 = 0$ and P₂: $y - 2z + 3 = 0$ be two planes

. Let ax + by + cz = d be the equation of line. Since, the line of intersection will be perpendicular to the normal of both the planes

$$\therefore a(1)+b(0)+c(-3)=0$$

$$\Rightarrow a-3c=0 \qquad \dots (i)$$

and $a(0)+b(1)+c(-2)=0$

$$\Rightarrow b-2c=0 \qquad \dots (ii)$$

From (1) and (2) we have

$$\frac{a}{3} = \frac{b}{2} = \frac{c}{1}$$

Hence, d.Rs = <3, 2, 1>.

80. (b) We know that dr's of z-axis are (0, 0, 1) So, dr's of the required line are 0, 0 and 1 Now, equation of the line passing through (a, b, c) and having dr's 0, 0 and 1 is

$$\frac{\mathbf{x}-\mathbf{a}}{\mathbf{0}} = \frac{\mathbf{y}-\mathbf{b}}{\mathbf{0}} = \frac{\mathbf{z}-\mathbf{c}}{\mathbf{1}}$$

- 81. (c) Direction cosines of z-axis are 0, 0, 1 sum = 0 + 0 + 1 = 1
- 82. (a) Let A(0, 0, 0), B(1, 2, 3) and C(-3, -2, 1) be the vertices of a triangle.

Area of
$$\triangle ABC = \frac{1}{2} \begin{vmatrix} i & j & k \\ 1 & 2 & 3 \\ -3 & -2 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[\hat{i} (2+6) - \hat{j} (1+9) + \hat{k} (-2+6) \right]$$
$$= \frac{1}{2} \left| 8\hat{i} - 10\hat{j} + 4\hat{k} \right| = \frac{1}{2} \sqrt{64 + 16 + 100}$$
$$= \frac{1}{2} \left(6\sqrt{5} \right) = 3\sqrt{5}$$

83. (d) Given planes are

x-2y+z=1 (i) and -3x+6y-3z=-2

$$\equiv x - 2y + z = \frac{2}{3}$$
 (ii)

Since both planes are parallel and a = 1, b = -2, c = 1

and
$$d_1 = -1$$
, $d_2 = \frac{-2}{3}$
 \therefore Distance $= \left| \frac{d_2 - d_1}{\sqrt{a^2 + b^2 + c^2}} \right|$

Distance
$$= \left| \frac{1 - \frac{2}{3}}{\sqrt{1 + 4 + 1}} \right| = \frac{1}{3\sqrt{6}}$$

84. (a) Direction cosines are $cos30^{\circ}$, $cos\beta$ and $cos \gamma$. Since we know $cos^{2} 30 + cos^{2} \beta + cos^{2} \gamma = 1$

$$\Rightarrow \cos^2\beta + \cos^2\gamma = \frac{1}{4} \qquad \left(\because \cos 30^\circ = \frac{\sqrt{3}}{2}\right)$$

- 85. (b) Given equation is $3x^2 + 3y^2 + (k+1)z^2 + x - y + z = 0$ which will represents a sphere if coeff of x^2 = coeff of y^2 = coeff of z^2 . $\Rightarrow 3 = k + 1$ $\Rightarrow k = 2$ 86. (d) Given equation of plane are 2x - y - 2z + 1 = 0
 - 2x y 2z + 1 = 0 $\Rightarrow a_1 = 2, b_1 = -1, c_1 = -2, d_1 = 1$ and 3x - 4y + 5z - 3 = 0 $\Rightarrow a_2 = 3, b_2 = -4, c_2 = 5, d_2 = -3$ $\therefore \text{ Required angle is}$

$$\cos \theta = \pm \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$
$$\Rightarrow \cos \theta = \frac{2(3) + (-1)(-4) + 5(-2)}{\sqrt{2^2 + 1^2 + 2^2} \sqrt{3^2 + 4^2 + 5^2}} = 0$$
$$\Rightarrow \theta = \frac{\pi}{2}$$

87. (d) If the line is parallel to the plane then $a\ell + bm + cn = 0$

88. (d)

diagonals are OP and AD and Acute anngle = θ

$$\cos \theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \right|$$
$$= \left| \frac{a(-a) + (a)(a) + (a)(a)}{\sqrt{a^2 + a^2 + a^2} \sqrt{a^2 + a^2 + a^2}} \right|$$

$$= \left| \frac{-a^2 + a^2 + a^2}{\sqrt{3a^2}\sqrt{3a^2}} \right| = \left| \frac{a^2}{3a^2} \right| = \frac{1}{3}$$

$$\Rightarrow 3 \cos \theta = 1$$
89. (b) $(x - x_1)^2 + (y - y_1)^2 + (z - z_1)^2 = r^2$
Centre (0, 0, 0) and radius = 1
 $(x - 0)^2 + (y - 0)^2 + (z - 0)^2 = (1)^2$
 $x^2 + y^2 + z^2 = 1$

90. (c) Sum of squares of direction cosines = $(1)^2 + (0)^2 + (0)^2 = 1$

91. (a)
$$d = \left| \frac{2 \times 0 + 0 \times 1 + 2 \times 0 - 3}{\sqrt{2^2 + 1^2 + 2^2}} \right| = \frac{3}{3} = 1$$
 unit

92. (b) Position vector of line segment = $2\hat{i} + 3\hat{j} + 6\hat{k}$

length =
$$\sqrt{2^2 + 3^2 + 6^2} = \sqrt{49} = 7$$
 units

93. (a) Direction ratios of normal to plane 2x + 3y - z = 7 is < 2, 3, -1 >

94. (d) Equation of line,
$$\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-3}{-1}$$

Let P (2r + 1, 3r - 2, -r + 3) of the line meets the plane.
Then, 2(2r + 1) + 3 (3r - 2) - (-r + 3) = 0
4r + 2 + 9r - 6 + r - 3 = 7
14r = 14
r = 1
P (3, 1, 2) meets the plane.
95. (i) Let $Q(r, r, q)$ is the image of (1 - 2, 2) in the plane

95. (c) Let Q(x, y, z) is the image of (1, -2, 3) in the plane

$$\frac{x+1}{2} = 3 \Longrightarrow x = 5$$
$$\frac{y-2}{2} = 1 \Longrightarrow y = 4$$
$$\frac{z+3}{2} = 2 \Longrightarrow z = 1$$

:. Image of (1, -2, 3) are (5, 4, 1)

For (96-97)

$$\begin{aligned} x^2 + y^2 + z^2 - 4y + 3 &= 0 \\ x^2 + y^2 - 4y + 4 - 4 + z^2 + 3 &= 0 \\ x^2 + (y-2)^2 + z^2 &= 1 \\ & ...(i) \end{aligned}$$

Sphere with centre (0, 2, 0) and radius 1 unit.
$$x^2 + y^2 + z^2 + 2x + 4z - 4 &= 0 \\ x^2 + 2x + 1 - 1 + y^2 + z^2 + 4z + 4 - 4 - 4 &= 0 \\ (x + 1)^2 + y^2 + (z + 2)^2 &= 3^2 \\ & ...(ii) \end{aligned}$$

Sphere with centre (-1, 0, -2) and radius 3 units.

96. (c)
$$C_1C_2 = \sqrt{(0+1)^2 + (2-0)^2 + (0+2)^2} = 3$$
 units
97. (c) $r_1 + r_2 = 3 + 1 = 4$
 $C_1C_2 < r_1 + r_2$
 \therefore Two spheres intersect each other.
98. (c) Direction ratios < (2-6), (-3+7), (1+1) >
 $= <-4, 4, 2 >$

99. (b) Equation of sphere passing through origin is

$$x^2 + y^2 + z^2 + 2ux + 2vy + 2wz = 0$$

which passes through the points (2, 1, -1), (1, 5, -4),
and (-2, 4, -6)

EBD 7346

NDA Topicwise Solved Papers - MATHEMATICS

$$\therefore 4u + 2v - 2w = -6 \qquad ...(i)$$

$$2u + 10v - 8w = -42 \qquad ...(ii)$$
and $-4u + 8v - 12w = -56 \qquad ...(ii)$
From eqns (i), (ii) and (iii), we get
 $u = 1, v = -2$ and $w = 3$
 \therefore Radius of sphere = $\sqrt{u^2 + v^2 + w^2}$
 $= \sqrt{1 + 4 + 9} = \sqrt{14}$
100. (a) From explanation 54
Centre of sphere,
 $(-u, -v, -w) = (-1, 2, -3)$
101. (a) (1) Equation of sphere is
 $x^2 + y^2 + z^2 + 2x - 4y + 6z = 0$
Put the value (0, 4, 0), we get
 $0 + 16 + 0 + 0 - 16 + 0 = 0$
So, the sphere passes through the point (0, 4, 0).
Hence, Statement 1 is correct.
2. Distance between the point (1, 1, 1) and centre of
sphere (-1, 2, -3)
 $= \sqrt{(1 + 1)^2 + (1 - 2)^2 + (1 + 3)^2}$
 $= \sqrt{4 + 1 + 16} = \sqrt{21} \neq 5$
Hence, statement 2 is not correct.
102. (d) Equation of line passing through the points (2, 1, 3)
and (4, -2, 5) is
 $\frac{x - 2}{4 - 2} = \frac{y - 1}{-2 - 1} = \frac{z - 3}{5 - 3} = \lambda$
 $\Rightarrow \frac{x - 2}{2} = \frac{y - 1}{-3} = \frac{z - 3}{2} = \lambda$
 $\Rightarrow x = 2\lambda + 2, y = -3\lambda + 1$ and $z = 2\lambda + 3$
Since, this line cuts the plane $2x + y - z = 3$
So, $(2\lambda + 2, -3\lambda + 1, 2\lambda + 3)$ satisfies the equation of
plane
 $\therefore 2\lambda + 2 - 3\lambda + 1 - 2\lambda - 3 = 3$
 $\Rightarrow -3\lambda = 3$
 $\Rightarrow \lambda = -1$

Hence, points are
$$[2(-1)+2, -3(-1)+1, 2(-1)+3]$$
 i.e.,
(0, 4, 1).

103. (d) Let the ratio is
$$k : 1$$

$$(2, 1, 3)$$
 k 1 $(4, -2, 5)$

Then,
$$0 = \frac{4k+2}{k+1}$$

 $\Rightarrow 4k+2=0 \Rightarrow k=-\frac{1}{2}$

and
$$4 = \frac{-2k+1}{k+1} \Longrightarrow 4k+4 = -2k+1 \Longrightarrow k = -\frac{1}{2}$$

Hence, plane divides the line in ratio 1 : 2 externally.

104. (a) We know that, equation of plane passing through three non-collinear points $(x_1, y_1, z_1), (x_2, y_2, z_2)$ and (x_3, y_3, z_3) is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

Put the value of (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) we get

$$\begin{vmatrix} x-2 & y-2 & z-1 \\ 1 & 2 & 1 \\ 5 & -2 & 5 \end{vmatrix} = 0$$

$$\Rightarrow (x-2)(10+2) - (y-2)(5-5) + (z-1)(-2-10) = 0$$

$$\Rightarrow 12x - 12z = 12 \Rightarrow x - z = 1$$

- Hence the equation of plane parses through (1, 0, 0)Direction ratios of the nomal to the plane x - z = 1 are 105. (c)
- (1, 0, -1).
- 106. (d) The projection of a directed line segment on the co-ordinate axes are 12, 4, 3, respectively.

$$\therefore \text{ Length of the line segment} = \sqrt{12^2 + 4^2 + 3^2}$$
$$= \sqrt{144 + 16 + 9} = \sqrt{169} = 13 \text{ units}$$

... Option (d) is correct.

107. (a) Direction cosine of line segment =
$$\left(\frac{12}{13}, \frac{4}{13}, \frac{3}{13}\right)$$

Option (a) is correct. *.*..

108. (b) Equation of line passing through P(3, -1, 11) and

perpendicular to
$$\frac{x}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 is:
 $\frac{x-3}{-1} = \frac{y-1}{6} = \frac{z-1}{-4}$
The direction ratio are (-1, 6, -4)
 \therefore Option (b) is correct.
109. (c) Now $x_2 - x_1 = -1$

$$x_2 - 3 = -1^{1}$$

∴ $x_2 = 2$
Similarly,
 $y_2 - y_1 = 6$
 $y_2 + 1 = 6$
∴ $y_2 = 5$
and $z_2 - z_1 = -4$
 $z_2 - 11 = -4$
 $z_2 = -4 + 11 = 7$
∴ Co-ordinate of Q is (2, 5, 7)

.

Length of segment PQ

$$= \sqrt{(2-3)^2 + (5+1)^2 + (7-11)^2}$$

= $\sqrt{1+36+16} = \sqrt{53}$ units.

... Option (c) is correct.

110. (a)

Centroid = (1, 2, 3)
A (x, 0, 0)
C (0, 0, z)
(1, 2, 3) =
$$\left(\frac{x + 0 + 0}{3}, \frac{0 + y + 0}{3}, \frac{0 + 0 + z}{3}\right)$$

- x=3, y=6 and z=9*.*..
- Intercept made by plane on the axes are 3, 6 and 9, *.*.. respectively.
- Option (a) is correct. *:*.

For point A (3, 0, 0)x + 2y + 3z = 1

$$\Rightarrow 3+0+0 \neq 1$$

option (a) is wrong. *.*.. From option (b) For point A(3, 0, 0)3x + 2y + z = 3

$$\therefore \quad 3(3) + 0 + 0 \neq 3$$

option (b) is wrong. *.*... From option (c) For point A(3, 0, 0)2x + 3y + 6z = 18 $2(3) + 0 + 0 \neq 18$

$$\therefore 2(3) + 0 + 0 \neq 18$$

$$\therefore \text{ option (c) is wrong}$$

From option (d)
For point A (3, 0, 0)
 $6x + 3y + 2z = 18$

⇒
$$6(3)+0+0=18$$

For point B(0, 6, 0)
 $6x+3y+2z=18$
∴ $0+3(6)+0=18$

For point C
$$(0, 0, 9)$$

 $6x + 3y + 2z = 18$
 $0 + 0 + 2 \times 9 = 18$

- Option (d) is correct. ·..
- 112. (b) Length of one of the diagonal of cube

$$= \sqrt{(1)^{2} + (2)^{2} + (3)^{2}}$$

= $\sqrt{1 + 4 + 9} = \sqrt{14}$ units
Option (b) is correct

·.. Option (b) is correct.

- м-556
- 113. (c) Equation of plane passing through (1, 2, 3) and parallel to xy-plane is z = 3. ∴ Option (c) is correct. 114. (b) $3x^2 + 3y^2 + 3z^2 - 8y + 4y + 8z - 15 = 0$ $\Rightarrow x^2 + y^2 + z^2 - \frac{8}{3}x + \frac{4}{3}y + \frac{8}{3}z - 5 = 0$ $\Rightarrow \left(x - \frac{4}{3}\right)^2 - \frac{16}{9} + \left(y + \frac{2}{3}\right)^2 - \frac{4}{9} + \left(z + \frac{4}{3}\right)^2 - \frac{16}{9} - 5 = 0$ $\Rightarrow \left(x - \frac{4}{3}\right)^2 + \left(y + \frac{2}{3}\right)^2 + \left(z + \frac{4}{3}\right)^2 = (3)^2$

So radius is 3.

115. (a) Let the direction ratio be $\langle a, b, c \rangle$

$$\cos 90^{\circ} = \frac{(a)(1) + (b)(-2) + (c)(-2)}{\sqrt{a^{2} + b^{2} + c^{2}}\sqrt{(1)^{2} + (-2)^{2} + (-2)^{2}}}$$

$$a - 2b - 2c = 0 \qquad \dots(1)$$

$$\cos 90^{\circ} = \frac{(a)(0) + b(2) + (c)(1)}{\sqrt{a^{2} + b^{2} + c^{2}}\sqrt{(0)^{2} + (-2)^{2} + (1)^{2}}}$$

$$2b + c = 0 \qquad \dots(2)$$

From eq. (1) & (2)

$$a = -2b; c = -2b$$

a = -2b; c = -2b116. (b) Plane z = 0 is simply

xy plane, so z quadrant value will be zero.

So, options (b) is correct option. 117. (b) 5x+2y+z-13=0Putting y=0 & z=0

$$x = \frac{13}{5}$$

Putting z = 0 & x = 0

$$y = \frac{13}{2}$$

Putting x = 0 & y = 0

118. (a) To find, intersection point first put z = 02x - y = 2 $\frac{x + y = 1}{3x = 3}$ x = 1 x + y = 1 y = 1 - xAt x = 1, y = 0(x, y, z) $\equiv (1, 0, 0)$ Putting x = 0 y - z = 1 $\frac{-y + 3z = 2}{2z = 3}$ $z = \frac{3}{2}$ $y = 1 + z = 1 + \frac{3}{2} = \frac{5}{2}$ (x, y, z) $\equiv (0, \frac{5}{2}, \frac{3}{2})$

Point of intersection $(x_1, y_1, z_1) \equiv (1, 0, 0)$

$$(x_2, y_2, z_2) \equiv \left(0, \frac{5}{2}, \frac{3}{2}\right)$$

Hence direction ratios of the line of intersection of given plane < 2, -5, -3 >.

- 119. (b) Eq. of plane through two given planes is : $(2x-y+3z-2)+\lambda (x+y-z-1)=0$ \therefore It passes through (1, 0, 1) $\therefore 3 - \lambda = 0 \Rightarrow \lambda = 3$ \therefore Eq. of plane is: 5x+2y-5=0
- 120. (c) Plane P touches the sphere $x^2 + y^2 + z^2 = r^2$ then r = Distance between centre of sphere (0, 0, 0) to plance P.

$$\Rightarrow r = \left| \frac{5(0) + 2(0) - 5}{\sqrt{5^2 + 2^2} + (0)^2} \right|$$
$$= \frac{5}{\sqrt{25 + 4}}$$
$$r = \frac{5}{\sqrt{29}}$$

121. (d) Let $Q(x_1, y_1, z_1)$ be the image of the point *P*. The direction ratios of *PQ* are 3, -2, 2. ...(i) The Equation of line *PQ* is $\frac{x+2}{3} = \frac{y-1}{-2} = \frac{z+5}{2} = r$ Coordinates of any point on the line *PQ* is 3r-2, -2r+1 and 2r-5. Let Q(3r-2, -2r+1, 2r-5) be such a point. Let *L* be the mid point of *PQ*, $L = \left(\frac{3r}{2} - 2, 1 - r, r - 5\right)$ Since *L* lies on the plane 3x - 2y + 2z + 1 = 0

So,
$$3\left(\frac{3r}{2}-2\right)-2(1-r)+2(r-5)+1=0$$

 $\Rightarrow \frac{17}{2}r-17=0\Rightarrow r=2$
So, coordinates of Q are $(3 \times 2-2, -2 \times 2+1, 2 \times 2-5) = (4, -3, -1) \dots(ii)$
Also the mid point of PQ is $L = \left(\frac{3 \times 2}{2}-2, 1-2, 2-5\right)$
 $=(1, -1, -3) \dots(iii)$
 $\therefore PQ = \sqrt{(-2-4)^2 + (1+3)^2 + (-5+1)^2} = \sqrt{68}$
 $\Rightarrow PQ = 2\sqrt{17} > 8$
 \therefore Option (d) is correct.
122. (c) From (i) above, 1 is correct.
We know that,
Sum of direction cosines of the line segment PQ = 1.
123. (c) Let a, b, c be the direction ratios of the line.
Then its equation is
 $\frac{x-5}{a} = \frac{y+6}{b} = \frac{z-7}{c} \dots(i)$
Since (i) is parallel to the planes $x + y + z = 1$ and $2x - y - 2z = 3$ then
 $a(1) + b(1) + c(1) = 0$ and $a(2) + b(-1) + c(-2) = 0$
By cross multiplication
 $\frac{a}{-1} = \frac{b}{4} = \frac{c}{-3} = \lambda$
 $\Rightarrow a = -\lambda, b = 4\lambda, c = -3\lambda$
 \Rightarrow Direction ratios of the line are
 $<-1, 4, -3> = <1, -4, 3>$
124. (a) Substituting a, b, c in (i), we get
 $\frac{x-5}{-1} = \frac{y+6}{4} = \frac{z-7}{-3} \dots(i)$
Hence, equation of the line is
 $\frac{x-5}{-1} = \frac{y+6}{4} = \frac{z-7}{-3}$
125. (b) D.C's (0, 1, 0)
Since x and z are zero, the straight line is parallel to $y - axis$
126. (c) A (0, 0, 0, B (a, 0, 0), C (0, b, 0), D (0, 0, c)
Let the equidistant point be P(x, y, z)
i.e, AP = BP, AP = CP, AP = DP
 $\Rightarrow \sqrt{(x-0)^2 + (y-0)^2 + (z-0)^2}$
 $= \sqrt{(x-a)^2 + y^2 + z^2}$
 $\Rightarrow x^2 + y^2 + z^2 = (x-a)^2 + y^2 + z^2$

$$\Rightarrow x^{2} + y^{2} + z^{2} = 0$$

$$\Rightarrow x^{2} - 2ax + a^{2}$$

$$\Rightarrow a^{2} - 2ax = 0$$

$$\Rightarrow a (a - 2x) = 0$$

$$\Rightarrow a(a-2x) = 0$$

Since
$$a \neq 0$$
, $a = 2x \Rightarrow x = \frac{a}{2}$
Similarly, we will get $y = \frac{b}{2}$, $z = \frac{c}{2}$
127. (c) $P(3, 2, 4), Q(4, 5, 2), R(5, 8, 0), S(2, -1, 6)$
 $PQ = \sqrt{(4-3)^2 + (5-2)^2 + (2-4)^2}$
 $= \sqrt{1+9+4} = \sqrt{14}$
 $QR = \sqrt{(5-4)^2 + (8-5)^2 + (0-2)^2}$
 $= \sqrt{1+9+4} = \sqrt{14}$
 $RS = \sqrt{(2-5)^2 + (-1-8)^2 + (6-0)^2}$
 $= \sqrt{9+81+36} = \sqrt{126} = 3\sqrt{14}$
 $PS = \sqrt{(2-3)^2 + (-1-2)^2 + (6-4)^2}$
 $= \sqrt{1+9+4} = \sqrt{14}$
 $\sqrt{14} \sqrt{14} \sqrt{14} \sqrt{14}$

Since, PQ + QR + PS = RS, points are collinear. 128. (d) Eqn. of line

$$\Rightarrow \frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

i.e, $\frac{x - 1}{2} = \frac{y - 2}{-3} = \frac{z + 1}{3} = K(say)$
$$\Rightarrow x - 1 = 2K; y - 2 = -3K; z + 1 = 3K$$

$$\Rightarrow x = 2K + 1; y = -3K + 2; z = 3K - 1$$

Since the line meets yz plane, $x = 0$
$$\therefore 2K + 1 = 0 \Rightarrow K = \frac{-1}{2}$$

$$\therefore 2\mathbf{K} + 1 = 0 \implies \mathbf{K} = \frac{1}{2}$$
$$\therefore \mathbf{y} = -3\left(\frac{-1}{2}\right) + 2 = \frac{3}{2} + 2 = \frac{7}{2}$$
$$(-1) \qquad -3 \qquad -5$$

$$z = 3\left(\frac{1}{2}\right) - 1 = \frac{1}{2} - 1 = \frac{1}{2}$$

129. (c) Given, lines
$$x = ay + b$$
 and $z = cy + d$ are perpendicular.

$$\Rightarrow \frac{x-b}{a} = \frac{y}{1} = \frac{z-d}{c} \qquad \dots(i)$$

Also,
$$x = ey + f$$
 and $z = gy + h$ are perpendicular.

$$\Rightarrow \frac{x-f}{e} = \frac{y}{1} = \frac{z-h}{g} \qquad ...(ii)$$

We know, for \perp^r lines $a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$
 $\Rightarrow ae + 1 + cg = 0$

130. (b) Given plane, x + 2y - 2z = 9. Length of normal from origin to plane ax + by + cz = d is d $\overline{\sqrt{a^2+b^2+c^2}}$: length of the normal = $\frac{9}{\sqrt{(1)^2 + (2)^$ $(-2)^2$

$$\sqrt{1}$$

$$=\frac{9}{\sqrt{9}}=\frac{9}{3}=3$$
 units

131. (a) The equation of the line joining the points (-3, 4, -8)and (5, -6, 4) is

$$\frac{x+3}{8} = \frac{y-4}{-10} = \frac{z+8}{12} = k \text{ (say)}$$

$$\Rightarrow x+3 = 8k; y-4 = -10k; z+8 = 12k$$

$$\Rightarrow x = 8k-3; y = -10k+4; z = 12k-8$$

Given that this line intersects with xy plane. So, z = 0

$$\therefore 12k - 8 = 0 \Rightarrow 12k = 8 \Rightarrow k = \frac{8}{12} = \frac{2}{3}.$$

$$\therefore x = 8\left(\frac{2}{3}\right) - 3; y = -10\left(\frac{2}{3}\right) + 4; z = 12\left(\frac{2}{3}\right) - 8$$

$$\Rightarrow x = \frac{16}{3} - 3; y = \frac{-20}{3} + 4; z = \frac{24}{3} - 8$$

$$\Rightarrow x = \frac{7}{3}; y = \frac{-8}{3}; z = 0$$

$$\therefore (x, y, z) = \left(\frac{7}{3}, \frac{-8}{3}, 0\right)$$

132. (b) Given direction ratios are (2, -1, 2) and (x, 3, 5)We know that the angle between the lines whose direction ratios are (a_1, b_1, c_1) and (a_2, b_2, c_2) is

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

$$\Rightarrow \cos \frac{\pi}{4} = \frac{2x - 3 + 10}{\sqrt{4 + 1 + 4} \sqrt{x^2 + 9 + 25}} = \frac{2x + 7}{\sqrt{9} \cdot \sqrt{x^2 + 34}}$$

$$\Rightarrow \frac{1}{\sqrt{2}} = \frac{2x + 7}{3\sqrt{x^2 + 34}} \Rightarrow 2x + 7 = 3\sqrt{\frac{x^2 + 34}{2}}$$

$$\Rightarrow 4x^2 + 49 + 28x = \frac{9(x^2 + 34)}{2} \text{ (Squaring on both sides)}$$

$$\Rightarrow 2(4x^2 + 49 + 28x) = 9x^2 + 306$$

$$\Rightarrow 8x^2 + 98 + 56x = 9x^2 + 306$$

$$\Rightarrow 8x^2 - 56x + 208 = 0$$

$$\therefore x = \frac{56 \pm \sqrt{3136 - 812}}{2} = \frac{56 \pm 48}{2} = 28 \pm 24$$

$$= 4, 52.$$

Smaller value = 4.

133. (c)

134.

Equation of plane passing through points

 $\therefore \frac{a}{p} + \frac{b}{q} + \frac{c}{r} = 1$

 $(p, 0, 0), (0, q, 0) \text{ and } (0, 0, r) \text{ is } \frac{x}{p} + \frac{y}{q} + \frac{z}{r} = 1$ Given that this plane passes through (a, b, c).

Equation of sphere is
$$x^2 + y^2 + z^2 - px - qy - rz = 0$$
.
Centre of the sphere = $(1, m, n) = \left(\frac{p}{2}, \frac{q}{2}, \frac{r}{2}\right)$
 $\Rightarrow p = 2 \ell, q = 2m, r = 2n$
 \therefore locus of the centre $\Rightarrow \frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$.
134. (a) Given planes, $p_1 : x + y + z = 1$
 $p_2 : 2x + 3y + 4z = 7$
So, equation of plane passing through intersection of planes p_1 and p_2 is
 $x + y + z - 1 + k(2x + 3y + 4z - 7) = 0$.
 $\Rightarrow x + y + z - 1 + 2kx + 3ky + 4kz - 7k = 0$
 $\Rightarrow x(1 + 2k) + y(1 + 3k) + z(1 + 4k) - 1 - 7k = 0$.
This is perpendicular to $x - 5y + 3z = 5$.
 $\Rightarrow x - 5y + 3z - 5 = 0$.
 $\Rightarrow 1(1 + 2k) - 5(1 + 3k) + 3(1 + 4k) = 0$
 $\Rightarrow 1 + 2k - 5 - 15k + 3 + 12k = 0$
 $\Rightarrow -k - 1 = 0 \Rightarrow k = -1$
 \therefore Equation of plane is $x + y + z - 1 - 1(2x + 3y + 4z - 7) = 0$
 $\Rightarrow x + y + z - 1 - 2x - 3y - 4z + 7 = 0$
 $\Rightarrow -x - 2y - 3z + 6 = 0$
 $\Rightarrow x + 2y + 3z - 6 = 0$.
135. (c) A(1, 8, 4), B(0, -11, 4), C(2, -3, 1)

c) A(1, 8, 4), B(0, -11, 4), C(2, -3, 1)
Let D = (
$$\alpha, \beta, \gamma$$
)
A (1, 8, 4)
B D C
(0, -11, 4) (α, β, γ) (x, -3, 1)

Direction ratios of BC = $(x_2 - x_1, y_2 - y_1, z_2 - z_1)$ Let, (a, b, c) = (2, 8, -3)Direction ratios of AD = $(x_2 - x_1, y_2 - y_1, z_2 - z_1)$ Let $(a', b', c') = (\alpha - 1, \beta - \tilde{8}, \gamma - 4)$ Since, AD is perpendicular to BC, aa' + bb' + cc' = 0 $\Rightarrow 2(\alpha-1)+8(\beta-8)-3(\gamma-4)=0.$ $\Rightarrow 2\alpha - 2 + 8\beta - 64 - 3\gamma + 12 = 0$ $\Rightarrow 2\alpha + 8\beta - 3\gamma - 54 = 0$(1) On substituting the options, we find option (c) is correct. when $(\alpha, \beta, \gamma) = (4, 5, -2)$ $(1) \Longrightarrow 2(4) + 8(5) - 3(-2) - 54 = 0$ \Rightarrow 8+40+6-54=0 $\Rightarrow 0 = 0.$

136. (a) We know, the equation of plane passing through 3 points (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$

So, the plane passing through points (-2, 6, -6), (-3, -6)10, -9) and (-5, 0, -6) is

$$\begin{vmatrix} x+2 & y-6 & z+6 \\ -1 & 4 & -3 \\ -3 & -6 & 0 \end{vmatrix} = 0$$

$$\Rightarrow (x+2) (-18) - (y-6) (-9) + (z+6) (6+12) = 10$$

$$\Rightarrow -18x - 36 + 9y - 54 + 18z + 108 = 0$$

$$\Rightarrow -18x + 9y + 18z + 18 = 0$$

$$\Rightarrow 2x - y - 2z - 2 = 0$$

$$\Rightarrow 2x - y - 2z = 2.$$

137. (c) Let the sphere passing through points A(a, 0, 0), B(0, 0)b, 0), C(0, 0, c)Equation of sphere is $x^2 + y^2 + z^2 - ax - by - cz = 0$

radius,
$$r = \frac{1}{2}\sqrt{a^2 + b^2 + c^2}$$

 $\Rightarrow a^2 + b^2 + c^2 = 4r^2$ (1)
(Squaring on both sides)

Let (α, β, γ) be centroid of sphere.

$$\therefore (\alpha, \beta, \gamma) = \left(\frac{a+0+0}{3}, \frac{0+b+0}{3}, \frac{0+0+c}{3}\right)$$
$$= \left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$$
$$\therefore \alpha^2 + \beta^2 + \gamma^2 = \frac{a^2}{9} + \frac{b^2}{9} + \frac{c^2}{9}$$
$$= \frac{a^2 + b^2 + c^2}{9}$$
$$= \frac{4r^2}{9} \qquad (from (1))$$
$$\Rightarrow 9(\alpha^2 + \beta^2 + \gamma^2) = 4r^2$$
So, Locus is $9(x^2 + y^2 + z^2) = 4r^2$.

P = (1, -1, 1)Q = (3, -2, 2)R = (0, 2, 6)P(1, -1, 1)A R Q(3, -2, 2)(0, 2, 6)Direction ratios of PQ $(a_1, b_1, c_1) = (3 - 1, -2 + 1, 2 - 1)$ =(2, -1, 1)Direction ratios of PR $(a_2, b_2, c_2) = (0 - 1, 2 + 1, 6 - 1)$ =(-1, 3, 5)Let us calculate, $a_1a_2 + b_1b_2 + c_1c_2$ =(2)(-1)+(-1)(3)+(1)(5)= -2 - 3 + 5=0. \therefore PQ \perp PR i.e., \angle QPR = 90° In $\angle PQR$, $\angle P + \angle Q + \angle R = 180^{\circ} \Longrightarrow 90^{\circ} + \theta + \angle R = 180^{\circ}$ $\Rightarrow \angle R = 90^{\circ} - \theta$

139. (a) Given, centre of sphere (h, k, 1) = (-2, 3, 4)radius (r) = 6 units. Equation of sphere is $(x - h)^2 + (y - k)^2 + (z - \ell)^2 = r^2$ \Rightarrow (x + 2)² + (y - 3)² + (z - 4)² = 6² $\Rightarrow x^2 + 4x + 4 + y^2 - 6y + 9 + z^2 - 8z + 16 = 36$ \Rightarrow x² + y² + z² + 4x - 6y - 8z = 7

140. (a) Distance =
$$\left| \frac{3 \times 2 - 6 \times 3 + 2 \times 4 + 11}{\sqrt{3^2 + (-6)^2 + (2)^2}} \right|$$

$$=\left|\frac{6-18+8+11}{\sqrt{49}}\right|=1$$

141. (c) Go through the option (c)

138. (d) Given,

- 142. (d) drs of line is 2, 3, 4going through option, 2(1) + 3(2) + 4(-2) = 02(4) + 3(4) - 4(5) = 0
- 143. (c) Angle between planes

$$= \cos^{-1} \left(\frac{2 - 1 + 2}{6} \right)$$
$$= \cos^{-1} \left(\frac{1}{2} \right) = \frac{\pi}{3}$$

Distance between planes

. .

$$=\frac{\left|\frac{2}{3}-4\right|}{\sqrt{9}}=\frac{10}{3\times 3}=\frac{10}{9}$$

144. (c) The equation of sphere is

$$x^2 + y^2 + z^2 - 6x + 8y - 10z + 1 = 0.$$

Comparing the equation with general form of sphere,
 $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz - d - 0,$
we get, $u = \frac{-6}{2} = -3, v = \frac{8}{2} = 4, w = \frac{-10}{2} = 5, d = 1$
Radius $= \sqrt{u^2 + v^2 + w^2 - d}$
 $= \sqrt{(-3)^2 + (4)^2 + (5)^2 - 1}$
 $= \sqrt{9 + 16 + 25 - 1} = \sqrt{49} = 7$
145. (c) The constitute of allow are spin a through the intersection

145. (a) The equation of plane passing through the intersection of planes 2x + y + 2z = 9 and 4x - 5y - 4z = 1 is $(2x + y + 2z - 9) + \lambda (4x - 5y - 4z - 1) = 0$ Given that this plane passes through (3, 2, 1) $\Rightarrow 2(3) + 2 + 2(1) - 9 + \lambda [4(3) - 5(2) - 4(1) - 1] = 0$ $\Rightarrow 1 + \lambda (-3) = 0$

$$\Rightarrow \lambda = \frac{1}{3}$$

$$\therefore \text{ Equation is } (2x + y + 2z - 9) + \frac{1}{3}(4x - 5y - 4z - 1) = 0$$

$$\Rightarrow 6x + 3y + 6z - 27 + 4x - 5y - 4z - 1 = 0$$

$$\Rightarrow 10x - 2y + 2z - 28 = 0$$

$$\Rightarrow 10x - 2y + 2z = 28$$

146. (a) Given planes : $4x - 2y + 4z + 9 = 0$

$$\Rightarrow 8x - 4y + 8z + 18 = 0 \qquad ...(1)$$

$$8x - 4y + 8z + 21 = 0 \qquad (2)$$

Distance $= \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}} = \frac{|18 - 21|}{\sqrt{64 + 16 + 64}}$

$$= \frac{3}{\sqrt{144}} = \frac{3}{12} = \frac{1}{4}$$

147. (d)

м-560

Statistics

- 1. The production of food grains in Maharashtra is given for the 12 years from 1992 to 2003. Which one of the following representations is most suitable to depict the data ?
 - (a) A simple bar diagram
 - (b) A pie diagram
 - (c) A component bar diagram with the components arranged in chronological order
 - (d) A broken line graph [2006-I]
- 2. In a manufacture of ready-made garments, which average is used to find the most frequent size ?
 - (a) Arithmetic mean (b) Geometric mean
 - (c) Mode (d) Harmonic mean
 - [2006-I]

8.

9

- 3. Under what condition will the angle between two regression lines become zero?
 - (a) r=0 (b) Only when r=+1(c) Only when r=-1 (d) $r=\pm 1$ [2006-I]
- 4. What is the arithmetic mean of the series ${}^{n}C_{0}, {}^{n}C_{1}, \dots, {}^{n}C_{n}, ?$

(a)
$$\frac{2^n}{n}$$
 (b) $\frac{2}{(n)}$

(c)
$$\frac{2^{(n+1)}}{n}$$
 (d) $\frac{2^{(n+1)}}{(n+1)}$ [2006-1]

5. The standard deviation of n observations x₁, x₂,.....x_n is 6. The standard deviation of another set of n observations y₁, y₂,, y_n is 8. What is the standard deviation of n observations x₁ - y₁, x₂ - y₂,...., x_n - y_n?
(a) 10
(b) 7

6. Following is the frequency distribution of life length in hours of 100 electric bulbs :

Life length of bulbs (in hrs)	8.5 - 13.5	13.5 - 18.5	18.5 - 23.5	23.5 - 28.5	28.5 - 33.5	33.5 - 38.5
No. of bulbs	7	х	40	у	10	2

If the median of life length is 20 hours, then what are the missing frequencies (x, y)?

(a) (28,13) (b) (23,18)

c)
$$(31,10)$$
 (d) $(25,16)$ [2006-1]

7. The following question consist of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer.

Assertion (A) : We cannot find out the regression of x on y from that of y on x.

Reason (R) : In one equation x is dependent variable and y is independent whereas in other equation y is dependent variable and x is independent.

- (a) Both A and R are individually true, and R is the correct explanation of A.
- (b) Both A and R are individually true but R is not the correct explanation of A.
- (c) **A** is true but **R** is false.
- (d) A is false but **R** is true. [2006-I]
- If from the point of intersection of two ogives, a perpendicular is drawn on the x-axis, what does the x-coordinate give?
 - (a) Arithmetic Mean (b) Mode
 - (c) Median (d) Geometric Mean

The marks scored by two students A and B in six subjects are given below:

А	71	56	45	89	54	44
В	55	74	83	54	38	52
• •	0.1	0 11		, ·		. 0

- Which one of the following statements is correct?
- (a) The average scores of A and B are same but A is consistent
- (b) The average scores of A and B are not same but A is consistent
- (c) The average scores of A and B are same but B is consistent
- (d) The average scores of A and B are not same but B is consistent [2006-II]
- 10. If we join the mid points of the upper horizontal sides of each rectangle of a histogram by straight lines, what is the figure so obtained known as ?
 - (a) Frequency curve (b) Frequency polygon

- 11. The definition of Mode fails if:
 - (a) the maximum frequency is repeated
 - (b) the maximum frequency is not repeated
 - (c) the maximum frequency occurs in the middle
 - (d) the curve drawn with the help of given data is symmetrical [2006-II]
- 12. A firm employing 30 workers and paying on an average Rs 500 is combined with another firm employing 20 workers paying on an average Rs 600. What is the average pay of the workers of the combined firm ?
 - (a) Rs 540 (b) Rs 550
 - (c) Rs 560 (d) Rs 580 [2006-II]

- 13. Which one of the following statement is not correct?
 - Median divides distributions into two equal subgroups (a)
 - The third quartile is the same as the 75th percentile (b)
 - (c) The 5th decile is the same as the 50th percentile (d)
 - The 50th decile is the same as the 5th percentile [2007-I]
- 14 The mean weight of all the students in a certain class is 60 kg. The mean weight of the boys from the class is 70 kg. while that of the girls is 55 kg. What is the ratio of number of boys to that of girls?

Frequency curves for the distribution of blood pressure readings of certain athletes before exercise (A) and after exercise(B) are plotted together as shown in the figure above. From the frequency curves, which one of the following can be concluded?

- (a) Both distributions are identical
- Both distributions have the same mean value (b)
- Both distributions have the same mean value but (c) different variance
- (d) Both distributions have the same variance but different [2007-1] mean values
- If the slopes of the line of regression of Y and X and of X 16. and Y are 30° and 60° respectively, then r(X, Y) is : (b) 1 (a) -1

(c)
$$\frac{1}{\sqrt{3}}$$
 (d) $-\frac{1}{\sqrt{3}}$ [2007-I]

17. If you want to measure the intelligence of a group of students, which one of the following measures will be more suitable?

(a)	Arithmetic mean	(b)	Mode
(c)	Median	(d)	Geometric mean

[2007-I]

18 In a binomial distribution, the mean is 4 and the variance is 3. What is the mode?

(c) 4 (d) 3 [2007-I] If X is changed to a + hU and Y to b + kV, then which one of 19. the following is the correct relation between the regression coefficients b_{XY} and b_{UV}?

(a)
$$h b_{XY} = \hat{k} b_{UV}$$

(b) $k b_{XY} = h b_{UV}$
(c) $b_{XY} = b_{UV}$
(d) $k^2 b_{XY} = h^2 b_{UV}$
[2007-1]

- Students of two schools appeared for a common test 20. carrying 100 marks. The arithmetic means of their marks for school I and II are 82 and 86 respectively. If the number of students of school II is 1.5 times the number of students of school I, what is the arithmetic mean of the marks of all the students of both the schools? [2007-II]
 - (a) 84.0
 - 84.2 (b)
 - 84.4 (c)
 - This cannot be calculated with the given data (d)

21. If AM of numbers x_1, x_2, \dots, x_n is μ , then what is the AM of the numbers which are increased by 1, 2, 3, ...n respectively?

(a)
$$\mu + \left(\frac{n+1}{2}\right)$$
 (b) μ [2007-II]
(c) $\mu + \frac{n(n+1)}{2}$ (d) $\mu - \left(\frac{n+1}{2}\right)$

- 22. In computing a measure of the central tendency for any set of 51 numbers, which one of the following measures is welldefined but uses only very few of the numbers of the set? (b) Geometric mean [2007-II] (a) Arithmetic mean
 - (c) Median (d) Mode
- 23. The data below record the itemwise quarterly expenditure of a private organization :

tem of expenditure	
--------------------	--

Item	of expenditure	Amount (in	lakh rupees)
1.	Salaries	6.0	
2.	TA & DA	4.9	
3.	House rent and postage	3.6	
4.	All other expenses	5.5	
	Total :	20.0	
The	data is represented by a	nia diagram	What is the

The data is represented by a pie diagram. What is the sectorial angle of the sector with largest area?

(a)
$$120^{\circ}$$
 (b) 108°
(c) 100° (d) 90° [2007-II]

The following question consist of two statements, one 24. labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answer.

While constructing the cumulative frequency column of a frequency distribution, it is noticed that these cumulative frequencies are in arithmetic progression.

Assertion (A) : All the class frequencies are equal.

Reason (R): When all the class frequencies are equal, the cumulative frequencies are in arithmetic progression.

- (a) Both A and R are individually true, and R is the correct explanation of A.
- Both A and R are individually true but R is not the (b) correct explanation of A.
- A is true but **R** is false. (c)
- (d) A is false but **R** is true. [2007-II]
- If in a frequency distribution table with 12 classes, the width 25. of each class is 2.5 and the lowest class boundary is 6.1, then what is the upper class boundary of the highest class? (b) 276(a) 20.1

(a)
$$30.1$$
 (b) 27.0
(c) 30.6 (d) 36.1 [2007-II]

26. Consider the following statements :

> The appropriate number of classes while constructing a frequency distribution should be chosen such that

- 1. the class-frequency first increases to a peak and then declines.
- the class-frequency should cluster around the class 2. mid point.

Which of the statements given is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2 [2008-1]
- The populations of four towns A, B, C and D as on 2001 are 27. as follows :

15.

Statistics

Town	Population				
А	6863				
В	519				
С	12185				
D	1755				
What is the most appropriate diagram to present the above					

what is the most appropriate diagram to present the above data?

(a)	Pie diagram	(b)	Bar chart
(c)	Cubic chart	(d)	Histogran

(d) Histogram [2008-1] 28. Consider the two series of observations A and B as follows:

Series A	1019	1008	1015	1006	1002
Series B	1.9	0.8	1.5	0.6	0.2

If the standard deviation of the Series A is $\sqrt{38}$, then what is the standard deviation of the Series B?

(a) 3.8 (b)
$$\sqrt{0.38}$$

~

(c)
$$0.38$$
 (d) $\sqrt{38}$ [2008-1]

If n_1 and n_2 are the sizes, G_1 and G_2 the geometric means of 29. two series respectively, then which one of the following expresses the geometric mean (G) of the combined series?

(a)
$$\log G = \frac{n_1 G_1 + n_2 G_2}{n_1 + n_2}$$

(b) $\log G = \frac{n_2 \log G_1 + n_1 \log G_2}{n_1 + n_2}$
(c) $G = \frac{n_1 \log G_1 + n_2 \log G_2}{n_1 + n_2}$
(d) None of the above

30. Let \overline{x} be the mean of n observations x_1, x_2, \dots, x_n . If (a-b)is added to each observation, then what is the mean of new set of observations?

[2008-1]

(a) 0 (b)
$$\bar{x}$$

(c) $\bar{x} - (a-b)$ (d) $\bar{x} + (a-b)$ [2008-I]

The frequency curve for the distribution of income in a region is positively skewed as shown in the figure above. Then, for this distribution

- (a) Mean < Mode < Median
- (b) Mode < Median < Mean

31.

- (c) Mode < Mean < Median
- (d) Median < Mean < Mode
- [2008-I] 32. What is the value of *n* for which the numbers 1, 2, 3, ..., *n* have variance 2? [2008-11]
 - (a) 4 (b) 5
 - (c) 6 (d) 8
- What is the arithmetic mean of the series ${}^{n}C_{1}$, ${}^{n}C_{2}$, ${}^{n}C_{3}$... ${}^{n}C_{n}$ 33. [2008-11] 9 (b) $2^n/(n+1)$
 - (a) $(2^n 1)/n$ (d) $2^{(n+1)}/(n+1)$ (c) $(2^n)/n$
- The average age of 20 students in a class is 15 yr. If the 34. teacher's age is included, the average increases by one. What is the teacher's age? [2008-II] (b) 21 yr (a) 30 yr

(**)	50 51)-
(c)	42 yr	(d)	36 yr

	X	1	2	3	4		
35.	Frequency	2	3	f	5		
	The frequen	cv distr	ibutior	n of a di	screte v	ariable X v	vith one
	missing freq	uency f	is give	n above	e. If the	arithmetic	mean of
	23						
	X is $\frac{1}{8}$, wh	at is th	e value	e of the	missin	g frequenc	y?
						[2	2008-11]
	(a) 5		(b) 6			
	(c) 8		(d) 10			
36.	For a set of	discre	te num	ibers, t	hree m	easures of	central
	tendency are	e given	below			[2	2008-II]
	1. Arithm	etic me	an				
	2. Median						
	3. Geomet	ric mea	n				1
	Which of the	e above	e meas	ures ma	ay not l	nave a mea	iningful
	definition ?						
	(a) 1 only (b) 2 only						
	(0) 2 only (a) 3 only						
	(d) All of the set of the s	nem are	mean	inofilly	define	d	
37	Consider the	follow	ving the	ree met	hods of	u Fcollecting	r data
51.	(1) collecti	ng data	from o	overn	ment of	fices 12	, uata 2008_111
	(1) collecti	ng data	from r	ublic li	ibraries	11005 [2	,000 IIJ
	(3) collecti	ng data	h by tel	ephoni	c interv	iew	
	Select the correct answer using the code given below						
	(a) All the	three r	nethod	s give s	seconda	rv data	0.11
	(b) 1 and 2	give se	econda	ry and	3 gives	primary da	ata
	(c) 1 and 3	give se	econda	ry and	2 gives	primary da	ata
	(d) 2 and 3	give se	econda	ry and	1 gives	primary d	ata
38.	The arithmet	ic mear	n of 4 m	imbers	is 15. T	he arithme	tic mean
	of another 6	numbe	rs is 12	. What	is the a	rithmetic	mean of
	the combine	d 10 nu	mbers	?		[2	2008-II]
	(a) 12.2		(b) 12.8	3		
	(c) 13.2		(d) 13.8	3		
39.	The average	e sales a	and sta	ndard	deviatio	on of sales	for four
39.	The average	e sales a	and sta	ndard	deviatio	on of sales	for four

months for a company are as follows.							
	Month 1	Month 2	Month 3	Month 4			
Average sales	30	57	82	28			
Standard	2	3	4	2			
deviation of sales							
During which month are the sales most consistent?							

Dui	mg w	men i	nonun al	ethe	sales	most	consiste	mu?
								[2009-I]
(a)	Man	+h 1		(\mathbf{h})	Mant	トつ		

(u)		(0)		
(c)	Month 3	(d)	Month 4	

40. The marks scored by two students A and B in six subjects are given below

А	71	56	55	75	54	49
В	55	74	83	54	38	52

Which one of the following statements is most appropriate? [2009-I]

- (a) The average scores of A and B are same but A is consistent The average scores of A and B are not same but A is (b)
- consistent
- (c) The average scores of A and B are same but B is consistent
- The average scores of A and B are not same but B is (d) consistent

- 41. In a factory, there are 30 men and 20 women employees. If the average salary of men is Rs 4050 and the average salary of all the employees is Rs 3550, then what is the average salary of women? [2009-1]
 (a) Rs 3800 (b) Rs 3300
 - (c) Rs 3000 (d) Rs 2800
- 42. What is the standard deviation of numbers 7, 9, 11, 13, 15? [2009-I]

(a)	2.2	(b)	2.4
(c)	2.6	(d)	2.8

- 43. If the monthly expenditure pattern of a person who earns a monthly salary of Rs 15000 is represented in a pie diagram, then the sector angle of an item on transport expenses measures 15°. What is his monthly expenditure on transport? [2009-1]
 - (a) Rs 450
 - (b) Rs 625
 - (c) Rs 675
 - (d) Cannot be computed from the given data

44.	If $\sum_{i=1}^{n} (x_i - 2) = 110$,	$\sum_{i=1}^{n} (x_i - 5) = 20$, then	what is the
	mean? (a) $11/2$	(b) $2/11$	[2009-1]

- (a) 11/2 (b) 2/11(c) 17/3 (d) 17/9
- 45. A class consists of 3 sections A, B and C with 35, 35 and 30 students respectively. The arithmetic means of the marks secured by students of sections A and B, who appeared for a test of 100 marks are 74 and 70 respectively. The arithmetic mean of the marks secured by students of section C, who appeared for a test in the same subject which carried 75 marks is 51. What is the average percentage of marks secured by all the 100 student of the three sections? [2009-II]
 (a) 70.0
 (b) 70.8
 - (c) 65.0 (d) 67.5
- 46. In a study on the relationship between investment (X) and profit (Y), the following two regression equations were obtained based on the data on X and Y [2009-II]
 3 X + Y 12 = 0 X + 2Y - 14 = 0

What is the mean
$$\overline{X}$$
?

		 •	
(a)	6		(b)

- (c) 4 (d) 2
- 47. Following table gives the mean and variance of monthly demand for four products *A*, *B*, *C* and *D* in a supermarket

Product	Α	В	С	D		
Mean demand	60	90	80	120		
Variance	12	25	36	16		
For which product the demand is consistent? [2009-II]						

5

- (a) Product A (b) Product B
- (c) Product C (d) Product D
- 48. What is the least value of the standard deviation of 5 integers, no two of which are equal? [2009-II]
 - (a) $\sqrt{5}$
 - (b) 2
 - (c) $\sqrt{2}$
 - (d) No such least value can be computed

- 49. Correlation between two variable is said to be perfect if [2009-II]
 - (a) one variable increases, the other also increases
 - (b) one variable increases, the other decreases
 - (c) one variable increases, the other also increases proportionally
 - (d) one variable increases, the other decreases proportionally
- 50. Consider the following statements
 - I. The data, which are collected from the unit or individual respondents directly for the purpose of certain study or information are known as primary data.
 - II. The data obtained in a census study are primary data.
 - Which of the above statements is/are correct? [2009-II]
 - (a) I only (b) II only
 - (c) Both I and II (d) Neither I nor II

DIRECTIONS (Qs. 51-53) : The table below gives an incomplete frequency distribution with two missing frequencies f_1 and f_2

Value of x	Frequency
0	f_1
1	f_2
2	4
3	4
4	3

The total frequency is 18 and the arithmetic mean of x is 2.

51.	What is the value of f_2 ?	[2010-I]
	(a) 4 (b) 3	
	(c) 2 (d) 1	
52.	What is the standard deviation?	[2010-1]
	5	E 5
	(a) $\frac{\sqrt{3}}{2}$ (b) $\frac{\sqrt{3}}{2}$	
	2 3	
	(c) $\frac{4}{10}$ (d) $\frac{16}{10}$	
	$\begin{pmatrix} 0 \\ 3 \end{pmatrix}$ $\begin{pmatrix} 0 \\ 9 \end{pmatrix}$	
53.	What is the coefficient of variance?	[2010-I]
	$200 50\sqrt{5}$	
	(a) $\frac{1}{3}$ (b) $\frac{1}{9}$	
	600	
	(c) $\frac{1}{\sqrt{5}}$ (d) 150	
51	$\sqrt{3}$ What is the mean deviation of the data 2.0.	0 2 6 0 49
54.	what is the mean deviation of the data $2, 9, 3$	9, 5, 6, 9, 4?
	$ \begin{array}{c} (a) & 2.25 \\ (b) & 2.27 \\ (c) & 2.27 \\ (c) & 2.57 \\ (c) & 2.57$	[2010-11]
	(c) 3.23 (d) 3.57	
55.	A set of <i>n</i> values $x_1, x_2,, x_n$ has standard dev	viation σ . What
	is the standard deviation of <i>n</i> values $x_1 + k, x_2 = k$	$x_2 + k \dots, x_n + k?$
	/ · · · · · · · · · · · · · · · · · · ·	[2010-11]
	(a) σ (b) $\sigma + k$	
	(c) $\sigma - k$ (d) $k\sigma$	
56.	The two lines of regression are $8x - 1$	10y = 66 and
	40x - 18y = 214 and variance of x series is	9. What is the
	standard deviation of y series?	[2010-II]
	(a) 3 (b) 4	
	(c) 6 (d) 8	

57. The standard deviation of some consecutive integers is found to be 2. Which of the following statements best describes the nature of the consecutive integers?

[2010-II]

- (a) The integers are any set of eight consecutive integers
- (b) The integers are any set of eight consecutive positive integers
- (c) The integers are any set of seven consecutive integers(d) None of the above

58. Consider the following data :

	Factory - A	Factory - B
Mean wage of workers	₹ 540	₹ 620
Standard deviation of	₹ 40.50	₹ 31
wages		

What is the variability in the wages of the workers in Factory - A?

- (a) 100 % more than the variability in the wages of the workers in Factory B
- (b) 50% more than the variability in the wages of the workers in Factory -B
- (c) 50% less than the variability in the wages of the workers in Factory-*B*
- (d) 150% more than the variability in the wages of the workers in Factory-B
- 59. The distributions \hat{X} and Y with total number of observations 36 and 64, and mean 4 and 3 respectively are combined. What is the mean of the resulting distribution X + Y? [2010-II]

	(a) 3.	26			(b) 3.32	
	(c) 3.	36			(d) 3.42	1 4
60.	Consid	ler the	followi	ing dat	a :		[2010-II]
	х	5	7	8	4	6	
	у	2	4	3	2	4	
	What i	s the r	egressi	on equ	ation o	of y on	<i>x</i> ?
	(a) <i>y</i>	= 0.6 +	-0.4x		(b) $y=0$	0.7 + 0.3 x
	(c) y	=6+5	x		(d	y=4	4 + 9x

DIRECTIONS (Qs. 61-63): *The frequency distribution of life of* 90 *TV tubes whose median life is 17 months is as follows*

Life of TV tubes (in months)	No. of TV tubes
0-5	3
5-10	12
10-15	x
15-20	35
20-25	У
25-30	4

$$\therefore$$
 n=90

$$\therefore \frac{n}{2} = 45$$

(For qs. 61-63)

Calss	Frequency	cf
0-5	3	3
5-10	12	15
10-15	x	15 + x
15-20	35	50 + x
20-25	У	50 + x + y
25-30	4	54 + x + y

61. What is the lower limit of the median class ? [2010-II] (a) 10 (b) 15 (c) 20 (d) 25

- 62. What is the missing frequency y? [2010-II] (a) 20 (b) 16 (c) 15 (d) 12
- (c) 15 (d) 12
 63. What is the cumulative frequency of the modal class ? [2010-II]
 - (a) 31

[2010-II]

- (b) 35
- (c) 66

64.

(d) Cannot be determined as the given data is insufficient.

	Class Interval	1-5	6-10	11-15	16-20	
	Frequency	3	7	6	5	
(Consider the follo	owing st	atemen	ts in resp	ect of the	above
1	frequency distribu	ition.				

- I. The median is contained in the modal class.
- II. The distribution is bell-shaped.
- Which of the above statements is/are correct? [2011-I]
- (a) Only I (b) Only II
- (c) Both I and II (d) Neither I nor II

DIRECTIONS (Qs. 65-66) : *The following table gives the continuous frequency distribution of a continuous variable X*

	Class Interval	0-10	10-20	20-30	30-40	40-50	
	Frequency	5	10	20	5	10	
65.	What is the	med	ian o	f the a	above	freque	ency
	distribution?					[201	1-I]
	(a) 23		(b) 24			
	(c) 25		(d) 26			
66.	What is the mea	an of th	e abov	e frequen	cy distr	ibution	?
	(a) 25		(b) 26		[201	1-I]
	(c) 27		(d) 28			

67. Consider the following statements with regard to correlation coefficient *r* between random variables *x* and *y*.

[2011-I]

- I. r=+1 or -1 means there is a linear relationship between the variables.
- II. $-1 \le r \le 1$ and r^2 is a measure of the linear relationship between the variables.

Which of the statements given above is/are correct?

- (a) Only I (b) Only II
- (c) Both I and II (d) Neither I nor II
- 68. If the values of a set are measured in cm, what will be the unit of variance? [2011-I]
 - (a) cm (b) cm^2
 - (c) cm^3 (d) No unit
- 69. What is the cumulative frequency curve of statistical data commonly called? [2011-1]
 - (a) Cartogram (b) Histogram
 - (c) Ogive (d) Pictogram
- 70. The average daily income of workers of a factory including that of the owner is ₹ 110. However, if the income of the owner is excluded, the average daily income of the remaining 9 workers is ₹ 76. What is the daily income of the owner?
 (a) ₹ 300
 (b) ₹ 316
 [2011-I]
 - (c) ₹322 (d) ₹416
- 71. Which one of the following is the mean of the data given below? [2011-II]

<i>x</i> _{<i>i</i>}	6	10	14	18	24	28	30
f_i	2	4	7	12	8	4	3

м-566

NDA Topicwise Solved Papers - MATHEMATICS

- (a) 17 (b) 18 (c) 19 (d) 20
- 72. Students of three sections of a class, having 30, 30 and 40 students appeared for a test of 100 marks. The arithmetic means of the marks of the three sections are 72.2, 69.0 and 64.1 in that order. What is the arithmetic mean of the marks of all the students of the three sections? [2011-II] (a) 66.6 (b) 67.3
 - (c) 68.0 (d) 70.6
- If the variance of the data 2, 4, 5, 6, 17 is v, then what is the 73. variance of the data 4, 8, 10, 12, 34? [2011-II] (b) 4v
 - (a) $v \\ (c) v^2$ (d) 2v
- The mean of 7 observations is 10 and that of 3 74 observations is 5. What is the mean of all the 10 observations? [2011-II]
 - (a) 15 (b) 10
 - (c) 8.5 (d) 7.5
- Some measures of central tendency for n discrete 75. observations are given below: [2011-II]
 - Arithmetic mean 2. Geometric mean 1. 3.
 - Harmonic mean 4. Median
 - A desirable property of a measure of central tendency is if every observation is multiplied by c, then the measure of central tendency is also multiplied by c, where c > 0. Which of the above measures satisfy the property?
 - (a) 1, 2 and 3 only
 - (b) 1, 2 and 4 only
 - (c) 3 and 4 only
 - (d) 1, 2, 3 and 4
- A variate *X* takes values 2, 3, 4, 2, 5, 4, 3, 2, 1. What is the 76 mode? [2011-II] (b) 3 (a) 2 (c) 4 (d) 5

DIRECTIONS (Os. 77-84):

Note : *Study the following Table and Answer the next 08 (Eight) Questions that follow:*

	Veen		Male]	Female)	Tadal	
	rear	Urban	Rural	Total	Urban	Rural	Total	Totai	
	1995	280	350			310		1350	
	1996	370		670	180		450		
	1997		130	440		190			
	1998	400	280		290				
	Total				1060	850			
77.	What	t is the t	total po	pulation	n for the	e vear 1	997?	[2011-	-]]]
	(a)	810	r -	F	(b)	830		L	1
	(c) 9	970			(d)	1030			
78.	What	t is the f	female	urban p	opulatio	on in th	e year 1	1995?	
	(a) .	390			(b)	410	-	[2011-	-11]
	(c) 4	430			(d)	470		-	-
79.	What	t is the u	urban p	opulati	on in th	e year 1	1997?	[2011-	-11]
	(a) 4	400	-	-	(b)	460		-	-
	(c) 4	490			(d)	510			
80.	What	t is the t	otal po	pulation	n in the	year 19	998?	[2011-	-II]
	(a)	1000			(b)	1020			
	(c)	1040			(d)	1050			
81.	What	t is the	differer	nce betw	veen the	e numb	er of fe	males	anc
	then	umber o	ofmales	s in the	year 199	95?		[2011-	- <i>II]</i>
	(a)	90			(b)	100		-	-
	(c)	110			(d)	120			
	. /								

82.	In which year is the male p	opulation minimum	? [2011-II]
	(a) 1995	(b) 1996	
	(c) 1997	(d) 1998	
83.	In which year is the female	population maximum	n?
	(a) 1995	(b) 1996	[2011-II]
	(c) 1997	(d) 1998	
84.	What is the percentage of	Frural male populati	on (over the
	whole population) in the y	ear 1998?	[2011-II]
	80 %	100 0	
	(a) $\frac{1}{3}$ %	(b) $-\frac{3}{3}$ %	
	(c) 35%	(d) 40%	

DIRECTIONS (Qs. 85-88):

Note : *Study the pie chart given below and answer the next 04* (four) questions that follow :

The following pie chart gives the distribution of funds in a five vear plan under the major heads of development expenditures: Agriculture (A), Industry (B), Education (C), Employment (D) and Miscellaneous (E)

The total allocation is 36,000 (in crores of rupees).

- 85. Which head is allocated maximum funds? [2011-II] (b) Industry (a) Agriculture
 - (c) Employment (d) Miscellaneous
- 86. How much money (in crores) is allocated to Education? [2011-II]
 - (a) 3000 (b) 6000 (c) 9000 (d) 10800
- 87. How much money (in crores) is allocated to both Agriculture and Employment? [2011-II]
 - (b) 21000 (a) 20000 (c) 24000 (d) 27000
- How much excess money (in crores) is allocated to 88. Miscellaneous over Education? [2011-II] (a) 3600 (b) 4200
 - (c) 4500 (d) 4800
- What is the median of the distribution 3, 7, 6, 9, 5, 4, 2? 89. (a) 5 (b) 6 [2011-II] (c) 7 (d) 8
- What is the arithmetic mean of first 16 natural numbers with 90. weights being the number itself? [2012-I]

(a)
$$\frac{17}{2}$$
 (b) $\frac{33}{2}$ (c) 11 (d) $\frac{187}{2}$

91. What is the mode for the data 20, 20, 20, 21, 21, 21, 21, 21, 22,

7 (b) 21 (a) [2012-I] (d) 25 (c) 22

Statistics

92.	Cons	sider the following state	ments	: La constalra all	values in on
	1.	A continuous random	variao	ie can take an	values in an
	2.	A random variable whi	ch take	es a finite num	ber of values
		is necessarily discrete			
	3.	Construction of a free	quency	distribution	is based on
	Whie	the above stateme	e. Inte ar	e correct?	[2012_]]
	(a)	1 and 2 only	(h)	2 and 3 only	[2012-1]
	(\mathbf{c})	1 and 2 only	(d)	1. 2 and 3	
93.	Cons	sider the following state	ments	s	
	1.	Two independent varia	ables a	are always un	correlated.
	2.	The coefficient of corr	elatior	n between two	variables X
		and Y is positive when	1 X de	creases then	Y decreases.
		which of the above st	ateme	nts is/are cor	$\frac{12012_{11}}{12012_{11}}$
	(a)	1 only	(b)	2 only	[2012-1]
	(c)	Both 1 and 2	(d)	Neither 1 nor	2
94.	Ava	riate X takes values 2, 9	9, 3, 7,	5, 4, 3, 2, 10.	What is the
	medi	an?			[2012 - I]
	(a)	2	(b)	4	
05	(C)	/	(d)	9 5 16 2 is ad	dad to oool
95.	obset	rvation and then multir	nis is died b	3. 11 2 18 au v 3 then wha	t will be the
	new	mean ?	med 0	y 5, then who	[2012-II]
					[=01=11]
	(a)	5	(b)	7	
	(c)	15	(d)	21	
96.	Wha	t is the mean of first n of	odd na	tural number	s ?
	(-)		(1-)	(n+1)	[2012 11]
	(a)	n	(b)	2	[2012-11]
		n(n+1)			
	(c)	$\frac{1}{2}$	(d)	n+1	
97.	Thea	arithmetic mean of num	bers a,	b, c, d, e is M	. What is the
	value	e of (a - M) + (b - M) +	(c-N)	(d - M) + (d - M) + (d - M)	+(e-M)?
	(-)	м	<i>(</i> 1.)	1	[2012-11]
	(a)	M	(D) (d)	a+b+c+c	a + e
98.	The	algebraic sum of the	deviat	tions of 20 c	observations
	meas	sured from 30 is 2. W	hat w	ould be the i	mean of the
	obset	rvations?			[2012-II]
	(a)	30	(b)	32	
00	(c)	30.2	(d)	30.1	- 10 Thurs
99.	Ine	median of 27 observations are m	ade a	nd the value	is 18. Inree
	obset	rvations are 16 18 and	aue a 50 W	hat is the med	tian of these
	30 ol	bservations ?	00. 11		[2012-II]
	(a)	18			L J
	(b)	19			
	(c)	25.5 Comment has 1 d	11	· · · · · · ·	1.4.
100	(d) Fred	Can not be determined	a due t	o insufficient	t data $\int 2012 III$
100.	(a)	symmetrical	(h)	positive ske	[2012-11] ew
	$\tilde{\mathbf{c}}$	negative skew	(d)	all the abov	ve.

101. The monthly family expenditure (in percentage) on different items are as follows : [2012-II]

Food	Rent	Cloth	Transport	Education	Others
38	19	18	_	9	6

If the total monthly expenditure is \gtrless 9000, then what is the expenditure on transport?

- (b) ₹1000 ₹180 ₹900 (d) ₹360
- (c) 102. If the mean of few observations is 40 and standard deviation is 8, then what is the coefficient of variation? [2012-II]
 - 1% (b) 10% (a)
 - 20% (d) 30% (c)

(a)

- 103. What is the standard deviation of 7, 9, 11, 13, 15? (b) 2.5 [2012-II] (a) 24 (c) 2.7 (d) 2.8
- 104. Which one of the following is a measure of dispersion? (b) Median (a) Mean [2012-II]
 - (c) Mode (d) Standard deviation
- 105. Let X and Y be two related variables. The two regression lines are given by x - y + 1 = 0 and 2x - y + 4 = 0. The two regression lines pass through the point : [2012-II] (a) (-4, -3)(b) (-6, -5)(c) (3, -2)(d) (-3, -2)
- 106. The marks obtained by 13 students in a test are 10, 3, 10, 12, 9, 7, 9, 6, 7, 10, 8, 6, 7. The median of this data is?
 - (b) 8 [2013-1] (a) 7
- 9 (d) 10 (c)
- 107. Consider the following statements: 1. Both variance and standard deviation are measures of variability in the population.
 - 2 Standard deviation is the square of the variance. Which of the above statements is/are correct? [2013-I] (a) 1 only
 - (b) 2 only
 - (c) Both 1 and 2 (d) Neither 1 nor 2
- 108. Consider the following frequency distribution :

Class interval	0-10	10 - 20	20 - 30	30 - 40	40 - 50
Frequency	14	х	27	У	15

If the total of the frequencies is 100 and mode is 25, then which one of the following is correct? [2013-I]

- (a) x = 2y(b) 2x = y(d) x = 3y(c) x = y
- 109. The average marks obtained by the students in a class are 43. If the average marks obtained by 25 boys are 40 and the average marks obtained by the girl students are 48, then what is the number of girl students in the class ? [2013-I] (b) 17 (a) 15
 - (d) 20 (c) 18
- 110. Marks obtained by 7 students in a subject are 30, 55, 75, 90, 50, 60, 39. The number of students securing marks less than the mean marks is [2013-1] (a) 7 (h) 6

- 111. Variance is always independent of the change of
 - origin but not scale [2013-I] (a)
 - (b) scale only
 - both origin and scale (c)
 - (d) None of the above
- 112. If two lines of regression are perpendicular, then the correlation coefficient r is
 - (a) 2 [2013-1] (b)
- (d) None of the above 0 (c) 113. The standard deviation of the observations 5, 5, 5, 5, 5 is
 - 0 (a) (b) 5 [2013-1]
 - 20 (d) 25 (c)

- 114. The mean of 20 observations is 15. On checking, it was found that two observations were wrongly copied as 3 and 6. If wrong observations are replaced by correct values 8 and 4, then the correct mean is [2013-II] 15 (b) 15.15 (a)
 - 15.35 (c) (d) 16
- 115. The arithmetic mean of the squares of the first n natural numbers is [2013-II]

(a)
$$\frac{n(n+1)(2n+1)}{6}$$
 (b) $\frac{n(n+1)(2n+1)}{2}$
(c) $\frac{(n+1)(2n+1)}{6}$ (d) $\frac{(n+1)(2n+1)}{3}$

116. Consider the following statements :

Both the regression coefficients have same sign. 1.

If one of the regression coefficients is greater than unity, the other must be less than unity.

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (d) Neither 1 nor 2 (c) Both 1 and 2
- 117. Which one of the following measures is determined only after the construction of cumulative frequency distribution ? [2013-II]
 - (a) Arithmetic mean (b) Mode
 - Median (d) Geometric mean (c)
- [2013-II] 118. Coefficient of correlation is the measure of
 - central tendency (a)
 - (b) dispersion
 - (c) both central tendency and dispersion
 - (d) neither central tendency nor dispersion
- 119. What is the variance of the first 11 natural numbers?

(a)	10	(b)	11
(c)	12	(b)	13

- 120. Consider the following statements : [2013-II]
 - The algebraic sum of the deviations of a set of *n* values 1. from its arithmetic mean is zero.
 - 2. In the case of frequency distribution, mode is the value of variable which corresponds to maximum frequency.
 - Which of the statements above given is/are correct? 1 only (b) 2 only
 - (a) Both 1 and 2
 - (d) Neither 1 nor 2 (c) [2013-II]

121. Consider the following statements : Pie diagrams are suitable for categorical data. 1.

The arc length of a sector of a pie diagram is 2 proportional to the value of the component represented by the sector.

Which of the statements given above is/are correct?

- 1 only (b) 2 only(a)
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 122. The variance of 20 observations is 5. If each observation is multiplied by 2, then what is the new variance of the resulting observations ? [2013-II]
 - (a) 5 (b) 10 (c) 20 (d) 40
- 123. For two variables x and y, the two regression coefficients are $b_{yx} = -3/2$ and $b_{xy} = -1/6$. The correlation coefficient between x and y is: [2014-I] (b) 1/4 (a) -1/4
 - (c) -1/2(d) 1/2

- 124. The variance of numbers $x_1, x_2, x_3, \dots, x_n$ is V. Consider the following statements : [2014-I]
 - If every x_1 is increased by 2, the variance of the new set 1. of the new set of numbers is V.
 - If the numbers x_i is squared, the variance of the new set 2. is V^2 .
 - Which of the following statements is/are correct?
 - (a) 1 only (b) 2 only
 - Both 1 and 2 (d) Neither 1nor 2 (c)
- 125. What is the mean of the squares of the first 20 natural numbers ? [2014-I] 151.5 (b) 143.5 (a)
 - (d) 72 65 (c)
- 126. The cumulative frequency of the largest observed value must always be : [2014-I]
 - Less than the total number of observations (a)
 - Greater than the total number of observations (b)
 - Equal to total number of observations (c)
 - (d) Equal to mid point of the last class interval
- 127. Let X denote the number of scores which exceed 4 in 18, tosses of a symmetrical die. Consider the following statements : [2014-1]
 - The arithmetic mean of X is 6. 1.
 - 2 The standard deviation of X is 2.
 - Which of the above statements is/are correct?
 - (a) 1 only (b) 2 only
 - Both 1 and 2 (d) Neither 1 nor 2 (c)

DIRECTIONS: (Qs. 128 - 130) For the next three (03) items that follow:

Number of telephone calls received in 245 succesive one minute intervals at an exchange is given below in the following frequency distribution. [2014-1]

Number of calls	0	1	2	3	4	5	6	7
Frequency	14	21	25	43	51	40	39	12

128. What is the mean of the distribution?

	(a)	3.76	(b)	3.84
	(c)	3.96	(d)	4.05
29.	Wha	t is the median of the dis	stribut	ion?
	(a)	3.5	(b)	4
	(c)	4.5	(d)	5
30.	Wha	t is the mode of the distr	ributic	m?
	(a)	3	(b)	4
	(c)	5	(d)	6

DIRECTIONS: (Qs. 131-133) For the next three (03) items that follow:

The mean and standard deviation of 100 items are 50.5 and that of 150 items are 40, 6 respectively. [2014-I]

- 131. What is the combined mean of all 250 items?
 - 43 (a) (b) 44
 - (d) 46 (c) 45
- 132. What is the combined standard deviation of all 250 items? (a) 7.1 (b) 7.3
 - (c) 7.5 (d) 7.7
- 133. What is the variance of all 250 items?
 - 50.6 (b) 53.3 (a)
 - (d) 59.6 55.6 (c)

3

[2013-II]

[2013-II]

134. Consider the following statements in respect of histogram :

[2014-II]

- 1. The histogram is a suitable representation of a frequency distribution of a continuous variable.
- 2. The area included under the whole histogram is the total frequency.

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 135. The regression lines will be perpendicular to each other if the coefficient of correlation r is equal to [2014-II]
 - (a) 1 only (b) 1 or -1

(c) -1 only (d) 0

136. If \overline{x} and \overline{y} are the means of two distrubutions such that

- $\overline{x} < \overline{y}$ and \overline{z} is the mean of the combined distrubution, then which one of the following statements is correct ? [2014-II]
- (a) $\overline{x} < \overline{y} < \overline{z}$ (b) $\overline{x} > \overline{y} > \overline{z}$ (c) $\overline{z} = \frac{\overline{x} + \overline{y}}{2}$ (d) $\overline{x} < \overline{z} < \overline{y}$
- 137. What is the mean deviation about the mean for the data 4, 7, 8, 9, 10, 12, 13, 17? *[2014-II]*
 - (a) 2.5 (b) 3
 - (c) 3.5 (d) 4
- 138. The variance of 20 observations is 5. If each observation is multiplied by 2, then what is the new variance of the resulting observations ? [2014-II]
 (a) 5 (b) 10
 - (c) 20 (d) 40
- 139. The mean and the variance 10 observations are given to be 4 and 2 respectively. If every observation is multiplied by 2, the mean and the variance of the new series will be respectively [2015-I]
 (a) 8 and 20
 (b) 8 and 4
 - (c) 8 and 8 (d) 80 and 40
- 140. Which one of the following measures of central tendency is
 - used in construction of index numbers? [2015-I]
 - (a) Harmonic mean(b) Geometric mean(c) Median(d) Mode
- 141. The correlation coefficient between two variables X and Y is found to be 0.6. All the observations on X and Y are transformed using the transformations U=2-3X and V=4Y+1. The correlation coefficient between the transformed variables U and V will be [2015-1]
 - (a) -0.5 (b) +0.5
 - (c) -0.6 (d) +0.6
- 142. Which of the following statements is/are correct in respect of regression coefficients? [2015-I]
 - 1. It measures the degree of linear relationship between two variables.
 - 2. It gives the value by which one variable changes for a unit change in the other variable.
 - Select the correct answer using the code given below.
 - (a) 1 only (b) 2 only
 - (c) Both 1 and 2 (d) Neither 1 nor 2
- 143. A set of annual numerical data, comparable over the years, is given for the last 12 years. [2015-I]

- 1. The data is best represented by a broken line graph, each corner (turning point) representing the data of one year.
- 2. Such a graph depicts the chronological change and also enables one to make a short-term forecast.
- Which of the above statements is/are correct?
- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 144. The mean of five numbers is 30. If one number is excluded, their mean becomes 28. The excluded number is [2015-I](a) 28(b) 30
 - (c) 35 (d) 38
- 145. The 'less than' ogive curve and the 'more than' ogive curve intersect at [2015-1]
 - (a) median (b) mode
 - (c) arithmetic mean (d) None of these
- 146. The geometric mean of the observations $x_1, x_2, x_3, \dots, x_n$ is G_1 . The geometric mean of the observations $y_1, y_2, y_3, \dots, y_n$ is G_2 . The geometric mean of observations

$$\frac{x_1}{y_1}, \frac{x_2}{y_2}, \frac{x_3}{y_3}, \dots, \frac{x_n}{y_n} \text{ is } [2015-11]$$

(a) G_1G_2 (b) $\ln(G_1G_2)$

(c)
$$\frac{G_1}{G_2}$$
 (d) $\ln\left(\frac{G_1}{G_2}\right)$

147. The arithmetic mean of 1, 8, 27, 64,..... up to n terms is given by [2015-II]

(a)
$$\frac{n(n+1)}{2}$$
 (b) $\frac{n(n+1)^2}{2}$
(c) $\frac{n(n+1)^2}{4}$ (d) $\frac{n^2(n+1)^2}{4}$

- 148. The regression coefficients of a bivariate distribution are -0.64 and -0.36. Then the correlation coefficient of the distribution is [2015-II]
 (a) 0.48
 (b) -0.48
 - (c) 0.50 (d) -0.50
- 149. What is the mean deviation from the mean of the numbers

 10, 9, 21, 16, 24 ?
 [2016-I]

 (a) 5·2
 (b) 5·0
 (c) 4·5
 (d) 4·0
- 150. If the total number of observations is 20, $\Sigma x_i = 1000$ and

 $\Sigma x_i^2 = 84000$, then what is the variance of the distribution? [2016-1]

- (a) 1500 (b) 1600
- (c) 1700 (d) 1800
- 151. The mean of the series $x_1, x_2, ..., x_n$ is X. If x_2 is replaced by λ , then what is the new mean? [2016-I]

(a)
$$\overline{X} - x_2 + \lambda$$
 (b) $\frac{\overline{X} - x_2 - \lambda}{n}$
 $\overline{X} - x_2 + \lambda$ $n\overline{X} - x_2 + \lambda$

(c)
$$\frac{X - X_2 + \lambda}{n}$$
 (d) $\frac{nX - X_2 + \lambda}{n}$

152. For the data

3, 5, 1, 6, 5, 9, 5, 2, 8, 6

the mean, median and mode are x, y and z respectively. Which one of the following is correct? [2016-I]

- (a) $x = y \neq z$ (b) $x \neq y = z$
- (c) $x \neq y \neq z$ (d) x = y = z

- 153. Consider the following statements in respect of a histogram:
 - [2016-I]
 - 1. The total area of the rectangles in a histogram is equal to the total area bounded by the corresponding frequnecy polygon and the x-axis.
 - 2. When class intervals are unequal in a frequency distribution, the area of the rectangle is proportional to the frequency.
 - Which of the above statements is/are correct?
 - (a) 1 only (b) 2 only
 - (c) Both 1 and 2 (d) Neither 1 nor 2

154. Consider the following statements: [2016-II]

- 1. The mean and median are equal in symmetric distribution.
- 2. The range is the difference between the maximum value and the minimum value in the data.
- 3. The sum of the areas of the rectangles in the histogra is equal to the total area bounded by the frequency polygon and the horizontal axis.
- Which of the above statements are correct?
- (a) 1 and 2 only (b) 2 and 3 only
- (c) 1 and 3 only (d) 1, 2 and 3
- 155. The scores of 15 students in an examination were recorded as 10, 5, 8, 16, 18, 20, 8, 10, 16, 20, 18, 11, 16, 14 and 12. After calculating the mean, median and mode, an error is found. One of the values is wrongly written as 16 instead of 18. Which of the following measures of central tendency will change? [2016-II]
 - (a) Mean and median (b) Median and mode
 - (c) Mode only (d) Mean and mode
- 156. For 10 observations on price (x) and supply (y), the following data was obtained : [2016-II]
 - $\sum x = 130, \sum y = 220,$

$$\sum x^2 = 2288$$
, $\sum y^2 = 5506$ and $\sum xy = 3467$.

What is line of regression of y on \overline{x} ?

(a)
$$y=0.91 x+8.74$$
 (b) $y=1.02x+8.74$

(c)
$$y=1.02x-7.02$$
 (d) $y=0.91x-7.02$

157. In a study of two groups, the following results were obtained: [2016-II]

	Group	Group
	A	B
Sample Size	20	25
Sample mean	22	23
Sample standard deviation	10	12

Which of the following statements is correct?

- (a) Group A is less variable than Group B because Group A's standard deviation is smaller.
- (b) Group A is less variable than Group B because Group A's sample size is smaller.
- (c) Group A is less variable than Group B because Group A's sample mean is smaller.
- (d) Group A is less variable than group B because Group A's coefficient of variation is smaller.
- 158. Consider the following statements in respect of class intervals of grouped frequency distribution: [2016-II]
 - 1. Class intervals need not be mutually exclusive.
 - 2. Class intervals should be exhaustive.
 - 3. Class intervals need not be of equal width.

Which of the above statements are correct?

- (a) 1 only 2 only (b) 2 and 3 only (c) 1 and 3 only (d) 1, 2 and 3
- 159. Two variates, x and y, are uncorrelated and have standard deviations σ_x and σ_y respectively. What is the correlation coefficient between x+y and x y? [2016-II]

(a)
$$\frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$$
 (b) $\frac{\sigma_x + \sigma_y}{2\sigma_x \sigma_y}$
(c) $\frac{\sigma_x^2 - \sigma_y^2}{\sigma_x^2 + \sigma_y^2}$ (d) $\frac{\sigma_y - \sigma_x}{\sigma_x \sigma_y}$

160. A random sample of 20 people is classified in the following table according to their ages: [2016-II]

Age	Frequency
15 – 25	2
25 - 35	4
35 - 45	6
45 – 55	5
55 - 65	3

What is the mean age of this group of people? (a) 41.0 (b) 41.5 (c) 42.0 (d) 42.5

- 161. If the covariance between x and y is 30, variance of x is 25 and variance of y is 144, then what is the correlation coefficient? [2016-II]
 (a) 0.4
 (b) 0.5
 - (c) 0.6 (d) 0.7
- 162. The variance of 20 observations is 5. If each observation is multiplied by 3, then what is the new variance of the resulting observations? [2017-I](a) 5 (b) 10

- 163. The mean of a group of 100 observations was found to be 20. Later it was found that four observations were incorrect, which were recorded as 21, 21, 18 and 20. What is the mean if the incorrect observations are omitted? [2017-I]

 (a) 18
 (b) 20
 (c) 21
 (d) 22
- 164. If two regression lines between height (x) and weight (y) are 4y - 15x + 410 = 0 and 30x - 2y - 825 = 0, then what will be the correlation coefficient between height and weight? [2017-I]

(a)
$$\frac{1}{3}$$
 (b) $\frac{1}{2}$ (c) $\frac{2}{3}$ (d) $\frac{2}{3}$

- 165. In an examination, 40% of candidates got second class. When the data are represented by a pie chart, what is the angle corresponding to second class? [2017-I]
 (a) 40°
 (b) 90°
 (c) 144°
 (d) 320°
- 166. Consider the following statements : [2017-I] Statement 1 : Range is not a good measure of dispersion. Statement 2 : Range is highly affected by the existence of extreme values.

Which one of the following is correct in respect of the above statements?

(a) Both Statement 1 and Statement 2 are correct and Statement 2 is the correct explanation of Statement 1

- (b) Both Statement 1 and Statement 2 are correct but Statement 2 is not the correct explanation of Statement 1
- (c) Statement 1 is correct but Statement 2 is not correct
- (d) Statement 2 is correct but Statement 1 is not correct
- 167. If the data are moderately non-symmetrical, then which one of the following empirical relationships is correct? [2017-I]
 - (a) $2 \times$ Standard deviation = $5 \times$ Mean deviation
 - (b) $5 \times$ Standard deviation = $2 \times$ Mean deviation
 - (c) $4 \times$ Standard deviation = $5 \times$ Mean deviation
- (d) $5 \times$ Standard deviation = $4 \times$ Mean deviation 168. Data can be represented in which of the following forms?
 - Textual form 1 2. Tabular form Graphical form 3.

Select the correct answer using the code given below.

- [2017-I] (b) 2 and 3 only
- (a) 1 and 2 only (c) 1 and 3 only (d) 1, 2 and 3
- 169. For given statistical data, the graphs for less than ogive and more than ogive are drawn. If the point at which the two curves intersect is P, then abscissa of point P gives the value of which one of the following measures of central tendency? [2017-I] (a) Median (b) Mean
 - (d) Geometric mean (c) Mode
- 170. If the regression coefficient of x on y and y on x are $-\frac{1}{2}$

and $-\frac{1}{8}$ respectively, then what is the correlation [2017-1] coefficient between x and y?

- (b) $-\frac{1}{16}$ (a) $-\frac{1}{4}$ (c) $\frac{1}{16}$ (d)
- 171. A sample of 5 observations has mean 32 and median 33. Later it is found that an observation was recorded incorrectly as 40 instead of 35. If we correct the data, then which one of the following is correct? [2017-I]
 - (a) The mean and median remain the same
 - The median remains the same but the mean will (b) decrease
 - (c) The mean and median both will decrease

(d) The mean remains the same but median will decrease

- 172. Consider the following statements : [2017-II]
 - Coefficient of variation depends on the unit of 1. measurement of the variable.
 - 2. Range is a measure of dispersion.
 - Mean deviation is least when measured about median. 3. Which of the above statements are correct?
 - (a) 1 and 2 only (b) 2 and 3 only
 - (c) 1 and 3 only (d) 1, 2 and 3
- 173. Given that the arithmetic mean and standard deviation of a sample of 15 observations are 24 and 0 respectively. Then which one of the following is the arithmetic mean of the smallest five observations in the data? [2017-II] (a) 0 (b) 8 (c) 16 (d) 24
- 174. Which one of the following can be considered as appropriate pair of values of regression coefficient of y on x and regression coefficient of x on y? [2017-II]

(a)
$$(1,1)$$
 (b) $(-1,1)$
(c) $\left(-\frac{1}{2},2\right)$ (d) $\left(\frac{1}{3},\frac{10}{3}\right)$

175. It is given that $\overline{X} = 10$, $\overline{Y} = 90$, $\sigma_X = 3$, $\sigma_Y = 12$ and

 $r_{XY} = 0.8$. The regression equation of X on Y is

- (a) Y = 3.2X + 58(b) X = 3.2Y + 58
- (c) X = -8 + 0.2Y(d) Y = -8 + 0.2X
- 176. The following table gives the monthly expenditure of two families:

Expenditure (in ₹)							
Items	Family A	Family B					
Food	3,500	2,700					
Clothing	500	800					
Rent	1,500	1,000					
Education	2,000	1,800					
Miscellaneous	2,500	1,800					

In constructing a pie diagram to the above data, the radii of the circles are to be chosen by which one of the following ratios? [2017-II]

- (b) 10:9 (a) 1:1 (c) 100:91 (d) 5:4
- 177. If a variable takes values 0, 1, 2, 3,, n with frequencies 1, C(n, 1), C(n, 2), C(n, 3),, C(n, n) respectively, then the arithmetic mean is [2017-II] (a) 2n (b) n+1

(c) n (d)
$$\frac{n}{2}$$

- 178. Consider the following statements : [2017-II] Variance is unaffected by change of origin and change 1. of scale.
 - Coefficient of variance is independent of the unit of 2. observations.
 - Which of the statements given above is/are correct?
 - (a) 1 only (b) 2 only
 - (c) Both 1 and 2 (d) Neither 1 nor 2
- 179. The coefficient of correlation when coefficients of regression are 0.2 and 1.8 is [2017-II]
 - (a) 0.36 (b) 0.2
 - (d) 0.9 (c) 0.6
- 180. In a Binominal distribution, the mean is three times its variance. What is the probability of exactly 3 successes out of 5 trials? [2018-1]
 - (b) $\frac{40}{243}$ (a) 243 (d) $\frac{10}{243}$
 - (c)
- 181. If the correlation coefficient between x and y is 0.6, covariance is 27 and variance of y is 25, then what is the variance of x? [2018-1]

	9		81
(a)	5	(b)	25

(c) 9 (d) 81 [2017-II]

182. Let \overline{x} be the mean of $x_1, x_2, x_3, ..., x_n$. If $x_i = a + cy_i$ for some constants a and c, then what will be the mean of y_1 , y_2 , y_3 , ..., y_n ? [2018-I]

(a)
$$a + c \overline{x}$$
 (b) $a - \frac{1}{c} \overline{x}$

(c)
$$\frac{1}{c}\overline{x}-a$$
 (d) $\frac{\overline{x}-a}{c}$

183. Consider the following statements:

1. If the correlation coefficient $r_{xy} = 0$, then the two lines of regression are parallel to each other.

[2018-1]

[2018-I]

- 2. If the correlation coefficient $r_{xy} = +1$, then the two lines of regression are perpendicular to each other. Which of the above statements is/are correct?
- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 184. If 4x 5y + 33 = 0 and 20x 9y = 107 are two lines of regression, then what are the values of \overline{x} and \overline{y} respectively? [2018-I] (a) 12 and 18 (b) 18 and 12
 - (c) 13 and 17 (d) 17 and 13
- 185. Consider the following statements: [2018-I]
 1. Mean is independent of change in scale and change in origin.
 - 2. Variance is independent of change in scale but not in origin.

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 186. Consider the following statements: [2018-I]1. The sum of deviations from mean is always zero.
 - The sum of advantations non-initial is always zero.
 The sum of absolute deviations is minimum when taken around median.

Which of the above statements is/are correct?

- (a) 1 only (b) 2 only
- (c) Both 1 and 2 (d) Neither 1 nor 2
- 187. What is the median of the numbers 4.6, 0, 9.3, -4.8, 7.6, 2.3, 12.7, 3.5, 8.2, 6.1, 3.9, 5.2? [2018-I]
 (a) 3.8 (b) 4.9
 - (c) 5.7 (d) 6.0
- 188. In a test in Mathematics, 20% of the students obtained "first class". If the data are represented by a Pie-Chart, what is the central angle corresponding to "first class"?

(a)
$$20^{\circ}$$
 (b) 36° (c) 72° (d) 144°

189. The mean and standard deviation of a set of values are 5 and 2 respectively. If 5 is added to each value, then what is the coefficient of variation for the new set of values?

(a)	10	(b) 20
(a)	40	(d) 70

- (c) 40 (d) 70 190. The standard deviation σ of the first N natural numbers can
- be obtained using which one of the following formulae? [2018-1]

(a)
$$\sigma = \frac{N^2 - 1}{12}$$
 (b) $\sigma = \sqrt{\frac{N^2 - 1}{12}}$

(c)
$$\sigma = \sqrt{\frac{N-1}{12}}$$
 (d) $\sigma = \sqrt{\frac{N^2 - 1}{6N}}$

- 191. The correlation coefficient computed from a set of 30 observations is 0.8. Then the percentage of variation not explained by linear regression is [2018-II]
 - (a) 80% (b) 20%
 - (c) 64% (d) 36%
- 192. The average age of a combined group of men and women is 25 years. If the average age of the group of men is 26 years and the of the group of women is 21 years, then the percentage of men and women in the group is respectively [2018-II]
 - (a) 20,80 (b) 40,60

(c) 60,40 ((d)	80,20
-------------	-----	-------

- 193. Consider the following statements: [2018-II]
 - 1. If 10 is added to each entry on a list then the average increase by 10.
 - 2. If 10 is added to each entry on a list, then the standard deviation increase by 10.
 - 3. If each entry on a list is doubled, then the average doubles.
 - Which of the above statement are correct?
 - (a) 1, 2 and 3 (b) 1 and 2 only
 - (c) 1 and 3 only (d) 2 and 3 only
- 194. The variance of 25 observations is 4. If 2 is added to each observation, then the new variance of the resulting observations is [2018-II]
 - (a) 2 (b) 4 (c) 6 (d) 8
- 195. If the regression coefficient of Y on X is -6, and the correlation

coefficient between X and Y $-\frac{1}{2}$, then the regression coefficient of X on Y would be [2018-II]

- (a) $\frac{1}{24}$ (b) $-\frac{1}{24}$ (c) $-\frac{1}{6}$ (d) $\frac{1}{6}$
- 196. The set of bivariate observation $(x_1, y_1), (x_2, y_2), \dots, (xn, yn)$ are such that all the values are distinct and all the observations fall on a straight line with non-zero slope. Then the possible values of the correlation coefficient between x and y are [2018-II]
 - (a) 0 and 1 only (b) 0 and -1 only
 - (c) 0, 1 and -1 (d) -1 and 1 only
- 197. An analysis of monthly wages paid to the workers in two firms A and B belonging to the same industry the following result: [2018-II]

	Firm A	Firm B
Number of workers	500	600
Average monthly	₹ 1860	₹ 1750
wage		
Variance of	81	100
distribution of		
wages		

The average of monthly wages and variance of distribution of wages of all the workers in the firms A and B taken together are [2018-II]

(a) ₹1860,100	(b) ₹1750,100
(a	, 1000,100	(0) $(1/30,100)$

(c) ₹ 1800m, 81 (d) None of above

198. Which one of the following can be obtained from an ogive? [2018-II]

(a)	Mean	(b)	Median
(c)	Geometric mean	(d)	Mode

- 199. In any discrete series (when all values are not same) if x represents mean deviation about mean and y represents standard deviation, then which one of the following is correct? [2018-II]
 - (a) $y \ge x$ (b) $y \le x$

(c)
$$x = y$$
 (d) $x < y$

- 200. In which one of the following cases would you except to get a negative correlation? [2018-II]
 - (a) The ages of husbands and wives
 - (b) Shoe size and intelligence
 - (c) Insurance companies profits and the number of claims they have to pay
 - (d) Amount of rainfall and yield of crop

201. The mean of 100 observations is 50 and the standard deviation is 10. If 5 is subtracted from each observation and then it is divided by 4, then what will be the new mean and the new standard deviation respectively?

[2019-I]

- (a) 45,5 (b) 11.25,1.25
- (c) 11.25,2.5 (d) 12.5,2.5
- 202. Consider the following statements : [2019-I]
 1. The algebraic sum of deviations of a set of values from their arithmetic mean is always zero.
 - 2. Arithmetic mean > Median > Mode for a symmetric distribution.
 - Which of the above statements is/are correct?
 - (a) 1 only (b) 2 only
 - (c) Both 1 and 2 (d) Neither 1 nor 2
- 203. Let the correlation coefficient between X and Y be 0.6. Random variables Z and W are defined as Z = X + 5 and W
 - $=\frac{Y}{3}$. What is the correlation coefficient between Z and W? [2019-1]
 - (a) 0.1 (b) 0.2
 - (c) 0.36 (d) 0.6
- 204. If all the natural numbers between 1 and 20 are multiplied by 3, then what is the variance of the resulting series ?

[2019-I]

(a) 99.75 (b) 199.75 (c) 299.25 (d) 399.25

	ANSWER KEY																		
1	(a)	22	(d)	43	(b)	64	(d)	85	(c)	106	(b)	127	(c)	148	(b)	169	(a)	190	(b)
2	(c)	23	(b)	44	(c)	65	(c)	86	(a)	107	(d)	128	(a)	149	(a)	170	(a)	191	(d)
3	(d)	24	(a)	45	(b)	66	(b)	87	(b)	108	(c)	129	(b)	150	(c)	171	(b)	192	(d)
4	(b)	25	(d)	46	(d)	67	(c)	88	(c)	109	(a)	130	(b)	151	(d)	172	(b)	193	(c)
5	(d)	26	(b)	47	(d)	68	(d)	89	(a)	110	(d)	131	(b)	152	(d)	173	(d)	194	(b)
6	(c)	27	(b)	48	(c)	69	(c)	90	(a)	111	(a)	132	(c)	153	(c)	174	(a)	195	(b)
7	(a)	28	(b)	49	(c)	70	(d)	91	(c)	112	(c)	133	(c)	154	(d)	175	(c)	196	(d)
8	(c)	29	(b)	50	(c)	71	(c)	92	(b)	113	(a)	134	(a)	155	(d)	176	(b)	197	(d)
9	(d)	30	(d)	51	(a)	72	(c)	93	(a)	114	(b)	135	(d)	156	(b)	177	(b)	198	(b)
10	(b)	31	(d)	52	(c)	73	(d)	94	(b)	115	(c)	136	(d)	157	(d)	178	(b)	199	(d)
11	(d)	32	(b)	53	(a)	74	(c)	95	(d)	116	(c)	137	(b)	158	(b)	179	(c)	200	(c)
12	(a)	33	(a)	54	(b)	75	(b)	96	(a)	117	(c)	138	(c)	159	(c)	180	(a)	201	(c)
13	(d)	34	(d)	55	(a)	76	(a)	97	(c)	118	(d)	139	(c)	160	(b)	181	(d)	202	(a)
14	(b)	35	(b)	56	(b)	77	(a)	98	(d)	119	(a)	140	(b)	161	(b)	182	(d)	203	(d)
15	(d)	36	(d)	57	(c)	78	(b)	99	(b)	120	(c)	141	(c)	162	(d)	183	(d)	204	(c)
16	(c)	37	(b)	58	(b)	79	(c)	100	(d)	121	(c)	142	(b)	163	(b)	184	(c)		
17	(b)	38	(c)	59	(c)	80	(d)	101	(c)	122	(c)	143	(c)	164	(b)	185	(d)		
18	(c)	39	(c)	60	(a)	81	(a)	102	(c)	123	(c)	144	(d)	165	(c)	186	(c)		
19	(b)	40	(b)	61	(b)	82	(c)	103	(d)	124	(a)	145	(a)	166	(a)	187	(b)		
20	(c)	41	(d)	62	(a)	83	(a)	104	(d)	125	(b)	146	(c)	167	(c)	188	(c)		
21	(a)	42	(d)	63	(c)	84	(a)	105	(d)	126	(c)	147	(c)	168	(d)	189	(b)		

HINTS & SOLUTIONS

- 1. (a) A simple bar diagram is most suitable for this.
- 2. (c) Mode is most suitable for this.
- 3. (d) The angle between two regression lines becomes zero if $r = \pm 1$.
- 4. (b) Since, expansion contains (n + 1) terms,

Required mean =
$$\frac{{}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}}{(n+1)}$$

$$=\frac{2^n}{n+1}$$

5. (d) The standard deviation of n observation x_1, x_2, \ldots, x_n is 6 and of y_1, y_2, \ldots, y_n is 8, then the standard deviation of n observation $x_1 - y_1, x_2 - y_2, x_3 - y_3, \ldots, x_n - y_n$ is 8 - 6 = 2.

6. (c) Let
$$x = 31$$
 and $y = 10$

C.I.	х	f	cf
8.5-13.5	11	7	7
13.5-18.5	16	31	38
18.5-23.5	21	40	78
23.5 - 28.5	26	10	88
28.5-33.5	31	10	98
33.5-38.5	36	2	100

$$\therefore$$
 N = 100, $\therefore \frac{N}{2} = 50$

 \therefore Median group is 18.5 – 23.5

$$\therefore$$
 L₁=18.5, L₂=23.5, C=38, h=5, f=40

. Median =
$$L_1 + \frac{\left(\frac{N}{2} - C\right)}{f} \times h$$

$$= 18.5 + \frac{50 - 38}{40} \times 5 = 18.5 + \frac{12 \times 5}{40} = 18.5 + 1.5 = 20$$

Thus, our assumption is correct. Therefore missing numbers are 31 and 10 respectively.

- 7. (a) All are correct statement and R is correct explanation of A.
- 8. (c) The x-coordinate of the point of intersection of two ogives, gives median.

9. (d) Average score of A =
$$\frac{71+56+45+89+54+44}{6}$$

 $=\frac{-6}{6}=59.$

and average score of

$$B = \frac{55 + 74 + 83 + 54 + 38 + 52}{6} = \frac{356}{6} = 59.33$$

Variation is lesser in case of B than A. So, the average scores of A and B are not same but B is consistent.

- 10. (b) Joining the mid points of the upper horizontal sides of each rectangle of a histogram by straight lines, the figure so obtained is known as frequency polygon.
- 11. (d) The definition of Mode fails if the curve drawn with the help of given data is symmetrical.

12. (a) Let n denote number of workers and x, the pay.

$$n_1 = 30, n_2 = 20, x_1 = ₹500, x_2 = ₹600$$

$$\therefore \quad \text{Combined average} = \frac{n_1 x_1 + n_2 x_2}{n_1 + n_2}$$
$$= \frac{30 \times 500 + 20 \times 600}{30 + 20} = \frac{15000 + 12000}{50}$$
$$= \frac{27000}{50} = 540$$
Combined average pay = ₹ 540

13. (d)
$$50_{\text{th}} \text{ decile} = \frac{50}{10} = 5$$

and
$$5_{\text{th}}$$
 percentile = $\frac{5}{100}$ $5 \neq \frac{5}{100}$

- 14. (b) Let there be x number of boys and y number of girls. Total students = x + yTotal weight of the students = (x + y)60Total weight for boys = $x \times 70$ Total weight for girls = $y \times 55$ Hence, (x + y)60 = 70x + 55y 60x + 60y = 70x + 55y $5y = 10x \Rightarrow y = 2x$ $\frac{x}{y} = \frac{1}{2} \Rightarrow x : y = 1:2$
- 15. (d) From observation of the graph it is noted the nature is similar, but are centered around different values, hence, they have same variance, but different mean values.
- 16. (c) Slope of line of regression of Y and X, is 30° . So

$$b_{yx} = \tan 30^{\circ} = \frac{1}{\sqrt{3}} \text{ and for X and Y it is } 60^{\circ}.$$

Hence, $\frac{1}{b_{xy}} = \tan 60^{\circ} = \sqrt{3}$
 $b_{yx} = \frac{1}{\sqrt{3}} \text{ and } b_{xy} = \frac{1}{\sqrt{3}}$
 $r(x, y) = r^2 = b_{yx} \cdot b_{xy} = \frac{1}{3}$
so, $r = \pm \frac{1}{\sqrt{3}}$
Since, b_{yx} and b_{xy} are both positive, $r = \pm \frac{1}{\sqrt{3}}$

- 17. (b) To measure the intelligence of a group of students mode will be more suitable.
 - (c) As give, np = 4 and npq= 3 [where p is the probability of success and q is the probability of failure for an event to occur, and 'n' is the number of trials]

$$\Rightarrow q = \frac{npq}{np} = \frac{3}{4}$$

18.

Also,
$$p = 1 - q = 1 - \frac{3}{4} = \frac{1}{4}$$

∴ n=16

In a binomial distribution, the value of r for which P(X=r) is maximum is the mode of binomial distribution. hence, $(n+1)p-1 \le r \le (n+1)p$

$$\Rightarrow \frac{17}{4} - 1 \le r \le \frac{17}{4}$$
$$\Rightarrow \frac{13}{4} \le r \le \frac{17}{4}$$
$$\Rightarrow 3.25 \le r \le 4.25$$

$$\Rightarrow$$
 r=4

19. (b) If X is changed to a + hU and Y to b + kV, then

$$\mathbf{b}_{XY} = \left| \frac{\mathbf{h}}{\mathbf{k}} \right| \mathbf{b}_{UV}$$

 \Rightarrow kb_{XY} = h.b_{UV}

- 20. (c) Let the number of students of school I = x
 - Number of students of School II = 1.5 x As given : Mean of marks for school I = 82 and mean of marks for school II = 86

:. Combined mean
$$= \frac{x \times 82 + 1.5x \times 86}{x + 1.5x}$$

 $= \frac{x(82 + 129)}{2.5x} = \frac{211}{2.5} = 84.4$

21. (a) Since, AM of number
$$x_1, x_2, x_3, ... x_n$$
 is μ

$$\therefore \quad n\mu = x_1 + x_2 + \dots + x_n$$

Sum of new numbers
= $(x_1 + 1) + (x_2 + 2) + (x_3 + 3) + \dots + (x_n + n)$
= $(x_1 + x_2 + \dots + x_n) + (1 + 2 + 3 + \dots + n)$
= $n\mu + \frac{n(n+1)}{2}$
$$\therefore \quad AM = \mu + \frac{(n+1)}{2}$$

- 22. (d) Mode is the required measure.
- 23. (b) In a pie chart largest amount occupies largest area. So, the salaries occupies largest area.

$$\Rightarrow \text{ Sectorial angle} = \frac{6}{20} \times 360^\circ = 108^\circ$$

- 24. (a) From the given statement
 - \Rightarrow Both (A) and (R) are true and R is the correct explanation of A.
- 25. (d) Given : lowest class boundary = 6.1 Class width = 2.5, Number of classes = 12 → Unper class boundary of the highest class

$$\Rightarrow$$
 opper class boundary of the ingliest class
= 6.1 + (2.5×12) = 6.1 + 30 = 36.1

- 26. (b) The appropriate number of classes while constructing a frequency distribution should be chosen such that the class frequency should cluster around the class mid point
- 27. (b) Bar chart is most appropriate.

28. (b) Standard deviation (series B):

$$= \sqrt{\frac{\frac{1}{5}(1.9^2 + 0.8^2 + 1.5^2 + 0.6^2 + 0.2^2)}{\sqrt{\left(\frac{1.9 + 0.8 + 1.5 + 0.6 + 0.2}{5}\right)^2}}}$$
$$= \sqrt{\frac{6.9}{5} - 1} = \sqrt{1.38 - 1}$$
$$= \sqrt{0.38}$$

29. (b) Geometric Mean of combined series is given by the expression

$$\log G = \frac{n_2 \log G_1 + n_1 \log G_2}{n_1 + n_2}$$

30. (d) Let x is the mean of n observation $x_1, x_2, ..., x_n$.

$$\Rightarrow \overline{\mathbf{x}} = \frac{\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \dots + \mathbf{x}_n}{\mathbf{x}_n}$$

Now,
$$(a - b)$$
 is added to each term.

$$\therefore \text{ New mean}$$

$$= \frac{x_1 + (a - b) + x_2 + (a - b) + \dots + x_n + (a - b)}{n}$$

$$= \frac{x_1 + x_2 + \dots + x_n}{n} + \frac{n(a - b)}{n}$$

$$=\overline{x}+(a-b)$$

31. (d) For the given distribution which is positively seowed, Median < Mean < Mode

32. (b) Mean of the numbers =
$$\frac{\frac{n(n+1)}{2}}{n}$$

∴ Variance

$$=\frac{\left(1-\frac{n+1}{2}\right)^2 + \left(2-\frac{n+1}{2}\right)^2 + \left(3-\frac{n+1}{2}\right)^2 + \dots}{n}$$

 $\frac{n+1}{2}$

$$2 = \frac{(1^2 + 2^2 + 3^2 + ...) + n\left(\frac{n+1}{2}\right) - 2\left(\frac{n+1}{2}\right)[1 + 2 + 3 + ...]}{n}$$

$$2n = \frac{1}{6}n(n+1)(2n+1) + \frac{n(n+1)^2}{4} - 2\left(\frac{n+1}{2}\right)\left\{\frac{n(n+1)}{2}\right\}$$
$$2n = n(n+1)\left[\frac{2n+1}{6} + \frac{n+1}{4} - \frac{n+1}{2}\right]$$

$$2 = (n+1) \left[\frac{4n+2-3n-3}{12} \right]$$

$$\Rightarrow 24 = (n+1)(n-1) \Rightarrow n^2 - 1 = 24$$

$$\Rightarrow n^2 = 25 \Rightarrow n = \pm 5$$

33. (a) Arithmetic mean of the series

$$\frac{{}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + \dots + {}^{n}C_{n}}{n} = \frac{2^{n} - 1}{n}$$

34. (d) Let the teacher's age is x years According to question

$$15+1 = \frac{20 \times 15 + x}{21}$$

$$\Rightarrow 16 \times 21 = 300 + x$$

$$\Rightarrow x = 336 - 300 = 36 \text{ years}$$

35. (b) Arithmetic mean =
$$\frac{2 \times 1 + 3 \times 2 + 3f + 4 \times 5}{2 + 3 + f + 5}$$

$$\Rightarrow \frac{23}{8} = \frac{28+3f}{10+f}$$
$$\Rightarrow 230+23f=224+24f$$
$$\Rightarrow f=6$$

36. (d) (i) Arithmetic mean $=\frac{\text{Sum of all observations}}{\text{Total no. of observation}}$

- (ii) Median = The midpoint of the data after being ranked (arranged in ascending order).
- (iii) Geometric mean = If $x_1, x_2, x_3, ..., x_n$ are *n* values of a variate *x*, none of them being zero, then the geometric mean *G* is defined as $G = (x_1 x_2 x_3 ... x_n)^{1/n}$. Thuse, all of them are meaningfully defined.
- (b) Collecting data from government offices is secondary. collecting data from public libraries is also secondary but collecting data by telephonic interview is primary data.
- 38. (c) Arithmetic mean of

10 numbers =
$$\frac{4 \times 15 + 6 \times 12}{10} = \frac{60 + 72}{10} = 13.2$$

- 39. (c) From visual observation of given table we can say that during month 3, the sales are most consistent.
- 40. (b) Average of marks of A

$$=\frac{71+56+55+75+54+49}{6}=\frac{360}{6}=60$$

and SD

$$=\sqrt{\frac{121+16+25+225+36+121}{6}} = \sqrt{\frac{544}{6}} = 9.52$$

Average of marks of B

$$=\frac{55+74+83+54+38+52}{6}=\frac{356}{6}=59.33$$

Thus, the average scores of A and B are not same but A is consistent.

- (d) Let average salary of women be x.
 - According to question, $\Rightarrow 50 \times 3550 = 30 \times 4050 + 20x$ $\Rightarrow 177500 - 121500 = 20x$
 - $\Rightarrow 1//500 121500 =$

$$\Rightarrow x=2800$$

41.

Hence, average salary of women = Rs 2800

42. (d) Mean of given numbers

$$=\frac{7+9+11+13+15}{5}=\frac{55}{5}=11$$

SD =
$$\sqrt{\frac{(7-11)^2 + (9-11)^2 + (11-11)^2 + (13-11)^2 + (15-11)^2}{5}}$$

= $\sqrt{\frac{16+4+0+4+16}{5}} = \sqrt{8} = 2.8 \text{ (aprox)}$

43. (b) Since, monthly salary = Rs 15000 and sector angle of expenses = 15°

$$\therefore \quad \text{Amount} = \frac{15^{\circ}}{360^{\circ}} \times 15000 = \text{Rs} \ 625$$

44. (c)
$$\sum_{t=1}^{n} (x_{t} - 2) = 110$$

$$\therefore x_{1} + x_{2} + \dots + x_{n} - 2n = 110$$

$$\Rightarrow x_{1} + x_{2} + \dots + x_{n} = 2n + 110 \qquad \dots (i)$$

and
$$\sum_{i=1}^{n} (x_{i} - 5) = 20$$

$$\Rightarrow x_{1} + x_{2} + \dots + x_{n} - 5n = 20$$

$$\Rightarrow x_{1} + x_{2} + \dots + x_{n} = 5n + 20 \qquad \dots (ii)$$

From equations (i) and (ii), we get

$$5n + 20 = 2n + 110$$

$$\Rightarrow 3n = 90 \Rightarrow n = 30$$

Now, mean =
$$\frac{x_1 + x_2 + \dots + x_n}{n}$$

$$=\frac{5\times30+20}{30}=\frac{170}{30}=\frac{17}{30}$$

45. (b) Total no. of students in section A = $74 \times 35 = 2590$ Total no. of students in section B = $70 \times 35 = 2450$

Now, total no. of students in section C

$$=\frac{51}{75} \times 100 \times 30 = 2040$$

Thus, total students in all = 2590 + 2450 + 2040= 7080

Thus, Required percentage = $7080 \div 100$ = 70.8

46. (d) Given lines of regression are 3X + Y - 12 = 0 and X + 2Y - 14 = 0

Since, lines of regression passes through $(\overline{X}, \overline{Y})$.

therefore $(\overline{X}, \overline{Y})$ satisfies the given equations.

$$\therefore 3\overline{X} + \overline{Y} - 12 = 0 \qquad \dots (i)$$

and $\overline{X} + 2\overline{Y} - 14 = 0$...(ii) Multiply equation (ii) by 3 and subtract from (i), we get $(3\overline{X} + \overline{Y} - 12) - (3\overline{X} + 6\overline{Y} - 42) = 0$

 $\Rightarrow 5\overline{Y} + 30 = 0 \Rightarrow \overline{Y} = 6$

Thus, $\overline{X} = 14 - 2\overline{Y} = 14 - 12 = 2$ Hence, mean, X = 2 47. (d) To find the consistent demand we will calculate coeff of variance. 51. We know coefficient of variance $=\frac{\sqrt{SD}}{mean}$ Also, we know, S.D = $\sqrt{variance}$ Coefficient of variance of $A = \frac{\sqrt{12}}{60} = \frac{3.46}{60} = 0.057$

Coefficient of variance of
$$B = \frac{\sqrt{25}}{90} = \frac{5}{90} = 0.055$$

Coefficient of variance of
$$C = \frac{\sqrt{36}}{80} = \frac{6}{80} = 0.075$$

Coefficient of variance of $D = \frac{\sqrt{16}}{120} = \frac{4}{120} = 0.033$

We see that minimum coefficient of variance is of D, hence product D is consistent.

48. (c) Let us consider any five integers which are 3, 4, 5, 6, 7.

$$\therefore \text{ mean} = \frac{3+4+5+6+7}{5} = \frac{25}{5} = 5$$
$$\therefore SD = \sqrt{\frac{(5-3)^2 + (5-4)^2 + (5-5)^2 + (5-6)^2 + (5-7)^2}{5}}$$
$$= \sqrt{\frac{4+1+0+1+4}{5}} = \sqrt{2}$$

Hence, the least value of the standard deviation of 5 integers is $\sqrt{2}$

- 49. (c) Correlation between two variables is said to be perfect, if one variable increases, the other also increases proportionally.
- 50. (c) Both the given statements I and II are true.
- Sol. (51 53):

x	f	xf
0	f_1	0
1	f_2	f_2
2	4	8
3	4	12
4	3	12
Total	$f_1 + f_2 + 11$	$32 + f_2$

Since, total frequency is 18

$$\therefore f_1 + f_2 + 11 = 18$$

$$\Rightarrow f_1 + f_2 = 7 \qquad \dots(i)$$

As we have, Mean = $\frac{\sum xf}{\sum f} = 2$

$$\therefore \frac{32 + f_2}{18} = 2 \Rightarrow f_2 = 36 - 32 = 4$$

On putting the value of f_2 in Eq. (i), we get
 $f_1 = 7 - 4 = 3$

51. (a) $f_2 = 4$

52. (c) Since, mean $= \overline{x} = 2$ (given)

x	$x - \overline{x}$	$(x-\overline{x})^2$	f	$f(x-\overline{x})^2$
0	-2	4	3	12
1	- 1	1	4	4
2	0	0	4	0
3	1	1	4	4
4	2	4	3	12
Total			18	32

Now,
$$SD = \sqrt{\frac{\sum f(x - \overline{x})^2}{N}}$$

where N = sum of all frequencies

$$=\sqrt{\frac{32}{18}}=\sqrt{\frac{16}{9}}=\frac{4}{3}$$

53. (a) Coefficient of variance
$$=\frac{\sigma}{\overline{x}} \times 100$$
 where $\sigma = S.D$

$$=\frac{4}{3} \times \frac{1}{2} \times 100 = \frac{200}{3}$$

54. (b) Given data is 2, 9, 9, 3, 6, 9, 4. We know,

$$Mean = \frac{Sum of all observations}{Total number of observations}$$

$$\therefore \quad \text{Mean} = \frac{2+9+9+3+6+9+4}{7} = \frac{42}{7} = 6$$

.: Mean deviation

56.

(b)

$$= \frac{|2 - 6| + 3|9 - 6| + |3 - 6| + |6 - 6| + |4 - 6|}{7}$$
$$= \frac{4 + 9 + 3 + 0 + 2}{7} = \frac{18}{7} = 2.57$$

55. (a) We know that, if a number is added in values, then the standard deviation remains unaltered.

$$\therefore$$
 Standard deviation of new values = σ
Let us consider lines

$$and \qquad 40x - 18y = 214$$

$$\Rightarrow 10y = 8x - 66 \qquad \Rightarrow \qquad 40x = 18y + 214$$

$$\Rightarrow b_{yx} = \frac{8}{10} = \frac{4}{5} \qquad \Rightarrow \qquad b_{xy} = \frac{18}{40} = \frac{9}{20}$$
Thus, $r = \pm \sqrt{\frac{4}{5} \times \frac{9}{20}} = \frac{3}{5}$
Also, $\sigma_x = \sqrt{9} = 3$

$$\therefore \sigma_y = \frac{byx \times \sigma_x}{r} = \frac{\frac{4}{5} \times 3}{r} = \frac{12}{5r} = \frac{12}{5} \times \frac{5}{3} = 4$$

NDA Topicwise Solved Papers - MATHEMATICS

57. (c) Since, the standard deviation of same consecutive 64. integers is 2, these integers are any set of seven consecutive integers.

58. (c) Coefficient of variation =
$$\frac{S.D}{Mean} \times 100$$

For factory A =
$$\frac{40 \cdot 50}{540} \times 100 = 7.5$$

For factory B =
$$\frac{31}{620} \times 100 = 5$$

 \therefore Variability in wages of A is 50% more than the variability in wages of B.

59. (c) Required mean
$$=\frac{36 \times 4 + 64 \times 3}{36 + 64} = \frac{144 + 192}{100} = \frac{336}{100}$$

= 3.36

x	у	x ²	y ²	xy
5	2	25	4	10
7	4	49	16	28
8	3	64	9	24
4	2	16	4	8
6	4	36	16	24
$\sum x = 30$	$\sum y = 15$	$\sum x^2 = 190$	$\sum y^2 = 49$	$\sum xy = 94$

$$\overline{x} = \frac{30}{5} = 6$$
 and $\overline{y} = \frac{15}{5} = 3$

$$\therefore \quad \mathbf{b}_{yx} = \frac{n \sum xy - (\sum x)(\sum y)}{n \sum x^2 - (\sum x)^2}$$

$$=\frac{5\times94-30\times15}{5\times190-(30)^2}=\frac{2}{5}=0.4$$

Hence, line of regression is

$$y-3=0.4(x-6) \Rightarrow y=0.4x+0.6$$

Sol. (61-63):

Class	Frequency	C. F
0 - 5	3	3
5 - 10	12	15
10 - 15	Х	15 + x
15 - 20	35	50 + x
20 - 25	у	50 + x + y
25 - 30	4	54 + x + y

Since, n = 90 $\therefore \frac{n}{2} = 45$

61. (b)
$$\therefore$$
 Lower limit of median class is 15.

62. (a) Missing frequency y is 20.

63. (c) Cumulative frequency of model class is 66.

Class Interval	f	cf
0.5-5.5	3	3
5.5-10.5	7	10
10.5-15.5	6	16
15.5-20.5	5	21
Total	21	50
N = 21		

$$\therefore \quad \frac{N}{2} = \frac{21}{2} = 10.5$$

$$\therefore$$
 Median class is 10.5-15.5

Hence, Median =
$$10.5 + \frac{10.5 - 10}{6} \times 5$$

= 10.5 + 0.417 = 10.917

Thus, median is not contained in the modal class and the distribution is not bell-shaped.

Sol. (65 - 66):

71.

(d)

Class Interval	f	cf	x	fx
0-10	5	5	5	25
10-20	10	15	15	150
20-30	20	35	25	500
30-40	5	40	35	175
40-50	10	50	45	450
Total	50	145	125	1300

$$\therefore \quad \frac{N}{2} = \frac{50}{2} = 25$$

$$\Rightarrow \text{Median} = 20 + \frac{25 - 15}{20} \times 10 = 20 + 5 = 25$$

66. (b) Mean =
$$\frac{\sum fx}{\sum f} = \frac{1300}{50} = 26$$

- 67. (c) Both the given statements which is related to correlation coefficient *r* between variables *x* and *y* are correct.
- 68. (d) If the values of a set are measured in cm, then there will not be unit of variance.
- 69. (c) The cumulative frequency curve of statistical data is called Ogive.
- 70. (d) Daily income of owner = $10 \times 110 - 9 \times 76 = 1100 - 684 = ₹416$

(c) Given table can be rewritten as
$$r$$

x_i	f_i	$f_i x_i$
6	2	12
10	4	40
14	7	98
18	12	216
24	8	192
28	4	112
30	3	90
Total	40	760

So, required mean =
$$\frac{\sum f_i x_i}{\sum f_i} = \frac{760}{40} = 19$$

72. (c) Required Arithmetic mean

100

$$= \frac{(30 \times 72.2) + (30 \times 69.0) + (40 \times 64.1)}{100}$$
$$= \frac{6800}{6800} = 68$$

- 73. (d) Given, variance of the data 2, 4, 5, 6, 17 is v.
 Variance of the data 4, 8, 10, 12, 34 is 2v.
 because when each observation is multiplied by 2, then variance is also multiplied by 2.
- 74. (c) Given mean of 7 observations is 10.

$$\therefore \frac{x_1 + x_2 + \dots + x_7}{7} = 10$$

$$\Rightarrow x_1 + x_2 + \dots + x_7 = 70 \qquad \dots (1)$$

Also, mean of 3 observations is 5.

$$\therefore \frac{x_8 + x_9 + x_{10}}{3} = 5$$

$$\Rightarrow x_8 + x_9 + x_{10} = 15$$
 ...(2)
So, from (1) and (2)
Required mean

$$= \frac{x_1 + x_2 + \dots + x_7 + x_8 + x_9 + x_{10}}{3}$$

$$= \frac{10}{10}$$
$$= \frac{70+15}{10} = \frac{85}{10} = 8.5$$

- 75. (b) "If every observation is multiplied by c, then the measure of central tendency is also multiplied by c, where c > 0. Arithmetic mean, Geometric mean and median satisfies above property.
- 76. (a) Given data is 2, 3, 4, 2, 5, 4, 3, 2, 1Mode = 2

[:: 2 occurs maximum number of times].

=

Complete table is

Voor	Male			Female			Total
Ital	Urban	Rural	Total	Urban	Rural	Total	TUTAL
1995	280	350	630	410	310	720	1350
1996	370	300	670	180	270	450	1120
1997	310	130	440	180	190	370	810
1998	400	280	680	290	80	370	1050
Total	1360	1060	2420	1060	850	1910	4330

- 77. (a) Total population for the year 1997 = 440 + 370 = 810
- 78. (b) Female urban population in the year 1995 = 410.

79. (c) Urban population in the year 1997 = 310 + 180 = 490.

- 80. (d) Total population in the year 1998 = 1050.
- 81. (a) Required difference = 720 630 = 90.
- 82. (c) In 1997, the male population is minimum.
- 83. (a) In 1995, the female population is maximum.
- 84. (a) Total rural male population in the year 1998 = 280

Required % =
$$\frac{280}{1050} \times 100\% = \frac{28}{105} \times 100\%$$

= $\frac{28 \times 20}{21}\% = \frac{4 \times 20}{3}\% = \frac{80}{3}\%$

(c) Agriculture :
$$\frac{90}{360} \times 36000 = 9000$$

Miscellaneous : $\frac{75}{360} \times 36000 = 7500$
Industry : $\frac{45}{360} \times 36000 = 4500$

Education : 3000 Employment : 12000 Hence, Employment is allocated maximum funds. Education : 3000

86. (a) Education: 3000
87. (b) Required=9000+12000=21000

85.

- 87. (b) Required 5000 + 12000 = 2100088. (c) Required = 7500 - 3000 = 4500
- 89. (a) Ascending order is 2, 3, 4, 5, 6, 7, 9 Since, n = 7 (odd)

$$\therefore$$
 Required Median = $\left(\frac{n+1}{2}\right)^{\text{th}}$ obs = 4th obs = 5

90. (a) Given natural numbers are
1,2,3,4,5,.......,16
This is an A.P. with first term = 1
and common difference = 1, n = 16
∴ By using sum of 16 natural numbers

i.e.,
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

We have

S₁₆ =
$$\frac{16}{2}$$
 [2(1)+15(1)] = 8(17) = 136
∴ AM. = $\frac{136}{16} = \frac{17}{2}$

- 91. (c) Since observation 22 occurs maximum time. \therefore mode = 22
- 92. (b) Statement 2 and 3 are correct.
- 93. (a) It is a property.
- 94. (b) First we arrange the data in ascending order 2, 2, 3, 3, 4, 5, 7, 9, 10 Since number of observation is odd

$$\therefore \text{ median} = \left(\frac{9+1}{2}\right)^{\text{th}} \text{ observation} = 5 \text{ th observation}$$
$$= 4$$

95. (d) Given : Mean of 10 observations is 5.

$$\Rightarrow \quad \frac{\sum_{i=1}^{10} x_i}{10} = 5$$

According to the Question

$$\frac{\sum_{i=1}^{10} 3(x_i + 2)}{10} = \text{New mean}$$

$$\Rightarrow \frac{3\sum_{i=1}^{10} x_i}{10} + \frac{3 \times 2 \times 10}{10} = \text{New mean}$$

$$\Rightarrow 3 \times 5 + 6 = \text{New mean} \Rightarrow 21 = \text{New mean}$$

96. (a) Sum of first n odd natural numbers = n².
Now, mean =
$$\frac{n^2}{n} = n$$

97. (c) Given M = $\frac{a+b+c+d+e}{5}$
 $\Rightarrow a+b+c+d+e=5 M$
 $\Rightarrow a+b+c+d+e-5 M=0$
 $\Rightarrow (a-M)+(b-M)+(c-M)+(d-M)+(e-M)$
 $=0$
Hence, Required value = 0
98. (d) Given $\sum_{i=1}^{20} (x_i - 30) = 2$
 $\Rightarrow \sum_{i=1}^{20} x_i - \sum_{i=1}^{20} 30 = 2$
 $\Rightarrow \sum_{i=1}^{20} x_i = 2 + \sum_{i=1}^{20} 30 = 2 + 30 \times 20 = 602$
Now, mean = $\frac{\sum_{i=1}^{20} x_i}{20}$
 \therefore Mean = $\frac{602}{20} = 30.1$

99. (b) Median is middle of data. Observations are 27 and median is 18. So, sum of all the observation are
$$18 \times 27 = 486$$
.
Now, 16, 18 and 50 are additional three observations.
So, Total = $486 + 16 + 18 + 50 = 570$.
and number of obs. are 30.

$$\therefore \quad \text{Median} = \frac{570}{30} = 19$$

100. (d) Frequency curve may be symmetrical, positive skew and negative skew.

101. (c) Required expenditure =
$$9000 \times \frac{10}{100}$$

= ₹ 900

102. (c) Mean =
$$40$$
, S.D = 8

$$\therefore \quad \text{Coeff of variation} = \frac{8}{40} \times 100$$

$$= \frac{1}{5} \times 100 = 20\%$$

103. (d) Given observations are
7,9,11,13,15

$$\overline{x} = \frac{7+9+11+13+15}{5} = \frac{55}{5} = 11$$

Now, Variance $= \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$
 $= \frac{(7-11)^2 + (9-11)^2 + (11-11)^2 + (13-11)^2 + (15-11)^2}{5}$

$$= \frac{16 + 4 + 4 + 16}{5} = 8$$

∴ S.D = $\sqrt{v} = \sqrt{8} = 2\sqrt{2} = 2.8$
(:: $\sqrt{2} = 1.414$)

- 104. (d) Standard Deviation is a measure of dispersion.
- 105. (d) Given regression lines are x y + 1 = 0 and 2x y + 4 = 0 only point (-3, -2) given in option (d) satisfies the both equations. Hence, The two regression lines pass through the point (-3, -2).
- 106. (b) First we arrange the data in ascending order. 3, 6, 6, 7, 7, 7, 8, 9, 9, 10, 10, 10, 12. Since no. of observations is odd

$$\therefore \quad \text{Required median} = \left(\frac{13+1}{2}\right)^{\text{th}} \text{ observation}$$
$$= \left(\frac{14}{2}\right)^{\text{th}} = 7^{\text{th}} \text{ observation}$$
$$= 8$$

107. (d) Both statements are wrong. Also, S $D = \sqrt{\text{variance}}$

108. (c) Since the total of the frequencies =
$$100$$

$$\therefore \quad 14 + x + 27 + y + 15 = 100$$

$$\Rightarrow \quad x + y = 44$$

Now, to exist the mode x and y should be equal

$$\therefore \quad x = y \text{ is only possibility}$$

109. (a) Let Number of girls student be x
Sum of marks =
$$25 \times 40 + x \times 48$$

Total students = $25 + x$
 $\therefore \quad 43 = \frac{25 \times 40 + x \times 48}{x + 25}$
 $\Rightarrow \quad 43 x + 43 \times 25 = 25 \times 40 + x \times 48$

$$\Rightarrow 5x=3\times 25$$
$$\Rightarrow x=15$$

110. (d) Given marks are 30, 55, 75, 90, 50, 60, 39.

Mean marks = \overline{x}

$$\overline{x} = \frac{30+55+75+90+50+60+39}{7} = \frac{399}{7} = 57$$

Hence, 4 students secured marks less than the mean marks.

- 111. (a) Variance is always independent of change of the origin but not scale.
- 112. (c) It is a property
- 113. (a) Given observation are 5, 5, 5, 5, 5.

$$\therefore \quad \overline{x} = \frac{5+5+5+5+5}{5} = \frac{25}{5} = 5$$

Now, $\sigma^2 = \sum_{i=1}^{5} \frac{(x_i - \overline{x})^2}{N}$

Where N = total number of observations. \therefore Variance = σ^2

$$=\frac{(5-5)+(5-5)+(5-5)+(5-5)}{5}=0$$

Hence, standard deviation = $\sqrt{\text{var}} = 0$

114. (b) Sum of all observations = $20 \times 15 = 300$ Sum of correct observations = 300 - (3+6) + (8+4) = 303

$$\text{Correct mean} = \frac{303}{20} = 15.15$$

115. (c) Sum of squares of first 'n' natural numbers n(n+1)(2n+1)

$$\frac{n(n+1)(2n}{6}$$

=

Mean of the squares of first 'n' natural numbers

$$=\frac{(n+1)(2n+1)\times n}{6\times n}=\frac{(n+1)(2n+1)}{6}$$

116. (c)

117. (c) After construction of cumulative frequency distribution, we can find out median easily.

118. (d)

119. (a) Variance of 11 natural numbers =
$$\frac{11^2 - 1}{12} = 10$$

121. (c)

122. (c) Detailed Method:

Variance =
$$\frac{\sum d^2}{n}$$

$$5 = \frac{2}{20} \Rightarrow \sum d^2 = 100$$

According to question

$$\sum (d_1)^2 = \sum (2d)^2 = 4\sum d^2 = 4 \times 100 = 400$$

New variance =
$$\frac{100}{20} = 20$$

Shortcut Method:

If each observation is multiplied by 2 New variance = $2^2 \times 5 = 20$

123. (c)
$$r = \sqrt{b_{xy} \cdot b_{yx}}$$

$$= \sqrt{\left(-\frac{1}{6}\right) \times \left(-\frac{3}{2}\right)}$$
$$= \sqrt{\frac{1}{2} \times \frac{1}{2}} = \pm \frac{1}{2}$$

 \boldsymbol{b}_{xy} and \boldsymbol{b}_{yx} both have negative sign. Therefore we have to take negative sign

Hence, correlation coefficient (r) = $-\frac{1}{2}$.

124. (a) I : Variance is not dependent on change of origin. Therefore, if every x_i is increased by 2, the variance of the new set of numbers is not changed. 125. (b) Mean of the squares of the first 20 natural number

$$=\frac{(n+1)(2n+1)}{6}=\frac{21\times41}{6}=143.5$$

- 126. (c) The cumulative frequency of the largest observed value must always be equal to the total number of observations.
- 127. (c) Statement 1 : n(X) = 2 $p = \frac{n(X)}{(T)} = \frac{2}{T} = \frac{1}{T}$

$$p^{-}$$
 n(S) 6 3
 $q = 1 - p = 1 - \frac{1}{2} = \frac{2}{2}$

arithmetric mean of X = np =
$$18 \times \frac{1}{3} = 6$$

Statement 2 : Standard deviation of

$$X = \sqrt{\text{variance of } X} = \sqrt{18 \times \frac{1}{3} \times \frac{2}{3}} = \sqrt{4} = 2$$

Sol. (128-130):

1				
	Numbers(x)	Frequency(f)	c.f.	$\sum fx$
	0	14	14	0
	1	21	35	21
	2	25	60	50
	3	43	103	129
	4	51	154	204
	5	40	194	200
	6	39	233	234
	7	12	245	84
		N 245		$\sum fx$
		1N = 243		= 922

128. (a)
$$\frac{\Sigma fx}{N} = \frac{922}{245} = 3.76$$

129. (b)
$$\frac{N}{2} = \frac{245}{2} = 122.5$$

Required mean = 4

130. (b) The higher frequency is 51
∴ mode = value of the variable corresponding to the higher frequency 154 = 4

Sol. (131-133):

Mean of 100 items = $\overline{x}_{100} = 50$

Mean of 150 items = $\overline{x}_{150} = 40$ Standard deviation of 100 items = $\sigma_{100} = 5$ Standard deviation of 150 items = $\sigma_{150} = 6$

131. (b)
$$\overline{x}_{250} = \frac{n_1 \overline{x}_{100} + n_2 \overline{x}_{150}}{n_1 + n_2} = \frac{(100 \times 50) + (150 \times 40)}{100 + 150}$$

= $\frac{11000}{250} = 44$

м-582

132. (c)
$$d_1 = 50 - 44 = 6$$
 $d_1^2 = 36$
 $d_2 = 40 - 44 = -4$ $d_2^2 = 16$
 $\sigma_{250} = \frac{\sqrt{n_1(\sigma_{100}^2 + d_1^2) + n_2(\sigma_{150}^2 + d_2^2)}}{n_1 + n_2}$
 $= \frac{\sqrt{390}}{5} = \frac{37.28}{5} = 7.456 = 7.5$

- 133. (c) Variance of all 250 items = $(\sigma_{250})^2 = (7.456)^2 = 55.6$ 134. (a) 1. It is true that, the histogram is a suitable representation of a frequency distribution of a continuous variable.
 - Hence, Statement 1 is correct. We know that, the area of histogram is proportional
 - 2. to the frequency, so it is not true statement.
- 135. (d) When regression lines perpendicular to each other then angle will be :

$$\tan \theta = \left\{ \left(\frac{1 - r^2}{r} \right) \left(\frac{\sigma_x \cdot \sigma_y}{\sigma_x^2 + \sigma_y^2} \right) \right\}$$
$$\Rightarrow \tan \frac{\pi}{2} = \left(\frac{1 - r^2}{r} \right) \left(\frac{\sigma_x \cdot \sigma_y}{\sigma_x^2 + \sigma_y^2} \right)$$
$$\Rightarrow r.(\sigma_x^2 + \sigma_y^2) = 0$$
$$\therefore r = 0$$

136. (d) It is obvious that, $\overline{x} < \overline{z} < \overline{y}$.

137. (b) Mean =
$$(\overline{x}) = \frac{\sum x_i}{N}$$

Here $\overline{x} = \frac{4+7+8+9+10+12+13+17}{8} = 10$
 \therefore Mean deviation about mean $= \frac{\sum |x_i - \overline{x}|}{N}$
 $|4-10| + |7-10| + |8-10| + |9-10| + |10-10|$
 $= \frac{+|12-10|+|13-10| + |17-10|}{8}$

$$=\frac{6+3+2+1+0+2+3+7}{8}=\frac{24}{8}=3$$

138. (c) Let x_1, x_2, \dots, x_{20} be the given observations.

Given,
$$\frac{1}{20} \sum_{i=1}^{20} (x_i - \overline{x})^2 = 5$$

To find variance of $2x_1, 2x_2, 2x_3, ..., 2x_{20}$, Let \overline{x} denotes the mean of new observation,

$$\sum_{i=1}^{20} 2x_i = \frac{2\sum_{i=1}^{20} x_i}{20} = \frac{2\sum_{i=1}^{20} x_i}{20} = 2\overline{x}$$
Now, variance of new observation
$$= \frac{1}{20} \sum_{i=1}^{20} (2x_i - \overline{x})^2 = \frac{1}{20} \sum_{i=1}^{20} (2x_i - 2\overline{x})^2$$

$$= \frac{1}{20} \sum_{i=1}^{20} (2x_i - \overline{x})^2 = \frac{1}{20} \sum_{i=1}^{20} (2x_i - 2\overline{x})^2$$

$$= \frac{1}{20} \sum_{i=1}^{20} 4(x_i - \overline{x})^2 = 4 \left(\frac{1}{20} \sum_{i=1}^{20} (x_i - \overline{x})^2 \right) = 4 \times 5 = 20$$

139. (c) Mean
$$\left(\overline{X}\right) = 4$$

Variance (X) = 2

Number of observations = 10 $(4 \times 10) \times 2$

New average =
$$\frac{(2000)^{10}}{10} = 8$$

New variance = $(2)^2 \times \text{Variance}(X)$
= $4 \times 2 = 8$

- Option (c) is correct. *.*...
- Geometric mean is used in construction of 140. (b) index numbers.
 - option (b) is correct. *.*..

141. (c)

- It gives the value by which one variable changes for a 142. (b) unit change in the other variable. option (b) is correct. *.*..
- 143. (c) The annual numerical data for comparable for last 12 years is represented by broken line graph, where each turning point represent the data of a particular year, while such graph do not depict the chronological change.
 - Option (c) is correct.

144. (d) Mean of 5 numbers =
$$30$$

 \therefore Total sum of 5 numbers = $30 \times 5 = 150$
After excluded one number
Mean of 4 numbers will be = 28
 \therefore Total sum of 4 numbers = $4 \times 28 = 112$

- Thus, excluded number = (sum of 5 numbers – sum of 4 numbers) = 150 - 112 = 38
- Option (d) is correct.
- 145. (a) The 'less than' ogive curve and the 'more than' ogive curve intersect at median. *.*.. Option (a) is correct.

146. (c)
$$G_1 = [x_1 \times x_2 \times x_3 \times \dots \times x_n]^{1/n}$$

 $G_2 = [y_1 \times y_2 \times y_3 \times \dots \times y_n]^{1/n}$
 $\Rightarrow \frac{G_1}{G_2} = \left[\frac{x_1}{y_1} \times \frac{x_2}{y_2} \times \frac{x_3}{y_3} \times \dots \times \frac{x_n}{y_n}\right]^{1/n}$
 $\therefore \frac{G_1}{G_2}$ is the G.M of $\frac{x_1}{y_1}, \frac{x_2}{y_2}, \frac{x_3}{y_3}, \dots, \frac{x_n}{y_n}$
147. (c) Sum of the given terms = 1 + 8 + 27 + 64 + upto n

terms
Sum = 1³ + 2³ + 3³ + 4³ + + upto n terms
Sum =
$$\left(\frac{n(n+1)}{2}\right)^2 = \frac{n^2(n+1)^2}{4}$$

AM = $\frac{n^2(n+1)^2}{4} \times \frac{1}{n} = \frac{n(n+1)^2}{4}$

Statistics

148. (b) Let
$$b_1 = -0.64$$

 $b_2 = -0.36$
 $r = \pm \sqrt{-0.64 \times -0.36} = \pm 0.48$
 $\therefore b_1 < 0 \& b_2 < 0$
 $\therefore r < 0$
 $\Rightarrow r = -0.48$

149. (a) Given numbers - 10, 9, 21, 16, 24 Mean = $\frac{10+9+21+16+24}{5} = \frac{80}{5} = 16$

Numbers	Distance (d) from mean (16)
10	6
9	7
21	5
16	0
24	8

 $\Sigma d = 26$

Mean deviation
$$=$$
 $\frac{\Sigma d}{5} = \frac{26}{5} = 5.2$

150. (c) Total no. of observation (n) = 20 $\Sigma x_i = 1000$

$$\overline{x} = \frac{\Sigma x_i}{n} = \frac{1000}{20} = 50$$
Variance = sd^2

$$sd = \sqrt{\frac{1}{n}\Sigma x_i^2 - (\bar{x})^2}$$
$$(sd)^2 = \frac{1}{n}\Sigma x_i^2 - (\bar{x})^2 = \frac{84000}{20} - (50)^2$$
$$= 4200 - 2500 = 1700.$$

Variance = 1700

151. (d) Mean of series $(x_1, x_2, x_3, ..., x_n)$

$$\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$$

 $\Rightarrow x_1 + x_2 + x_3 + \dots + x_n = n\overline{x}$ Now we will replace x_2 by λ so no. of elements in series will not change. New series will include λ and exclude x_2 Hence new series sum :

$$(x_1 + x_2 + \dots + x_n) - x_2 + \lambda = n\overline{x} + \lambda - x_2$$

Now new mean $= \frac{n\overline{x} + \lambda - x_2}{n} = \frac{n\overline{x} - x_2 + \lambda}{n}$

152. (d) Given data 3, 5, 1, 6, 5, 9, 5, 2, 8, 6 and mean, median and mode are x, y, z respectively. Rearranging data 1, 2, 3, 5, 5, 5, 6, 6, 8, 9 Mean = $x = \frac{1+2+3+5+5+6+6+8+9}{10} = \frac{50}{10} = 5$

 $y = \frac{5+5}{2} = 5$

Hence x = y = z.

154. (d) Mean = Median (in symmetric distribution) Range = (Max. value – Min. value) And sum of areas of rectangles in the histogram is always equal to the total area bounded by frequency polygon and the horizontal axis.

Mode (z) = most frequently occuring value = 5

153. (c) Statement (1) is correct because total area of the

Median = $y = \frac{\frac{n^{\text{th}}}{2} \operatorname{term} + \left(\frac{n}{2} + 1\right)^{\text{th}} \operatorname{term}}{2}$

155. (d) Mean of the scores = $\frac{202}{15}$

Mean of the correct scores =
$$\frac{200}{15}$$

i.e., Mean changes. Median is same for both cases i.e., 14. Mode is proportional to mean.

156. (b) Line of regression of y on x is :

$$y - \overline{y} = b_{yx}(x - \overline{x})$$

$$\overline{y} = \frac{\Sigma y}{n}; \ \overline{x} = \frac{\Sigma x}{n} \Rightarrow \overline{y} = \frac{220}{10} = 22; \ \overline{x} = \frac{130}{10} = 13$$

$$b_{yx} = \mathbf{r} \cdot \frac{\sigma_y}{\sigma_x}$$

$$\mathbf{r} = \frac{n\Sigma xy - (\Sigma x)(\Sigma y)}{\sqrt{[n\Sigma x^2 - (\Sigma x)^2][n\Sigma y^2 - (\Sigma y)^2]}}$$

$$=\frac{10(3467) - (130)(220)}{\sqrt{[(10 \times 2288) - 130^2][(10 \times 5506) - (220^2)]}}$$

r=0.962

$$\sigma_{y} = \sqrt{\frac{\Sigma y^{2}}{n} - \left(\frac{\Sigma y}{n}\right)^{2}} \Longrightarrow \sigma_{y} = 8.2; \ \sigma_{x} = 7.73.$$

$$\Rightarrow b_{yx} = 0.962 \times \frac{8.2}{7.73} = 1.02$$

$$\Rightarrow \text{ Line of regression of } y \text{ on } x \text{ is :}$$

$$y - 22 = 1.02 (x - 13)$$

$$\Rightarrow y = 1.02x + 8.74$$

157. (d) For Group A : Coefficient of variation

$$CV_A = \frac{\text{S.D.}}{\text{Mean}} = \frac{10}{22} = 0.4545$$

For Group B :

$$CV_B = \frac{12}{23} = 0.522$$

$$\Rightarrow \text{Group A is less variable.}$$
(b)
(c) Let $u = (x + y); v = (x - y)$

$$\therefore \overline{u} = (\overline{x} + \overline{y}); \overline{v} = (\overline{x} - \overline{y})$$

$$\operatorname{cov}(u, v) = E\{(u - \overline{u})(v - \overline{v})\}$$

$$= E\{(x - \overline{x}) + (y - \overline{y})\} \cdot \{(x - \overline{x}) - (y - \overline{y})\}$$

$$= E\{(x - \overline{x})^2 - (y - \overline{y})^2\} = \sigma_x^2 - \sigma_y^2$$

$$\operatorname{var}(u) = E(u - \overline{u})^2 = E\{(x - \overline{x}) + (y - \overline{y})\}^2 = \sigma_x^2 + \sigma_y^2$$
Therefore x and y are uncorrelated.

$$E(x - \overline{x})(y - \overline{y}) = 0$$
Similarly, $\operatorname{var}(v) = \sigma_x^2 + \sigma_y^2$
Thus, $r(u, v) = \frac{\operatorname{cov}(u, v)}{\sqrt{\operatorname{var}(u) \cdot \operatorname{var}(v)}} = \frac{\sigma_x^2 - \sigma_y^2}{\sigma_x^2 + \sigma_y^2}$

160. (b)

Age	Mid value x _i	Frequency f _i	f _i x _i
15 – 25	20	2	40
25-35	30	4	120
35-45	40	6	240
45 - 55	50	5	250
55 - 65	60	3	180
		$\Sigma f_i = 20$	$\Sigma x_i f_i = 830$

$$\Rightarrow \text{Mean age} = \frac{\sum x_i f_i}{\sum f_i} = \frac{830}{20} = 41.5$$

161. (b) cov(x, y) = 30

$$var(x) = 25; var(y) = 144$$

$$\Rightarrow r(x, y) = \frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{var}(x) \cdot \operatorname{var}(y)}}$$

$$\Rightarrow r(x, y) = \frac{30}{\sqrt{25 \times 144}} = \frac{30}{5 \times 12} = 0.5$$

- 162. (d) New variance = k^2 (old variance) = $3^2 \times 5$ = $9 \times 5 = 45$
- 163. (b) Mean of 100 observations = 20

Required mean =
$$\frac{20 \times 100 - (21 + 21 + 18 + 20)}{96}$$

$$=\frac{1920}{96}=20$$

164. (b) $4y-15x+410=0$

$$\Rightarrow y - \frac{15}{4}x + \frac{410}{4} = 0 \Rightarrow y = \frac{15}{4}x - \frac{410}{4}$$

$$\therefore b_{yx} = \frac{15}{4}$$

$$30x - 2y - 825 = 0 \implies x = \frac{2}{30}y + \frac{825}{30}$$

$$\therefore b_{xy} = \frac{2}{30}$$
Correlation coefficient = $\sqrt{(b_{yx})(b_{xy})}$

$$=\sqrt{\frac{15}{4} \times \frac{2}{30}} = \sqrt{\frac{1}{4}} = \frac{1}{2}$$

165. (c) First, convert 40 % into fraction

$$40\% = \frac{40}{100} = \frac{2}{5}$$

Angle = $\frac{2}{5} \times 360 = 144^{\circ}$

166. (a)

167. (c) We know, $\frac{4}{5}$ standard deviation = Mean deviation

 \Rightarrow 4 × standard deviation = 5 × mean deviation

168. (d) Data can be represented in all three forms 169. (a)

170. (a) Correlation coefficient =
$$\sqrt{\frac{-1}{2} \times \frac{-1}{8}}$$

$$=\sqrt{\frac{1}{16}} = -\frac{1}{4}$$

Since, both the regression coefficients are negative, correlation coefficient is negative.

- 171. (b) Mean = 32, Median = 33 It was recorded as 40 instead of 35. So, sum will decrease and so mean. Median remains same.
- 172. (b) Only statements 2 and 3 are correct

173. (d) Given, standard deviation = 0 Mean = 24 Since standard deviation is 0, all observations are equal to 24.
∴ Mean of smallest five observations = 24.

174. (a) The product of regression coefficient of y on x and regression coefficient of x on y is always less than or equal to 1.

Also, the signs of both coefficients should be same. Here, $|\mathbf{x}| = 1$

175. (c)
$$\overline{X} = 10, \overline{Y} = 90, \sigma_x = 3, \sigma_y = 12, r_{xy} = 0.8$$

Regression equation x on y is

$$x - 10 = r \cdot \frac{\sigma_x}{\sigma_y} (y - 90)$$
$$\Rightarrow x - 10 = 0.8 \times \frac{3}{12} (y - 90)$$
$$\Rightarrow x - 10 = \frac{2.4}{12} (y - 90)$$

158. 159.

 \Rightarrow x - 10 = 0.2 (y - 90) \Rightarrow x - 10 = 0.2 y - 18 \Rightarrow x = 0.2 y - 8. 176. (b) Total expenditure of A = 3,500 + 500 + 1,500 + 2,000+2,500=10,000Total expenditure of B = 2,700 + 800 + 1,000 + 1,800+1,800=8,100Area of A : Area of B = 10,000 : 8,100=100:81 \Rightarrow radius of A : radius of B = $\sqrt{100}$: $\sqrt{81}$ =10:9177. (b) The arithmetic mean is always between minimum and maximum value. So, $\frac{n}{2}$ is arithmetic mean. 178. (b) Only statement 2 is correct 179. (c) Coefficient of correlation = $\sqrt{0.2 \times 1.8}$ $=\sqrt{0.36}$ =0.6. Mean = np 180. (a) Variance = npq Given, np = 3np q \Rightarrow q = $\frac{1}{3}$, p = $\frac{2}{3}$. Also, Given n = 5 trials. r = 3we know, $p(x = r) = {}^{n}c_{r}.p^{r}.q^{n-r}$ $p(x=3) = {}^{5}c_{3}\left(\frac{2}{3}\right)^{3}\left(\frac{1}{3}\right)^{2}$ $=\frac{80}{243}$. 181. (d) Given, r = 0.6, covariance = 27, $\sigma_{(y)}^2 = 25 \Rightarrow \sigma(y) = 5$ We know, $r = \frac{\text{covariance}(x, y)}{\sigma(x).\sigma(y)}$

$$\Rightarrow \sigma(\mathbf{x}) = \frac{\text{covariance}(\mathbf{x}, \mathbf{y})}{r.\sigma(\mathbf{y})} = \frac{27}{\left(\frac{6}{10}\right).5}$$
$$= \frac{27 \times 2}{6} = 9.$$
$$\Rightarrow \sigma^2(\mathbf{x}) = 81.$$
Given, Mean of $\mathbf{x}_i = \overline{\mathbf{x}}$

182. (d) Given, Mean of
$$x_i = \overline{x}$$

Also, Given $x_i = a + cy_i$
 \therefore Mean of $a + cy_i = \overline{x}$
 \Rightarrow Mean of $cy_i = \overline{x} - a$
 \Rightarrow Mean of $y_i = \frac{\overline{x} - a}{c}$

If r_{xy} is 0, then $\tan \theta = \infty$ and lines are perpendicular. If r_{yy} is 1, then the lines are parallel.

(1)

(2)

184. (c)
$$4x-5y+33=0$$

 $20x-9y=107$

$$\begin{array}{ccc} (1) \times 5 \Rightarrow & 20x - 25y + 165 = 0 \\ (2) \Rightarrow & 20x - 9y - 107 = 0 \\ & (\cancel{y}) & (+) & (+) \end{array} \\ \hline & & -16y + 272 = 0 \Rightarrow 16y = 272 \Rightarrow y = 17 \end{array}$$

$$(1) \Rightarrow 4x - 5(17) + 33 = 0$$

$$\Rightarrow 4x - 85 + 33 = 0$$

$$\Rightarrow 4x = 52 \Rightarrow x = 13.$$

- 185. (d) 1. Mean is dependent with change in origin.2. Variance is independent with change in origin.
- 186. (c) Both the given statements are correct.
- 187. (b) By arranging the given numbers in ascending order,

$$\begin{array}{c} -4.8, 0, 2.3, 3.5, 3.9, \underline{4.6, 5.2}, 6.1, 7.6, 8.2, 9.3, 12.7 \\ & \downarrow \\ & \text{Middle} \\ \text{terms} \end{array}$$

:. Median =
$$\frac{4.6 + 5.2}{2}$$

= $\frac{9.8}{2}$ = 4.9

188. (c) Central angle =
$$20\%$$
 of 360°

$$=\frac{20\times60}{100}$$
$$=72^{\circ}$$

189. (b) Given, Mean = 5 Standard deviation = 2 If 5 is added to each value, mean = 5 + 5 = 10. Standard deviation will not change.

Coefficient of variation

$$\frac{\text{Standard deviation}}{\text{Mean}} \times 100$$

$$=\frac{2}{10} \times 100 = 2 \times 10$$
$$=20$$

190. (b)
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \left(\frac{1}{n} \sum_{i=1}^n x_i\right)^2$$

 $= \frac{1}{n} \left(1^2 + 2^2 + 3^2 + \dots + n^2\right) - \left(\frac{1}{n} (1 + 2 + 3 + \dots + n)\right)^2$
 $= \frac{1}{n} \frac{n(n+1)(2n+1)}{6} - \left(\frac{1}{n} \cdot \frac{n(n+1)}{2}\right)^2$
 $= \frac{n^2 - 1}{12} \qquad \therefore \sigma = \sqrt{\frac{n^2 - 1}{12}}.$

192. (d) Let No. of Man = M Let No. of Women = W 26 M + 21 W = 25(M + W)M = 4 WM : W = 4 : 1

- \therefore Percent of Men and Women = 80%, 20%
- 194. (b) Variance will not change by adding or subtracting a fixed value to all the elements.

195. (b)
$$b_{yx} = -6, r = -\frac{1}{2}$$

 $\left(-\frac{1}{2}\right)^2 = -6 \times b_{xy}$

 $\Rightarrow b_{xy} = -\frac{1}{24}$

196. (d) By definition.

197. (d) Combined Average

$$=\frac{500 \times 1860 + 600 \times 1750}{1100} = 1800$$

Combined Variance

$$= \frac{500(81+3600)+600(100+2500)}{1100}$$
$$= \frac{(5\times3681)+(6\times2600)}{1100} \approx 3092$$

- 198. (b) Median can be obtained from ogive.
- 199. (d) x = M.D., y = S.D.

$$M.D. = \frac{4}{5} S.D. \Longrightarrow x < y$$

200. (c) By definition.201. (c) Number of observations (N) = 100

Mean $(\bar{x}) = 50$ Standard deviation $(\sigma) = 10$

New mean,
$$\overline{x}_{1} = \frac{\sum \frac{x-5}{4}}{N} = \frac{1}{4} \left(\frac{\sum x}{N} - 5 \right) = \frac{1}{4} (50-5)$$

 $= \frac{45}{4} = 11.25$
New standard deviation $(\sigma_{1}) = \sigma \left(\frac{x-5}{4} \right)$
 $= \frac{1}{4} \sigma(x-5) = \frac{1}{4} \sigma(x) = \frac{10}{4} = 2.5$
202. (a) Only the statement 1 is correct.
203. (d) Given, $r_{xy} = 0.6$
 $z = x + 5; \ w = \frac{y}{3}$
 $\Rightarrow b_{zx} = 1 \Rightarrow b_{wy} = \frac{1}{3}$
 $b_{zx} \ b_{wy} = (1) \left(\frac{1}{3} \right) = \frac{1}{3}$
 $\Rightarrow \frac{r_{zw}}{r_{xy}} = \frac{1}{3} \Rightarrow r_{zw} = \frac{r_{xy}}{3} = \frac{0.6}{3} = 0.2$
204. (c) The series is 1, 2, 3, 20
Variance $(\sigma) = \frac{\sum x^{2}}{n} - \Sigma(\overline{x})^{2}$
 $= \frac{n(n+1)(2n+1)}{6n} - \left(\frac{n(n+1)}{2n} \right)^{2}$
 $= \frac{(n+1)}{12} (n-1)$
 $= \frac{n^{2}-1}{12} = \frac{(20)^{2}-1}{12} = \frac{399}{12} = \frac{133}{4} = 33.25$
 \therefore Numbers are multiplied by 3, variance $(\sigma) = 33.25 \times 9 = 299.25$